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ABSTRACT

Generating realistic 3D human-human interactions from textual descriptions re-
mains a challenging task. Existing approaches, typically based on diffusion mod-
els, often generate unnatural and unrealistic results. In this work, we introduce
InterMask, a novel framework for generating human interactions using collabo-
rative masked modeling in discrete space. InterMask first employs a VQ-VAE to
transform each motion sequence into a 2D discrete motion token map. Unlike
traditional 1D VQ token maps, it better preserves fine-grained spatio-temporal
details and promotes spatial awareness within each token. Building on this rep-
resentation, InterMask utilizes a generative masked modeling framework to col-
laboratively model the tokens of two interacting individuals. This is achieved
by employing a transformer architecture specifically designed to capture complex
spatio-temporal interdependencies. During training, it randomly masks the mo-
tion tokens of both individuals and learns to predict them. In inference, starting
from fully masked sequences, it progressively fills in the tokens for both individ-
uals. With its enhanced motion representation, dedicated architecture, and effec-
tive learning strategy, InterMask achieves state-of-the-art results, producing high-
fidelity and diverse human interactions. It outperforms previous methods, achiev-
ing an FID of 5.154 (vs 5.535 for in2IN) on the InterHuman dataset and 0.399
(vs 5.207 for InterGen) on the InterX dataset. Additionally, InterMask seamlessly
supports reaction generation without the need for model redesign or fine-tuning.

1 INTRODUCTION

3D human interaction generation is a fundamental task in computer vision and graphics, with ap-
plications in animation, virtual reality, robotics, and sports. Although significant progress has been
made in generating single-person motion sequences from text descriptions (Tevet et al., 2023; Guo
et al., 2024; 2022a; Pinyoanuntapong et al., 2024; Zhang et al., 2023; Petrovich et al., 2022), gen-
erating two-person interactions remains a significant challenge. In two-person interactions, each
individual’s motion depends not only on their own state but also on the state of their interacting
partner. Additionally, precise spatial positioning and orientation becomes crucial, specially in close-
contact cases. These factors add to the complexity and nuances of human interactions resulting in a
higher degree of spatial and temporal interdependence compared to single-person motion.

Existing works on human interaction generation commonly rely on diffusion models. Com-
MDM (Shafir et al., 2024) bridges two pretrained single-person motion diffusion models using a
small neural layer with limited interaction data. In contrast, InterGen (Liang et al., 2024) proposes
a specifically tailored diffusion model for two-person interactions, which uses cooperative trans-
formers to model each individual’s motion conditioned on the latent features of their partner’s mo-
tion. in2IN (Ruiz-Ponce et al., 2024) then extends it by conditioning the diffusion model on LLM-
generated individual descriptions in addition to the overall interaction descriptions, and leveraging
motion priors learned from single-person motion datasets like HumanML3D (Guo et al., 2022a).
MoMat-MoGen Cai et al. (2024) retrieves motions from supplementary datasets, based on textual
inputs, and refines them for interaction quality. Some very recent efforts (Shan et al., 2024; Fan
et al., 2024) extend these methods to more than two individuals. Despite these efforts, the generated
two-person interactions still fall short from achieving satisfactory realism and fidelity.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

One person sneaks up on the
other from behind Both are performing synchronized dance moves

In a boxing match, one is continuously punching while the other is defending and counterattacking

One person takes five steps to get to the
other person's back, who is sitting in a

chair holding something in their hands

Time

Figure 1: InterMask generates high fidelity text-conditioned 3D human interactions, with accurate
spatial and temporal coordination, including synchronized dance moves, realistic reaction timings in
boxing, and correct proximity, while maintaining high-quality poses.

In this work, we present InterMask, a novel framework based on generative masked modeling in
discrete space (Chang et al., 2022). InterMask consists of two stages. First, a shared VQ-VAE is
trained to transform each individual’s motion into a 2D discrete token map using a learned codebook
C (section 3.1). Unlike previous motion VQ-VAEs (Guo et al., 2022b; Zhang et al., 2023; Jiang
et al., 2023; Guo et al., 2024; Pinyoanuntapong et al., 2024), which represent motion as a temporal
sequence of 1D pose vectors and use 1D convolutions to capture only temporal context in each token,
we preserve both temporal and spatial dimensions. Each motion is represented as RN×J×d, where
N is the number of poses, J is the number of joints, and d is the joint feature dimension. Using 2D
convolutions, we generate a 2D token map, which captures body part context over short time ranges
in each token, allowing for better spatial awareness. This is crucial for interactions, where relative
body part positioning (e.g., hands) of two individuals holds significant importance.

In the second stage, a specialized Inter-M Transformer (section 3.2) is trained to collaboratively
model the tokens of both individuals using a generative masked modeling framework. During train-
ing, a random proportion of tokens from either both individuals or only one individual is masked
and predicted. The masking proportion follows a scheduling function to ensure its tractability during
inference. The inference process begins with all tokens masked, which are progressively generated
over a pre-defined number of iterations. At each iteration, the model predicts all masked tokens, but
only the most confident predictions are retained, while the rest are re-masked and re-predicted in
subsequent iterations. In addition to the standard self attention module, Inter-M Transformer fea-
tures a shared spatio-temporal attention module to capture fine-grained dependencies within each
individual’s motion, and a cross-attention module to capture dependencies between the two individ-
uals’ motion. This design effectively the dynamics of spatial and temporal relationships with and
between the two individuals, allowing enhanced interaction generation capabilities.

The main contributions of this work are as follows. First, we introduce InterMask, a novel masked
generative framework for human-human interaction generation from textual descriptions. Inter-
Mask utilizes a 2D VQ encoding that transforms motion sequences into discrete 2D token maps and
features a dedicated transformer trained with a generative masked modeling framework which ef-
fectively captures both intra- and inter-person spatial-temporal dependencies. Second, InterMask
achieves state-of-the-art results in generating high-fidelity, text-conditioned human interactions.
Empirically, it achieves an FID of 5.15 (vs. 5.54 in Ruiz-Ponce et al. (2024)) on InterHuman and
0.399 (vs. 5.207 in Liang et al. (2024)) on InterX. Third, InterMask seamlessly supports tasks such
as reaction generation without requiring any task-specific fine-tuning or architectural changes.

2 RELATED WORK

Quantized Motion Representation Quantized latent representations transform continuous data into
discrete tokens, which has been widely explored in human motion generation. Deep Motion Signa-
tures (Aristidou et al., 2018) adopted the use of contrastive learning to create discrete motif words,
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while TM2T (Guo et al., 2022b) was one of the first to apply VQ-VAE (Van Den Oord et al., 2017)
to human motion data, producing discrete motion tokens. T2M-GPT (Zhang et al., 2023) used Ex-
ponential Moving Average (EMA) and code reset techniques to improve the VQ-VAE, later adopted
in PoseGPT (Lucas et al., 2022) and MotionGPT (Jiang et al., 2023; Zhang et al., 2024b). Mo-
Mask (Guo et al., 2024) reduced quantization errors via residual quantization, while MMM (Pinyoa-
nuntapong et al., 2024) utilized a large codebook with the factorized codes technique from Yu et al.
(2022). Nevertheless, these works often ignore the spatial dimension of motions, where each token
encapsulates the whole information of poses in a short range. This limits the locality of each token,
which is important in applications like interactions and motion editing.

Generative Human Motion Modeling Synthesizing single-person motion has gained interest,
driven by the availability of large motion capture datasets and advancements in generative mod-
eling techniques like Diffusions (Tevet et al., 2023; Kim et al., 2023a; Zhang et al., 2024a; Tseng
et al., 2023; Chen et al., 2023; Kong et al., 2023; Lou et al., 2023) and Autoregressive models (Guo
et al., 2022b; Zhang et al., 2023; Jiang et al., 2023; Zhang et al., 2024b; Gong et al., 2023; Lucas
et al., 2022; Gong et al., 2023). While these models produce high-quality motions, they require
numerous sampling steps during inference. Techniques like the DDIM sampler (Song et al., 2021)
aim to address this for diffusion models but are still evolving. Additionally, autoregressive models
may have limited expressivity since the model only considers past tokens to generate the next one.
MoMask (Guo et al., 2024) and MMM (Pinyoanuntapong et al., 2024) attempted to address both
these issues by using a masked generative bidirectional transformer to predict all masked tokens
simultaneously. These works inspired the base structure of our InterMask.

Generative Human-Human Interaction Modeling Most research on human interaction modeling
has targeted two-person interactions, primarily addressing two major tasks: 1) reaction generation,
where the reactor’s motion is generated based on the actor’s motion, and 2) interaction generation,
where both individuals’ motions are generated simultaneously. While reaction generation has seen
increasing interest Chopin et al., 2023; Liu et al., 2023; Xu et al., 2024b; Ghosh et al., 2024; Ren
et al., 2024; Liu et al., 2024, interaction generation is less explored. ComMDM (Shafir et al., 2024)
trained a small neural network to bridge two single-person motion diffusion model (MDM (Tevet
et al., 2023)) copies on a limited interaction dataset. On the other hand, RIG (Tanaka & Fujiwara,
2023) and InterGen (Liang et al., 2024) introduced interaction diffusion models that simultaneously
denoise both individuals’ motions, conditioned on their partner’s latent representation. Subsequent
works, like Cai et al. (2024) and Ruiz-Ponce et al. (2024) extended interaction diffusion models by
using additional single-person annotations and supplementary motion datasets, whereas Shan et al.
(2024) and Fan et al. (2024) extended them to handle more than two individuals. While these meth-
ods achieve impressive results, there remains significant room for improvement in the quality and
realism of two-person interactions. In this paper, we address this by explicitly modeling the spatio-
temporal dependencies between interacting individuals’ using a masked generative framework.

3 METHODOLOGY

Our objective is to generate two-person interaction {mp}p∈{a,b} given a textual description, where
mp ∈ RN×J×d represents the motion sequences of one individual (either a or b), consisting of N
poses, each with J joints and d-dimensional joint features. As shown in Figure 2, our methodology
consists of two stages. First, we learn a discrete representation of individual motions using a VQ-
VAE (Section 3.1), which maps motion sequences to a 2-dimensional token map {tp}p∈{a,b} ∈
{0, 1, · · · , |C| − 1}n×j , where n and j are down-sampled temporal and spatial dimensions, and |C|
is the number of codes in the codebook. Then we learn an interaction masked generative transformer
(Inter-M Transformer), (Section 3.2) to collaboratively model the discrete tokens of both individuals.

3.1 2D DISCRETE MOTION TOKEN MAP

We start by learning a discrete latent representation space for individual motions using a VQ-VAE.
We tokenize individual motions instead of the entire interaction because the complexity of modeling
interactions is significantly higher. This allows both individuals to share the same discrete token
space, simplifying the representation and improving expressivity, as empirically shown in Table 2.
Additionally, this provides greater flexibility for complementary tasks such as reaction generation.
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Figure 2: Overview of InterMask. (a) Individual motions are quantized through vector quantization
(VQ) to obtain 2D tokens {ta, tb} for each. (b) Motion tokens from both individuals are flattened,
concatenated, masked and predicted collaboratively by the Inter-M Transformer. (c) Each block
in Inter-M Transformer consists of Self, Spatio-Temporal and Cross Attention modules to learn
complex spatio-temporal dependencies within and between both interacting individuals.

We create a 2D token map with both spatial and temporal dimensions by representing motion as
mp ∈ RN×J×d and using 2D convolutions. As illustrated in Figure 2(a), our VQ-VAE downsamples
the input sequence mp into a latent representation t̃p ∈ Rn×j×d′

, with downsampling ratios n/N
and j/J . Each d′-dimensional vector is then quantized by replacing it with the nearest entry from a
learnable codebook C = {ck}|C|−1

k=0 ⊂ Rd′
, producing a quantized sequence tp = Q(̃tp) ∈ Rn×j×d′

.
This is then decoded to reconstruct the motion m̂p = D(tp). After training, each vector in tp can
be replaced by its respective index k in C to obtain the 2d discrete representation of motion, namely
motion tokens {tp}p∈{a,b} ∈ {0, 1, · · · , |C| − 1}n×j , which is modeled in our Inter-M Transformer.

3.1.1 TRAINING OBJECTIVE

Our primary VQ-VAE training objective consists of a motion reconstruction loss and the commit-
ment loss (Van Den Oord et al., 2017):

Lvq = ∥mp − m̂p∥1 + β∥t̃p − sg(tp)∥22, (1)

where sg(·) denotes the stop-gradient operation, and β a weighting factor. We use Exponential
Moving Average (EMA) and codebook reset to update C, following Zhang et al. (2023).

We also incorporate geometric losses from Liang et al. (2024) to impose additional constraints,
including the joint velocity loss Lvel, the foot contact loss Lfc, and the bone length loss Lbl, which
are explained in Appendix B. The overall loss function Lvqvae is a weighted sum of these losses:

Lvqvae = Lvq + λvelLvel + λfcLfc + λblLbl (2)
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3.2 INTERACTION MASKED GENERATIVE TRANSFORMER

Next, the motion tokens for both individuals {ta, tb} are collaboratively modeled by our Inter-M
Transformer, capturing complex spatial and temporal dependencies within and between them. Im-
portantly, there is no order to the actions of interacting individuals in this task. Therefore we make
sure our data sampling, transformer architecture and embedding design are all permutation invariant.

3.2.1 TOKEN MASKING AND EMBEDDING

As shown in Figure 2(b), we first flatten and concatenate ta and tb, separated by a special [SEP]
token, to form a consolidated sequence t ∈ Z2nj+1. A subset of these tokens is then masked by
replacing with a learnable special-purpose token [MASK] following a two-stage scheme. In the first
stage, we apply random masking with probability pr or interaction masking with 1− pr. In random
masking, both ta and tb are randomly masked with ratio γ(τi), controlled by a cosine scheduling
function (Chang et al., 2022), as shown in eq. (3). In interaction masking, one of {ta, tb} is kept
fully unmasked, encouraging the model not to rely on the tokens from the same individual and learn
inter-individual dependencies.

γ(τi) = cos
(πτi

2

)
∈ [0, 1]

τi ∼ U(0, 1)
(3)

In the second stage, we employ step unroll masking, adopted from Kim et al. (2023b), where we re-
mask a portion (γ(τi+1)) of the predicted tokens with the lowest confidence scores and predict them
again. This refines the predictions iteratively, aligning with the inference process, where tokens are
progressively revealed. The masked tokens t̃ are then embedded using the input process module,
consisting of a learnable embedding layer and a linear transformation. Then, 2D positional encod-
ings, from Wang & Liu (2021), are added to impose spatio-temporal structure on the embeddings.
The updated embeddings, e0 ∈ R(2nj+1)×d̃, where d̃ is the transformer embedding dimension, are
then passed through L blocks of the Inter-M transformer.

3.2.2 TRANSFORMER BLOCK DESIGN

As illustrated in Figure 2(c), each Inter-M block starts with a self-attention module (Vaswani et al.,
2017) to model long-range, global dependencies within and between individuals. Then we intro-
duce a novel shared spatio-temporal attention layer to model spatial and temporal dependencies
within each individual’s motion tokens. Finally, we employ a shared cross attention layer to model
inter-individual dependencies. This design enables rich and dynamic modeling of spatio-temporal
interactions, ensuring effective learning of both intra- and inter-individual relationships.

Self Attention Let el−1 ∈ R(2nj+1)×d̃ represent the input token embeddings to block l, where l ∈
{1, 2, . . .L}. The block architecture begins with a self-attention module which computes attention
scores for all tokens in the sequence using the standard scaled dot-product attention mechanism:

Attn(Q,K,V) = softmax(QK⊤/
√
d̃)V (4)

where the query, key, and value matrices, Q, K, and V, are linear projections of el−1. The self
attention module is followed by a feedforward network (FFN).

Spatio-Temporal Attention Next, we split the embeddings of the two individuals and pass them
through a shared spatio-temporal attention module. This module consists of two separate attention
mechanisms: spatial attention and temporal attention. In the spatial attention module, each token
attends only to other spatial tokens within the same temporal instance; and in the temporal attention
module, each token attends only to tokens across the temporal dimension at the same spatial location.
Let el−1

p represent the updated embeddings of individual p ∈ {a, b} in block l after the self attention
module. We drop the l − 1 superscript to simplify the notation. Then ep(in) ∈ Rj×d̃ represent the
spatial tokens of individual p at temporal instance in, and ep(ij) ∈ Rn×d̃ represent the temporal
tokens of individual p at spatial location ij . The spatial and temporal attention is defined as:

e′p(in) = Attn(Qj ,Kj ,Vj) e′′p(ij) = Attn(Qn,Kn,Vn) (5)
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Figure 3: Inference process. Starting from completely masked token sequences of both individuals
{ta(0), tb(0)}, the Inter-M transformer generates all tokens in I iterations. Next, the tokens are
dequantized and decoded to generate motion sequences {ma,mb} using the VQ-VAE decoder.

where Qj ,Kj ,Vj , and Qn,Kn,Vn are the spatial queries, keys and values and temporal queries,
keys, and values, obtained from ep(in) and ep(ij) respectively. After updating the embeddings with
spatial and temporal attention, the outputs of these two modules are added together for each token:

ep = e′p(in) + e′′p(ij) ∀ 0 < in < n, 0 < ij < j (6)

Cross Attention Next, we apply a shared cross attention module to model dependencies between
the two individuals. Each token of individual a attends to all tokens of individual b and vice versa:

e′a = Attn(Qa,Kb,Vb) e′b = Attn(Qb,Ka,Va) (7)

where Qa,Ka,Va, and Qb,Kb,Vb are the queries, keys and values obtained from embeddings
ea, eb of each individual. Finally, each individual’s embeddings are passed through another FFN
and concatenated to form the sequence el ∈ R(2nj+1)×d̃, which is passed to the next block.

Text Conditioning We condition our transformer blocks on the input text by replacing the standard
layer normalization in each attention and FFN module with modulated adaptive layer normalization
(AdaLN-mod) as proposed by Peebles & Xie (2023). In AdaLN-mod, the dimension-wise scale and
shift parameters are regressed using a multi-layer perceptron (MLP), from the conditional vector c,
obtained from a frozen, pre-trained CLIP network (Radford et al., 2021). This modulation allows the
model to dynamically adapt its normalization based on the content of c. Additionally, we initialize
each residual connection in the transformer block as an identity function by regressing another scale
parameter α from c, which is initialized to output a zero vector. This ensures that the network can
adapt the modulation during learning without imposing strong biases at initialization.

3.2.3 OUTPUT PROCESS

After the final block, we use a standard linear projector with AdaLN-mod to map the output eL to the
indices of codebook C, eout ∈ R2nj×|C|, where |C| represents the size of C. As defined in eq. (8),
the transformer’s training objective minimizes the negative log-likelihood of the masked tokens,
computed as the cross-entropy between the one-hot encoded ground truth and model predictions.

Lmask =
∑

t̃k=[MASK]

− log pθ(tk|t̃, c). (8)

3.3 INFERENCE

As illustrated in Figure 3, the inference process consists of two stages. Starting with a fully masked
sequence t(0), the Inter-M transformer generates tokens for both individuals over I iterations. At
each iteration i, the transformer predicts token probabilities at masked locations, then samples to-
kens and remasks those with the lowest ⌈γ

(
i
I

)
· 2nj⌉ confidence scores, repeating until i reaches

I . The final token sequence is decoded back into motion using the VQ-VAE decoder. A cosine
schedule γ

(
i
I

)
controls the number of retained tokens, increasing as i progresses. Classifier-free

guidance (Ho & Salimans, 2021) is also applied for refinement, following Chang et al. (2022).
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Dataset Method R Precision↑ FID↓ MM Dist↓ Diversity→ MModality↑
Top 1 Top 2 Top 3

Inter
Human

Ground Truth 0.452±.008 0.610±.009 0.701±.008 0.273±.007 3.755±.008 7.948±.064 -

T2M (Guo et al., 2022a) 0.238±.012 0.325±.010 0.464±.014 13.769±.072 5.731±.013 7.046±.022 1.387±.076

MDM (Tevet et al., 2023) 0.153±.012 0.260±.009 0.339±.012 9.167±.056 7.125±.018 7.602±.045 2.350±.080

ComMDM (Shafir et al., 2024) 0.223±.009 0.334±.008 0.466±.010 7.069±.054 6.212±.021 7.244±.038 1.822±.052

InterGen (Liang et al., 2024) 0.371±.010 0.515±.012 0.624±.010 5.918±.079 5.108±.014 7.387±.029 2.141±.063

MoMat-MoGen (Cai et al., 2024) 0.449±.004 0.591±.003 0.666±.004 5.674±.085 3.790±.001 8.021±.35 1.295±.023

in2IN (Ruiz-Ponce et al., 2024) 0.425±.008 0.576±.008 0.662±.009 5.535±.120 3.803±.002 7.953±.047 1.215±.023

InterMask 0.449±.004 0.599±.005 0.683±004 5.154±.061 3.790±.002 7.944±.033 1.737±.020

InterX

Ground Truth 0.429±.004 0.626±.003 0.736±.003 0.002±.0002 3.536±.013 9.734±.078 -

T2M (Guo et al., 2022a) 0.184±.010 0.298±.006 0.396±.005 5.481±.382 9.576±.006 2.771±.151 2.761±.042

MDM (Tevet et al., 2023) 0.203±.009 0.329±.007 0.426±.005 23.701±.057 9.548±.014 5.856±.077 3.490±.061

ComMDM (Shafir et al., 2024) 0.090±.002 0.165±.004 0.236±.004 29.266±.067 6.870±.017 4.734±.067 0.771±.053

InterGen (Liang et al., 2024) 0.207±.004 0.335±.005 0.429±.005 5.207±.216 9.580±.011 7.788±.208 3.686±.052

InterMask 0.403±.005 0.595±.004 0.705±005 0.399±.013 3.705±.017 9.046±.073 2.261±.081

Table 1: Quantitative evaluation on the InterHuman and InterX test sets. ± indicates a 95%
confidence interval and → means the closer to ground truth the better. Bold face indicates the best
result, while underscore refers to the second best.

4 EXPERIMENTS

Datasets We adopt two datasets to evaluate InterMask for the text-conditioned human interaction
generation task: InterHuman (Liang et al., 2024) and InterX (Xu et al., 2024a). The InterHuman
dataset contains 7,779 interaction sequences and InterX contains 11,388, each paired with 3 distinct
textual annotations. InterHuman follows the AMASS (Mahmood et al., 2019) skeleton represen-
tation with 22 joints, including the root joint. Each joint is represented by {pg, vg, r6d}, where
pg ∈ R3 is the global position, vg ∈ R3 is the global velocity, and r6d ∈ R6 is the local 6D rota-
tion of each joint, rendering mp ∈ RN×22×12. InterX follows the SMPL-X (Pavlakos et al., 2019)
skeleton representation, comprising 54 body, hands and face joints, accompanied by root orientation
and translation. Each joint and root orientation is represented by {r6d} and root translation by {pg},
to which we incorporate root velocity rendering root {pg, vg} and mp ∈ RN×56×6. We adhere to
the respective body representations of both datasets to demonstrate that our framework is compat-
ible with different representation formats and joint counts. Other implementation details including
architecture, training and inference hyper-parameters are provided in appendix C.

Evaluation Metrics Following Liang et al. (2024), we adopt several feature-space evaluation met-
rics to assess the performance of our model. These include the Frechet Inception Distance (FID),
which measures the fidelity of the generated interactions by calculating similarity between the gen-
erated and real interactions feature distributions. Additionally we employ R-precision and MMDist,
which evaluate how well the generated interactions align with the corresponding texts. Further-
more, we use Diversity to measure the overall variation in generated interactions, and multimodality
(MModality) to quantify the ability to generate multiple distinct interactions for the same text.

4.1 COMPARISON WITH STATE-OF-THE-ART APPROACHES

Quantitative Comparison Table 1 shows quantitative comparison of our InterMask with previous
methods. All evaluations are run 20 times (with the exception of MModality, which is run 5 times),
and we report the averaged results along with a 95% confidence interval. InterMask achieves state-
of-the-art (SOTA) results on both InterHuman and InterX datasets. It records the lowest FID scores
(5.154 on InterHuman and 0.399 on InterX), indicating superior realism and quality of generated
interactions, and leads in R-Precision and MMdist, showing excellent text alignment. With different
body representations in each dataset, these results highlight the robustness of our method, proving
it is not dependent on a specific body pose structure. Furthermore, the larger performance gap
on the larger InterX dataset suggests that InterMask scales effectively with more data. While our
MModality is slightly lower than some methods, the high R-Precision and low MMdist emphasize
that InterMask prioritizes adherence to text over extreme diversity, yet still achieves high Diversity
scores, demonstrating its ability to generate a broad range of interactions. Please refer to appendix D
for visual demonstration of InterMask’s ability to generate diverse results from the same text prompt.
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One person is sitting and waving their hands at the other person, while the other drifts away

Two people bow to eachother

InterGen InterMask

The first person raises the right leg aggressively towards the second

Figure 4: Qualitative comparison between InterMask and InterGen (Liang et al., 2024), highlighting
InterMask’s superior interaction quality, text adherence and avoidance of implicit biases.

Input Modality Token
Map

Recon
FID↓ MPJPE ↓

Individual Motion 1d 3.146 0.354
Two-Person Interaction 2d 1.276 0.198
Individual Motion 2d 0.970 0.129

Table 2: Ablation Study results on InterHuman test
set to verify key components of the proposed Motion
VQ-VAE. Bold face indicates the best result.
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Figure 5: User Study comparing our Inter-
Mask and InterGen (Liang et al., 2024).

Qualitative Comparison In Figure 4, we provide a qualitative comparison of interaction sequences
generated by our InterMask and InterGen Liang et al. (2024), trained on the InterHuman dataset,
for the same text descriptions. For the prompt ”The first person raises the right leg aggressively
towards the second”, InterGen incorrectly raises both legs, while InterMask accurately raises only
the right leg. For ”Two people bow to each other”, InterGen introduces an unnecessary fighting
gesture after the bow, indicating overfitting to implicit biases in the training data, whereas InterMask
stays true to the simple bow. Lastly, for ”One person is sitting and waving their hands at the
other person, while the other drifts away”, InterGen generates a crouching pose instead of sitting
and misplaces the waving action, while InterMask faithfully generates the described scene. These
examples demonstrate that InterMask produces more higher quality and more reliable interactions
compared to InterGen. For more qualitative results please refer to appendix A.

User Study User studies are essential in generative AI, complementing metrics like FID by incor-
porating human perception to evaluate the realism and quality of generated content. To compare
our InterMask with InterGen (Liang et al., 2024), we conducted a user study with 16 participants,
where 30 interaction sequences were generated by both models with identical motion lengths. Each
sequence pair was rated by 3 distinct users on interaction quality and adherence to text (scores out of
5), and their preferred interaction sequence among the two. More details are provided in appendix I.
As shown in Figure 5, InterMask outperforms InterGen in interaction quality (4.089 vs. 3.296) and
text adherence (3.938 vs. 3.198), with 69.14% of users preferring InterMask over InterGen.

Computation and Time Cost In addition to superior generation fidelity and text adherence, Inter-
Mask demonstrates better computational efficiency when compared to InterGen (Liang et al., 2024).
InterMask contains only 74 M inference parameters, compared to 182 M for InterGen, resulting in
a considerably smaller model footprint. Furthermore, InterMask achieves an average inference time
of 0.77 seconds, less than half of InterGen’s 1.63 seconds, highlighting its low latency.
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4.2 ABLATION STUDIES

Method R Precision↑ FID↓ MM Dist↓ Diversity→ MModality↑
Top 1 Top 2 Top 3

Ground Truth 0.452±.008 0.610±.009 0.701±.008 0.273±.007 3.755±.008 7.948±.064 -

Alternative Modeling 0.340±.002 0.425±.009 0.514±.006 7.637±.072 3.937±.003 8.424±.022 2.192±.076

Collaborative Modeling
w/o Self Attention 0.393±.006 0.527±.005 0.596±007 5.715±.067 3.827±.003 7.873±.034 1.683±.076

w/o Cross Attention 0.328±.008 0.416±.009 0.508±007 8.461±.076 3.972±.005 7.951±.085 1.942±.076

w/o Spatio-Temporal Attention 0.296±.004 0.391±.007 0.470±005 10.968±.093 4.219±.006 7.659±.023 1.607±.076

w/o Step Unroll and Interaction Masking 0.402±.003 0.548±.004 0.633±002 5.629±.053 3.806±.002 7.942±.096 1.741±.076

InterMask 0.449±.004 0.599±.005 0.683±004 5.154±.061 3.790±.002 7.944±.033 1.737±.020

Table 3: Ablation Study results on the InterHuman test set to verify key components of the proposed
Inter-M Transformer. Bold face indicates the best result.

Table 2 presents an ablation study to evaluate key components of our proposed Motion VQ-VAE. We
investigated two primary factors: the input modality (individual motions vs two-person interactions)
and the token map dimensions (1d vs 2d), using Reconstruction FID and MPJPE (Mean Per Joint
Position Error). The results demonstrate that using individual motions as input with a 2D token
map outperforms both the baseline of individual motions with a 1D token map, and the two-person
interaction with a 2D token map. These findings suggest that preserving spatial information through
2D token maps and focusing on individual motions performs accurate motion reconstruction, and
creates a more expressive token map with high-fidelity movement details.

Table 3 presents an ablation study to evaluate key components of our Inter-M Transformer. We
compared collaborative modeling against alternative modeling and examined the impact of various
attention mechanisms and masking strategies. Alternative Modeling (appendix E) models tokens of
one person at a time, while conditioning in on the tokens of the other person, leading to an alter-
native generation during inference. Collaborative Modeling on the other hand, models tokens of
both individuals simultaneously. Our full InterMask model with collaborataive modeling outper-
forms all ablated versions, particularly in R-Precision and FID scores. Notably, removing any of
the attention mechanisms or employing alternative modeling severely degraded performance, with
spatio-temporal attention being the most crucial one. Additionally, step unroll and interaction mask-
ing proved to be further fine-tuning the results. These results highlight the synergistic importance of
all components in our transformer architecture for effective interaction modeling. Qualitative results
for selected ablation studies are shown in appendix F.

4.3 APPLICATION: REACTION GENERATION

One of the key strengths of our InterMask model is its seamless support for the task of reaction gen-
eration with or without a text condition, where the motion of one person in an interaction is generated
based on the provided reference motion of the other person. Unlike previous diffusion-based mod-
els, such as InterGen (Liang et al., 2024), InterMask can perform this task without any task-specific
fine-tuning or architectural re-design. This flexibility arises from our use of the masked modeling
technique combined with an individual motion tokenizer, which does not require interactions as in-
put. During inference, we simply tokenize the reference motion, leave its tokens unmasked, and
progressively generate tokens of the other person. More details are provided in appendix G.

Quantitatively, InterMask achieves an FID of 2.99 and an R-precision of 0.462 on InterHuman for
reaction generation. In comparison, InterGen suffers from a performance drop with an FID of 52.89
(vs 5.918 for interaction generation) and an R-precision of 0.194 (vs 0.371) when adopted for re-
action generation without fine-tuning, demonstrating its inability to perform reaction generation
out-of-the-box. As shown qualitatively in Figure 6, InterMask produces high-quality reaction mo-
tions. In cases without text conditioning, when the reference motion involves dancing, the generated
motion follows the reference steps and even captures nuanced details like raising the same leg or
arm. Similarly, for the physical combat scenario, when the reference motion attacks, the generated
motion retreats and vice versa. For text-conditioned samples, InterMask performs equally well,
whether the text describes both people’s motions or provides separate descriptions for each. The
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s

Generated MotionReference Motion

One person
approaches the other

One Person throws a toy to the other person, and the other grasps it

These two take a step away from
eachother and strech their arms

Figure 6: Reaction generation samples with and without text descriptions, including holistic instruc-
tion for both individuals and separate instructions for each.

model accurately identifies the required reaction form text and the reference motion and generates
the corresponding motion, maintaining high-quality poses and realistic timings throughout.

5 CONCLUSION

In this paper, we presented InterMask, a novel framework for generating realistic 3D human interac-
tions through generative masked modeling in the discrete space. InterMask first employs a VQ-VAE
to transform individual motion sequences into 2D discrete token maps, preserving both spatial and
temporal dimensions. Then, a specialized Inter-M transformer collaboratively models the motion to-
kens of both individuals, capturing intricate spatial and temporal dependencies within and between
them. Quantitative evaluations show that InterMask excels in generating realistic and contextually
aligned motions, achieving the lowest FID scores and superior results in R-Precision and MMdist
on both the InterHuman and InterX datasets compared to existing models. Additionally, user studies
comparing InterMask to InterGen reveal a 69% user preference for InterMask, noting higher-quality
and more realistic interactions. The flexibility of our approach is also evident by its ability to per-
form equally well for different body representations. While there are minor trade-offs in diversity
(MModality), InterMask consistently maintains high quality and adherence to text while generating
a wide range of realistic interactions.

Limitations and Future Work While InterMask generates high-quality human interactions, there
are some limitations. First, when visualized as SMPL Loper et al. (2015) meshes, issues such as
body penetration between individuals and jerky movements during rapid actions can occur. Second,
our model sometimes interprets motions as dances without explicit prompting, likely due to implicit
biases in the training dataset. Lastly, our approach is currently optimized for short sequences up to 10
seconds, reflecting the constraints of the dataset. Visual examples are shown in appendix H. Future
research directions include implementing techniques for smoother transitions, preventing penetra-
tions, addressing dataset biases, and expanding the model’s capacity to handle longer sequences.

Reproducibility Statement We have made our best effort to ensure reproducibility, including but
not limited to: 1) description of our implementation details in appendix C; 2) detailed graphic il-
lustrations of our model architectures, training mechanisms and inference processes in Figures 2,
3, 8 and 11; 3) provided code implementation as part of the supplementary material; and 4) public
release of code and model checkpoints upon acceptance.
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A SUPPLEMENTARY MATERIAL

In addition to the subsequent appendix sections, we provide the following as supplementary material
for this work:

• Demo Videos: We provide several demonstration videos showcasing visual interaction
results generated using InterMask. These include an animation gallery with generated in-
teractions for everyday actions, dance and combat; nuanced description demonstration to
highlight the capability of Intermask to follow specific details in text; diversity demon-
stration with multiple generated interactions for each text prompt; comparison videos to
compare the generated results of InterMask and InterGen (Liang et al., 2024); an animation
gallery to show reaction generation results; and finally some failure cases. The videos are
shown in form of a webpage, provided as an html file.

• Code Implementation: We provide the complete code implementation of our method
to ensure reproducibility. Upon acceptance, the code implementation, along with model
checkpoints, will be made publicly available.

B VQ-VAE GEOMETRIC LOSSES

Equation (9) shows the geometric losses used to train our Motion VQ-VAE to impose physical and
geometric constraints on the reconstructed motion, in a data-driven way. The velocity loss Lvel

encourages the reconstructed motion sequences to obey the velocity of joints in the ground truth
sequences and the bone length loss Lbl the distance between adjacent joints. The foot contact loss
Lfc encourages the feet to have zero velocity whenever they are in contact with the ground.

Lvel =
1

N − 1

N∑
in=1

∥(min+1 −min)− (m̂in+1 − m̂in)∥1

Lfc =
1

N − 1

N∑
in=1

∥(m̂in+1 − m̂in) · fin∥1

Lbl =
1

N − 1

N∑
in=1

∥B(min)−B(m̂in)∥1

(9)

Here, min represents the ground pose, m̂in represents the reconstructed pose at time step in, N
represents the total time steps in the sequence, fin ∈ {0, 1} represents the binary foot contact label
for the heel and toe joints for each pose min , and B(·) denotes the bone lengths joining adjacent
joints.

C IMPLEMENTATION DETAILS

Our models are implemented using PyTorch, with details of the model architecture, training, and
inference provided below. Key hyperparameters are summarized in the accompanying tables.

C.1 MODEL ARCHITECTURE

The Motion VQ-VAE employs 2D convolutional residual blocks for both the encoder and decoder.
The temporal downsampling factor is n/N = 1/4 for both datasets, while the spatial downsampling
is dataset-specific: j/J = 5/22 for InterHuman and j/J = 5/56 for InterX. Strided convolutions
are used for downsampling in the encoder, while the decoder restores dimensions via upsampling
and convolutional layers. The latent representation in VQ-VAE has a dimension d′ = 512, and the
codebook size |C| = 1024.

For the Inter-M transformer, we use L = 6 transformer blocks, each with 6 attention heads. The
transformer embedding dimension is d̃ = 384.
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Parameter Value Description

d′ 512 Latent space dimension of VQ-VAE
|C| 1024 Codebook size (number of entries)
n/N 1/4 Temporal downsampling factor for both datasets
j/J (InterHuman) 5/22 Spatial downsampling for InterHuman dataset
j/J (InterX) 5/56 Spatial downsampling for InterX dataset
L 6 Number of transformer blocks
Attention heads 6 Number of attention heads per block
d̃ 384 Transformer embedding dimension
CLIP version ViT-L/14@336px Version of CLIP used for text in transformer

Table 4: Motion VQ-VAE and Inter-M Transformer Model Parameters

C.2 TRAINING DETAILS

The Motion VQ-VAE is trained for 50 epochs with a batch size of 512. The learning rate is initialized
at 0.0002 and decays via a multistep learning rate schedule, reducing by a factor of 0.1 after 70%
and 85% of the iterations. A linear warm-up is applied for the first quarter of the iterations. The
commitment loss factor β is 0.02, and the geometric losses for velocity, foot contact, and bone length
are weighted differently across the datasets.

The Inter-M transformer is trained for 500 epochs with a batch size of 52, following a similar multi-
step learning rate decay but with a decay factor of 1/3 after 50%, 70%, and 85% of the iterations. The
condition drop probability is 0.1 to allow for flexibility in training with or without text conditioning.

Parameter Value Description

VQ-VAE batch size 512 Number of samples per batch for VQ-VAE
Transformer batch size 52 Number of samples per batch for transformer
Initial learning rate 0.0002 Starting learning rate for both models
Learning rate decay 0.1 / 1/3 Decay factor for VQ-VAE / Transformer learning rate
β 0.02 Commitment loss factor for VQ-VAE
λvel, λfc, λbl (InterHuman) 100, 500, 5 Geometric loss weights for InterHuman
λvel, λfc, λbl (InterX) 100, 100, 5 Geometric loss weights for InterX dataset
Condition drop prob. 0.1 Drop probability for text conditioning during transformer training
pr 0.8 Random Masking probability for stage 1 masking during training

Table 5: Training Hyperparameters for the Motion VQ-VAE and Inter-M Transformer

C.3 INFERENCE DETAILS

During inference, the number of iterations I is set to 20 for interaction generation and 12 for reaction
generation. A classifier-free guidance (CFG) scale of 2 is applied, and the temperature is set to 1 to
balance diversity and coherence in the generated results.

Parameter Interaction Generation Reaction Generation

Number of iterations I = 20 Ireact = 12
CFG scale 2
Temperature 1

Table 6: Inference Hyperparameters for Interaction and Reaction Generation

D DIVERSITY DEMONSTRATION

Our quantitative comparison (section 4.1) shows that InterMask prioritizes adherence to text over
extreme diversity, while still being able to generate different distinct interactions for the same text
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Two people are waving their hands and performing a dance step together

In an intense boxing match, one is continuously punching while the other is defending and counterattacking

Figure 7: Diversity Demonstration of our method, where it generates two distinct interaction se-
quences for the same text prompt.

prompt. Here, in fig. 7, we show 2 visual examples to demonstrate this. In both cases, the model
remains consistent in generating interactions described in the text prompt while exhibiting distinct
features in different samples. For the dancing case, first sample shows waving hands in the beginning
followed by a synchronized forward step, while individuals face the same direction throughout. The
second sample shows individuals facing each other in the beginning, followed by waving hands and
a synchronized spin. For the boxing case, first sample shows one individual punching three times
and continuously moving forward, while the second sample shows them punching two times and
retreating at the end.

E ALTERNATIVE MODELING

In our ablation study (section 4.2), we explore a one-at-a-time modeling framework for interaction
generation, referred to as Alternative Modeling, which contrasts with the collaborative modeling
framework of InterMask. While collaborative modeling predicts the tokens of both individuals si-
multaneously, alternative modeling follows a sequential process, generating tokens for one individ-
ual at a time, conditioned on the thus far predicted tokens of the other.

During training, as shown in Figure 8(a), we randomly mask both individuals’ tokens {t̃a, t̃b} and
obtain their embeddings {ea, eb} through the input process. Then, only the tokens of one individual
are predicted (t̂a) by passing their embeddings through the transformer blocks, conditioned on the
embeddings of the other individual using a cross-attention module. During inference (Figure 8(b)),
both individuals’ tokens are initially fully masked {ta(0), tb(0)}. In the first iteration, the tokens
of one individual are predicted, and these are remasked based on their confidence scores to obtain
ta(1). The second individual’s tokens are then predicted in the next iteration, conditioned on the
retained tokens from the first, to obtain tb(1). This alternation continues iteratively, progressively
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(a) Alternative Modeling Training

(b) Alternative Modeling Inference

Figure 8: Overview of the Alternative Modeling approach, where we predict the tokens of one
person at a time. (a) During training, only the embeddings of one individual ea are updated in the
transformer blocks, conditioned on the other individual’s embeddings eb. (b) During inference, the
process alternates between predicting and remasking the tokens of each individual, starting with
both fully masked {ta(0), tb(0)}. This process continues for Ialter iterations for each individual.

Ground
Truth

2D VQ
Token Map

1D VQ
Token Map

\

Motion Sample 1 Motion Sample 2

Figure 9: Qualitative results for the ablation study on Motion VQ-VAE to verify the proposed 2D
token map.

refining the tokens of both individuals. As shown in Table 3, the FID score for alternative modeling
is 7.637 (compared to 5.154 for collaborative modeling), and the R-precision is 0.340 (compared
to 0.449). These results indicate that while alternative modeling increases diversity, collaborative
modeling produces high-quality and more realistic interactions, offering a better balance between
diversity and interaction fidelity.

F ABLATION STUDY QUALITATIVE RESULTS

In this section, we present qualitative results for our ablation studies to complement the quantitative
findings discussed in section 4.2. Figure 9 shows two ground truth interaction sequences with their
reconstructed samples from the 2D token map VQ-VAE and the baseline 1D token map VQ-VAE.
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\

\

\

InterMask

w/o Spatio-
Temporal Attn

\

In a boxing match, one is continuously punching while the other is defending
and counterattacking

One person sneaks up on the
other from behind

\

\

w/o Cross Attn

w/o Self Attn

Both are performing synchronized dance moves

Figure 10: Qualitative results for the ablation study on Inter-M Transformer to verify contributions
of the proposed Attention modules.

As shown, the 1D VQ-VAE struggles to accurately reconstruct the spatial positions and orientations
of the joints for both individuals, leading to incorrect positioning and orientation relative to each
other. This results in not only unrealistic interactions but also bizarre individual poses. In contrast,
the proposed 2D VQ-VAE provides highly accurate reconstructions at both the individual pose and
the collective interaction level.

Figure 10 illustrates the impact of different attention modules in our Inter-M transformer by compar-
ing outputs by removing the spatio-temporal attention, cross-attention, and self-attention modules
independently. We provide results for three distinct interaction scenarios: boxing, sneaking, and
synchronized dancing. The spatio-temporal attention module emerges as a critical component for
generating complex poses and ensuring spatial awareness in interactions. Without this module, the
boxing scenario exhibits overly simplistic poses, such as timid punching and blocking, alongwith
the individuals failing to face each other properly. In the sneaking scenario, the absence of spatio-
temporal attention eliminates the essential spatial progression, as the sneaking individual does not
gradually approach the other. Similarly, in the dancing scenario, the generated motions are reduced
to basic hand raises, and one individual adopts an unnatural crouching pose. By contrast, the inclu-
sion of spatio-temporal attention enables accurate spatial positioning and expressive, synchronized
interactions. The cross-attention module seems vital for modeling inter-person dependencies, par-
ticularly in achieving accurate reaction timing. Without it, the response motions of the interacting
individual appear either delayed or prematurely executed across all examples. For instance, in the
boxing scenario, the reactive movements fail to synchronize with the initiating individual’s punches.
In the dancing scenario, the lack of cross-attention results in poor synchronization, disrupting the
fluidity of the interaction. Lastly, the self-attention module serves as a refinement mechanism, en-
hancing the overall quality and coherence of individual motions. Its removal introduces subtle in-
consistencies, such as jerky transitions or less fluid movements, which slightly degrade the interac-
tion’s realism.These observations collectively underscore the importance of each attention module
in generating realistic, contextually accurate, and expressive interactions.

G REACTION GENERATION INFERENCE

InterMask does not require task-specific fine-tuning or architectural re-design for reaction gener-
ation, needing only minor adjustments to the inference process, as illustrated in Figure 11. The
process begins by encoding the reference individual’s motion mb into tokens tb using the VQ-VAE
encoder. For the other individual, whose reaction is to be generated, we initialize with a fully masked
token sequence, ta(0). Over the course of Ireact iterations, the transformer progressively predicts and
fills in the masked tokens, while the reference tokens remain unmasked throughout. At each iteration
ireact, the least confident γ

(
ireact
Ireact

)
· nj tokens are remasked and predicted again, following a cosine
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Figure 11: Inference process for the Reaction Generation task. The motion tokens of the reference
individual tb are obtained from the encoder and kept unmasked throughout. The second individual’s
tokens are initially fully masked ta(0), and are predicted progressively over Ireact iterations to obtain
ta, which is then decoded using the decoder.

The first takes a step with their left foot

First person is sitting in a chair, the second takes a step forward with their right foot

Figure 12: Examples of Limitations of our method. The first row shows body penetration when con-
verted from output skeleton to SMPL mesh. The second row shows implicit bias towards dancing.

scheduling function γ(·). Once all tokens are generated, the final token sequence ta is decoded back
into motion ma using the VQ-VAE decoder. Since we drop the conditioning signal during some
training passes, reaction generation functions effectively both with and without a text description,
enabling the model to generate motions based solely on the reference motion or guided by additional
textual instructions.

H FAILURE CASES

In Figure 12, we show visual examples of failure cases emerging from the limitations of our method,
as decribed in section 5. In the first row, we show that when converting our output skeletons to
SMPL (Loper et al., 2015) meshes for visualizations, the results can exhibit body penetration among
the interacting individuals. One possible future solution to this problem is to include the mesh
conversion in the training process and incorporate anti-penetration in the training loss. In the second
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Figure 13: Detailed illustration of the 2d discrete motion token map construction. The 2d encoder,
consisting of 2d convolutional layers, downsamples the input motion from (N, J, d) to (n, j, d′).
The downsampled representation is then quantized by replacing each vector with the index of its
closest vector in the learned codebook.

row, we show that the model suffers from some implicit biases present in the dataset, where it
assumes that the individuals are dancing without explicit mention in the text prompt.

I USER STUDY

We conducted the user study on the Amazon Mechanical Turk platform, where the interface pre-
sented to the users is shown in Figure 15. For each sample, users were provided with clear instruc-
tions to rate two animations—one generated by InterMask and the other by InterGen (Liang et al.,
2024)—from the same text description, with the order of the animations randomized for each sam-
ple to avoid bias. Participants were asked to rate both animations on a scale of 1 to 5 for interaction
quality and text adherence. Following the individual ratings, they were asked to select the better
animation based on their overall impression. A total of 16 users evaluated a total 30 samples, with
each sample being rated by three users. To ensure high-quality feedback, we filtered users to include
only those with Amazon Mechanical Turk master status, with a task approval rating of over 97%
and more than 1000 previously approved tasks.

J 2D TOKEN MAP DETAILS

Our VQ-VAE framework constructs a 2D motion token map to represent individual motion se-
quences in a compact manner, while retaning both spatial and temporal dimensions. The encoder
processes motion sequences represented as mp ∈ RN×J×d, where N is the number of poses, J is
the number of joints, and d is the joint feature dimension. By employing 2D convolutional layers,
the encoder effectively captures spatial and temporal dependencies within the motion data while pro-
gressively downsampling both dimensions. The downsampling process is achieved through strided
2D convolutions and ResNet blocks, which also use 2D convolutions along with dropout layers.
This results in a latent representation of size t̃p ∈ Rn×j×d′

, where n and j are the downsampled
temporal and spatial dimensions, and d′ is the latent feature dimension.

The latent representation t̃p is quantized using a learned codebook C with |C| entries. Each feature
vector t̃i in t̃p is replaced by the index of its nearest codebook entry, using the vector quantization

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Random
Masking

Interaction
Masking

Step Unroll
 Masking

with prob 

with prob 

Step Unroll
 Masking

Predict

Predict

Person  tokens Person  tokens  token

Predict

Predict

Stage 1 Stage 2

Figure 14: Illustration of the two-stage masking technique used during training of the Inter-M Trans-
former. For stage 1, we either apply Random Masking with a probability of pr or Interaction Mask-
ing with probability 1 − pr. In stage 2, we apply the Step Unroll Masking on the predicted tokens
from stage 1.

Interaction Generation Reaction Generation

pr FID ↓ R Prec (Top1) ↑ FID ↓ R Prec (Top1) ↑
0.7 5.214 0.447 2.850 0.476
0.8 5.154 0.449 2.991 0.462
0.9 5.152 0.450 3.368 0.416

Table 7: Interaction Generation and Reaction Generation results of different values of pr. Bold face
indicates the best result, while underscore refers to the second best.

process:
q(t̃i) = arg min

ck∈C
∥t̃i − ck∥2, (10)

where ck represents the codebook entries.

The resulting quantized representation is a 2D motion token map tp, where each token encodes
local spatio-temporal context. This design enables the preservation of both spatial and temporal
structures in the motion data, enhancing the model’s ability to generate realistic and contextually
accurate interactions.

K TWO-STAGE TOKEN MASKING

Here we provide more details on the masking strategy (section 3.2.1) used in training the Inter-M
Transformer. As illustrated in fig. 14, the two-stage masking technique begins with random masking
or interaction masking in the first stage. Random masking teaches the model to predict random
tokens from both individuals. Whereas Interaction masking, where only one individual’s tokens
are masked, promotes learning inter-person dependencies critical for coherent interactions and to
improve performance in the reaction generation task. The masking strategy alternates between these
two methods based on a probability parameter pr, with random masking applied pr of the time and
interaction masking (1 − pr). To evaluate the effect of pr, we test different values 0.7, 0.8, 0.9 and
find that pr = 0.8 offers the best balance between interaction and reaction generation, as shown
in Table 7. In the second stage, step unroll masking is applied which retains some of the predicted
tokens from stage 1, remasks the remaining tokens and predicts them again. This is employed to
incorporate the inference-time progressive refinement of tokens in the training process.
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Figure 15: Interface of the User Study on Amazon Mechanical Turk.
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