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Abstract

Grid cells in the mammalian brain are fundamental to spatial navigation, and
therefore crucial to how animals perceive and interact with their environment. Tra-
ditionally, grid cells are thought support path integration through highly symmetric
hexagonal lattice firing patterns. However, recent findings show that their firing
patterns become distorted in the presence of significant spatial landmarks such as
rewarded locations. This introduces a novel perspective of dynamic, subjective,
and action-relevant interactions between spatial representations and environmental
cues. Here, we propose a practical and theoretical framework to quantify and
explain these interactions. To this end, we train path-integrating recurrent neural
networks (piRNNs) on a spatial navigation task, whose goal is to predict the agent’s
position with a special focus on rewarded locations. Grid-like neurons naturally
emerge from the training of piRNNs, which allows us to investigate how the two
aspects of the task, space and reward, are integrated in their firing patterns. We
find that geometry, but not topology, of the grid cell population code becomes
distorted. Surprisingly, these distortions are global in the firing patterns of the grid
cells despite local changes in the reward. Our results indicate that after training
with location-specific reward information, the preserved representational topol-
ogy supports successful path integration, whereas the emergent heterogeneity in
individual responses due to global distortions may encode dynamically changing
environmental cues. By bridging the gap between computational models and the
biological reality of spatial navigation under reward information, we offer new
insights into how neural systems prioritize environmental landmarks in their spatial
navigation code.

1 Introduction
Motivation Neuroscientists describe computations in the brain by jointly considering the firing
activity of a population of N neurons in neural state space RN . In this space, each basis vector
corresponds to one neuron, one point summarizes the activity of all neurons at a given instant, and
a trajectory in neural state space describes the time evolution of the firing of all neurons. Across
many brain regions and modalities, these trajectories have been observed to be mostly constrained
to a lower dimensional manifold within the state space: the neural manifold (see Figure 1 right).
Such manifolds have been observed in the motor cortex [1, 2], the hippocampus [3, 4], visual
cortex [5, 6], head direction circuit [7, 8], and grid cells in the entorhinal cortex [9]. Characterizing
the geometric properties of neural manifolds including their dimension, topology, and curvature
enables a wholistic understanding of multi-neuron activity through time, and a quantified approach to
describe computations in the brain [10, 11, 12].
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Figure 1: Path integrating Neural Systems. Left: an artificial agent explores its 2D environment traveling
along the path xt shown in black. Middle: the agent’s velocity vt is given as input to neurons in a path-
integrating recurrent neural network (piRNN) or grid cells in the mammalian brain [13]. The agent maintains a
representation of its movement across multiple grid cell modules. This representation is linearly decoded onto
place cells, providing an estimate of the agent’s new position x̂t+1. Right: Each grid cell has a firing field that is
a hexagonal lattice. Together, grid cells’ activity within a grid cell module forms a 2D torus [9, 20].

Grid cells are neurons in the medial entorhinal cortex (MEC) which exhibit activity patterns character-
ized by hexagonal lattices across space [13] (see firing field on Figure 1). Grid cells can be grouped
into distinct subpopulations called modules, specified by the spatial period of their hexagonal lattice
[14]. The neural manifold corresponding to neurons in a grid cell module has been shown to form a
2D torus in the high-dimensional state space [9]. The traditional view in neuroscience is that grid cells
support path integration —the process used by an animal to keep track of its position by integrating
its past position and current speed —by providing a global metric for physical space. However, recent
experiments suggest that grid cell lattices become distorted in the presence of relevant landmarks,
such as rewards [15, 16, 17]. In other words: grid cell activity might not reflect true physical distances
but instead underlies a metric for subjective action-relevant space [18]. While the distortion of grid
cell activity has been reported qualitatively, it remains to be described quantitatively.

Contributions We propose a practical and theoretical framework to quantify and explain the distor-
tion of grid cell neural manifolds under task-relevant reward information. We apply this framework
to compare computational and biological neural systems performing spatial navigation.

Our technical contributions are:

1. We adapt the training of biologically-inspired RNNs performing path integration
(piRNNs) [19] to account for spatial rewards via a new saliency loss term.

2. We introduce a methodology to quantify the deformation of grid cells’ firing fields and
neural manifolds in two scenarios —absence and presence of rewards and describe the
topological changes in the grid cell module tori after training with reward.

3. We illustrate the implicit regularization achieved by fixing the readout weights, which retains
the existing toroidal topology of the neural manifolds during reward training.

Our conceptual contributions are:

1. We quantify the introduction of reward in spatial navigation tasks by linking the geometric
distortions of grid cells’ responses and corresponding distortions of their neural manifolds.

2. In piRNNs, we link the emergent distortions of the individual hexagonal responses to
geometric deformations of the neural manifold.

3. We provide evidence suggesting that grid cells may be involved in continual learning.

After reward training, the toroidal topology continue support successful path integration, while
geometric deformations of the neural —corresponding to global distortions in the inidividual re-
sponses —may represent local, dynamic environmental cues, such as reward information. This dual
representation allows the grid cell modules to maintain their foundational navigation capabilities
while adapting to new environmental variables.

2



2 Background & Related Works
2.1 Neuroscience of Spatial Navigation
Path integration is the process by which animals use self-motion cues including information from
the vestibular system and proprioception to integrate their past movements and positions, allowing
them to maintain an estimate of their position. Theoretical models have explored mechanisms by
which path integration can be performed by neural networks in the mammalian brain [21], most
notably through networks of place cells and grid cells [22].

Place cells are a functional class of neurons found in the hippocampus [23], a region of the brain
implicated in memory and spatial navigation. The neural activity of place cells is believed to represent
the animal’s current physical location in space, thereby creating a “cognitive map” [24].

Grid cells are a functional class of neurons found in the medial entorhinal cortex [13] whose spatial
firing pattern form a hexagonal lattice covering their 2D environment in open field settings. Many
works [25, 26, 27] show that grid cells play an important role in path integration, by integrating
self-motion information sending neuronal signals to their downstream place cells.

The grid cell firing field can be described by three parameters: (1) spacing, or distance between
lattice points, (2) orientation of the lattice relative to a reference direction, and (3) phase, or the
lattice offset relative to a reference point. A grid cell module consists of grid cells with the same
spacing and orientation but varying phases [14]. Each module is known to form a neural manifold
with the topology of the 2D torus T 2 [9].

2.2 RNNs for Spatial Navigation
Biologically-inspired, computational models of place cells and grid cells have emerged in recent
years. Specifically, recurrent neural networks trained to perform path integration (piRNNs) of
artificial agents have been shown to exhibit artificial neurons that behave like biological grid cells
[28, 29, 30, 19, 31, 32]. This paradigm allows for systematic exploration of phenomena observed
in neural circuits involved in spatial navigation, such as hippocampal remapping [33]. Below, we
introduce the piRNN framework of spatial navigation from [19].

Let x ∈ R2 denote the agent’s position, ∆x ∈ R2 the displacement in unit time, v the velocity,
r(x) ∈ RN be the activity of N grid cells, ϕ(x) ∈ RP be the activity of P place cells; ri(x) and
ϕp(x) being the activity of the ith grid cell and pth place cell, respectively —see Figure 1 (left). The
grid cell activity r(x) for each module forms a toroidal neural manifold embedded in the neural state
space RN : see torus on Figure 1 (right).

Place cells in piRNNs: As done in the literature [30], we model place cell activity ϕ as a linear
readout of the activities, r, of the piRNN neurons. The position estimate x̂ is decoded from ϕ
as:

ϕ̂t = Qrt, x̂t = argmax
p∈P

ϕ̂t
p, (1)

where Q ∈ RP×N is the place cell readout matrix. The architecture is illustrated in Figure 1. Previous
work has shown that the piRNN neurons, r, become grid cells after training [30].

Path integration by piRNNs: The piRNN is trained to perform path-integration and correctly infer
the spatial position. Its goal is to learn the place cell readout matrix Q, the neural representation
(r(x),∀x), its recurrent weight matrix W ∈ RN×N , and its input weight matrix U ∈ mathbbR2×N

via minimization of the loss function L. The loss L used by Xu et al. [19] is:

L = Lerror + Lkernel + Lconformal + Lregularization. (2)

The error on the prediction of the spatial position is written as Lerror = Ex,∆x [Lerror] where:

Lerror =

T∑
t=1

∥ϕ (x+∆x1 + . . .+∆xt)−Qr(x+∆x1 + . . .+∆xt)∥2. (3)

We refer to Sec. S3 for details on the other terms: Lkernel, Lconformal, Lregularization.
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Figure 2: Geometry of grid cell module tori is changed by presence of salient features in the environment.
A. An agent (for us, a piRNN) is trained to perform path integration in its 2D environment with uniform spatial
saliency. Canonical grid cells develop hexagonal lattice responses (rate maps) across M modules. The population
activity of a single grid cell module forms a torus in neural state space. B. The same agent undergoes a second
phase of training, with its environment now containing rewards (areas of high importance, or saliency). We
model this saliency by modifying the loss of our piRNN to prioritize accurate position decoding near rewards.
Its grid cells adjust their individual responses, which we link to geometric deformations of the neural tori.

3 Theory of Deformations: From Firing Fields to Neural Manifolds
Recent experimental evidence in animals and our own experiments on piRNNs reveal that grid cell
firing fields get distorted after introducing a reward in the agent’s spatial environment. Here, we
propose a theory to relate deformations of the firing fields (see Figure 1 middle) to deformations
of the corresponding neural manifolds (see Figure 1 right) during path-integration with spatially
localized rewards. We first present the general theory of deformations. Then, we illustrate it with two
scenarios observed in practice: (i) smoothing of firing fields (diffused units) observed in our piRNN
experiments as described in Section 4, and (ii) attraction of firing fields (attracted units) observed in
[15].

3.1 General Theory
Deformation of firing fields Consider one grid cell i with firing field x 7→ ri(x) over the environ-
ment R2 (Figure 1 middle). In line with experimental observations, we assume that the introduction
of a reward, modeled by the saliency map s(x), deforms the firing field of the grid cell (see Figure 2).
We model this deformation as a diffeomorphism Φ : R2 7→ R2 of the environment.

We further assume that every grid cell i has a constant firing energy budget, in that:
∫
x∈R2 ri(x)dx is

constant. Putting this together, introducing a reward in the environment yields a new firing field for
grid cell i written as:

rΦi (x) = |detΦ′(x)|.ri ◦ Φ(x) ∈ R for all x ∈ R2, (4)

where Φ′ is the Jacobian of Φ, |detΦ′(x)| represents a change in volume induced by the deformation
Φ, and “.” denotes scalar multiplication. This formulation deforms the shapes of the firing fields, and
modifies their amplitudes in order to keep the firing energy budget constant. This statement is made
precise in the proposition below.

Proposition 1. The deformation of the grid cell firing fields ri by Φ given by ri ∗ Φ = rΦi defines a
right group action of the group of diffeomorphisms over the space of firing fields. The firing energy
budget is an invariant of this group action.

The definition of group action and the proof are given in Appendix S1. Here, we do not specify
a formula for Φ. Instead, we suppose that Φ can be estimated from experiments with piRNNs or
animals performing path-integration tasks without and with rewards.
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Deformation of neural manifold The deformation of each firing field via Φ induces a deformation
of the associated neural manifold: the torus associated to a given grid cell module changes shape
in neural state space RN (see Figure 2 right). Before deformation, the torus neural manifold can be
represented by the parameterized surface x 7→ R(x) = [r1(x), ..., rN (x)]T , where the periodicity
of the firing fields means that the function R is not necessarily injective: one point on the manifold
surface may correspond to several locations x’s. Introducing a reward in the environment yields a
new neural manifold written as:

RΦ(x) = |detΦ′(x)|.R ◦ Φ(x) ∈ RN for all x ∈ R2. (5)

In what follows, we consider that R is injective, or we restrict R to its domain of injectivity. In this
context, we can predict some geometric properties of the deformed neural manifold, as given in the
proposition below.

Proposition 2. The deformation of the neural manifold R by Φ given by R ∗Φ = RΦ defines a right
group action of the group of diffeomorphisms over the space of neural manifolds. The barycenter and
the topology of the manifold are invariants of this group action, provided that the firing fields are
regular.
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Figure 3: Relating firing fields to neural manifolds across deformations in synthetic grid cells. We investigate
how deformations away from perfect hexagonal symmetry in the firing fields of synthetic grid cells affects the
geometry of the toroidal neural manifold. From left to right. Original units. The original hexagonal grid cells
show clear signatures of toroidal topology, as indicated by the presence of 2 loops in the first homology group
(H1) and 1 void in the second homology group (H2). We show 2D projections using principal components
analysis (PCA) and multidimensional scaling (MDS) to serve as baselines against which to compare the manifolds
of deformed grid cells. PCA projections are consistent with a “flat” torus geometry. Diffused units. Diffused
units created from convolution of the original grid cells with a Gaussian kernel maintain toroidal topology, but
PCA and MDS show that the size of the neural manifold is reduced as predicted by theory. Attracted units.
Inspired by experimental evidence from [15] we created attracted units from synthetic grid cells by applying a
diffeomorphism to the 2D environment. While manifold size is unchanged, PCA projections suggest the torus
becomes more curved in neural state space. Toroidal topology is preserved. Band units. We created a synthetic
module with 17% of original grid units replaced with band units of same spatial scale, with uniformly distributed
orientations. The geometry and topology of the resulting manifold are largely unchanged.
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See Appendix S1 for the proof. Next, we consider deformations of the firing fields that have appeared
empirically, either in our piRNN experiments or in animal experiments.

3.2 Diffused Units: Smoothing of Firing Fields
We show how smoothing of the firing fields of the grid cells, observed empirically in Section 4
impacts neural manifolds in neural state space.

Conjecture 1 (Reduction hypothesis). The smoothing of the firing fields by a Gaussian filter reduces
the size S of the neural manifold R, where the size is defined as: S = maxx∈R2∥R(x)∥.

The size of the neural manifold becomes, after introduction of reward and deformation by Φ:

SΦ = maxx∈R2∥
∫
u∈R2

G(x− u)R(u)du∥, (6)

where G represents the Gaussian filter used for smoothing. When a function ∥R∥ is convolved with a
Gaussian filter, the resulting function is smoother than ∥R∥. The convolution effectively averages the
values of ∥R∥ over the neighborhood defined by the Gaussian, which reduces the peaks of ∥R∥. This
is because the convolution is essentially a weighted average. Consequently, via such a deformation of
the firing fields, the resulting manifold will be smaller.

Testing the Reduction Hypothesis In practice in our experiments, we perform principal component
analysis and other dimension reduction techniques to compare the sizes of the neural manifolds
before and after the deformation produced by the introduction of reward.

3.3 Attracted Units: Displacements of Firing Fields’ Centers
We show how the attraction of the grid cells’ firing field centers to reward locations, observed in
experiments in [15] and simulated with exaggeration in Figure 3, impacts the neural manifold in state
space.

Conjecture 2. Attracting the centers of the firing fields to a region of the environment expands the
corresponding region of the neural manifold, provided that the firing rates are regular enough.

Indeed, the diffeormorphism Φ that represents this deformation displaces volume elements of the
environment, placing more volume in the center. Therefore, the term |detΦ′(x)| that measures
volume changes will be high next to the center of the environment. The region of the neural manifold
corresponding to the center of the environment will therefore be magnified.

We include a more detailed discussion on the link between rate map distortions and neural manifold
geometry in Section S2.

We illustrated several synthetic grid cell modules to demonstrate how various types of common
grid cell firing field deformations affect the geometry of the toroidal neural manifold, summarized
in Fig. 3. Global deformations such as the emergence of diffusive units with less crisp hexagonal
firing patterns, attracted units with distance-based scaling, and the addition of band-like cells to a
group of grid cells did not change the toroidal topology of the modules. Moreover, as predicted by
Conjecture 1, the diffused units reduced the size of the manifold. Overall, global distortions can be
added to the grid modules without destroying the existing toroidal topology of the neural manifold
subserving the spatial navigation. As we show in the next section, such patterns emerge as a result
of the dynamic integration of environmental information during the piRNN training. This process
enables the networks to simultaneously solve path integration and represent environmental cues
effectively.

4 Empirical Results
In this section, we test the theoretical global distortions introduced in the previous section by training
piRNNs to perform path integration while enforcing higher accuracy in positional decoding near
salient locations to model the presence of local rewards. We first introduce the multi-phase training
procedure with non-uniform saliency. Then we discuss the effects of saliency training on the toroidal
topology of the neural manifold, and examine the emergent distortions in the grid cell firing fields.
Finally, we confirm our theoretical prediction from the previous section regarding how diffused units
lead to a reduction in manifold size.
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Figure 4: Toroidal topology is preserved after saliency training when place cell read-out is frozen. For
grid cell module 7, we project the neural activity to 6 dimensions using PCA, and perform persistent homology.
We show the 20 most persistent features for homology dimension 1 (loops) and homology dimension 2 (voids).
Gray bars are 20 most persistent features from 10 random shuffles of the data. A. The population activity of
module 7 of the pretrained RNN (before saliency training) has Betti numbers (1,2,1), consistent with toroidal
topology. B. The population activity of module 7 of the RNN after saliency training retains toroidal topology,
if place cell read-out is frozen (only grid representations are allowed to change). C. The toroidal topology is
destroyed after saliency training if place cell read-out is allowed to change.
4.1 Training piRNNs with Non-Uniform Spatial Saliency
We investigate how the representations learned by piRNNs change through multiple phases of
training incorporating spatial saliency into the objective. We begin by pretraining the piRNN model
introduced in [19], which learned representations with a large fraction of units (> 70%) classified
as grid cells, based on the widely-used gridness score [34]. These representations exhibit a high
degree of hexagonal periodicity at different scales, correspondong to distinct grid cell modules. We
employed a procedure inspired by [9] to identify the grid cell modules (see Fig. S3).

After this initial pretraining phase, we modified the loss to imitate the non-uniform saliency across
the environment that is characteristic of animals exploring their environments in more naturalistic
settings [18] that may contain rewards. This stands in contrast to the highly uniform “open field”
settings typically used in experiments, where neurons with a high degree of hexagonal periodicity are
commonly found, as shown in Fig. 2. We add a kernel (1 + s(x)) multiplying the loss term in Eq. 3
that differentially weights the penalty of incorrect self-position estimation across different locations
in the environment, thus quantifying the notion of spatial “saliency”. The new loss Ls

error, which
modifies Eq. 3, reads

Ls
error = Ex,∆x [(1 + s(x))Lerror] . (7)

In our experiments, we parameterize s(x) with a Gaussian of width σ∗ centered at x∗:

s(x) = s0

(
exp

(
−∥x− x∗∥2/2σ2

∗
)
/
√
2πσ2

∗

)
, (8)

and we set x∗ = 0 and σ∗ = 0.05L, where L is the length of the square environment.

4.2 Saliency during the training may respect or destroy the toroidal topology
We performed the second phase of training with the saliency loss in two ways. First, we allowed all
connections, including the readouts from the piRNN units to the place cells, to be learned. In this case,
we consistently observed a change in the topology of the grid modules, where the toroidal structure
underlying the grid cells was destroyed (Fig. 4A,C), though the firing rates showed qualitatively
similar patterns to the grid cells (Fig. S4).

As a next experiment, during the second phase of training we froze the readout weights from the RNN
to the place cells and observed that the grid cell module toroidal topology was preserved (Fig. 4A,B).
Therefore, freezing the readout may be seen as an implicit regularization that enabled continual
learning in the grid cell population. By preserving the toroidal topology of the neural manifold,
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the system leverages its previously learned representational structure subserving successful spatial
navigation while encoding a dynamic environmental variable, i.e., the saliency. Therefore, for the
rest of our experiments, we fine-tuned the piRNNs with frozen readout weights.

4.3 Saliency-tuned piRNNs develop diverse set of distorted tuning features
In our experiments, we found that following the saliency training phase (with the modified loss term
Ls
error), the piRNNs developed neurons with a more heterogeneous set of spatial tuning properties, as

illustrated in Fig. 5. Specifically, we observed the emergence of diffused and band units, as predicted
by our theoretical framework in Section 3. Interestingly, we did not observe the attractive distortions
predicted in Fig. 3.
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Figure 6: Diffused units lead to reduction in the
manifold size. When we analyzed a module with
many emergent diffused units after the saliency
training, we observed that the topology of the
module was preserved. However, the size of the
manifold was reduced in line with our Conjecture
1.

An important aspect of these distortions is that they
are global, whereas the reward was localized at the
origin. Given that place cells average the input from
multiple grid cells through their readouts, it is possible
that global distortions in the grid cells facilitate local
changes in the final output. For example, the ring units
may arise because the reward information is rotation-
ally symmetric, eliminating the need to retain angle
information and creating the secondary ring structures
shown in Fig. 5A. Additionally, if the center of the en-
vironment needs to be represented preferentially over
the rest of the space, it makes sense for the represen-
tation of places outside the origin to become less crisp
to conserve, e.g., a firing rate budget. This could be
achieved by a convolution in the firing rates, leading
to the diffused units observed in Fig. 5B. Finally, grid
cells can be described as a summation of a few band
cells in different orientations. If these bands cover all
angles, the result can approximate a place cell in the
origin, making the band units, observed in Fig. 5C,
a mutually synergistic solution for both representing
spatial navigation and the reward information (located
at the origin).

As the final test, we focused on modules that showed
increased levels of diffused units and tested the re-
duction hypothesis presented in Conjecture 1, which
suggests that the emergence of diffused units should
decrease the overall size of the manifold. As expected,
the diffusing units did not change the topology of the
module, and resulted in a geometrical reduction in size
(Fig. 6).

From modules 1,2,3,8 (before) From modules 1,2,3,8 (after)

���������� �����������������������
From modules 2, 4, 5, 7 (before) From modules 2, 4, 5, 7 (after) From module 1 (before) From module 1 (after)

� � �

Figure 5: Saliency-tuned piRNNs develop diverse set of tuning features observed in neuroscience. A. Across
multiple modules, we observe the emergence of many units characterized by rings of high activity. B. We also
observe the emergence of diffused units which are active almost everywhere. C. Finally, we find many units
develop band structures.
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Overall, our results suggest that the global distortion mechanisms allow the grid cells to retain their
spatial navigation capabilities while adapting to the localized reward signals. This balance can
enable the piRNNs to maintain navigation functionality and incorporate new environmental cues
effectively.

5 Discussion
Local reward leads to global changes in the firing rates: When we trained the piRNNs with local
rewards, encouraging the network to represent specific places more accurately, we observed distinct
global changes in the firing profiles of grid cells. In our experiments with piRNNs, we observed
diffused and banded patterns, as well as units with secondary local ring-like structures similar to
those observed in human studies [35], but not the attracted firing patterns.

No attracted neurons emerged in reward-modulated piRNNs: To our initial surprise, we did
not observe the kind of local “magnification” or deformations suggested by the interepretations
of previous rodent experiments from [15] in any of our experiments. Instead, we observed global
changes in the firing fields. Therefore, we present in silico evidence that challenges the conventional
interpretation that reward modulation results in local magnification of the grid cell lattice as too
simplistic an explanation. Indeed, because grid cells provide a global code for space, we propose that
reward modulation should result in global deformations of spatial responses in MEC, as observed in
our piRNN experiments.

The appearance of diffused units suggests that multiplying the loss function by a local reward signal in
the navigation space causes convolution in grid cell firing patterns, indicating a duality between grid
cell firing patterns and changes in the reward function, akin to the Fourier Transform. The emergence
of banded units aligns with representations of the origin, as the Fourier transform of a square wave is
a periodic function with most of its mass centered at the origin. The ring units’ emergence is also
consistent with the reward being centered, leading to a trade-off in representing angles for better
distance representation to the reward. Notably, local changes in the reward function caused global
changes in grid cell firing patterns, reinforcing the concept of this duality.

Dynamical interactions lead to distorted units: Previous studies have shown that units with banded
firing rates emerge during reorganization [36]. Additionally, research has demonstrated that banded
units and grid cells can coexist, with the same cells behaving as either depending on the environment
or the task [37]. A common finding across these studies, which is consistent with our results here, is
that grid cells transform into banded or other unit types with different symmetries, likely influenced
by the complexity of the action rather than the properties of the navigated space.

Distorted grid cells emerge with frozen readouts, otherwise complex reorganization ensues: The
fact that the toroidal topological structure is destroyed when readouts are allowed to change supports
our hypothesis that the distortions observed in grid cell firing fields are related to the network’s
efforts to adapt to a changing environment, such as the introduction of a reward, without completely
reorganizing itself. Complete reorganization might minimize a loss function associated with the
reward’s location but would fail to generalize to changing environmental conditions, such as the
introduction of subsequent phases of training with different saliency distributions.

We conjecture that the distortions observed in our experiments, and regularly reported in neural data
[37, 36, 35, 15], signal continual learning. These distortions are expected to vary from environment
to environment and task to task. This suggests that grid cells can exhibit significant flexibility,
dynamically adjusting to new tasks and conditions while maintaining overall functionality. Hence,
although their toroidal neural manifold topology supports navigation, global distortions may facilitate
the dynamic encoding of localized environmental cues.

6 Conclusion
Prior work with grid cells has primarily focused on their contribution to spatial navigation. Recent
studies have also considered local changes in grid cell firing patterns, such as attractions to reward
positions [15]. In this work, by analyzing how piRNNs handle these tasks simultaneously, we tested
whether global distortions emerge on grid cell firing patterns and how they affect their functionality
and their adaptability in representing complex environmental cues. Overall, our theoretical and
experimental findings suggested a nuanced view: the hexagonal grid structures facilitate the decoding
of spatial locations, while global, not necessarily local, distortions in the grid cell geometry can
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dynamically encode environmental cues relevant to specific actions, highlighting the flexibility of
grid cells in adapting to various environmental contexts and tasks [37].

Though grid cells were not traditionally considered in the context of continual learning, our results
implicate their involvement in these paradigms. Additionally, studies of spatially structured, periodic,
and global rewards should illuminate the duality in the dynamic representation of environmental cues
by grid cells, which may allow building towards a theoretical understanding of the duality between
local rewards and global distortions we observed in this work.
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S1 Proofs of Results from the Theory Section
Here we provide a more detailed discussion and derivations of the theory introduced in Sec-
tion 3.

S1.1 Diffusion of rate maps
We start by proving the following proposition, about a single grid cell i. This proposition refers to the
definition of rΦi from Eq. 4.

Proposition 1. The deformation of the grid cell firing fields ri by Φ given by ri ∗ Φ = rΦi defines a
right group action of the group of diffeomorphisms over the space of firing fields. The firing energy
budget is an invariant of this group action.

Proof. We first prove that ∗ defines a valid right group action, by proving that it verifies the group
action’s axioms: identity and compatibility.

The identity diffeomorphism Φ = id maps every point to itself Φ(x) = x, has its Jacobian equal to
the identity matrix with determinant 1. Thus, ridi (x) = |det id′(x)|ri ◦ id(x) = |1|ri(x) = ri(x).
This shows that the scalar field remains unchanged under the identity diffeomorphism, satisfying the
identity axiom of a group action.

The composition of two diffeomorphisms Φ and Ψ acts on the firing fields as:

rΨ◦Φ
i (x) = |det(Ψ ◦ Φ)′(x)|ri ◦ (Ψ ◦ Φ)(x)

By the chain rule for determinants of Jacobians, we get:

rΨ◦Φ
i (x) = |detΨ′(Φ(x))| · | detΦ′(x)|ri ◦ (Ψ ◦ Φ)(x).

This expression matches the successive application of the transformations:

(ri ∗Ψ) ∗ Φ(x) = |detΦ′(x)|(ri ∗Ψ)(Φ(x))

= |detΦ′(x)||detΨ′(Φ(x))|ri ◦Ψ(Φ(x))

= ri ∗ (Ψ ◦ Φ)(x)

This shows the compatibility property for a right group action. Further, the firing energy budget is an
invariant of the group action. Indeed, by definition of a multivariate change of variables, we have∫

x∈R2

rΦi (x)dx =

∫
x∈R2

|detΦ′(x)|ri ◦ Φ(x)dx

=

∫
Φ(R2)

ri(x)dx

=

∫
x∈R2

ri(x)dx

for every grid cell i.

Next, we prove the result regarding the deformation of the neural manifold.

Proposition 2. The deformation of the neural manifold R by Φ given by Φ ∗R = RΦ defines a right
group action of the group of diffeomorphisms over the space of neural manifolds. The barycenter and
the topology of the manifold are invariants of this group action, provided that the firing fields are
regular enough.

Proof. We first prove that ∗ defines a valid right group action, by proving that it verifies the group
action’s axioms: identity and right compatibility. These axioms are verified, using the same arguments
as the ones used in the proof of group action over the firing fields above.

Next, we prove that the barycenter of the neural manifold is unchanged by the deformation. The
barycenter before deformation is: ∫

x∈R2

R(x)dx, (S1)
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and, after deformation:∫
x∈R2

RΦ(x)dx =

∫
x∈R2

|detΦ′(x)|.R ◦ Φ(x)dx =

∫
x∈R2

R(x)dx, (S2)

by definition of the multivariate change of variables. Thus, the barycenter is unchanged.

Next, we show that the topology of the manifold MΦ defined by RΦ is the same as the topology of
the manifold M defined by R.

Two manifolds are topologically equivalent (homeomorphic) if there exists an homeomorphism
Ψ : M → MΦ between them, i.e., a map Ψ that is continuous, bijective, with a continuous inverse.

Consider the map Ψ : M → MΦ, defined for p = R(x) ∈ M , where x is the unique pre-image of p
by injectivity, as:

Ψ(p) = rΦ(x) = |detΦ′(x)|r ◦ Φ(x) = |detΦ′(R−1(p))|Φ(R−1(p)).

We show that Ψ is continuous. The diffeomorphism Φ is smooth on R2 by definition. The function
R is also smooth since every firing field is smooth. Next, R−1 is also considered smooth, so that
Φ ◦ R−1 is smooth. Thus, the map |detΦ′(R(x))| is smooth as it is the determinant of a smooth
function. Thus, Ψ is smooth and therefore continuous.

Further, Ψ is bijective: Φ and R−1 are bijective by definition of a diffeomorphism and because we
restricted R to its domain of injectivity. The determinant is non 0 for the same reason. Thus, Ψ is
bijective. We assume that R is regular enough so that the inverse of Ψ is continuous as well. Thus, Ψ
is an homeomorphism and the two manifolds are topologically equivalent.

S2 Refinement on theory following rebuttal

S2.1 Diffused Units: Isotropic Smoothing of Firing Fields

We show how diffused units, observed in practice in Section 4, lead to smaller neural manifolds in
neural state space.

To this aim, we represent the firing field r of one grid cell as a mixture of K Gaussians, centered at
locations µ1, ..., µK that are regularly distributed along a grid. That is, for x ∈ R2:

r(x) =
1

K

K∑
k=1

G(µk, σ
2
r)(x), where: G(µk, σ

2
r)(x) =

1

2πσ2
r

exp

(
−∥x− µk∥2

2σ2
r

)
. (S3)

Next, we describe the transformation of the grid cell units into diffused units as a convolution with a
2D isotropic Gaussian filter G(0, σ2) for some variance σ2. Consequently, instead of writing this
transformation as the action of a diffeomorphism Φ, we write is as the action of σ ∈ R∗

+.

rσ(x) =
(
G(0, σ2) ∗ r

)
(x), ∀x ∈ R2. (S4)

We now prove our main result on diffused units.

Proposition 3. When the original grid cell units become diffused units after integration of a reward:
(i) the energy budget is unchanged, and (ii) the size of the original neural manifold decreases, where
the size is defined as S = maxx∈R2 ∥R(x)∥∞, with R(x) = (r1(x), ..., rN (x)) for N units.

Proof. (i). We first prove that the energy budget is unchanged.
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The energy budget before the introduction of reward, for a original unit, is:

E =

∫
x∈R2

r(x)dx

=
1

K

∫
x∈R2

K∑
k=1

G(µk, σ
2
r)(x)dx

=
1

K

K∑
k=1

∫
x∈R2

G(µk, σ
2
r)(x)dx

=
1

K

K∑
k=1

1dx

= 1.

To compute the energy budget after the introduction of reward, for a diffused unit, we first provide an
alternative formula for rσ(x). We have:

rσ(x) =
(
G(0, σ2) ∗ r

)
(x)

=

(
G(0, σ2) ∗ 1

K

K∑
k=1

G(µk, σ
2
r)

)
(x)

=
1

K

K∑
k=1

(
G(0, σ2) ∗G(µk, σ

2
r)
)
(x)

=
1

K

K∑
k=1

G(µk, σ
2 + σ2

r)(x),

where we have used the fact that the convolution is a linear operation, and the fact that the convolution
of two Gaussians is a Gaussian with added means and variances.

The energy budget after the introduction of reward, for a diffused unit, is therefore:

Eσ =

∫
x∈R2

rσ(x)dx

=

∫
x∈R2

1

K

K∑
k=1

G(µk, σ
2 + σ2

r)(x)dx

= 1.

Therefore, the energy budget is conserved: E = Eσ .

(ii). Next, we prove that the size of the neural manifold corresponding to the diffused units is smaller
than the size of the neural manifolds of the original units.

Consider a neural manifold corresponding to N units. The size of the manifold is the maximum value
taken by any of its N units, across the domain R2.

S = max
x∈R2

∥R(x)∥∞ = max
x∈R2

max
i∈N

ri(x). (S5)

Since all units have the same profile, their maxima are equal. Hence, we compute the maximum
of one original unit and of one diffused unit. Additionally, each unit is a mixture of K Gaussians.
Assuming that the Gaussians are disjoints enough, which is the case in practice, we compute the
maximum of a unit as the maximum of one of its Gaussians.

Accordingly, the size of the neural manifold corresponding to the original units is:

S = max
x∈R2

r(x) =
1

K
max
x∈R2

G(µ1, σ
2
r) =

1

K

1

2πσ2
r

.

Next, the size of the neural manifold corresponding to the diffused units is:

Sσ = max
x∈R2

r(x) =
1

K
max
x∈R2

G(µ1, σ
2 + σ2

r) =
1

K

1

2π(σ2 + σ2
r)
.

Thus, we have Sσ < S, which proves that the neural manifold has a smaller size.
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S2.2 Band Units: Anisotropic Smoothing of Firing Fields
We show how band units, observed in practice in Section 4, lead to a torus manifold that collapses
into a circle manifold. As in the previous subsection, we represent the firing field r of one unit as a
mixture of K Gaussians as in Eq. S3.

Next, we describe the transformation of units into band units as a convolution with a 2D anisotropic
Gaussian filter G(0,Σ) for Σ ∈ Sym(2) with eigenvalues (0, σ2) with σ2 >> 1.

Consequently, instead of writing this transformation as the action of a diffeomorphism Φ, we write is
as the action of Σ ∈ Sym(2).

rσ(x) = (G(0,Σ) ∗ r) (x), ∀x ∈ R2. (S6)

We now prove our main result on band units.

Proposition 4. When the original units become band units after integration of a reward: (i) the
energy budget is unchanged, and (ii) the original neural manifold (a torus) collapses into a circle.

Proof. 1. We first prove that the energy budget is unchanged.

We recall from the previous subsection that the energy budget before the introduction of reward, for a
original unit, is:

E =

∫
x∈R2

r(x)dx = 1.

To compute the energy budget after the introduction of reward, for a band unit, we first provide an
alternative formula for rσ(x). We have:

rΣ(x) = (G(0,Σ) ∗ r) (x)

=

(
G(0,Σ) ∗ 1

K

K∑
k=1

G(µk, σ
2
r)

)
(x)

=
1

K

K∑
k=1

(
G(0,Σ) ∗G(µk, σ

2
r)
)
(x)

=
1

K

K∑
k=1

G(µk,Σ+ σ2
r .I)(x).

where we have used the fact that the convolution is a linear operation, and the fact that the convolution
of two Gaussians is a Gaussian with added means and variances.

The energy budget after the introduction of reward, for a diffused unit, is:

EΣ =

∫
x∈R2

rσ(x)dx

=

∫
x∈R2

1

K

K∑
k=1

G(µk,Σ+ σ2
r .I)(x)dx

= 1.

Therefore, the energy budget is conserved: E = EΣ.

2. Next, we prove that neural manifold evolves from a torus to a circle.

We do this by proving that the application of a Gaussian filter is a continuous operation in the
variable σ2. For this, we use the spectral theorem, which states that every real, symmetric matrix is
diagonalizable in an orthonormal basis, to write Σ as:

Σ = Rdiag(0, σ2)R−1, (S7)

16



where R is a 2D rotation matrix. Accordingly, we see that σ impacts the firing field r continuously,
as follows:

rΣ(x) =
1

K

K∑
k=1

G(µk, Rdiag(σ2
r , σ

2 + σ2
r)R

−1)(x).

Thus, the evolution of the neural manifold as σ increases is continuous. At the limit, where σ2 → ∞
we have the band units observed in practice.

Next, we prove using group theory that band units generate a circle manifold. (TODO: Add theory
written by Fran).

Consequently, the progression from the original units to the band units is a progression from a torus
manifold to a circle manifold.

S2.3 Ring Units: Angular Smoothing of Firing Fields
We show how ring units, observed in practice in Section 4, can be described via an angular smoothing
of firing fields. As in the previous subsection, we represent the firing field r of one unit as a mixture
of K Gaussians as in Eq. S3.

Next, we describe the transformation of units into ring units as a convolution with a 2D anisotropic
variable Gaussian filter. In this convolution, the kernel varies depending on where it is being applied,
i.e., on its position which we will express in polar coordinates with (ρ, θ).

In other words, at (ρ, θ) fixed, the function u → Gvar(u; ρ, θ) is a Gaussian kernel with a mean and
variance that may depend on ρ and θ. In our case, given a reference radius ρ0 > 0, the dependency of
the mean and variable on (ρ, θ) has the form:

Gvar(u; ρ, θ) = δρ=ρ0 .G(0,Σθ)(u) = δρ=ρ0 .
1

2π
√
detΣθ

exp

(
−1

2
uT .Σ−1

θ .u

)
, ∀u ∈ R2, (S8)

where δ is the Kronecker symbol and Σθ = Rθ.diag(0, σ2).R−1
θ . The mean of the Gaussian kernel is

always 0, but the covariance matrix depends on θ. The Gaussian kernel itself is 0 if ρ is different than
the reference radius ρ0.

This variable kernel can be used to perform an anisotropic smoothing in the direction θ for a ring of
radius ρ0, via convolution. For simplicity, we consider that the center of the ring is also the center of
the polar coordinate system. We write the convolution with this variable kernel as:

rρ0(x) = (Gvar ∗ r) (x),=
∫
u∈R2

r(u)Gvar(x− u;x)du =

∫
u∈R2

r(u)Gvar(x− u; ρ, θ)du, (S9)

where we write x in polar coordinates x = (ρ, θ).

In Figure S1, we verify empirically that this formulation creates the rings that we observe in
practice.

Ring Units with ring radius = 10 Ring Units with ring radius = 20

Standard deviation = 3 Standard deviation = 5 Standard deviation = 3 Standard deviation = 5

Figure S1: Convolution with a variable Gaussian kernel creates the ring units observed in practice. From left to
right, we vary the radius ρ0 and the standard deviation σ of the variable Gaussian kernel.
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S3 Network details & hyperparameters
All code used for this paper is publicly available at:
https://github.com/geometric-intelligence/neurometry.

Grid cells in piRNNs Gao et al. [30] and Xu et al. [19] introduce a framework where trans-
formations in the environment are related to transformations in neural state space. That is, for a
displacement ∆x, the neural representations r transform as:

r(x+∆x) = F∆x(r(x)), (S10)
where F is assumed to respect conformal isometry—a small displacement vector ∆x at x in physical
space is conformally mapped to a small displacement vector r(x+∆x) in neural state space. This
can be understood as a “magnification” of the displacement by a constant factor s(x) that may depend
on x, but is independent of the direction of ∆x. Xu et al. [19] approximate the transformation
F∆x(r(x)) using an RNN:

r(x+∆x) = ReLU(Wr(x) + U∆x), (S11)
where W ∈ RN×N is the recurrent weight matrix and U ∈ RN×2 is the input weight matrix with
∆x called the input. The neural representations r(x) will become grid cells after training. To
incorporate the fact that biological grid cells are organized into discrete modules [14], they assume
that the representations r(x) are divided into sub-vectors corresponding to modules, and therefore
they assume that W is a block-diagonal matrix and U is divided into sub-blocks by row.

Next, we provide expressions for the remaining loss terms from Eq. 2. The kernel term is:
Lkernel = Ex

[
∥ϕ(x)−Qr(x)∥2

]
(S12)

Since ϕ is fixed, this term induces the linear read-out of grid cell representations r with matrix Q to
match the Gaussian kernel.

The conformal isometry term is:

Lconformal = Ex,∆x1,∆x2
[s∆x1

(x)− s∆x2
(x)]

2
, (S13)

where s∆x(x) = (∥r(x)− r(x+∆x)∥/∥∆x∥)2. This term enforces that the magnitude of displace-
ments in neural state space induced by a displacement in the real environment is independent of the
direction of the displacement at each point. Thus, the grid cell representation taken as a map from R2

to RN is conformal (angles are preserved locally).

The regularization term is:
Lregularization = ∥Q∥2F . (S14)

This term can be interpreted as inducing sparsity in the place cell activity.

S3.1 Pre-training Details
We pre-trained the model from [19] for 25,000 epochs with the task, architecture, and training
hyperparameters originally used in their work, specified in Table 1. Every 500 epochs, we extracted
the network activities and averaged over 100 trajectories.

Once the network was trained and learned units with a high degree of hexagonal periodicity across
multiple modules, we modified the loss term (see Eq. 7) and initiated a new phase of training,
saliency training. We ran 667 runs spanning different experimental conditions (see Table 2) and a
hyperparamater search (see Table 3)

In our analysis in the main text we use a Gaussian saliency kernel located at the center of the
environment, with σ∗ = 0.05, shown in Fig. S2.

S4 Identification of neuron subpopulations
The activity of each unit can be visualized as a (res × res) rate map, with res = 40. Building upon
the methodologies in [9], we attempt to discover subpopulations in the network by clustering RNN
units based on their spatial autocorrelations. We begin by computing the spatial autocorrelations of
all 1800 RNN units, where each spatial autocorrelation is a matrix of size (res − 1)× (res − 1). We
proceed by flattening the matrix, yielding 1800 points in a R(res−1)×(res−1), and reduce the dimension
to 2D using UMAP [38]. Finally, we use DBSCAN [39] to cluster the points in the 2D UMAP
projection, resulting in our final unit clusters. These clusters correspond to the usual notions of grid
cell module. The 2D UMAP projection colored according to DBSCAN-obtained clusters is shown in
Fig. S3.
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Architecture
Ngrid 1800
RNN step 10
place cell σ 0.07
Number of modules 150
Resolution (res) 40
Training
Number of epochs 25,000
Learning rate 0.006
Optimizer adam
Batch size 10,000
kernel weight 1.05
error weight 0.1
conformal weight 0.005
Q reg. weight 0.2
Path length 30

Table 1: Pre-trained model parameters.

Experiments
Ngrid 1800
RNN step [10,20,40,60]
error weight [0.1,0.3,0.5,0.9,2]
s0 [1,10,100,1000]
x∗ [(0.5,0.5),(0.8,0.8)]
σ∗ [0.05,0.1,0.15,0.2,0.5]
Table 2: Different experimental conditions.

S5 Geometric Methods in Neuroscience
There exist many approaches for revealing manifold structure in neural population activity which
rely on dimensionality reduction techniques like PCA, UMAP, MDS, Isomap, LLE, and tSNE. These
techniques can reveal the existence of lower-dimensional structure in neural population activity;
however, these methods may misrepresent manifolds with non-trivial topological structure, like circles,
spheres, and tori. Topological data analysis (TDA) methods like persistent homology hrevealed [8, 9].
However, these methods do not reveal many geometric properties of neural manifolds including
notions of distance, angles, or curvature. Recent methods [40] quantify the extrinsic curvature neural
manifolds leveraging tools from differential geometry.

S5.1 Topological Data Analysis
Topological Data Analysis (TDA) has been used extensively to study the structure of neural population
activity [5, 8, 9, 41, 42]. In this work we leverage the parallelized CPU computations provided by
giotto-ph [43] to compute persistent homology based on Vietoris-Rips filtrations. We begin with a
projection of the module activities to a 6 the dimensional space defined by PCA. We then compute
the persistent homology setting the prime field p = 2, and Euclidean distance as the metric.

S6 Limitations
We introduce a saliency-trained piRNN framework building off the model from [19] and [30]. Many
other works propose their own versions of piRNNs with different specifications, which we have
not fully explored. In particular the recent work of [32] introduce a novel self-supervised piRNN

Experiments
Learning rate [3e-4, 6e-4]
Path length [50,75,100]

Table 3: Hyperparameter search for saliency training.
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Figure S2: Saliency kernel for analysis in Sec. 4.1
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Figure S3: Identification of network subpopulations by clustering of unit rate maps.. A 2D UMAP
embeddings of spatial autocorrelations of rate maps of all RNN units, colored according to cluster membership
determined with DBSCAN clustering on 2D embeddings. B Rate maps for typical units in cluster 7 (top) and
cluster 1 (bottom).

framework which considerably differs from the rest, and future work should explore the effects of
saliency training on this novel type of piRNN. Furthermore, while we intend to bridge the gap between
path-integrating artificial neural systems and observational evidence from experiments in navigational
neuroscience, the present work does not directly analyze neural data from real animals.

S7 Reproducibility
In training of our piRNNs and conducting our analyses, we made use of 10 NVIDIA A100 GPUs and
20 NVIDIA A100 GPUs spread over 5 clusters.
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Figure S4: A. Rate maps for module 7 of piRNN with frozen linear read-out during saliency training. We observe
the stereotypical deformations from the pure hexagonal grids described in Sec. 4, and the toroidal topology is
preserved. B. Rate maps for module 7 of piRNN with trainable linear read-out during saliency training. The
deformations are more extreme, and toroidal topology of the module is destroyed.
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NeurIPS Paper Checklist
The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and precede the (optional) supplemental material. The checklist does NOT
count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While ”[Yes] ” is generally preferable to ”[No] ”, it is perfectly acceptable to answer ”[No] ”
provided a proper justification is given (e.g., ”error bars are not reported because it would be too
computationally expensive” or ”we were unable to find the license for the dataset we used”). In
general, answering ”[No] ” or ”[NA] ” is not grounds for rejection. While the questions are phrased in
a binary way, we acknowledge that the true answer is often more nuanced, so please just use your best
judgment and write a justification to elaborate. All supporting evidence can appear either in the main
paper or the supplemental material, provided in appendix. If you answer [Yes] to a question, in the
justification please point to the section(s) where related material for the question can be found.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract describes the results presented in the paper.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Please see Section S6.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
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• The authors are encouraged to create a separate ”Limitations” section in their paper.

• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We provide the assumptions, conjectures, and proofs.

Guidelines:

• The answer NA means that the paper does not include theoretical results.

• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theorems.

• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All code used for the paper is publicly available on Github as specified.

Guidelines:
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• The answer NA means that the paper does not include experiments.

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All our code used in this paper is publicly available on GitHub.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
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• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Yes, we included these details in the supplementary.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We include the error bars for the TDA in Figs. 4 and 6.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The authors should answer ”Yes” if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
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Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We described our compute resources in Section S7.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We confirm that this is true.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This is not applicable.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.
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• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Not applicable.

Guidelines:

• The answer NA means that the paper poses no such risks.

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly cited all work whose codebase we used.

Guidelines:

• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or dataset.

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
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13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This is not applicable for our work.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Not applicable.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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