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ABSTRACT

The increasing complexity and parameter count of Convolutional Neural Net-
works (CNNs) and Transformers pose challenges in terms of computational ef-
ficiency and resource demands. Pruning has been identified as an effective strat-
egy to address these challenges by removing redundant elements such as neu-
rons, channels, or connections, thereby enhancing computational efficiency with-
out heavily compromising performance. This paper builds on the foundational
work of Optimal Brain Damage (OBD) by advancing the methodology of param-
eter importance estimation using the Hessian matrix. Unlike previous approaches
that rely on approximations, we introduce Optimal Brain Apoptosis (OBA), a
novel pruning method that calculates the Hessian-vector product value directly for
each parameter. By decomposing the Hessian matrix across network layers and
identifying conditions under which inter-layer Hessian submatrices are non-zero,
we propose a highly efficient technique for computing the second-order Taylor
expansion of parameters. This approach allows for a more precise pruning pro-
cess, particularly in the context of CNNs and Transformers, as validated in our
experiments including VGG19, ResNet32, ResNet50, and ViT-B/16 on CIFAR10,
CIFAR100 and Imagenet datasets. Our code will be available soon.

1 INTRODUCTION

With the rapid development of deep learning, neural networks have become deeply integrated into
all sectors of our daily life. Convolutional Neural Networks (LeCun et al., 1998; Krizhevsky et al.,
2012; He et al., 2016; Ma et al., 2023) and Transformers (Vaswani et al., 2017; Dosovitskiy et al.,
2021) are two typical structures used most widely. As researchers continuously innovate, the perfor-
mance of neural networks improves, but the number of parameters and the computational complexity
also increase significantly. Therefore, how to efficiently reduce the parameter size and computational
overhead of neural networks while maintaining their performance as much as possible has become
a crucial problem.

Extensive research (LeCun et al., 1989; Molchanov et al., 2016) demonstrates that pruning is a
powerful tool for dealing with this issue. Generally speaking, pruning can be divided into two main
streams: unstructured pruning and structured pruning. Unstructured pruning (Guo et al., 2016; Han
et al., 2015; Dong et al., 2017) involves the removal of individual weights or neurons from a neural
network. The key advantage of unstructured pruning lies in its flexibility and the fine-grained control
it offers over the model’s architecture. This method often requires specialized hardware or software
to exploit the resultant sparsity for computational efficiency. Structured pruning (Anwar et al., 2017;
Yeom et al., 2021) removes entire neurons, channels, or layers from a neural network, which is more
frendly to software since parameters of neural networks are mainly structured data, such as tensor,
matrix, and vector. Removing entire neurons directly corresponds to a slicing or selecting operation
on the structured data, which is easy to implement and more compatible with standard hardware
accelerators, such as GPUs and TPUs.

Hanson & Pratt (1988) is one of the earliest works to explore structured pruning. The underlying idea
is that significant weights typically possess greater magnitudes, as they need to process and transmit
more information to be influential in determining the network’s accurate output. However, pruning
under this guidance may sometimes incorrectly remove important neurons with small magnitude and
reserve unimportant neurons with large magnitude. Optimal Brain Damage (OBD) (LeCun et al.,
1989) and Optimal Brain Surgeon (OBS) (Hassibi & Stork, 1992) propose to leverage the Hessian
matrix of loss w.r.t. parameters to estimate the importance of each parameter. The Hessian matrix
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contains second-order partial derivatives of the loss function w.r.t. all pairs of parameters, which is
very computationally expensive to compute. Thus, OBD approximates it as a diagonal matrix by
assuming the loss of deleting several parameters is the sum of deleting these parameters individually.
OBS views the pruning as an optimization problem and solves it with the Lagrange multiplier. They
either discard or approximate the second-order partial derivatives between all pairs of parameters,
which capture the change of loss on one parameter when deleting another parameter.

Our Contributions In this paper, we follow the idea of OBD, leveraging Hessian matrix for pa-
rameter importance estimation. Instead of approximating Hessian matrix, we calculate the Hessian-
vector product element

∑
j

∂2L
∂θi∂θj

δθiδθj for each parameter in the network. To achieve this, we first
separate the Hessian matrix of the whole network into Hessian submatrices between layers. Then,
in the context of widely used network structures including convolutional neural networks (CNNs)
and Transformers, we analyze the conditions where the Hessian submatrices between two layers
are nonzero. Finally, we propose a highly efficient method to capture these conditions and obtain
the Hessian-vector product element on each parameter. Stepping from approximating the Hessian
matrix with the Fisher matrix to directly computing the Hessian-vector product, we propose Optimal
Brain Apoptosis (OBA), a novel pruning method that efficiently calculates the second-order Taylor
expansion for each parameter and is applicable to both structured and unstructured pruning tasks.

2 BACKGROUND AND PRELIMINARY

Background The structure and computational aspects of the Hessian matrix in feedforward neural
networks have been extensively studied since the early 1990s (Buntine & Weigend, 1994; Wille,
1997). The Hessian matrix was first utilized in neural network pruning by LeCun et al. (1989) to
calculate the importance score of each neuron, leveraging diagonal approximation is used to estimate
the Hessian matrix:

δLOBD =
1

2

(
θ∗
q

)2
Hqq. (1)

Building upon this, OBS (Hassibi & Stork, 1992) views the importance estimation as an optimization
problem, and aims at finding a set of weights that yields least change on the loss:

min
q

{
min
δθ

1

2
δθ⊤Hδθ s.t. e⊤q δθ + θ∗

q = 0

}
. (2)

Early research such as that by Buntine & Weigend (1994) provided an extensive review of how to
compute second derivatives in feed-forward networks, and Wille (1997) examined the Hessian ma-
trix’s structure and second derivative techniques. More contemporary efforts, such as EigenDam-
age (Wang et al., 2019), utilize a Kronecker-factored eigenbasis for network reparameterization and
approximate the Hessian matrix using the Fisher matrix, as discussed by Martens (2020). Recent
studies (Wu et al., 2020; Singh et al., 2021) have thoroughly investigated the common structures and
rank properties of the Hessian in neural networks. Pearlmutter (1994) initially introduced an efficient
method for computing the Hessian-vector product. Our research builds on this foundation, applying
this idea to the pruning of modern network architectures including CNNs and Transformers.

Preliminary Consider a feed-forward neural network with parameters θ and L layers. Similar
to OBD (LeCun et al., 1989), when we add small perturbation δθ on θ, the second-order Taylor
expansion of the perturbation on the objective function is given by

δL(θ) = (
∂L
∂θ

)Tδθ +
1

2
δθTHδθ + o(∥δθ∥3), (3)

where H is the Hessian matrix that represents the second-order derivatives between all parameter
pairs. It is usually infeasible to compute the Hessian matrix due to its complexity of O(n2), where
n is the number of parameters in the network (LeCun et al., 1989; Hassibi & Stork, 1992). By
expanding the first and second term of eq. (3), we can define the perturbation of the loss caused by
δθi as

δL(θi) =
∂L
∂θi

δθi +
∑
j

∂2L
∂θi∂θj

δθiδθj + o(∥δθi∥3). (4)

The first term of eq. (4) is leveraged to estimate the improtance of neurons in Molchanov et al.
(2016). Same to prior works, we ignore the higher order term o(∥δθi∥3). Current works (Hassibi
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& Stork, 1992; Yu et al., 2022; Benbaki et al., 2023) that leverage the second-order Taylor expan-
sion term approximate the Hessian matrix with Fisher information matrix. This approximation, if
applied to eq. (4), would change its second-order term to

∑
j

∂L
∂θi

∂L
∂θj

δθiδθj . However, this approxi-
mation is not accurate enough to capture the second-order loss perturbation caused by δθi and δθj .
Therefore, we focus on a theoretical analysis on how to calculate the original second-order term∑

j
∂2L

∂θi∂θj
δθiδθj .

3 METHOD

3.1 DEFINITION

We derive from a general form of linear layers in modern neural networks. For layer l ∈ [1, L], we
denote the weight parameter as W (l) ∈ Rlout×lin×pweight and bias parameter as b(l) ∈ Rlout . We denote
the input of layer l as X(l) ∈ Rlin×pin and output of layer l as Y (l) ∈ Rlout×pout . pweight, pout, and pin
are the length of flattened weights, output values, and input values that contribute to the connections
between every pairs of input neurons and output neurons, for example pweight = 1, pout = 1, pin = 1

in the context of fully connected layers and pweight = s
(l) 2
kernel, pout = h

(l)
outw

(l)
out, pin = h

(l)
in w

(l)
in in the

context of convolutional layers. The forward propagation of layer l is given by

Y
(l)
ab =

∑
cde

W
(l)
acdX

(l)
ce M

(l)
bde + b(l)a , (5)

where M ∈ {0, 1}pout×pweight×pin , determined by the layer itself, represents the connections among
all input values, weight values, and output values. We represent the flattened vector of X(l), W (l),
Y (l), and M (l) as x(l) ∈ Rlin·pin , w(l) ∈ Rlout·lin·pweight , y(l) ∈ Rlout·pout , and m(l) ∈ {0, 1}pout·pweight·pin ,

respectively. the parameters θ(l) of layer l can be expressed as θ(l) =

[
w(l)

b(l)

]
. We represent all

partial derivative terms with variables in their vector forms to ensure these terms are with the same
definition of Jacobian matrix.

In a certain layer l defined by eq. (5), the gradient of the loss w.r.t. the indexed parameters W
(l)
acd

and b
(l)
a are respectively

∑
ab

∂L
∂Y

(l)
ab

∑
e X

(l)
ce M

(l)
bde and

∑
b

∂L
∂Y

(l)
ab

. It is clear that the condition for the

Hessian matrix entries between layer l and any distinct layer l′ being exclusively zero hinges on the
differentiability of terms ∂L

∂y(l) and X(l) with respect to the parameters of layer l′, which depends
on the connection type of two layer types. We observe that the connectivity types which introduce
nonzero Hessian submatrices between any two layers in a neural network can be divided into two
cases: series connectivity and parallel connectivity, as shown in fig. 1a. We next analyze these two
cases and calculate the Hessian-vector product element

∑
j

∂2L
∂θi∂θj

δθiδθj in eq. (4) for the two cases
respectively.

3.2 SERIES CONNECTIVITY

Definition 3.1 (Series Connectivity). In a neural network at layer l, if there exists a layer l′ such
that there is a differentiable function mapping the output of layer l′ to the input of layer l, we say
layer l′ and l are in series connectivity. Specifically:

• layer l′ is in lower series connectivity to layer l.

• layer l is in upper series connectivity to layer l′.

In fig. 1a, there are differentiable functions from Y (l1) to X(l2) and X(l3), respecively, so layer l1
is in series connectivity with both layer l2 and layer l3. Without loss of generality, we take layer l1
and layer l2 as an example. Then

∂L
∂y(l1)

=
∂L

∂y(l2)
∂y(l2)

∂x(l2)︸ ︷︷ ︸
differentiable to θ(l2)

∂x(l2)

∂y(l1)
,

also X(l2) is differentiable to θ(l1). According to our analysis in the beginning of this section, a
nonzero Hessian submatrix exists between layers l1 and l2.
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Figure 1: (a) An illustration of conditions where the Hessian matrix between parameters of two
layers are nonzero. (b) An illustration of Jacobian-Vector Product Forward Propagation. Two for-
ward propagation processes are needed for parameter layers and one forward propagation process
is needed for nonparameter layers. For nonparameter layers we leverage Jacobian-vector product to
conduct the forward process and do not need to calculate the Jacobian matrix explicitly.

Theorem 3.2. For layer l in a neural network where layers lup ∈ Lup and layers llow ∈ Llow are in
upper and lower series connectivity to layer l, respectively, then for weight parameter w(l) and bias
parameter b(l) of layer l, we have∑

l′∈Lup∪Llow

∑
j

∂2L
∂θ

(l′)
j ∂w(l)

δθ
(l′)
j ⊙ δw(l) =

∑
lup∈Lup

∂L
∂y(lup)

J
(lup)

δW (lup)

∂x(lup)

∂w(l)
⊙ δw(l) (6)

+
∂L
∂y(l)

∂y(l)

∂w(l)

∣∣∣∣
X̂(l)

⊙ δw(l) (7)

in which X̂(l) is given by

X̂(l)
mn =

∑
llow∈Llow

∑
k

∂X
(l)
mn

∂θ
(llow)
k

δθ
(llow)
k , (8)

and ∑
l′∈Lup∪Llow

∑
j

∂2L
∂θ

(l′)
j ∂b(l)

δθ
(l′)
j ⊙ δb(l) =

∑
lup∈Lup

∂L
∂y(lup)

J
(lup)

δW (lup)

∂x(lup)

∂b(l)
⊙ δb(l), (9)

where J
(l)

δW (l) ∈ R(lout·mout)×(lin·min) is the jacobian matrix of y(l) with respect to x(l) taking δW (l)

as the weights, and ∂y(l)

∂w(l)

∣∣
X̂(l) is the jacobian matrix of y(l) w.r.t. ∂w(l) taking X̂(l) as input.

The proof is provided in appendix F.1. Note that the sets Lup(l) and Llow(l) are dependent on
layer l, and are abbreviated for simplicity. With theorem 3.2, the second-order term of the Taylor
expansion of the loss with respect to each individual parameter can be computed, taking into account
parameters belonging to layers that are in series connectivity to a specific layer. For classical neural
network structures such as convolutional neural networks and fully connected neural networks, there
only exist series connectivities between layers. Thus, we can directly apply theorem 3.2 to calculate
eq. (4) for each individual parameter.

3.3 PARALLEL CONNECTIVITY

For recent novel neural network structures such as Transformer (Vaswani et al., 2017), matrix mul-
tiplication plays a crucial and effective role in achieving their impressive performance. It also in-
troduces parallel connectivity to layers and lead to the nonzero Hessian matrices between these
connected layers.

Definition 3.3. In a neural network, if there exist two layers l and l′ such that there are differentiable
functions respectively mapping the outputs of layer l and l′ to the inputs X (left) and X (right) of a matrix
multiplication operation Y (mul) = X (left)X (right), we say layer l and l′ are in parallel connectivity.
Denote the multiplication operation as layer lm, then

• layer l is in left parallel connectivity to layer lm.

4
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• layer l′ is in right parallel connectivity to layer lm.

In fig. 1a, layer l2 and layer l3 are in parallel connectivity. Similarly, the gradient of loss w.r.t.
parameters of layer l2 is ∂L

∂θ(l2) = ∂L
∂y(l4)

∂y(l4)

∂y(l42)

∂y(l42)

∂θ(l2) in which ∂y(l4)

∂y(l42) is differentiable to θ(l3) and
vice versa. Therefore, the nonzero Hessian submatrices resulting from parallel connectivity should
also be considered.
Theorem 3.4. For a multiplication operation Y (mul) = X (left)X (right) in a neural network, where
X (left) ∈ Rlrow×lhid and X (right) ∈ Rlhid×lcol , layers ll ∈ Lleft and lr ∈ Lright are in left and right
parallel connectivity to this multiplication operation, respectively. Consider two surrogate weight
matrices X̂ (left) ∈ Rlrow×lhid and X̂ (right) ∈ Rlhid×lcol given by:

X̂ (left)
kn =

∑
ll∈Lleft

∑
q

∂X (left)
kn

∂θ
(ll)
q

δθ(ll)q , (10)

X̂ (right)
no =

∑
lr∈Lright

∑
r

∂X (right)
no

∂θ
(lr)
r

δθ(lr)r . (11)

Then we have∑
ll∈Lleft

∑
q

∂2L
∂θ

(ll)
q ∂θ(lr)

δθ(ll)q ⊙ δθ(lr) =
∂L

∂y(mul)

∂y(mul)

∂x(right)

∣∣∣∣
X̂ (left)

∂x(right)

∂θ(lr)
⊙ δθ(lr) (12)

and ∑
lr∈Lright

∑
r

∂2L
∂θ

(lr)
r ∂θ(ll)

δθ(lr)r ⊙ δθ(ll) =
∂L

∂y(mul)

∂y(mul)

∂x(left)

∣∣∣∣
X̂ (right)

∂x(left)

∂θ(ll)
⊙ δθ(ll). (13)

Proof can be seen in appendix F.2. Now we can analytically calculate the Hessian-vector product
element of each parameter specifically focusing on the interaction between its layer and any other
layers that are in parallel connectivity to it. Combining theorem 3.2 and theorem 3.4, we can calcu-
late the Hessian-vector product element of each parameter in a neural network. Next, we focus on
an efficient calculation the Hessian-vector product element of each parameter.

3.4 JACOBIAN-VECTOR PRODUCT FORWARD PROPAGATION

From a computational overhead perspective, the main calculation part within theorem 3.2 and the-
orem 3.4 focuses on X̂(l), the gradients of X(l) w.r.t. the parameters of all layers that are in lower
series connectivity to X̂(l), as we need to separately back-propagate each entry of X(l), usually
a large matrix in attention modules. To address this issue, we introduce Jacobian-Vector Product
Forward Propagation (JVPF), a method capable of computing X̂(l) for all layers with an acceptable
computational expense.

Let’s look at a layer in lower series connectivity to layer l and denote it as layer llow. The derivative
of X(l) w.r.t. a single layer llow can be expressed as

∂x(l)

∂θ(llow)
δθ(llow) =

∂x(l)

∂x(l−1)
· · · ∂x

(llow+1)

∂x(llow)

∂x(llow)

∂θ(llow)
δθ(llow),

indicating that we can calculate it in a layer-by-layer manner. Further, let us group layers in lower
series connectivity to layer l into several groups, each of which contains both parameter layers
and nonparameter layers that are in series connectivity to each other. We denote the ith group
as Gi = {li1, li2, · · · , liNi

}, where Ni is the number of layers in group Gi and layer li(j+1) is
subsequent to layer lij . Then we have

x̂(l) =
∑
i

∑
llow∈Gi

∂x(l)

∂θ(llow)
δθ(llow) =

∑
i

∂x(l)

y(lNi
)
f (liNi

) ◦ f (li(Ni−1)) ◦ · · · ◦ f (li1)(0)

where

f (lij)(x) =

∂y(lij)

∂θ(lij)
δθ(lij) + ∂y(lij)

∂x(lij)
x lij has parameters,

∂y(lij)

∂x(lij)
x else.

(14)
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x(lij), y(lij), and θ(lij) are the input, output, and parameters of layer lij . Once we replace the forward
function of each layer with eq. (14), we could calculate x̂(l) for each layer l through one forward
propagation process, and all series connectivity groups can be calculated in parallel. An intuitive
demonstration of JVPF is shown in fig. 1b.

3.5 PRUNING STRATEGY

Upper Gathering

Lower 

Gathering

Neurons of Lower Layer

Neurons of Lower Layer

Lower Bias Importance Score

Upper Weight 

Importance Score

Lower Weight 

Importance Score

Sum

Upper Layer 1

Upper Layer Nu

Lower Layer 1

Lower Layer Nl

+ + +

Figure 2: Importance score of each neuron in a
group is gathered from parameters of lower layers
and upper layers.

Utilizing theorem 3.2 and theorem 3.4 along
as our proposed JVPF, which offers an effi-
cient choice to obtain the essential intermedi-
ate values, we can calculate the Hessian-vector
product element of each parameter as their im-
portance scores with several batches of traning
data. Please refer to appendix C for the de-
tailed importance score acquisition. This im-
portance score can be leveraged to conduct un-
structured pruning for each parameter individu-
ally, or conduct structured pruning for each pa-
rameter group.

Structured Pruning Following Fang et al.
(2023), parameters from in-layer and inter-
layer connections can be organized into several
groups G. The importance scores belonging to each group is defined as IG = {I(i)G |gi ∈ G}. For
each group gi ∈ G, importance scores are summed on every neuron over parameters of upper layers
Lu ⊂ gi with length Nu and lower layers Ll ⊂ gi with length Nl, as illustrated in in fig. 2.

Unstructured Pruning The importance score in unstructured learning is more straightforward.
By eliminating the process of gathering importance, considering each parameter layer as a group,
and each parameter as a neuron, the definition of importance score becomes similar to what is
described in structured pruning scenarios. Experimentally we found that the gradients of some
parameters are zero due to gradient vanishing, making us hard to judge the importance of these
parameters. This would have little influence on structured pruning since neurons’ importance scores
are gathered through multiple weights. However, in unstructured pruning, the importance score of
each weight only depends on itself. By adding the magnitude of the corresponding weight in the
importance score term, the problem is resolved.

In each pruning step, we calculate every importance score I(i,j)G of jth neuron in ith group over
traning data of B batches, and normalize them within each group. Then we rank them from lowerst
to highest. The lowest p percentage of parameters are pruned. We can gradually increase p to
iteratively prune the model to a specific FLOPs or parameter percentage.

4 RESULTS

We empirically study the performance of OBA on CNNs where only series connectivity exists, and
attention networks where both series connectivity and parallel connectivity are present. We focus on
pruning towards as small FLOPs as possible to reduce the computation overhead of model inference.
For structured pruning, we primarily compare our methods with those that leverage Hessian matrix
information (Hassibi & Stork, 1992; Wang et al., 2019). In the context of unstructured pruning,
we evaluate our approach against the state-of-the-art unstructured pruning method, CHITA (Ben-
baki et al., 2023). Classical importance acquisition methods Weight (the magnitude of weights),
OBD (LeCun et al., 1989) and Taylor (Molchanov et al., 2016) are also added into comparison
for both structured and unstructured pruning tasks. In our experiments, we choose δθi = θi. The
implementation details can be found at appendix B.

4.1 STRUCTURED PRUNING

Current structured pruning workflows can be roughly divided into one-shot pruning and iterative
pruning. The former prunes the fine-tuned model towards a sparsified network and fine-tunes it after
pruning, whereas the latter prunes the model iteratively and fine-tunes the model after each pruning
step. One-shot pruning is more efficient than iterative pruning, but the latter is more effective. We
evaluate our method on both of these two workflows.
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Table 1: The Spearman correlation of the importance
scores of each method with the importance rank of
neurons on ResNet32.

Method OBA Weight Taylor OBS OBD EigenDamage

all layers CIFAR100
Max 0.500 0.115 0.457 0.248 0.222 -0.077

Standardization 0.496 0.335 0.450 0.292 0.474 -0.047
l2-Norm 0.492 0.433 0.441 0.407 0.541 -0.012

None 0.444 -0.247 -0.157 0.222 0.275 0.046
per layer 0.443 0.271 0.292 0.304 0.287 0.018

all layers CIFAR10
Max 0.456 0.092 0.417 0.373 0.426 0.165

Standardization 0.382 0.049 0.444 0.166 0.412 0.166
l2-norm 0.402 0.443 0.433 0.367 0.186 0.192

None 0.379 -0.187 0.080 0.360 0.342 0.172
per layer 0.421 0.289 0.409 0.362 0.347 0.056

Table 2: Comparison on Accuracies (%)
and speed up up ratios with recent pruning
works on ImageNet.

Method Pruned Speed Up

Resnet50
Weight 75.12−1.03 1.99×

C-OBD (Wang et al., 2019) 74.86−1.29 1.99×
C-OBS (Wang et al., 2019) 75.48−0.67 2.01×

EigenDamage (Wang et al., 2019) 75.30−0.85 2.00×
Taylor (Molchanov et al., 2016) 75.26−0.89 2.00×

OBA(Ours) 75.62−0.53 2.00×
ViT-B/16

Weight 77.03−4.04 1.32×
Taylor (Molchanov et al., 2016) 77.65−3.42 1.31×

OBA(Ours) 79.64−1.43 1.30×

4.1.1 IMPORTANCE SCORE RANK CHARACTERIZATION

We first measure the ability of our method to characterize the importance of each neuron for struc-
tured pruning. Intuitively, the importance score of a neuron should be positively correlated to the
change of loss when removing a neuron. This can be implemented by masking the neuron’s output
in the evaluation process. Specifically, we mask the output of each neuron in pre-defined layers and
compare the change of loss between the masked model and unmasked model, which is refered to
as ground truth importance. Then we calculate the Spearman’s rank correlation of the importance
scores with estimated importance scores from different methods. The higher the Spearman’s rank
score, the better the method captures the importance. We select the output neurons of the first con-
volutional layer and the three following residual blocks of ResNet32 (He et al., 2016) as candidates.
For per-layer case, Spearman correlation is calculated within each layer and averaged. For all-layer
case, before calculating Spearman correlation, we first normalize the importance scores of each
layer and concatenate them together. Different layer-wise normalization methods are considered in
the evaluation and are detailedly introduced in appendix D.

As shown in table 1, with evaluation within each layer, OBA yields the best rank similarity to the
ground truth importance among all methods. In the all-layer importance condition, our method also
yields good performance on different normalization methods. This prove our method’s capabil-
ity of importance capturing, along with its robustness to different normalization methods since its
Spearman score is not sensitive to different normalizations.

4.1.2 ONE-SHOT PRUNING RESULTS

Next, we conduct experiments to evaluate the performance of OBA on pruning towards a specific
FLOPs percentage in one-shot pruning workflow. As the FLOPs and number of parameters are
not linearly dependent w.r.t. the number of neurons in the neural network, it’s hard to calculate a
pruning ratio under which the network is pruned into a predefined FLOPs or parameter number.
Thus we prune the network for several steps with an increasing pruning ratio. FLOPs and number of
parameters are calculated after each step to check whether the network satisfies the target. We first
evaluate our method on ImageNet with ResNet50 (He et al., 2016) and ViT-B/16 (Dosovitskiy et al.,
2020). As shown in table 5, our method realizes a 2× speed up at ImageNet on ResNet50 with an
accuracy decrease of only 0.53%. Our method outperforms other methods on both ResNet50 and
ViT-B/16, which demonstrates the effectiveness of our method on large-scale datasets. On ViT-B/16,
our method achieves a 1.30× speed up with an accuracy decrease of 1.43%, which is far smaller
than those achieved by Taylor criteria and Weight criteria, demonstrating our proposed criteria’s
superiority over Weight criteria and the first-order Taylor criteria.

Next we evaluate our method on CIFAR10 and CIFAR100 datasets. The results are shown in ta-
ble 3. Our method achieves best results on ResNet32 model across the both datasets. When pruning
network towards a small 6% target FLOPs, our method on ResNet32 surpasses other methods a lot,
with only 0.79% accuracy loss on CIFAR10 datasets. On CIFAR10 with VGG19 the performance
of OBA is slightly worse, but still comparable to other methods, with relatively lower FLOPs. We
observe an interesting phenomenon that the parameter reduction of models pruned with OBA are
slightly higher than other methods under similar FLOPs, which indicates that our method tends to
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Figure 3: Iterative pruning results on CIFAR10 and CIFAR100 with ResNet32.

prune neurons with relatively higher FLOPs, and is more suitable for applications with lower FLOPs
requirements.

Table 3: The accruacies (%), weights reduction (%), and FLOPs reduction (%) of different methods
across CIFAR10 and CIFAR100 under one-shot pruning with ResNet32 and VGG19.

Method CIFAR10 CIFAR100
Acc Weights FLOPs Acc Weights FLOPs Acc Weights FLOPs Acc Weights FLOPs

VGG19(Baseline) 94.17 73.34
NN Slimming (Liu et al., 2017) 92.84 80.07 42.65 85.01 97.85 97.89 71.89 74.60 38.33 58.69 97.76 94.09

C-OBD (Wang et al., 2019) 94.04 82.01 38.18 92.34 97.68 77.39 72.23 77.03 33.70 58.07 97.97 77.55
C-OBS (Wang et al., 2019) 94.08 76.96 34.73 91.92 97.27 87.53 72.27 73.83 38.09 58.87 97.61 91.94

Kron-OBD (Wang et al., 2019) 94.00 80.40 38.19 92.92 97.47 81.44 72.29 77.24 37.90 60.70 97.56 82.55
Kron-OBS (Wang et al., 2019) 94.09 79.71 36.93 92.56 97.32 80.39 72.12 74.18 36.59 60.66 97.48 83.57

EigenDamage (Wang et al., 2019) 93.98 78.18 37.13 92.29 97.15 86.51 72.90 76.64 37.40 65.18 97.31 88.63
Weight 93.85 68.57 37.21 91.85 97.02 86.93 72.14 67.89 37.02 54.63 95.90 88.30

Taylor (Molchanov et al., 2016) 94.11 62.29 38.28 92.29 93.89 86.29 71.82 55.58 37.76 66.65 93.12 88.28
OBA (Ours) 93.9 56.63 38.06 92.48 91.89 86.27 72.36 53.33 37.62 66.72 92.74 88.80

ResNet32(Baseline) 95.3 78.17
C-OBD (Wang et al., 2019) 95.11 70.36 66.18 91.75 97.30 93.50 75.70 66.68 67.53 59.52 97.74 94.88
C-OBS (Wang et al., 2019) 95.04 67.90 76.75 90.04 95.49 97.39 75.16 66.83 76.59 58.20 91.99 96.27

Kron-OBD (Wang et al., 2019) 95.11 63.97 63.41 92.57 96.11 94.18 75.86 63.92 62.97 62.42 96.42 95.85
Kron-OBS (Wang et al., 2019) 95.14 64.21 61.89 92.76 96.14 94.37 75.98 62.36 60.41 63.62 93.56 95.65

EigenDamage (Wang et al., 2019) 95.17 71.99 70.25 93.05 96.05 94.74 75.51 69.80 71.62 65.72 95.21 94.62
Weight 94.51 55.47 71.99 92.07 91.61 94.09 75.72 65.76 70.08 66.09 95.44 94.63

Taylor (Molchanov et al., 2016) 95.06 66.57 71.40 93.32 94.88 94.05 76.13 64.27 70.11 64.56 90.35 94.99
OBA (Ours) 95.19 63.90 71.13 93.45 93.68 94.51 76.47 64.34 70.02 67.81 94.43 94.40

4.1.3 ITERATIVE PRUNING RESULTS

In this subsection, we evaluate the performance of OBA under iterative pruning workflow on
ResNet32. Specifically, we set a list of target FLOPs for each dataset and model, and iteratively
prune the model from largest FLOPs to smallest FLOPs. Fine-tuning is conducted after each prun-
ing step. In terms of FLOPs, the accuracy loss for each iteration of our method is lower than other
methods, as shown in fig. 3. This validates the effectiveness of our proposed criteria. As for param-
eter reduction, our method yields less advantage over other methods, which is consistent with the
results of one-shot pruning.

4.2 UNSTRUCTURED PRUNING

We also evaluate the performance of OBA on unstructured pruning task. We follow a similar setting
of the multi-stage pruning in CHITA (Benbaki et al., 2023) to have a fair comparison. Since Tay-
lor (Molchanov et al., 2016), Weight, and OBD (LeCun et al., 1989) all obtain the importance scores
from each parameter, we can ignore their importance gathering steps and add them into comparison.
The results are shown in table 4 and table 5. Given the varying performance of the initial unpruned
networks, we directly compare the accuracy ratio relative to the raw accuracy of all methods. The
main version of CHITA, i.e. CHITA-CD, has very large computational time and memory cost on
Resnet50, making itself infeasible for such huge networks. Thus we implemented the more effi-
cient CHITA-BSO for comparison. It can be seen that Taylor and OBD fails on this task as their
accuracies rapidly fall into 10% in the first pruning step. OBA’s results on high sparsities surpass
CHITA++ by a huge margin, proving itself to be effective in unstructured pruning task.

4.3 RUN TIME ANALYSIS

Here, we empirically study the time consumption of OBA. Table 6a shows the time consumption
of each part of OBA, and the time costed by regular training. It can be seen that the time cost of
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Table 4: The unstructured pruning results on CIFAR-10 dataset with ResNet-20.

Sparsity Taylor (91%) OBD (91%) Weight (91%) OBA (91%) CHITA++ (91.36%)

Accuracy (%) Ratio (%) Accuracy (%) Ratio (%) Accuracy (%) Ratio (%) Accuracy (%) Ratio (%) Accuracy (%) Ratio (%)

0.1 11.00 14.45 10.03 13.17 90.66 99.63 90.83 99.81 - -
0.2 11.00 14.45 10.03 13.17 90.82 99.80 90.90 99.89 - -
0.3 10.00 13.14 10.03 13.17 90.67 99.64 90.65 99.62 91.25 99.88
0.4 10.80 14.19 10.02 13.16 90.67 99.64 90.35 99.29 91.20 99.82
0.5 10.00 13.14 10.01 13.15 90.79 99.77 90.57 99.53 91.04 99.65
0.6 8.20 10.77 10.00 13.14 90.23 99.15 90.69 99.66 90.78 99.37
0.7 10.00 13.14 10.00 13.14 88.83 97.62 89.94 98.84 90.38 98.93
0.8 10.00 13.14 10.00 13.14 85.03 93.44 89.64 98.51 88.72 97.11
0.9 10.00 13.14 10.52 13.82 67.00 73.63 86.27 94.80 79.32 86.82

Table 5: The unstructured pruning results on Imagenet dataset with ResNet-50.

Sparsity Taylor (76.13%) OBD (76.13%) Weight (76.13%) OBA (76.13%) CHITA-BSO++ (77.01%)

Accuracy (%) Ratio (%) Accuracy (%) Ratio (%) Accuracy (%) Ratio (%) Accuracy (%) Ratio (%) Accuracy (%) Ratio (%)

0.1 0.11 0.14 0.10 0.13 75.30 98.91 75.67 99.40 77.00 99.98
0.2 0.11 0.14 0.10 0.13 75.23 98.82 75.40 99.04 76.91 99.87
0.3 0.10 0.13 0.10 0.13 74.57 97.95 74.93 98.42 76.87 99.82
0.4 0.11 0.14 0.10 0.13 73.54 96.60 74.50 97.86 76.59 99.46
0.5 0.10 0.13 0.10 0.13 70.73 92.91 73.42 96.44 76.01 98.70
0.6 0.08 0.11 0.10 0.13 64.97 85.34 70.88 93.10 68.89 89.46
0.7 0.10 0.13 0.10 0.13 48.09 63.17 65.57 86.13 64.38 83.60
0.8 0.10 0.13 0.09 0.12 16.08 21.12 47.14 61.92 26.21 34.03
0.9 0.10 0.13 0.10 0.13 0.80 1.05 5.65 7.43 0.43 0.56

Resnet32 ViT-B/16

Regular Traning 0.326 0.252
Upper Series 0.881 0.799
Lower Series 0.819 1.166

Parallel - 1.944
Total 2.072 4.027

(a)

Taylor OBD OBS EigenDamage OBA
0

100

200

300

Time (s/pruning iteration)

(b)

CHITA-BSO CHITA-CD OBA
0

50

100

150

200

250

Time (s/pruning iteration)

(c)

Table 6: The running time of OBA on different models and datasets. (a) The specific running time
(s/iteration) of each part of OBA on ResNet32 and ViT-B/16. (b) The running time of OBA on
ResNet32 with CIFAR100. (c) The running time of OBA on ResNet20 with CIFAR10.

computing parallel connectivity is the most time-consuming part of OBA, nearly same to the time
of series connectivity. In network structures that do not contain multiplication operations, the time
cost of OBA would be much lower. In table 6b, 200 batches of data with a batch size of 64 are
leveraged in each pruning iteration. In each pruning stage we would conduct 10 pruning iterations
to gradually prune the network, and the overall computation time of of pruning would be less than
1 hour, which is acceptable in the actual pruning scenarios. In table 6c, we samely use 200 batches
of data to calculate gradients. The mainly proposed method in CHITA, CHITA-CD, would require
twice as much time compared to our approach. However, the performance of both CHITA-CD and
CHITA-BSO under high sparsity is worse than OBA, showcasing the efficiency of our method.

5 CONCLUSION AND LIMITATION

In this paper, we propose Optimal Brain Apoptosis, a novel method for pruning neural networks. We
first provide theoretical analysis on modern neural network structures to figure out nonzero Hessian
submatrix conditions between layers. Then we propose an efficient approach that directly calculates
the Hessian-vector product values for each parameter in the network, thereby calculating the second-
order Taylor expansion for each parameter without any approximation. We empirically demonstrate
the efficacy of our method on both structured pruning and unstructured pruning.

Limitation OBA, in its current form, can be applied to network structures including MLPs, CNNs,
and Transformers. For networks with more complex architectures, like RNNs and State Space Mod-
els that handle time-series data, computing the Hessian matrix becomes more difficult and necessi-
tates additional research. This is an interesting area that warrants further exploration in the future.
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APPENDIX

A ADDITIONAL RELATED WORK

Model Compression Model compression is an area that focuses on creating smaller, faster, and
more efficient models suitable for deployment in environments with limited resources, like mobile
devices or embedded systems. There are several typical fields within this area, including quanti-
zation (Courbariaux et al., 2015; Rastegari et al., 2016; Pouransari et al., 2020), knowledge distil-
lation (Hinton et al., 2015; Chen et al., 2021; Zhou et al., 2021), neural architecture search (Liu
et al., 2018; Zoph & Le, 2016; Pham et al., 2018), and network pruning (Molchanov et al., 2019;
2016). Quantization, outlined in works like Hubara et al. (2018) and Jacob et al. (2018), focuses on
reducing parameter precision to accelerate inference and decrease model size, enabling deployment
on devices with limited resources. Knowledge distillation, as introduced by Hinton et al. (2015);
Romero et al. (2014), leverages a smaller ”student” model to mimic a larger ”teacher” model, effec-
tively compressing the knowledge and achieving high performance with less computational demand.
Neural Architecture Search (NAS), with seminal contributions from Zoph & Le (2016), automates
the discovery of optimal architectures, often outperforming human-designed models in efficiency
and accuracy. Pruning techniques, highlighted in work by Han et al. (2015), remove non-essential
weights or neurons, significantly reducing model complexity and enhancing inference speed with-
out major accuracy losses. Together, these techniques represent the forefront of model compression
research, addressing the balance between performance and computational efficiency necessary for
advanced AI applications.

Network Pruning Network pruning, initially recognized as an importance estimation prob-
lem (Molchanov et al., 2019; Chauvin, 1988; Yu et al., 2018; He et al., 2020), has been prompting
researchers to focus on finding accurate criteria that reveals the importance of parameters or neu-
rons in neural networks. Molchanov et al. (2016) operated under the assumption that each layer in
feed-forward networks held equal importance and introduced a heuristic for global scaling normal-
ization. However, this approach did not prove effective in networks incorporating skip connections.
Additionally, the method relies on using network activations to calculate its criterion, resulting in in-
creased memory demands. In contrast, pruning methods that focus on batch normalization (Gordon
et al., 2018; Huang & Wang, 2018; Liu et al., 2017; Ye et al., 2018) bypass the need for sensitivity
analysis and are applicable on a global scale. In intricate network architectures (Liu et al., 2021;
Luo & Wu, 2020; You et al., 2019; Zhang et al., 2021), parameter interdependencies often require
their joint pruning. This collective pruning of interlinked parameters has been an area of focus in
structured pruning research since its early stages. Fang et al. (2023) proposes to build a dependency
graph which captures the interdependencies between parameters and prunes parameters belonging
to a graph together to achieve structured pruning for neural networks with complicated structures. In
our pruning setting, we view the pruning as a importance estimation problem for each individual pa-
rameter (unstructured) or parameter group (structured) obtained from Fang et al. (2023). Parameters
with low importance are pruned in each pruning step.

B IMPLEMENTATION DETAILS

In our structured pruning experiments, we align our settings to EigenDamage (Wang et al., 2019),
which is a good Hessian based pruning method. For each pruning step, we obtain the importance
score from 200 batches of data to calculate the importance score. We set the batch size to 64 and
the learning rate to 0.001 for the fine-tuning process. We use the SGD optimizer with a momentum
of 0.9 and a weight decay of 5 × 10−4. The learning rate is divided by 10 at the 80th and 120th
epochs. We set the maximum epochs to 150 for CIFAR10 and CIFAR100 datasets. For ImageNet
experiments, we use the same settings as Fang et al. (2023) of ResNet50 and ViT-B/16. We set the
maximum epochs to 100 for ImageNet experiments.

C ALGORITHMIC DETAILS

As can be seen in algorithm 1, We first conduct a forward propagation process on the network and
record the output gradient of the loss w.r.t. the output of each layer (line 1-2). Then we back-
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propagate these gradients for each parameter layer with corresponding weight δθ to obtain the term∑
l′∈Lup

∑
j

∂2L
∂θ

(l′)
j ∂θ(l)

δθ
(l′)
j (line 3-5).

1. Upper Series Connectivity: These terms are recorded in the gradient of the corresponding
parameters, so that we can obtain

∑
l′∈Lup

∑
j

∂2L
∂θ

(l′)
j ∂θ(l)

δθ
(l′)
j ⊙δθ(l) in Equation (6) by multiplying

the parameters with their gradients (line 6-7).

2. Next, We obtain X̂
(l)
mn =

∑
llow∈Llow

∑
k

∂X(l)
mn

∂θ
(llow)

k

δθ
(llow)
k for all parameter layers through the JVPF,

these values are useful for calculating Lower Series Connectivity cases and Parallel Connectivity
cases (line 9).

3. Lower Series Connectivity: We obtain Equation (7) and add them into the importance scores
(line 12).

4. Parallel Connectivity: In the meantime, for all attention layers that induce parallel connectivity,
we back-propagate the gradient with the surrogate inputs X̂left and X̂right according to Equations
(12) and (13) (line 13-17), and multiply the parameters with their gradients that are in Parallel
Connectivity with the attention layer (line 20-21).

Algorithm 1 Importance Score Acquisition of OBA

Input: model m and its parameters θ, a batch of data D
Output: parameter importance I

1: Initialized importance dict I
2: Conduct one forward propagation and back propagation process on model m with data D and

record the output gradient ∂L
∂y(l) for each layer l

3: for parameter layer l in m do
4: x(l).backward( ∂L

∂y(l)J
(l)

δW (l) )
5: end for
6: for parameter layer l in m do
7: I[l]← δθ(l) ⊙ θ(l).grad
8: end for
9: Conduct JVPF according to eq. (14) and record X̂(l) for each layer l

10: m.zero grad()
11: for parameter layer l in m do
12: I[l]← I[l] + ∂L

∂y(l)

∂y(l)

∂θ(l)

∣∣
X̂(l) ⊙ δθ(l)

13: if layer l is attention module then

14: Ŝ = softmax
(
(Q(l)K̂(l)T + Q̂(l)K(l)T)

/√
d
(l)
k

)
15: S = softmax

(
Q(l)K(l)T

/√
d
(l)
k

)
16: Ô = ŜV + SV̂ , O = SV
17: Ô.backward( ∂L∂O )
18: end if
19: end for
20: for parameter layer l in m do
21: I[l]← I[l] + δθ(l) ⊙ θ(l).grad
22: end for
23: m.zero grad()

D NORMALIZATION METHODS

In our implementation, We leverage these normalization methods on importance scores for each
group, including:
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Figure A1: The layer-wise FLOPs for all parameter layers from models pruned by different criteria.

No Normalization (None) When the normalizer is set to None, the original values of importance
scores are returned without any modification. This means that the data is used as-is, with all its
original properties (such as scale and distribution) intact:

Inormalized
j = Ij .

Standardization (or Min-Max Normalization) This method scales the data so that it fits within
a specific range, typically 0 to 1. This is achieved by subtracting the minimum value of the data and
then dividing by the range of the data:

Inormalized
j =

Ij −min(I)

max(I)−min(I)
.

Max Normalization In this approach, every importance score is divided by the maximum im-
portance score of corresponding group to ensure that all the normalized values fall between 0 and
1:

Inormalized
j =

Ij
max(I)

.

l2 Normalization This method normalizes the importance scores by dividing it by the l2 norm
(Euclidean norm) of the importance scores belonging to the same group. The l2 norm is calculated
as the square root of the sum of the squared values:

Inormalized
j =

Ij
||I||2

.

E PRUNED LAYERS VISUALIZATION

We visualized the layer-wise FLOPs of pruned models by OBA and other methods for ResNet32
and VGG19 on CIFAR100 with a target FLOPs of 6%. It can be seen that compared with other
methods, the difference of OBA between FLOPs of different layers is smaller, resulting in a smoother
model in terms of number of neurons across layers. This significantly helps to improve the model’s
performance across various datasets and provide useful guidance for researchers to design and prune
neural networks.

F PROOFS

F.1 THEOREM 3.2

For any two layers llow and lup in series connectivity, where lup is upper than llow. Note
that ∂2L

∂w(llow)∂b(lup) is a zero matrix because parameters w(llow) and b(lup) are independent of
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each other. With this prior, ∂2L
∂θ

(llow)

i ∂θ
(lup)
j

is actually ∂2L
∂θ

(llow)

i ∂w
(lup)
j

. We first calculate term∑
j

∂2L
∂θ

(llow)

i ∂w
(lup)
j

δθ
(llow)
i δw

(lup)
j for the lower layer llow.

Lemma F.1. ∑
fhi

∂2L
∂W

(lup)
fhi ∂W

(llow)
acd

δW
(lup)
fhi δW

(llow)
acd =

∂L
∂y(lup)

J
(lup)

δW (lup)

∂x(lup)

∂W
(llow)
acd

δW
(llow)
acd (15)

and ∑
fhi

∂2L
∂W

(lup)
fhi ∂b

(llow)
a

δW
(lup)
fhi δb

(llow)
a =

∂L
∂y(lup)

J
(lup)

δW (lup)

∂x(lup)

∂b
(llow)
a

b(llow)
a , (16)

where J
(lup)

δW (lup) ∈ R(lout·mout)×(lin·min) is the jacobian matrix of y(lup) with respect to x(lup) taking
δW (lup) as the weights.

Proof. Let J(lup)

W (lup) =
∂y(lup)

∂x(lup) . The element-wise derivative of loss w.r.t. X(lup) is given by

∂L
∂X

(lup)
hj

=
∑
fg

∂L
∂Y

(lup)
fg

∑
ij

W
(lup)
fhi M

(lup)
gij︸ ︷︷ ︸

∂Y
(lup)
fg /∂X

(lup)
hj

, (17)

and the element-wise derivative of loss w.r.t. W (lup) is given by

∂L
∂W

(lup)
fhi

=
∑
g

∂L
∂Y

(lup)
fg

∑
j

X
(lup)
hj M

(lup)
gij . (18)

Applying chain rule, we have

∑
fhi

∂2L
∂W

(lup)
fhi ∂W

(llow)
acd

δW
(lup)
fhi δW

(llow)
acd =

∑
fg

∂L
∂Y

(lup)
fg

∑
hij

M
(lup)
gij δW

(lup)
fhi

∂X
(lup)
hj

∂W
(llow)
acd

δW
(llow)
acd

=
∂L

∂y(lup)
J
(lup)

δW (lup)

∂x(lup)

∂W
(llow)
acd

δW
(llow)
acd , (19)

and ∑
fhi

∂2L
∂W

(lup)
fhi ∂b

(llow)
a

δW
(lup)
fhi δb

(llow)
a =

∑
fg

∂L
∂Y

(lup)
fg

∑
hij

M
(lup)
gij δW

(lup)
fhi

∂X
(lup)
hj

∂b
(llow)
a

b(llow)
a

=
∂L

∂y(lup)
J
(lup)

δW (lup)

∂x(lup)

∂b
(llow)
a

b(llow)
a . (20)

Next we obtain term
∑

i
∂2L

∂θ
(llow)

i ∂w
(lup)
j

δθ
(llow)
i δw

(lup)
j for the upper layer lup.

Lemma F.2. ∑
a

∂2L
∂W

(lup)
fhi ∂θ

(llow)
a

δW
(lup)
fhi δθ

(llow)
a =

∂L
∂y(lup)

∂y(lup)

∂W
(lup)
fhi

∣∣∣∣
X̂(lup,llow)

δW
(lup)
fhi , (21)

where X̂(lup,llow) is given by

X̂
(lup,llow)
hj =

∑
a

∂X
(lup,llow)
hj

∂θ
(llow)
a

δθ(llow)
a . (22)
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Proof.

∂L
∂y(lup)

∂y(lup)

∂W
(lup)
fhi

∣∣∣∣
X̂(lup)

δW
(lup)
fhi =

∑
fg

∂L
∂Y

(lup)
fg

∑
j

M
(lup)
gij

∑
a

∂X
(lup)
hj

∂θ
(llow)
a

δθ(llow)
a δW

(lup)
fhi

=
∑
a

∑
g

∂L
∂Y

(lup)
fg

∑
j

M
(lup)
gij

∂X
(lup)
hj

∂θ
(llow)
a

δθ(llow)
a δW

(lup)
fhi

=
∑
a

∂2L
∂W

(lup)
fhi ∂θ

(lup)
a

δθ(llow)
a δW

(lup)
fhi . (23)

Proof of theorem 3.2. Sum the results in lemma F.1 for upper series connectivity cases with results
in lemma F.2 for lower series connectivity cases and we get∑
l′∈Lup∪Llow

∑
j

∂2L
∂θ

(l′)
j ∂w

(l)
i

δθ
(l′)
j δw

(l)
i =

∑
lup∈Lup

∂L
∂y(lup)

J
(lup)

δW (lup)

∂x(lup)

∂w
(l)
i

δw
(l)
i +

∂L
∂y(l)

∂y(l)

∂w
(l)
i

∣∣∣∣
X̂(l)

δw
(l)
i

(24)
with

X̂
(l)
hj =

∑
llow∈Llow

X̂
(l,llow)
hj =

∑
llow∈Llow

∑
k

∂X
(l)
hj

∂θ
(llow)
k

δθ
(llow)
k ,

and ∑
l′∈Lup∪Llow

∑
j

∂2L
∂θ

(l′)
j ∂b

(l)
i

δθ
(l′)
j δb

(l)
i =

∑
lup∈Lup

∂L
∂y(lup)

J
(lup)

δW (lup)

∂x(lup)

∂b
(l)
i

δb
(l)
i . (25)

Rewrite eq. (24) and eq. (25) as vector forms and we obtain eq. (6) and eq. (9).

Appendix

F.2 THEOREM 3.4

Here we follow the notations in definition 3.3 to denote each value of the two layers.

Lemma F.3. Let X̂ (left) ∈ Rlrow×lhid and X̂ (right) ∈ Rlhid×lcol be two surrogate weight matrices
such that

X̂ (left)
kn =

∑
q

∂X (left)
kn

∂θ
(ll)
q

δθ(ll)q , (26)

X̂ (right)
no =

∑
r

∂X (right)
no

∂θ
(lr)
r

δθ(lr)r . (27)

Then we have ∑
q

∂2L
∂θ

(lr)
r ∂θ

(ll)
q

δθ(lr)r δθ(ll)q =
∂L

∂y(mul)

∂y(mul)

∂x(right)

∣∣∣∣
X̂ (left)

∂x(right)

∂θ
(lr)
r

δθ(lr)r (28)

and ∑
r

∂2L
∂θ

(lr)
r ∂θ

(ll)
q

δθ(lr)r δθ(ll)q =
∂L

∂y(mul)

∂y(mul)

∂x(left)

∣∣∣∣
X̂ (right)

∂x(left)

∂θ
(ll)
q

δθ(ll)q . (29)

Proof. The second-order partial derivative of loss w.r.t. θ(lr)r and θ
(ll)
q can be written as

∂2L
∂θ

(lr)
r ∂θ

(ll)
q

=
∑
ko

∂L
∂Y (mul)

ko

∑
np

∂2Y (mul)
ko

∂X (left)
kn ∂X (right)

po

∂X (right)
po

∂θ
(lr)
r

∂X (left)
kn

∂θ
(ll)
q

. (30)
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Since the multiplication can be expressed as Y (mul)
ko =

∑
n X

(left)
kn X (right)

no , which means

∂2Y (mul)
ko

∂X (left)
kn ∂X (right)

po

=

{
1 n = p,

0 n ̸= p.
(31)

With this, eq. (30) can be rewritten as

∂2L
∂θ

(lr)
r ∂θ

(ll)
q

=
∑
ko

∂L
∂Y (mul)

ko

∑
n

∂X (right)
no

∂θ
(lr)
r

∂X (left)
kn

∂θ
(ll)
q

. (32)

By expanding the right-hand side of eq. (28) we have∑
ko

∂L
∂Y (mul)

ko

∑
n

∂X (right)
no

∂θ
(lr)
r

δθ(lr)r

∑
q

∂X (left)
kn

∂θ
(ll)
q

δθ(ll)q (33)

=
∑
q

∑
ko

∂L
∂Y (mul)

ko

∑
n

∂X (right)
no

∂θ
(lr)
r

∂X (left)
kn

∂θ
(ll)
q

δθ(lr)r δθ(ll)q

=
∑
q

∂2L
∂θ

(lr)
r ∂θ

(ll)
q

δθ(lr)r δθ(ll)q . (34)

Expand the right-hand side of eq. (29) and we can see it also holds.

Proof of theorem 3.4. According to lemma F.3, we have∑
ll∈Lleft

∑
q

∂2L
∂θ

(lr)
r ∂θ

(ll)
q

δθ(lr)r δθ(ll)q =
∑

ll∈Lleft

∑
q

∑
ko

∂L
∂Y (mul)

ko

∑
n

∂X (right)
no

∂θ
(lr)
r

∂X (left)
kn

∂θ
(ll)
q

δθ(lr)r δθ(ll)q

=
∑
ko

∂L
∂Y (mul)

ko

∑
n

∂X (right)
no

∂θ
(lr)
r

δθ(lr)r

∑
ll∈Lleft

∑
q

∂X (left)
kn

∂θ
(ll)
q

δθ(ll)q

=
∂L

∂y(mul)

∂y(mul)

∂x(right)

∣∣∣∣∑
ll∈Lleft

∑
q

∂X
(left)
kn

∂θ
(ll)
q

δθ
(ll)
q

∂x(right)

∂θ
(lr)
r

δθ(lr)r . (35)

Apply similar operations on
∑

lr∈Lright

∑
r

∂2L
∂θ

(lr)
r ∂θ

(ll)
q

δθ
(lr)
r δθ

(ll)
q and we can get eq. (13).
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