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ABSTRACT

Recent empirical work has shown that hierarchical convolutional kernels inspired
by convolutional neural networks (CNNs) significantly improve the performance
of kernel methods in image classification tasks. A widely accepted explanation
for the success of these architectures is that they encode hypothesis classes that
are suitable for natural images. However, understanding the precise interplay be-
tween approximation and generalization in convolutional architectures remains a
challenge. In this paper, we consider the stylized setting of covariates (image
pixels) uniformly distributed on the hypercube, and fully characterize the RKHS
of kernels composed of single layers of convolution, pooling, and downsampling
operations. We then study the gain in sample efficiency of kernel methods using
these kernels over standard inner-product kernels. In particular, we show that 1)
the convolution layer breaks the curse of dimensionality by restricting the RKHS
to ‘local’ functions; 2) local pooling biases learning towards low-frequency func-
tions, which are stable by small translations; 3) downsampling may modify the
high-frequency eigenspaces but leaves the low-frequency part approximately un-
changed. Notably, our results quantify how choosing an architecture adapted to
the target function leads to a large improvement in the sample complexity.

1 INTRODUCTION

Convolutional neural networks (CNNs) have become essential elements of the deep learning tool-
box, achieving state-of-the-art performance in many computer vision tasks (Krizhevsky et al.,|2012;
He et al., |2016). CNNs are constructed by stacking convolution and pooling layers, which were
shown to be paramount to their empirical success (LeCun et all 2015). A widely accepted hy-
pothesis to explain their favorable properties is that these architectures successfully encode useful
properties of natural images: locality and compositionality of the data, stability by local deforma-
tions, and translation invariance. While some theoretical progress has been made in studying the
approximation and generalization benefits brought by convolution and pooling operations (Cohen &
Shashual 2016afb; Bietti, 2021)), our mathematical understanding of the interaction between network
architecture, image distribution, and efficient learning remains limited.

Consider z € R? an input signal, which we can think of as a grayscale pixel representation of
an image. For mathematical convenience, we will consider one-dimensional images with cyclic
convention x44; := x;, and denote x ;) = (Tky Tht1s - - - » Thrq—1) the k-th patch of the signal x,
k € [d], with patch size ¢ < d. Most of our results can be extended to two-dimensional images.

We further consider a simple convolutional neural network composed of a single convolution layer
followed by local average pooling and downsampling. The network first computes the nonlinear
convolution of N filters w1, ..., wy € RY with the image patches @ (). The outputs of the con-
volution operation o ({w;, T(x))) are then averaged locally over segments of length w (local average
pooling). This pooling operation is followed by downsampling which extracts one out of every
A output coordinates (for simplicity, A is assumed to be a divisor of d). Finally, the results are
combined linearly using coefficients (aix )ic|n],kejd/a]:

A
fown(z:a,0) =\[ = > > ain ) o (Wi zkats)) - (CNN-AP-DS)

1€[N] keld/A] s€w]
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Note that pooling and downsampling operations are often tied together in the literature. However in
this work we will treat these two operations separately.

In the formula above, different values for ¢, w, A lead to different architectures with vastly different
behaviors. For example, when ¢ = A = d and w = 1, we recover a two-layer fully-connected
neural network fro(2;a,®) = N~'/237, ) a;o({w;, x)) which has the universal approxima-
tion property at large N. When w = A = 1 and ¢ < d, the network is “locally connected”
fic(z;a,®) = N~1/2 > ie(N],keld) %iko ({(Wi, T (x))), and not a universal approximator anymore:
however, fi¢ vastly outperforms frc in some cases (Li et al.,[2020). For w > 1, local pooling enables
learning functions that are locally invariant by translations more efficiently than without pooling. For
w = d (global pooling), the network only fits functions fully invariant by cyclic translations.

The aim of this paper is to formalize and quantify the trade-off between the target function class
and the statistical efficiency brought by these different architectures. As a concrete first step in
this direction, we consider kernel models that are naturally associated with the convolutional neural
networks through the neural tangent kernel perspective (Daniely et al., 2016} Jacot
et al., [2018). Kernel methods have the advantage of 1) being tractable—leaving the computational
issue of learning CNNs aside; 2) having well-understood approximation and generalization proper-
ties, which depends on the eigendecomposition of the kernel and the alignment between the target
function and associated RKHS (Caponnetto & De Vito, |2007; Wainwright, 2019) (see Appendices
and |C| for background). While kernel models only describe neural networks in the lazy training
regime (Chizat et al., 2019} Du et al., 2019bja; |Allen-Zhu et al., 2019} Zou et al.l [2018) and miss
important properties of deep learning, such as feature learning, we see that architecture choice is
already crucial to enable efficient learning of ‘image-like’ functions in the fixed-feature regime.

Neural tangent kernels are obtained by linearizing the associated neural networks. Here we consider
the tangent kernel associated to the network feyy (c.f. Appendix m IA.2]for a detailed derivation):

H Z > h((@gate) Ywarsn)/a) (CK-AP-DS)
ke[d/A]s s’ €[w]

where h : R — R is related to the activation function o in (CNN-AP-DS). As a linearization of
CNNs, the kernel inherits some of the favorable properties of convolution, pooling,
and downsampling operations. Indeed, a line of work (Mairal et al.l 2014} |Mairal, 2016; |Arora
et al.| [2019; [Li et al.| [2019; Shankar et al.| [2020) showed that, though performing slightly worse
than CNNs, such (hierarchical) convolutional kernels have empirically outperformed the former
state-of-the-art kernels. For instance, these kernels achieved test accuracy around 87% — 90% on
CIFAR-10, against 79.6% for the best former unsupervised feature-extraction method (Coates et al.}
2011) (currently, the state-of-the-art CNNs can achieve test accuracy 99%).

In this paper, we will further consider a stylized setting with input signal distribution  ~ Unif(2)
(uniform distribution over 2¢ := {—1,+1}¢ the discrete hypercube in d dimensions). This simple
choice allows for a complete characterization of the eigendecomposition of HJ,, thanks to all

patches having same marginal distribution @ ;) ~ Unif(27). We will be particularly interested in
four specific choices of (¢, w, A) in (CK-AP-DS):

H(z,y) = h((a: y)/d) (FOC)
H*(z,y) = Zh T k), Yi))/4) » (CK)
ke [d]
H(z,y) Z > b sy Yrsn) /) 5 (CK-AP)
€[d] s,s’ €[w]
HE (z,y) Z h((@ 1y, Yy /4) - (CK-GP)
k k'e

These kernels are respectively the neural tangent kernels of a fully-connected network frc (FC), a
convolutional network fic (CK)), a convolutional network followed by local average pooling
P) and a convolutional network followed by global pooling (CK-GP). We will further be interested
in (CK-GP) with patch size ¢ = d, which we denote HES: this corresponds to a convolutional kernel
with full-size patches g = d, followed by global pooling.




Under review as a conference paper at ICLR 2022

In this paper, we first characterize the reproducing kernel Hilbert space (RKHS) of these convo-
lutional kernels, and then investigate their generalization properties in the regression setup. More
specifically, assume {(x;,y;) }i<n are n i.i.d. samples with x; ~ Unif(29) and y; = fi(x;) + €.
Here f, € L*(2%) and (g;);<,, are independent errors with mean zero and variance bounded b

o2. We will focus on the generalization error of kernel ridge regression (KRR) (see Appendix
for general kernel methods). In particular, given a kernel function H : 2¢ x 2¢ — R and a
regularization parameter A > 0, the KRR estimator is the solution of the tractable convex problem

fr=argmin{ 37 (ys = f()” + A7} (KRR)

i€[n]
where H is the RKHS associated to H with RKHS norm || - ||, We denote the test error with square
loss by R(fx, fr) = Ex{(fs(z) — fr(x))?}. We will sometimes consider the expected test error
Ec{R(f«, fr)}. where expectation is taken with respect to noise € = (&;);<, in the training data.

The generalization properties of the kernels H"© and HES were recently studied in Mei et al.[(2021b);
Bietti et al.[(2021). In particular, they showed that global pooling (kernel HES) leads to a gain of
a factor d in sample complexity when fitting cyclic invariant functions, but still suffers from the
curse of dimensionality (HES only fits very smooth functions in high-dimension). More precisely,
Mei et al.| (2021b) considered the high-dimensional framework of Mei et al.| (2021a) and showed the
following: KRR with H™ requires n ~ d‘ samples to fit degree-¢ cyclic polynomials, while KRR
with HES only needs n =~ d*~!. To enable milder dependence on the dimension d, further structural
assumptions on the kernel and the target function should be considered (for instance, in this paper,
we use the kernel H®* and consider ‘local’ functions).

1.1 SUMMARY OF MAIN RESULTS

Our contributions are two-fold. First, we describe the RKHS associated to the convolutional kernel
in the stylized setting & ~ Unif(.2), which provides a fully explicit illustration of
the roles of convolution, pooling and downsampling operations in learning specific classes of func-
tions. Second, based on the eigendecomposition of the kernels, we provide generalization bounds on
kernel ridge regression both in the fixed and high-dimension settings. In particular, we quantify the
gain in sample complexity achieved by different architectures when learning target functions with
corresponding structures.

Let us define the g-local function class L?(2% Loc,) and the cyclic g-local function class
L*(24, CycLoc,) (subspace of L?(2% Loc,) consisting of cyclic-invariant functions) as follow:

12(2%, Locy) = {f € L*(2") : Hgihrew € L3(27), f(2) = Y gulwao)},  (1LOO)
keld]

12(2%, CycLoc,) = {f € L}(2%):3g € LX(29). f(z) = g(:c(k))}. (CYC-LOC)
ke(d]

We summarize below some of the insights that follow from our results.

One-layer convolutional layer. The RKHS of H®K is constituted of ¢-local functions
L2(Qd,Locq). Furthermore, the decay of the eigenvalues of HK is controlled by a
g-dimensional kernel, instead of a d-dimensional kernel for HC. In particular, this implies
that the test error of kernel ridge regression decays at rate n~°(1/9) instead of n~C(1/®)
when the target function is in LQ(Qd7 Loc,). Hence, when ¢ < d, kernel methods with
convolutional kernel HK breaks the curse of dimensionality.

Average pooling. The RKHS of HEK is still constituted of g-local functions f € L%*(2¢, Loc,),
but penalizes differently the frequency components f; () by reweighting their eigenspaces
by a factor r;, where f;(x) = X,cq 05 f(ti - ) with p; = T oand ty, - x =
(Tkt1y---5 T, X1, - .., x) denotes the k-shift. As w increases, local pooling penalizes
more and more heavily the high-frequency components (x; < 1), while making low-
frequency components statistically easier to learn (x; > 1). For global pooling w = d,
HEX only learns cyclic local functions L?( 29, CycLoc,) and enjoy a factor d gain in sta-
tistical complexity compared to H°K.
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To fit a degree ¢ polynomial | H™® | HES | H HSK HSE
Sample complexity dt | d=t | dgt | dgt w | ¢t

Table 1: Sample size n required to fit a g-local cyclic-invariant polynomial of degree ¢ using kernel
ridge regression (KRR) with the 5 different kernels of interest in this paper.

Downsampling. When A < w, downsampling after average pooling leaves the low-frequency
eigenspaces of HCEK stable. In particular, the downsampling operation does not modify
the statistical complexity of learning low-frequency functions in one-layer kernels, while
being potentially beneficial in further layers in deep convolutional kernels.

In Table[I] we report our high-dimensional predictions for the sample complexity of learning g-local
cyclic-invariant polynomials of degree £. These results are proven within the framework of Mei et al.
(2021a) (see Appendix |C|for background).

The rest of the paper is organized as follows. We discuss related work in Section [I.2] In Section
we present our main results on convolutional kernels and describe precisely the roles of convolu-
tion, pooling and downsampling operations. We briefly mention the multilayer case in Section [2.4]
Finally, we present a numerical simulation on synthetic data in Section [3]and conclude in Section |4}
Some details and discussions are deferred to Appendix [A]

1.2 RELATED WORK

Convolutional kernels have been considered in Mairal et al.| (2014); Mairal| (2016)); [Li et al. (2019);
Shankar et al.| (2020); Bietti (2021)); [Thiry et al.|(2021). In particular, they showed that these archi-
tectures achieve good results in image classification (90% accuracy on Cifar10) and that pooling and
downsampling were necessary for their good performance (Li et al.||[2019)).

The generalization error of kernel ridge regression (KRR) has been well-studied in both the fixed
dimension regime (Wainwright, 2019, Chap. 13), |(Caponnetto & De Vito| (2007) and the high-
dimensional regimes [El Karoui| (2010); |Liang et al.|(2020); Ghorbani et al.[(2020; 2021); Mei et al.
(2021b)). These results show that the generalization error depends on the eigenvalues and eigenfunc-
tions of the kernel, and the alignment of the kernel with the target function.

Recently, a few theoretical work have considered the generalization properties of invariant kernels
and convolutional kernels (Scetbon & Harchaoui, 2020; |Mei et al., 2021b; [Biett1 et al.,[2021; Favero
et al.| 2021). [Favero et al.|(2021)) consider a one-layer convolutional kernel with and without global
pooling and derived asymptotic rates in n, the number of samples, in a student-teacher scenario us-
ing statistical physics heuristics and a Gaussian equivalence conjecture. In particular, they show that
locality rather than translation-invariance breaks the curse of dimensionality. Here, our goal is dif-
ferent: we derive mathematically rigorous quantitative bounds that give separation in generalization
power between different architectures.

See|Malach & Shalev-Shwartz| (2020); |Li et al.[|(2020) for more theoretical results on the separation
between convolutional and fully connected neural networks, and Boureau et al.| (2010); |Cohen &
Shashual (2016b)) for the inductive bias of pooling operations in convolutional neural networks.

2 MAIN RESULTS

We start by introducing some basic background on functions on the hypercube and eigendecompo-
sition of kernel operators in Section[2.1] We first consider a kernel with a single convolution layer in
Section [2.2] and characterize its eigendecomposition and generalization properties. We then show
how these results are modified when applying local average pooling and downsampling in Section
Finally, we briefly discuss multilayer convolutional kernels in Section

2.1 FUNCTIONS ON THE HYPERCUBE AND EIGENDECOMPOSITION OF KERNEL OPERATORS

Recall that we work on the d-dimensional hypercube 2¢ := {—1,+1}¢. Let L2(2%) =
L?(24, Unif) be the 2¢-dimensional vector space of all functions f : 2% — R, with scalar product
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(f;9) 02 = Egunit(o)[f(x)g(x)]. Let || - || .= be the norm associated with the scaler product. We
introduce the set of Fourier functions {YS( ) ()} sc[g) which forms an orthonormal basis of L?(27).
For any subset S C [d], the Fourier function is deﬁned as YS( )( ) := [ I;c5 =i with the convention
that Yw(d) := 1 (it is easy to verify that <Ys(d), Yé,d)> 12 = lg—g/). We will omit the superscript (d)
which will be clear from context and write Yg := Ys(d).

Consider a nonnegative definite kernel function H : 2P x 2P — R (p = d or ¢ in this paper)
with associated integral operator H : L2(2P) — L?(2P) defined as Hf (u) = E,{h(u,v)f(v)}

with v ~ Unif(2P). By spectral theorem of compact operators, there exists an orthonormal ba-
sis {t);};>1 of L?(2P) and nonnegative eigenvalues (\;);>1 such that H = > is1 Ay (e,

H(u,v) =35, Ajih;(u)ip;(v) for any u,v € L?(2P)).

The most widespread example are inner-product kernels defined as H (u,v) := h({u,v)/p) for
some function i : R — R. Inner-product kernels have the following simple eigendecomposition in
L?(2P) (taking here u, v € 2P):

(u,v)/p) = pr, > Ys(u)Ys(v), (1

Sg[p],lslzf

where &, ¢(h) is the /-th Gegenbauer coefficient of i(-/,/p) in dimension p, i.e.,

€p0(h) = Eqvmit o) [h((u, €)/P)QP ((u, €))], )

for e € 2P arbitrary and Q(p ) the degree-¢ Gegenbauer polynomial on 2P (see Appendix @ for
details). Note that (§, ¢)o<r<q are non-negative by positive semldeﬁmteness of the kernel. We will
write &, ¢ := &, ¢(h) and use extensively the decomposition identity (1)) in the rest of the paper.

2.2 ONE-LAYER CONVOLUTIONAL KERNEL

We first consider the convolutional kernel H® (CK) given by a one-layer convolution layer with
patch size ¢ and inner-product kernel function A : R — R:

d
1
H*(z,y) gz (@w), Yr))/4) - ®)

where we recall that () = (2, ..., Tryq—1) € 27is the k’th patch of the image with size q.

Before stating the eigendecomposition of HK, we introduce some notations. For any subset S C [d],
denote ~y(.9) the diameter of .S with cyclic convention, i.e., v(S) = max{min{mod(j — ¢,d) +
1,mod(i — j,d) + 1} : ¢,5 € S} (e.g., v({2,d}) = 3). For any integer £ < g, consider the set
Ee={S C[d]:|S]=4¢~(S) < q} of all subsets of [d] of size ¢ with diameter less or equal to g.
We will assume throughout this paper that ¢ < d/2 to avoid additional overlap between sets.

Proposition 1 (Eigendecomposition of HK). Let H be a convolutional kernel as defined in
Eq. . Then HCK admits the following eigendecomposition:

H(x,y) @;ﬁZZ 5‘” Ys(@)Ys(y), @)

=1 Se&
where r(S) = g+ 1 —v(S) and &0 > 0 is defined in Eq. @)

Notice that Yg with y(.S) > ¢ (monomials with support not contained in a segment of size ¢) are
in the null space of H®. Hence (as long as &, , > 0 for all 0 < ¢ < g), the RKHS associated to
HC exactly contains all the functions in the g-local function class L2(2¢, Loc,) (c.f. Eq. ).
In words, L?(2%, Loc,) consists of functions that are localized on patches, with no long-range
interactions between different parts of the image. An example of local function with ¢ = 3 is given
by f(x) = v17923 + 476 + T5.

On the other hand, the RKHS associated to the fully-connected kernel H® (FC)) typically contains
all the functions in L?(24) (under genericity assumptions on h). The RKHS with convolution
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dim(L?(2%, Loc,)) = d2971 + 1 is significantly smaller than dim(L?(2)) = 2%, which prompts
the following question: what is the statistical advantage of using H® over H® when learning
functions in L*(2¢, Loc,)?

We first consider the classical approach to bounding the test error of |Caponnetto & De Vito| (2007);
Wainwright| (2019); [Bach| (2021)) which relies on the following two standard assumptions:

(A1) Capacity condition: we assume N'(h,\) := Tr[h/(h 4+ A\I)~!] < CpA~ Y/« witlﬂa > 1.
(A2) Source condition: |h="/%g||;» < B witﬁ > 2Ll and B > 0.

The capacity condition (A1) characterizes the size of the RKHS: for increasing «, the RKHS con-
tains less and less functions. The source condition (A2) characterizes the regularity of the tar-
get function (the ‘source’) with respect to the kernel: increasing 3 corresponds to smoother and
smoother functions. See Appendix [B.2]for more discussions.

Based on these two assumptions, we can apply standard bounds on the KRR test error and obtain:
Theorem 1 (Generalization error of KRR with H®). Let h : R — R be an inner-product ker-
nel satisfying (Al). Let f, € L*(2% Loc,) with f(x) = 2 rejq 96 (T () satisfying (A2) with
Zke[d] |h=8/2gy||2. < B2. Then there exists Cy, Cy, Cs > 0 constants that only depend on (Al)
and (A2) (and independent of d), such that for n > Cy max(|| f,||? <, d) and \. = <2(d/n)=571 L

_apB
Ia{RU;f&>}sca<Z) : (5)

Note that the exponent ﬂg il only depends on the g-dimensional kernel h. Hence, the generalization

bound with respect to (n/d) is independent of the dimension d of the image. Let’s compare to
KRR with inner-product kernel HFC (FC): from Caponnetto & De Vito|(2007), we have the minmax

rate Ec{R(fs, f,\)} =n s where h is now defined in d dimension and verifies (A1) and (A2)
with constants &, 5. Typically, if f, is only assumed Lipschitz, then 3& = O(1/d), which leads
to a minmax rate n~ (/@ for HC, while for H%, Ba = O(1/q), which leads to a minmax rate
n~©9(/9)_ Hence, for ¢ < d, H°X breaks the curse of dimensionality by restricting the RKHS to
‘local’ functions. Similarly, [Favero et al.[(2021)) derived a decay rates in n that do not depend on d for
a one-layer convolutional kernel. The key difference between Theorem [T]and [Favero et al.| (2021)) is
that we obtain a non-asymptotic bound that is minmax optimal up to a constant multiplicative factor
in both d and n (this can be showed for example by adapting the proof in Appendix B.6 in |Bietti
et al.|(2021)) using a rigorous framework of source and capacity condition.

Theorem [I]and results of this type suffers from several limitations: 1) they are tight only in terms of
the exponent of n in a minmax sense; 2) they do not provide comparisons for specific subclasses of
functions; 3) in order to obtain the minmax rate, the regularization parameter A has to be carefully
tuned to balance the bias and variance terms, which is in contrast to modern practice where often
the model is trained until interpolation. This led several groups to consider instead the test error of
KRR in a high-dimensional limit |(Ghorbani et al.[ (2021)); Mei et al.| (2021a); |Canatar et al.| (2021)
and derive exact asymptotic predictions correct up to an additive vanishing constant for any f, € L?
(see Appendix [C|for more details).

Using the general framework in Mei et al.|(2021a), we get the following result for g, d large:

Theorem 2 (Generalization error of KRR with H in high-dimension (informal)). Let f, €
LQ(Qd7Locq) and h : R — R verifying some ‘genericity condition’. Then for n = dg*~ ‘1"
with 0 < v < 1, and A = O(1) (in particular A = 0 works), we have

fr=Pe, fitoq(1), (©6)
where Pg__, is the projection on the span of Ys with either |S| < s and S € &) or |S| = s and
7(9) <q(1=g7).

"Here, h is the integral operator and Tr[h/(h 4+ A\I) '] = 21 pyESY +A with {\;};>1 eigenvalues of h.
2 Again, h is the operator with h™"g = 2 A i)Y, where {%;}j>1 are the eigenvectors of h.
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See Appendix for a rigorous statement. In words, when dg*~! < n < dg°, KRR with HK
only learns a degree-s polynomial approximation to f,.
On the other hand, when considering the standard inner-product kernel H (FC)) we get:

Theorem 3 (~Generalizati0n error of KRR with HC in high-dimension (informal)). Ler f, €
L?(2%) and h : R — R with some ‘genericity condition’. Then for d® < n < d** and A = O(1),

fr=Peofr +o0a(1), (7)

where P<g is the projection on the subspace of degree-s polynomials.

This theorem was proved in |Ghorbani et al.| (2021)); Mei et al.| (2021a). Notice that Eq. does
not depend on the structure of f,. Hence, when f, € L*(2% Loc,), Theorems [2| and [3| shows a
clear statistical advantage of H®K over H™® when ¢ < d (and therefore of one-layer CNNs over
fully-connected neural networks in the kernel regime).

2.3 LOCAL AVERAGE POOLING AND DOWNSAMPLING

In many applications such as object recognition, we expect the target function to depend mildly on
the absolute spatial position of an object and to be stable under small shifts of the input. To take this
local invariance into account, convolution layers are often followed by a pooling operation. Here we
consider local average pooling on a segment of length w and obtain the kernel

HCK (L‘ y Z Z h L(k+s)s Y(k+s') >/q) : (3

k€ [d] s,s"€[w]

Define S; = {S C [g] : |S| = ¢} as the collection of sets of size £. We further define an equivalence
relation ~ on Sp: S ~ S if S’ is a translated subset of S in [g] (without cyclic convention). We
denote C, the quotient set of A, under the equivalence relation ~.

Proposition 2 (Eigendecomposition of HZX). Let HS be a convolutional kernel with local average
pooling as defined in Eq. (@) Then HEX admits the followmg eigendecomposition:

H(x,y) = wéyo +Z Z Z Far(5)a.e fq’ ys(@)ys(y) )

(=1 SeCy jeld]

where (denoting k + S the translated set S by k positions with cyclic convention in [d))

w—1
ik 2imjk
_1+22 1—k/w)cos( dj ), ¥ s(x fze i Yiys(zx). (10)

k=1

First notice that, as long as ged(w, d) = 1, the RKHS associated to H CK contains the same set of
functions as the RKHS of H®X, i.e., all local functions L?(2¢, Loc,). (There are gcd(w,d) — 1
number of zero weights: x; = 0 for all j € [d — 1] such that d is a divisor of jw. See Appendix
for details.) However H®® will penalize different frequency components of the functions differently.
Denote f;(x) the j-th component of the discrete Fourier transform of the function, i.e., f;(x) =

% > keld] Pk f (ty-x) where p; = e?mi/dand ty -2 = (Tpi1, ..., Td, T1,- .., 2)) is the cyclic shift
by k pixels. Then H®¥ reweights the eigenspaces associated with f;(x) by a factor «, promoting

low-frequency components (x; > 1) and penalizing the high-frequencies (x; < 1). In words,
pooling biases the learning towards low-frequency functions, which are stable by small shifts.

Let us focus on two special choices here: the pooling parameter w = 1 and w = d. When w = 1,
HZX reduces to H (k; = 1 for all j € [d]) which does not bias towards either low or high
frequency components. When w = d, we denote such kernel HX ; by HSK which corresponds to
global average pooling. In this case, we have k4 = d and x; = 0 for j < d which enforces exact
invariance under the group of cyclic translations. More precisely, HSs has RKHS that contains all

cyclic g-local functions f(x) = Zke[d] g(x k) € L*(27, CycLoc,) (c.f. Eq. (CYC-LOC)).

We obtain a bound on the test error of KRR with HEK similar to Theorem |1} but with d replaced by
an effective dimension d°".
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Theorem 4 (Generalization of KRR with average pooling (fixed d, q)). Assume that h : R — R
has £,0 = 0 and satisfies (Al). Further assume (A2') that ||(HS/w)=P/2f, |2 < B. Define
=3 je[d]:nj>o(“j Jw)Y/®. Then there exists Cy,Cy,C3 > 0 constants independent of d, such

that for n > Cy max (|| f+||2 w , deir) and setting A = Co(des/n) SFTT, we get

; et sih
EE{R(f*vf)\*>}SC3< ) . (11)

n

By Jensen’s inequality, we have d*" < d/w'/®. In particular, for global pooling, d* = 1 and the
bound does not depend on d at all. Adding average pooling improve by a factor w'/® the
upper bound on the sample complexity for fitting low-frequency functions. Can we confirm this
statistical advantage using the predictions for KRR in high dimension? Consider first the case of
global pooling:

Theorem 5 (Generalization of KRR with HSS in high-dimension (informal)). Let f, €
Lz(ﬁd,CycLocq) and h : R — R verifying some ‘genericity condition’. Then for n = ¢ 1"
with0 < v < 1, and X = O(1), we have (P¢__, is defined as in Theoremlg])

Fr=Pe, fot0q(1). (12)

Hence, global average pooling results in an improvement by a factor d in statistical efficiency when
fitting cyclic local functions, compared to H°¥. This improvement was already noticed in|Mei et al.
(2021Db)); Bietti et al.| (2021)) but in the case of ¢ = d (fully connected neural networks).

For w < d, the asymptotic framework |[Me1 et al.|(2021a) is more challenging to implement. How-
ever, we present in Appendix [C.T]a simplified kernel with non-overlapping local pooling which we
believe captures the statistical behavior of local pooling. In this case, we show that Theorem [5]holds
with n = (d/w) - ¢ 17, which interpolates between Theorem (w=1)and Theorem (w = d).

Downsampling: Often pooling is associated with a downsampling operation, which subsample
one every A output coordinates. In Appendix , we characterize the eigendecomposition of H, S'fA
(Proposition ) and prove for the popular choice w = A, that downsampling does not modify the
cyclic invariant subspace j = d (Proposition [5). More generally, we conjecture and check nu-
merically that downsampling with A < w leaves the low-frequency eigenspaces approximately
unchanged. In particular, the statistical complexity of learning low-frequency functions is not modi-
fied by downsampling operation in the one-layer case (while downsampling is potentially beneficial
in further layers).

2.4 MULTILAYER CONVOLUTIONAL KERNELS

For completeness, we briefly discuss here some intuitions of multilayer convolutional kernels.
The benefit of depth in convolutional kernels has been investigated in (Cohen & Shashual (2016b));
Mhaskar & Poggiol| (2016)); Scetbon & Harchaouil (2020); Bietti| (2021)). In particular, Bietti| (2021)
observed that the top layer operation of a two-layers convolutional kernel can be replaced by a
low-degree polynomial without a performance change.

Here, as a concrete example, we consider a two-layers convolutional kernel with w-local pooling on
first layer, quadratic kernel and global pooling on the second layer (see Appendix for details):

HQCK(CB, y) _ Z Z h( <w(k+u+t)a y(k’+u+t’)> ) h( <:L'(k+u’+r)7 y(k’+u/+r/)> ) . (13)

k,k'€[d] t,t' €w] 4 4
u,u’ €[q] r,r’ €[w]

While we believe techniques contained in this paper could be used to study kernels of the type (13),
we leave it to future work. Here we only comment on the structure of H2°¢: 1) Including a second
convolutional layer allows interactions between patches: the RKHS of contains functions of
the form f(x) = >, _; <4 9kt (X (k), ®(1))- 2) Pooling on the first layer encourages interactions that
do not rely too much on the relative position of the two patches. 3) Pooling on the second layer
penalizes functions that depend on the absolute position of the interaction. For more layers and
higher degree kernels, one obtain hierarchical interactions of higher-order, with multi-scale absolute
and relative local invariances brought by pooling layers.
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Low-frequency cubic polynomial, d = 30
q? dg¥wl 1d?  dg?l
|

High-frequency cubic polynomial, d = 30

1.4

Test error

. — . ; 0.0 ; ; ; ; ;
100 125 150 175 2.00 225 250 2.75 100 125 150 175 2.00 225 250 2.75

log(n)/log(d) log(n)/log(d)
Figure 1: Learning low-frequency (left) and high-frequency (right) cubic polynomials over the hy-
percube d = 30, using KRR with H (FC), HES (FC-GP), H® (CK), HSK (CK-LP) and HSS
(CK-GP), and regularization parameter A = 0*. We report the average and the standard deviation
of the test error over 5 realizations, against the sample size n.

3 NUMERICAL SIMULATIONS

In order to check our theoretical predictions, we perform a simple numerical experiment on simu-
lated data. We take & ~ Unif(2¢) with d = 30, and consider two target functions:

firs(x) = % Z TiTit1Tig2 fura(x) = % z:(—l)Z S LT 1Ti42 (14)
1€[d] i€[d]

Here fir 3 is a cyclic-invariant local polynomial (fir 3 is ‘low-frequency’). The function fyr 3 is a
high-frequency local polynomial, and is orthogonal to the space of cyclic invariant functions. On
these target functions, we compare the test error of kernel ridge regression with 5 different kernels:
a standard inner-product kernel H™°(z,y) = h((z,y)/d); a cyclic invariant kernel HES(z,y)
(convolutional kernel with global pooling and full-size patches ¢ = d); a convolutional kernel H K
with patch size ¢ = 10; a convolutional kernel with local pooling HSX with ¢ = 10 and w = 5;
and a convolutional kernel with global pooling HSf with ¢ = 10. In all these kernels, we choose a
common h(t) = 3,15 0.2 t* which is a degree 5-polynomial.

In Figure |1, we report the test errors of fitting fir 3 (left) and fur 3 (right) using kernel ridge
regression with these 5 kernels. We choose a small regularization parameter A = 1075, and
the noise level o = 0. The curves are averaged over 5 independent instances and the error
bar stands for the standard deviation of these instances. The results match well our theoreti-
cal predictions. For the function fi¢ 3, the sample sizes required to achieve vanishing test errors
are ordered as HSS < HSK < H®® < HES < H and are around the predicted thresholds
¢® < dg®/w < d* < dq® < d® respectively. Next we look at the test error of fitting the high
frequency local function fue 3. The test errors of H¢ and HC are the same for fyr 5 and fig 3: this
is because these kernels do not have bias towards either high-frequency or low-frequency functions.
The kernel Hﬁ" perform worse on fyr 3 than on fir 3: this is because the eigenspaces of H, SK are
biased towards low-frequency polynomials. The kernels HSS and HES do not fit fur 3 at all (test
error greater than or equal to 1): this is because the RKHS of these two kernels only contain cyclic
polynomials, but fyr 3 is orthogonal to the space of cyclic polynomials.

4 DISCUSSION AND FUTURE WORK

In this paper, we characterized in a stylized setting how convolution, average pooling and downsam-
pling operations modify the RKHS, by restricting it to g-local functions and then biasing the RKHS
towards low-frequency components. We quantified precisely the gain in statistical efficiency of KRR
using these operations. Beyond illustrating the ‘RKHS engineering’ of image-like function classes,
these results can further provide intuition and a rigorous foundation for convolution and pooling
operations in kernels and CNNs. A natural extension would be to study the multilayer convolutional
kernels in details and consider other pooling operations such as max-pooling. Another important
question is how anisotropy of the data impacts the results of this paper: in particular, it was shown
that pre-processing (whitening of the patches) greatly improves the performance of convolutional
kernels [Thiry et al.|(2021); [Bietti| (2021). A more challenging question is to study how training and
feature learning can further improve the performance of CNNs outside the kernel regime.
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A DETAILS FROM THE MAIN TEXT

A.1 NOTATIONS

For a positive integer, we denote by [n] the set {1,2,...,n}. For vectors u,v € RY, we denote
(u,v) = uyvy + ... + ugvg their scalar product, and ||uls = (u,u)'/? the £ norm. Given a
matrix A € R™*™, we denote ||Al|op = max|y,=1 [|[Aul2 its operator norm and by ||Al[r =

(Zl g A? )1/ ? its Frobenius norm. If A € R™ " is a square matrix, the trace of A is denoted by
Tr(A) = Eze[n] A

We use Og( - ) (resp. o4(-)) for the standard big-O (resp. little-0) relations, where the subscript d
emphasizes the asymptotic variable. Furthermore, we write f = Qq(g) if g(d) = O4(f(d)), and
f =walg) if g(d) = 04(f(d)). Finally, f = Oq4(g) if we have both f = O4(g) and f = Q4(g).

We use Og p( ) (resp. oqp( -)) the big-O (resp. little-o) in probability relations. Namely, for 1 (d)
and ha(d) two sequences of random variables, hi(d) = O4p(ha(d)) if for any € > 0, there exists
C. > 0and d. € Z~, such that

P([h1(d)/ha(d)| > Cc) <&, Vd >de,

and respectively: hi(d) = oqp(h2(d)), if hi(d)/h2(d) converges to 0 in probability. Similarly, we
will denote hl(d) = Qd)p(hg@l)) if hg(d) = Od7]p>(h1(d)), and hl(d) = wd)ﬂ»(h2<d)) if hg(d) =
04.p(h1(d)). Finally, hi(d) = Ogp(ha(d)) if we have both hqi(d) = Ogp(h2(d)) and hy(d) =
Qg p(ha(d)).

A.2 CONVOLUTIONAL NEURAL TANGENT KERNEL

In this section, we justify the expression of the convolutional neural tangent kernel Hgf\ (CK-|
, obtained as the tangent kernel of a neural network composed of a one convolut10n layer

followed by local average pooling and downsampling (CNN-AP-DS).

Proposition 3. Let 0 € C1(R) be an activation function. Consider the following one-layer convo-
lutional neural network with w-local average pooling and A-downsampling:

T (x; ©) = Z Z @ik Z o ((wi, (rats))) - (15)
i€[N] ke[d/A] s€[w]

Let af, ~iia.  N(0,1) and \/aw? ~iio.  Unif(29) independently, and ©° =
{(a%)ieiny kerasa), (W)iein)}. Then there exists h : [—1,1] — R, such that for any x,y € 2%,
we have almost surely

hm <V@ TSN (s @0) VoM™ (y; @0 >/N = Z Z h kA+9);y(kA+€’)>/Q) (16)
ke[d/A] 5,8’ €[w]
Proof of Proposition[3] For u,v € 24, define
hY ((u,v)/q) = Ewntnit20) [o((w, w) //9)o (v, w) //q)] ,
WP ((u,v)/q) = Bt 20 [0’ ((u, w) /7)o’ (v, w) /\/q) (u,v)] /q.

The functions (1), h(?) are well defined (the RHS only depend on the inner product (u, v)) and can
be extended to functions A1), h(?) : [~1,1] — R.

Computing the derivative of the convolutional neural network with respect to a =
(ady)ic[N kefd/a)> We have

<v CNN( @O) V CNN( @0)>

Z Z Z m+é)>)a(<w?,:c(m+s/)>) .

keld/A] s,s’ E[w] i€[N]

14
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Hence by law of large number, we have almost surely

. 1
I\}gnoo N<va Ic\;/'NN(m; @O), Va ]?/NN(y; 60)> = Z Z h(l) (<m(kA+5)a y(kA+s’)>/Q) .
keld/A] s,s'€w]

Similarly, computing the derivative with respect to \/qW = (\/(jw?)ie[ N7 gives

v fCNN<w;®°),vwa°v““<y;®0)>

Tk s)s L (k! ’
B Z Z Z azkazk/J wz,w(kA+s)>) (<wz7w(k’A+g/)>) < (kA+3s) (k' A+s )> .

k,k’€[d/A] s,8' €[w] ze[N] q

By law of large number, using that a;; and a;;/ are independent of mean zero and variance 1, we
get almost surely

A}gnoo N<V w N (x;0°), Vi fN (y; ©°)) = ke%;A] /Ee:[ ]h(2)(<w(kA+s)vy(kA+s’)>/Q) .

Taking h = h(Y) 4+ A concludes the proof. O

A.3 LOCAL AVERAGE POOLING OPERATION

Consider a function f € L?(2%): we can decompose it as

Z filx (17)

]€[d
fi(x) f > pbfte - x) (18)
keld]
where p; = X and tg - = (Tpt1,-..,Td, T1,...,Tk) is the cyclic shift of x by k pixels. We

can think about f;(x) as the j-th component of the discrete Fourier transform of the function f(x)
seen as a d-dimensional vector { f (¢4 - @)} e[ for any & € 2.

Notice furthermore that if f is a local function, i.e., f can be decomposed as a sum of functions on
patches f(x) = Zke[d gr(x(r)), then we can write

fi(@) \[ Z P] (tr - ) Z Pjgu (u+k) \[ Z PJQJ ﬂf(k)

keld] k u€[d] keld]

= > 0 gulv

u€[d]

where we denoted (v € 29)

In particular, decomposing gj in the Fourier basis, we get (denoting cs = (G;, Ys)r2),

Z 0535 (1)) Z cs - Z PrYeps (@

ke[d SClq] ke[d]

which shows that the j-th frequency component f; is in the span of {Y} s}scpg. In particular,
applying average pooling operation in the kernel will reweight this eigenspace by a factor ;.

Let us further comment on the values of ;. First, we have

w

k= 3 (1 k/w)pk.

k=—w

In particular, the maximal eigenvalue is attained at j = d with x4 = w, which corresponds to the
subspace of cyclic invariant functions. Furthermore, x; = 0 if and only if d is a divisor of jw for
j <d-—1,1ie., jis a multilple of gcd(w, d). There are gcd(w, d) — 1 such zero eigenvalues.
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In convolutional kernels, a weighted average is often preferred to local average pooling (Mairal
et al., |2014; Mairal, 2016} [Biett1, [2021): in that case we consider 7 : R — R and obtain the kernel

LS )TN gy i) 1)

HSK(CC, y) =75
k,s,s'€[d]
where d(s) = min(s, d — s) (the distance between k + s and k on [d] with cyclic convention). Note
that H¥ has the same eigendecomposition as HZ but with different weights ;.

22
A popular choice for 7 is the Gaussian filter 7(z) = —2—e 2.7, In Figure we compare the

V2ro
eigenvalues r; for local average pooling and Gaussian filter with different value of w and 2. Note

that the eigenvalue decay controls how much high-frequencies are penalized: faster decay induces
heavier penalty on the high-frequency components.
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Figure 2: Decay of the weights «; for different lenfths w for local average pooling (on the left) and
bandwidths o for pooling with Gaussian filter (on the right), for d = 101.

A.4 DOWNSAMPLING OPERATION

As mentioned in the main text, a downsampling operation is often added after pooling. The kernel
is given by

H'A (2,y) Z Z h ((®ats), Ykats))/q) - 19)
kE[d/A] s,8" €[w]

Let us introduce the family { M },.c[4 of block-circulant matrices defined by
T A o >
M = m‘{(k,s,s’,t) €Tons kA +s+t=ild kA+s +t= ][d]}( . (20)

where we introduced the set of indices
Tonr= {(k,s,s’,t) tked/A] s, s € w],0<t<q— r}. (21)

We can now state the eigendecomposition of HZX ‘A in terms of the eigenvalues and eigenvectors of
the matrices {M" },.¢[q

Proposition 4 (Eigendecomposition of HSX\). Let HSX\ be a convolunonal kernel with local av-

erage pooling and downsampling, as deﬁned in Eq. @) Then H A admits the following eigende-
composition:

HE(z,y) = wéqo +Z >y —7 w wj s(®);.s(y), (22)

=1 S€eCy je[d]

where %‘Afs (x) = 22:1 UﬁkYk+s( x) with {KJ , V; ¥} iejq) eigenvalues and eigenvectors of M5,
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Let us make a few comments on these matrices M (). First because they only depend on S

through the diameter ~(S), the eigenvalues and eigenvectors {HJS , vf }iela) only depend on (S).
Second, we see that M(Wifg)(jJrA) = ng(s) and MZV],(S) = 0 if d(i,j) > w, where d(i,j) =

min(|i — j|,d — |i — j|) (i.e., the distance between 7 and 5 on the torus [d]). In words M%) is a
symmetric block-circulant matrix with non-zero elements on a band of size w — 1 on the left and
right of the diagonal, and on the upper-right and lower-left corners. Furthermore, notice that

A
dwr(S)

which is independent of w, A, ~y(.5) and justify the chosen normalization. In particular, this implies
that (for {50 = 0)

Tr(H ) = B {HS (@, 2)} = Y &0 Y r(S) = > &uB(2%0) =h(1),  (23)

2€]q] Sec, L€lq]

Tr(M7S)) = H(k7s7t) cked/A]s € [w],0<t< q—v(S)H =1,

is also independent of the parameters (g, w, A).
Example 1. Take A = 3, w = 5, ¢ = 11, then

18 15 11| 7 4 0
15 19 15|11 8 4]0
11 15 18|14 11 713 0
7 11 1418 15 11| 7 3 0
Mlzj 4 8 11]15 19 15|11 8 4
5|1 0 4 7|11 15 18|14 11 7 ’
0 3
0
and
13 11 8|5 3 0
11 14 1118 6 3|0
8§ 11 13|10 8 5|2 0
5 8 10
. 3
M*==1| 3 6 8
3B 0o 3 5

Remark A.1. Symmetric block-circulant matrices can be easily diagonalized as follows. Consider
M = Circulant(By, By, ..., B,,) where B, € RA*2, Bl = B and By, = B7Tn_k for
k=0,...,m—2. Denote p; = €*™/™ and ;(v) = [v, p;v, -+, p" 'v]/y/m € R™ for any
v € RA. Introduce for j = 0,...,m — 1, the matrix H; € R®*4 given by

H; =By +p;Ba+...4+p]'" 'Bp,. (24)

The matrix H; is Hermitian and we denote ();,)scja] and (vjs)se[a) its eigenvalues and
eigenvectors. Then the eigenvalues and eigenvectors of M are given by {\; s} c[m],se[a] and
{75 (vj8) }iemm,selal-
In particular, if A = 1 and M = Circulant(by, b, . .., by, ) is a circulant matrix, then the eigenvalues
are simply given by
A =bi4pibat . A o
m—1

and eigenvectors v; = 1, Pjs Py 1/+/m.

Here we will focus on the impact of downsampling for single-layer convolutional kernels. We expect
the downsampling operation to have a much more important role for the next layers: for example,
increasing the scale of interactions or reducing the dimensionality of the pixel space.
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We will argue below that adding a downsampling operation after local pooling leaves the low-
frequency components approximately unchanged (while potentially modifying the high-frequency
eigenspaces). We consider A < w: for A > w, some basis functions Yg with S € &, are in the null
space of HJ,, which impact all frequencies.

To emphasize the dependency on w, A, denote M, 5 the matrix @) We will study the change in
the matrix M, ; when adding downsamphng A, and consider

w,A - Mw,l + Aw,A ) (25)

where we denote A, \ = M  — M ;. Notice that A], 5 is a symmetric block-circulant ma-
trix. Therefore, from Remark the eigenvectors of A[, 1 are given by {’YJ (v5.5) }je[m),se(a]

where d = mA and 7;(V;.s) = [Vj.5 P jVjss - -5 P Vj.s] With p ;= e 55 and (v, s)s€]A]
eigenvectors of H;; . The eigenvectors of M, ; are given by u; = [1, pg ¢, - - - ’pd,t 1/v/d with
Pdt = eZF* . Notice that

* A—
<ut7/y]'(/vj5 = \/7 Z Z pm,gpdgk Y = 1)(vj,s)u

ke[m] ue[A]
1 ( Z —(u—1) —A\ k-l
= —_— pd,t ('Uj,s)u) . Z (pm'de,t ) ’
\/% u€E[A] ke[m)]

which is 0 except when ¢ = j[m/]. Hence, we see that A[, A InEq. only modify the eigenspaces
of M, ; as follows: the eigendirections {;(v; s)};je[m],sc[a] coming from H; only modify
the eigenspaces of M, ; spanned by {@am+; }a=0
For simplicity, we will focus on the popular choice A = w. Furthermore, we will only look at the
impact of the eigenvalues H on the eigenspace spanned by {’Um,m}azo,..., A—1, Which contain the

cyclic invariant direction. We show below that Hy = 0 and therefore A[, ,, does not modify the
cyclic invariant eigenspace of M 4

Proposition 5. Consider d = mw and the symmetric block-circulant matrix Al , = M, ,— M ;.
Denote A[, , = Circulant(By, By, ..., By,) and

Hy=B;+...+B,.
We have the following properties:

(a) If ¢+ 1 —r = Olw], then Al , = 0, and downsampling does not modify the matrix

Mg o= Mg .
(b) We have Hy = 0 and downsampling does not modify the cyclic invariant eigenspace
Al 1=0.

Proof of Proposition5] Let us first start by proving point (a). Consider ¢ + 1 — r = pw. Fix
i €{0,...,A—1}and k € {0,...,w — 1}. Let us compute the entry (i,i + ) of the matrix
M, ,: this amounts to counting the number of quadruples (k, s, s’,t) with k € [d/w], s,5" € [w]
and 0 < ¢t < pw — 1, satisfying (kw + s + t, kw + s’ +t) = (i, i + x)[d]. Notice that we must have
s’ = s+ k and therefore s € {0,...,w — 1 — k}. Notice that for each interval uw <t < (u + 1)w
with u € {0,...,p — 1}, there are exactly w — k ways of choosing s and then ¢ and k to satisfy the
equality. We deduce that

T w K T
(M )2(z+n) = )p(w - KV) =1-—= (Mw,1>i(i+f€) :

w(g+1-—r w

By symmetry of M . this concludes the proof of point (a).

w,w?

Consider now point (b). First notice, because M,  has zero entries for min(|i— j|,d—|i—j|) > w,
the only non-zero blocks are By, By and Bm. Furthermore when computing H), the diagonal
entries only have one contribution from the diagonal elements of B;. The off-diagonal elements of
Hj, have two contribution: one from B; and one from By (if below the diagonal) or B,, (if above
the diagonal), i.e.,

(Hy)i; = (B1)ii (Ho)i(i+x) = (B1)i(i+x) T (Bm)i(i+r) -
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Let us compute first the diagonal elements: we have easily, by a similar argument as above
(M )i = 1 = (M )i, and therefore Hy has zero zero diagonal entries. For off-diagonal
elements, first notice that (M, ,,)i(i4+r—w) = (M ,)i(i4+w—r)- Then for g +1 — 7 = pw + v, we
can consider each subsegment uw < t < (u + 1)w separately, and by a simple counting argument,
get (M, ))i(itw—r) (M ,)i(i+x) = 1— 2. We deduce that (Hy);(;4«) = 0, which by symmetry

O

implies Hy = 0 and concludes the proof.

From the above result, we conjecture that more generally, for A < w, the low-frequency eigenspaces
of HZ remain approximately unchanged when applying a downsampling operation. We verify this
conjecture numerically in several examples. In FigureEI, we plot the eigenvalues x; with and without
downsampling. On the left, we compare r; for fixed w = 25 and increasing A. We notice that the
eigenvalues do not change much for A < w, and for A > w, some ; become null, as discussed
above. On the right, we plot x; for A = 1 (continuous line) and A = w (dashed lines) for several w.
As conjectured, the top eigenvalues (low-frequency) are left approximately unchanged. In Figure[4]
we plot a heatmap of the eigenvectors ordered vertically from highest associated eigenvalue (bottom)
to lowest (top) for a fixed w = 25 and increasing downsampling A € {1,25,40}. First indeed
check that the top eigenvectors correspond to low-frequency functions and the bottom eigenvectors
correspond to high-frequency functions. Second, most eigenvectors are not much modified between
A =1and A = w = 25. For the case, A > w, the top eigenvectors corresponds still low-frequency
functions.

10° d = 200 and fixed w =25 d=150and A=w
— A=1
A=5 102
102 4 — A=10
— A=20
— A=25 10! 4
:‘ 101 - — A=40
S
g 100
Q
_L%” 100 + — w=2
1071 4 ©- :
— w=
107 4 — w=6
— w=10
10724 =15 I
1072 T T T T T T T T T T T T T T T T T
0 25 50 75 100 125 150 175 200 0 20 40 60 80 100 120 140
index index

Figure 3: Impact of downsampling on the eigenvalues ;. On the left, we fix w = 25 (d = 200,
g = 30, r = 1) and increase ¢ from 1 (no downsampling) to 40. On the right, we compare A = 1
(continuous line) and A = w (dashed lines), with d = 150,¢ = 20,r = 1.

From these observations, we expect HSX, to have the same statistical properties as HCX when learn-
ing low-frequency functions. In Figure |5} we plot the test error of kernel ridge regression for fitting
cyclic g-local polynomials (see Section [A.7) on the hypercube of dimension d = 30. We report
the test error of one realization, against the sample size n, and choose regularization A = 10~5 and
noise 0. = 0. We compare kernels with and without downsampling. On the left, we consider ¢ = 10
and w = A = 5, and compare the test error with HEK (continous line) and with H, ffA (dashed line)
when learning degree 2, 3 and 4 polynomials. On the right, we fix the target function to be the cubic
local cyclic polynomial and consider the test error of learning with H S*fA for ¢ = 10, w = 10, and
A €{1,3,6,10}. As expected, we observe in both simulations that the test error is almost identical
between the kernels with and without downsampling, when learning cyclic invariant functions.

In Section we further check that downsampling with A > w does not improve the high-
dimensional predictions for the test error of KRR.
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w=25A=1 w=25,A=25 w=25,A=40

Figure 4: Heatmap of the eigenvectors {v;};¢[q ordered from highest associated eigenvalue (bot-
tom) to lowest (top), for d = 200,q = 30,7 = 1,w = 25, and A = 1 (left), A = w = 25 (middle)
and A = 40 (right).

d=30,g=10, w=A=5 Cyclic cubic polynomial, d =30, g=w =10

1.6 1.4
1.44 = N —— degree 2 — A=1
: \\ —— degree 3 1.2 — A=3
. —— degree 3 10 — A=6 |
— A=10
5 0.8
0.6
0.4 1
) 0.2
0.0 T T T T T T T 0.0 T T T T T
1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 1.0 1.2 1.4 1.6 1.8 2.0
log(n)/log(d) log(n)/log(d)

Figure 5: Test error of kernel ridge regression with and without downsampling. We report the test
error of one realization, against the sample size n. On the left, we consider a unique architecture
¢ =10and w = A = 5, and compare HS* (continuous line) versus HS", (dashed line) when
learning cyclic g-local polynomials of degree 2, 3 and 4. On the right, we consider a unique cyclic
g-local polynomial of degree 3 for fixed ¢ = 10, w = 10 and A € {1, 3,6, 10}.

A.5 MULTILAYER CONVOLUTIONAL KERNELS

As an example, we will consider a two layers convolutional kernel with patch and local average
pooling sizes (g1,w1) on the first layer and (g2, w2) on the second layer. We consider a general
inner-product kernel for the first layer:

hy ((w,v)/q1) = ((u),(v)), (26)

where the feature map is given explicitly ¢ (u) = {¢,, 5/ Ys(u)}sc(q,) € R*". Following the work
(2021), we consider a degree-2 polynomial kernel on the second layer, i.e., ho({¢,¢')) =
0, ¢')

Let us decompose this two-layers convolutional kernel in the Fourier basis. Let U(x) =
{¥x(x)}epq) be the output of the first layer, with

@)= Y V@wre) = {Gaist Y Yerers@] €R™. @7

s€fwi] s€[wi] S€lal
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Then denoting W ;) (x) = (Vii1(x), ..., Prig,(x)), the two-layers convolutional kernel is given
by
HETE, (2, y)

=) D (V) (@), V(pen ()

keld] s,s’ €wa]
keld] s,s’ €lwa] u,u’ €[ga] t,t’,r,r’ €[wi]
<¢(f’3(k+s+u+t)) ® 1/’(w(k+s+u/+r)), w(y(k+s'+u+t’)) ® ¢(y(k+s'+u’+r/))> .

Let us comment the structure of HZ°X, :

(28)

1. The associated RKHS, which we will denote 2K, contains all the homogeneous poly-
nomials Yg with S = S; U Sy with Sy, Sy contained on segments of size g1, with the
two segments separated by at most go + ws — 2. In words, the RKHS contains interaction
between patches x ;) and ;) that are within some distance.

2. The eigenvalue associated to a degree-k homogeneous polynomials is still of order ¢~* in

high-dimension. To learn functions restricted to L?(22, Loc,), it is statistically more effi-
cient to use H°¥ (smaller degeneracy of eigenvalues). However H 2% will fit a richer class
of functions with two-patch interactions, while still not being plagued by dimensionality:
dim(H2CK) < ¢2d2291. Hence we still expect H2%X to be much more statistically efficient
than a standard inner-product kernel.

3. Local pooling on the two layers plays different roles: pooling on the first layer encour-
ages the interactions to not depend strongly on the relative positions of the patches, while
pooling on the second layer penalizes functions that depend on the global position of these
interactions.

We believe that Eq. (28] can be studied in more details, by a careful combinatorial argument and a
2-dimensional Fourier transform on the second layer (see [Bietti (2021)). We leave this problem to
future work. Similarly, we can consider instead a degree-k kernel on the second layer (which would
include interactions between k patches), or three layers and deeper networks.

A.6 PROOFS DIAGONALIZATION OF CONVOLUTIONAL KERNELS

In this section, we prove the diagonalization of the kernels HK, HEK and HS'fA introduced in
Propositions [T} 2] and [ respectively.
Recall that we can associate to a kernel function H : X x X — R defined on a probability space
(X, ) (assume z — H (x, ) square integrable), the integral operator H : L?(X,7) — L?(X,T)
~ [ He.2)f@)r(). 9)
x

By the spectral theorem of compact operators, there exists an orthonormal basis (1/;) j>1 of L?(X, 7)
and eigenvalues (\;),>1, with nonincreasing values Ay > Ag > --- > 0 and Zj>1 Aj < oo, such
that -

H=> Ny,  H(za') =Y \ib(x)i;(a)).
j=1 j=1

We first prove the diagonalization of HS¥, in Proposition E} The case of HS and HK then follows
by setting A=1,and A =w =1 respectlvely

Proof of PropositionH] Consider the inner-product kernel function 4 : R — R defined on the hy-

percube 29. By rotational symmetry (see Section and Appendix D)), h admits the following
diagonalization: for any u,v € 29,

((w,v)/q) = qu, > Ye(w)Ys(v), (30)

SClql,|S|=¢
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where (Ys)gcjq is the Fourier basis on 29, and {4,¢(h) is the /-th Gegenbauer coefficient of 1 in
dimension ¢ (see Sections [2.1] or [D]for background).

Recall that we defined Sy = {S C [g] : |S| = ¢}, the equivalence relation S ~ S" if S’ is a
translated subset of S in [¢] (without cyclic convention), and C; the quotient set of Ay by ~. For each
equivalence class S € Cy, consider S the unique subset in S that contains 1. Then the equivalence
class S contains the subsets u + S = {u+ k: k € S} C [¢] withu =0,...,q — v(S5). By aslight
abuse of notations, we will identify S and this subset S. Below we will denote u + S the translated
subset with cyclic convention on [d] (e.g., 2+ {1,3,d — 1} = {3,5,1}).

Using Eq. and that Ys (1)) = Yr1s(x), we have the following decomposition of H, ‘S"‘A in the
Fourier basis

A
= S0 h(@gate Ywars))/a)
ke[d/A] s,s'€[w] 31
! A
= dwé&q,0 + Zﬁq,z Z o Z Yiatst+t+5(2)Yeats+i+5Y) ¢ s
(=1 SeCy (kvsﬁslat)ezw,A,'y(S)

where we recall the definition of the set of indices

T nn(s) = {(k:,s,s’,t) ckeld/A] s, s €w],0<t<q— W(S)}. (32)

Note that the diagonalization of the kernel H can be obtained by computing the matrix M =
(MSS’)S,S’Q[d] S R2d><2d with M = E%y[YS(m)H(:c,y)Ygl (y)] if /\j and NS RZd are the
cigenvalues and eigenvectors of M, then A; and ¢;(x) = > gc(g vj.sYs(®) are the eigenvalues
and eigenvectors of H.

From Eq. , we see 1) the basis functions Yg with v(S) > ¢ (subset S not contained in a segment
of size ¢) are in the null space of H S'fA, 2) for S, S" C [d] with S and S’ not translations of each other,
then B, o, [Ys(2) HS 5 (2, y)Ysr (y)] = 0, and Y and Y/ are contained in orthogonal eigenspaces.
We deduce that it is sufficient to diagonalize H, «St(A on each of the (orthogonal) subspaces Vg :=
span{Yiys: k€ [d]} for0 < ¢ <gand S € C,.

For each S € (p, define M7 ¢ RI*4 the matrix with entries M]j(s) =
oy Vi (@) HOS, (2. 9) Y (9. From Eq. (1), we g

) _ A : iy _

M) = m‘{(k,s,s’,t) € Tynns) kA +s+t=ild kA +5 +t= j[d]} . (33)
which concludes the proof of Proposition 4} O
We can now prove Propositions|[I]and [2] by taking w = A = 1 and A = 1 respectively.

Proof of Proposition[l] Set A = w = 1 in Proposition[d] We get
() T(S)H(k,t) keld,0<t< qf'y(S),k+1+tzi[d],k+1+tzj[d]}‘
=0 .
In this case, M%) is simply equal to identity, which concludes the proof. [

Proof of Proposition[2] Set A = 1 in Proposition [d] We get

1
M) = o) H(k,s,s’,t) € Tunns)  k+s+t=ildk+s +t Ej[d]}‘

().
W ol
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where d(i, ) is the distance between 7 and j on the torus [d] (i.e., if i > j, d(¢,7) = min(i — j,d +
j —i)). Hence, M%) is a circulant matrix independent of ~(S), which has well known explicit
formula for eigenvalues and eigenvectors (see for example Remark [A.T)). O

A.7 ADDITIONAL NUMERICAL SIMULATIONS

Here, we consider a numerical experiment similar to Figure 1} We consider & ~ Unif(2%) with
d = 30 and consider three cyclic invariant target functions:

1 1
fo(w) = — Z Tilit1, fs(x) = — Z TiTit1Tit2
\/a 1€[d] \/Zi 1€[d)
1
fa(z) = 7 Z TiTip1Ti42Ti43 -

i€[d]
We consider a higher order polynomial kernel h(x) =, 7] 0.2-2* than in Figure , which should
lead to higher self-induced regularization. We consider the same kernels as before, with ¢ = 10 and
w = 9.

In Figure [6] we report the test errors of fitting fo (top), f3 (middle) and f, (bottom) using kernel
ridge regression with the 5 kernels of interests in the main text. We choose a small regularization
parameter A = 1075, and the noise level 0. = 0. The curves are averaged over 5 independent
instances and the error bar stands for the standard deviation of these instances. The results again
match with our overall theoretical predictions. We report the predicted thresholds for the three
functions:

1. For f, target: ¢ < d < dq/w < dq < d° for HS < HES < HSK < HK < HFC.
2. For f5 target: ¢ < dg*/w < d* < dg* < d® for H§§ < HS* < H® < HES < HC.
3. For fy target: ¢ < dg®/w < d® < dg® < d* for HSS < HS® < H® < HES < HFC.

We see that the kernels, especially for f4, perform much better than their theoretical high-dimension
predictions: this can be explained by the low-dimensionality of the experiment where ¢ = 10.
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Cyclic degree-2 polynomial, d = 30
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14 Cyclic degree-4 polynomial, d = 30
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Test error
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Figure 6: Learning cyclic polynomials of degree 2 (top), 3 (middle) and 4 (bottom) over the hy-
percube d = 30, using KRR with H (FC), HES (FC-GP), H% (CK), HSK (CK-LP) and HSS
(CK-GP), regularization parameter A = 07 and h(z) = > kel7] 0.2 - 2¥. We report the average and
the standard deviation of the test error over 5 realizations, against the sample size n.
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B GENERALIZATION ERROR OF KERNEL METHODS IN FIXED DIMENSION

B.1 BOUND ON KERNEL METHODS USING RADEMACHER COMPLEXITIES

We first consider the case of a Lipschitz bounded loss and uniform convergence, and make a few
simple remarks on the connection between generalization error and eigendecomposition in kernel
methods.

Consider i.i.d data (x;,y;) € X x R with (z,y) ~ P and a loss function £ : R x R — R that we
take 1-Lipschitz w.r.t second argument and bounded by 1. The goal is to minimize the expected loss

L(f) = Ey = {l(y, f(x))}. Take a RKHS H with kernel function H : X x X — R and consider
following constrained empirical risk minimizer:

fp = argmin {Ze vi. f :m))} : (34)

Ifll<B | i=1

The generalization error of f B has the following standard bound on the Rademacher complexity of
the kernel class {f : || f|lx < B} (Boucheron et al., 2005; Shalev-Shwartz & Ben-David, |2014):
with probability 1 — 6,

A . 8B 2log2
L(fp) = min L(f) < Z=v/Eo{H(w.2)} + =5 (35)

Note that instead of a constraint on the norm in Eq. (34), one might find more convenient to use a
penalty. In that case, there exists an equivalent to the bound @]) (Wainwright, 2019; Bachl 2021},
but we focus here on the constrained formulation for simplicity.

From the bound (35), we see that the generalization error depends crucially on the choice of B. For
simplicity, let us forget about the approximation error and take || .|z < B where f, = E{y|x}.
Recall that for a kernel H with eigenvalues {);};>1 and eigenvectors {®;};>1, we have

A5 =D X Wy, f)

j>1

Consider Hf, as in Eq. (8) and assume &, o = 0. From the normalization choice of the kernel (see

Eq. (23)), we have
Eo{H (2, 2)} = h(1).

Consider now for snnphClty A = 1. From the elgendecomposmon in Proposition [2] the RKHS
norm of f € L?(2¢ Loc,) is given by

=S 3 %S’

Le(q] je[d] SEC, fq,ﬂ“
Consider the case where f € L?(2%, Loc,) has a unique non-zero component in its discrete Fourier
transform, i.e., f(x) = % ket P9(x ) with E{g(z)} = 0 and p; = ¢*™/¢ (see Section
. Note that, denoting cg = (Y, g) 2(24):
q r(S)—1
= Z Z Z pj “curs | Vs -
£=18€C, \ u=0

Hence,
r(S)—1

1/)3 Sa u+S d||g||I2
f <d ‘,
UAINer BN B
where [|g||7 is the RKHS norm associated to the inner- product kernel h : R — R in 29, ie.,

lgllz = > SCld] q,|ssv From the bound (35), we deduce the first generalization bound using a

convolutional kernel: with probability at least 1 — 6,

; . dlg|3h(1)\"* | [2log3
Lif) = min L(H)<8 (m) e

We make the following two remarks on this bound:
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1. Tt depends on ||g||x, which is a RKHS norm on 27 instead of 29, which has potentially
much lower dimension and contain less smooth function for balls of same radius.

2. There is a factor x; gain in sample complexity when learning functions that have j-th
frequency with xk; > 1. In particular, for 7 = d (cyclic invariant functions), x; = w, and
we need w less samples to get the same (upper) bound on the generalization error. On the
contrary, when x; < 1, i.e., high-frequency oscillatory functions, the generalization bound
becomes worse.

B.2 GENERALIZATION ERROR OF KRR IN THE CLASSICAL REGIME

We consider here the regression setting which allows for finer results. Several works have considered
bounding the generalization error of kernel ridge regression (KRR) |Caponnetto & De Vito (2007);
Jacot et al.|(2020), (Wainwright, 2019, Theorem 13.17). In this section, we consider the following
fully-explicit upper bound from Bach|(2021).

Consider i.i.d data (x;,y;) € X x R with ®¢; ~ P, and y; = f.(x;) + ;. Assume the noise
Ele;|x;] = 0 and E[e?|x;] < 02, and denote € = (g1, ..., &p).

Let H be a RKHS with reproducing kernel H : X x X — R. The KRR solution with regularization
parameter A > 0 is given by

fr= arg}réig {;(yz — fl®:)* + )\|f||§-t} )

which has the following analytical formula:

f(@) = h(z)(H + ML) 'y,

where H = (H(x;,x;));jc[n) is the empirical kernel matrix, h(z) = [H(x,x1),..., H(x, z,)]
andy = (y1,...,Yyn). The risk is taken to be the test error with squared error loss
. . 2
R(for fr) = Bo{ (fu(@) - Fr(@)) }. (36)

Below, we give an upper bound on the expected risk over the noise € in the training data, i.e.,

Ec{R(f., f»)} (itis also possible to give high probability bounds by concentration arguments, but
we restrict ourselves to bounding the expected risk).

Theorem 6. (Bach, 2021 Theorem 7.2) Assume H(x,x) < R? almost surely and let the regular-
ization parameter A < R2. Ifn > % (1 + log RTz), then

5 2 , 24
Ee{R(fi /1)) S 167=N(H.X) 416 jnf {IIf = L3 +MIF RS + SlAlE~ 6D
where N'(H, \) = Tr[(H + \I)~'HI.

Let us comment on the upper-bound in Eq. (37). The first term corresponds to an upper bound on
the variance: N'(H, \) is sometimes called the degrees of freedom or the effective dimension of the
kernel H. The second term bounds the bias term and corresponds to an approximation error. In
particular, for any r > 0,

Jof {IF - FllZe + AR} < ATH2 L7 (38)

where we recall that H is the integral operator associated to H (see Eq. (29)). The third term can be
removed by a more intricate analysis.

From the above discussion, it is natural to consider the following two assumptions on H and f,, that
are standard in the kernel literature:

(B1) Capacity condition: N'(H,\) < Cy A~/ with a > 1.
(B2) Source condition: there exists 3 > 0 such that |[H=#/2f, |3, =: B} < oc.
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Intuitively, the capacity condition (B1) characterizes the size of the RKHS: for increasing «, the
RKHS contains less and less functions. It is verified when the eigenvalues A;’s of H decay at the
rate j—%. For example, taking the Matern kernel of order s > d/2, whose RKHS is the Sobolev
space of order s (i.e., functions with bounded s-order derivatives), we have o = 2s/d (e.g., see
Harchaoui et al.|(2007)). The source condition (B2) characterizes the regularity of the target function
(the ‘source’) with respect to the kernel: 5 = 1 is equivalent to f, € H, while 8 > 1 corresponds to
f« more smooth (and 8 < 1 less smooth f,).

Assuming (B1) and (B2) in Theorem|[6] we get the bound

Ee{R(fx, f)} <16Cx E/\ 1/“+16Bf*/\6+ ||f*||L°°

NN (39)
sy H
=3202B;7T (n ) + ﬁ”f*”zmo ;
2\ AT
where in the second line, we balanced the two terms by taking A, := (%’2’ ajl ) " Note that in
f*

. 2 2 . ..
order to use Theorem@ we need further to constrain n > % (1 + log RT) For simplicity, we

will choose r > O‘T_l, so that this condition is verified for n sufficiently large.

Remark B.1. The rate in n in Eq. is minmax optimal over all functions that verify assumptions
(A1) and (A2) Caponnetto & De Vito| (2007). However, for large d, the RKHS is composed of very
smooth functions (e.g., Sobolev spaces of order s are RKHS if and only if s > d/2, i.e., if the order
of the bounded derivatives grows with the dimension d) and /3 will be small, such that S« = & /d for
functions with bounded derivatives up to order ~. In that case, the risk decreases at the rate n= 001
KRR suffers from the curse of dimensionality when x does not scale with d. As a consequence, the
bound is vacuous when n does not scale exponentially in d, which led several groups to derive
finer bounds on KRR in the high dimensional regime (see Section [C)).

Let us now apply Theorem [6|and Eq. to our convolutional kernels to show Theorems[T]and

Proof of Theoremll] First notice that H(z, ) = h(1) =: R? and we can therefore apply Theo-
rem|6] The effective dimension of HK is bounded by

NHCK,)\ — gq,O g%[r
( ) fq,o-l-/\ = 15%; fqu /d—|—/\
qu gqf
< r(S
5q,0+d A Z§q,€+d /\SEZ& ( )
: €q.0
(21.0) et N h,d-)\),
z:; £q£+d A ( )

where we used that r(.S) > 1 in the second line and A/ (h, A) is the effective dimension of the inner-
product kernel 4 on 29. We deduce from (A1) that N'(H% \) < Cj,d*~*/*X\~1/*, Furthermore,
from (A2) and the assumption that E{gy(x)} = 0, we have

2

r(S)—1
H(HCK) ’8/2f HLz —d'BZ&ﬂ Z Z Z (Gk—u, Yuts) L2
=1 SeCy ke[d] u=0
r(S)—l
<dﬁzfq€ Z Z Z <gk7uaYu+S>%2
(=1 S€eC, ke(d] u=0

<d’q'? Z 1h="2 gy |72 < dPqB?.
k=1
Injecting the two above bounds in Eq. (39), we deduce that there exists constants C'1, Cy, C3 that
only depends on the constants in (A1) and (A2), and h(1), a (but independent of d), such that
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taking n > Cy max (|| fu||2,d) and A, = €2 (d/n) =571, we get

) 4\ 75
E{R(f, o)} < Cs () .

n

O

Proof of Theoremd The proof is similar to the proof of Theorem |1} Notice that HS*(z, z) < h(1),
and that the effective dimension of HCK is bounded by

oKy - §q.r(S)k;/d
N(Hw 7)\) - ZZ Z[ gq,zr(s)ﬁj/d+)\

d q d d
§q.t —1/ay—1/a /a
< 2 = ) < .
DI IP IR v ;N(h,d/\/lﬁ) < Cpd ™M) ;mj ,

<
Il
—
~
Il
—
nn
m
Q
~

where we used condition (A1). Denoting d.; = ijl (kj/ w)l/ @ the rest of the proof follows from
the proof of Theorem 1| with d replaced by dezw'/® and B? replaced by w? B2. O

Remark B.2. Note that the requirement ||(HSX /w)~#/2 f, |12 < B is to make the result comparable
to the other theorems when we consider target functions with low-frequencies. For a cyclic invariant
function, we get exactly ||(HS/w)=B/2f,|| 1> = ||(HK)=B/2f, || .
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C GENERALIZATION ERROR OF KRR IN HIGH DIMENSION

In Section we considered upper bounds on the test error of KRR using the standard capacity
and source conditions. However, these results suffer from several limitations:

1. They only provide an upper bound on the test error. While the decay rate with respect
to n is minmax optimal (see (Caponnetto & De Vito| (2007)), this is not strong enough to
show, for example, a statistical advantage of using local average pooling, which appears as
a prefactor d.g, and which would require a lower bound matching the upper bound within
a constant factor.

2. As mentioned in Remark the bound is of order n~1/9(@  except when the target
function has smoothness order increasing with d. This bound is non-vacuous only if n =
exp(O(d)) which is impractical in modern image datasets where typically d > 100. This
motivates a new type of question: given n < d*, what is the prediction error achieved by
KRR for a given function?

3. In order to achieve the bound Eq. (39), one need to carefully balance the bias and the
variance terms by setting the regularization parameter. This is in contrast with modern
practice which usually train until interpolation (which corresponds to setting A — 0).

Given the above limitations, several recent works have instead considered a high-dimensional set-
ting where the number of samples scales with d, and derived asymptotic test errors, exact up to
a vanishing additive error (Ghorbani et al.| (2021; 2020); Mei et al.| (2021a). In addition to these
works, several papers have derived general estimates for the test error using non-rigorous methods
Jacot et al.|(2020); |Canatar et al.| (2021)); |Cui et al.| (2021)) that are believe to be correct in the high
dimensional limit and which show great agreement with numerical experiments. The picture that
emerges in this regime is much more precise than in the classical regime: KRR approximately acts
as a shrinkage operator on the target function (not assumed to be in a particular space anymore),
with shrinkage parameter that scales as a self-induced regularization parameter over the number of
samples.

More precisely, Mei et al. (2021a) shows the following: considers a kernel Hy : R? x R? — R with
eigenvalues (A4 ;) >1 in nonincreasing order and n = n(d) the number of samples. Let m = m(d)
be an integer such that m < n'~° and

o0
145
Admt1 - n' 0 < g Ad,j s
Jj=m+1

for some § > 0. Then, assuming some additional conditions insuring that the kernel H, is ‘spread-
out’ and well behaved, the KRR solution

feHa i=1

. - A
fr = argmin{iz (4~ S(@)* + nnf%td} 7 (40)

is equal up to a vanishing additive L2-error (as d — 00) to the following effective ridge regression
estimator

Pef . Aeft
ity = angamin {1, = 13- + 221113, } @)
fEH n
where Ay = A + Z;’im 11 Aa,j- The effective estimator |i amounts to replacing the empirical

risk in Eq. by its population counterpart || f, — f||3. = Ex{(f«(x) — f(2))?}. In words, in
high dimension, KRR with a finite number of samples is the same as KRR with infinite number of
samples but with a larger ridge regularization.

The solution of Eq. (#I) admits an explicit solution in terms of a shrinkage operator in the basis
(%a,5)j>1 of eigenfunctions of H:

oo N [eS) Ad.'
fol@) =) evay(@) = Sl =) 5
j=1 Adj+ T

=1 n

“cj P (). (42)
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Hence, KRR will fit better the target function along eigendirections associated to larger eigenvalues
of H. If Aq; > A/, KRR fits perfectly f, along the eigendirection 14 ;, while if Ag ; < Aer/7,
KRR does not fit this eigendirection at all. This phenomena has been referred as the spectral bias
and task-kernel alignment of kernel ridge regression in several works.

Finally, notice from Eq. that the minimum test error is achieved for the regularization parameter
A = 0, which corresponds to the KRR estimator fitting perfectly the training data. In other words,
the interpolating solution is optimal for kernel ridge regression in high dimension.

C.1 GENERALIZATION ERROR OF CONVOLUTIONAL KERNELS IN HIGH DIMENSION

Consider a sequence of integers {d(¢)},>1 which corresponds to a sequence of image spaces x €
2% of increasing dimension, and assume d(q)/2 > q > d(q)° for some constant § > 0. For ease of
notations, we will keep the dependency on ¢ implicit, i.e., d := d(gq). Let {h,}4>1 be a sequence of
inner-product kernels b, : R — R.

Test error with one-layer convolutional kernel: we first consider a vanilla one-layer convolu-
tional kernel H°K as defined in Eq. . We will assume that the kernels {hq }4>1 verify the following
‘genericity’ condition.

Assumption 1 (Generecity assumption on {h,},>1 at level s € N). For {hy},>1 a sequence of
inner-product kernels hq : R — R, we assume the following conditions to hold. There exists
s' > 1/6 + 2s 4 3 where § > 0 verifies ¢ > d° and a constant C' such that he(1) < C, and

min ¢* ' *¢, 1 B(q, k) =Qq(1), (43)
k<s—1
i B(q, k) =Q4(1 44
ke{gginl,s,}ﬁq,k (g, k) =Qa(1), (44)
omax_¢¥ g, 1 Blg.q — k) = 0a(1). (45)

Assumption[T|will be verified by standard kernels, e.g., the Gaussian kernel. We discuss this assump-
tion in Section [C.2] and present sufficient conditions on the activation function o for its associated
CNTK to verify Assumption

Recall that we denoted L2 (Qd, Locq) the space of local functions, i.e., that can be decomposed as
f(®) =3 hcpq fr(® (k). Denote hg > the inner-product kernel hg with its (£+1)-first Gegenbauer
coefficients set to 0, i.e.,

hese((u,v)/q) = > &1B(2%k)QY (u,v)), (46)

k=0+1

for any u, v € 24. The following result is a consequence of the general theorem on the generaliza-
tion error of KRR in|Mei et al.|(2021al).

Theorem 7 (Test error of CK in high dimension). Let {f; € L?(2% Loc,)},>1 be a sequence
of local functions. Let (T;)ic[n(d) ~iid. Unif(29) and y; = fa(x;) + &; with &; ~iiq. N(0,02).
Assume d - ¢ 10 < n < d- ¢ for some § > 0 and let {hq}¢>1 be a sequence of activation
functions satisfying Assumption |l|at level s. Consider {H CK’d}qz 1 the sequence of convolutional
kernels associated to {hq},>1 as defined in Eq. . Then the following holds for the solution f)\ of
KRR with kernels { H®?} ;> .

For any regularization parameter A\ > 0, define the effective regularization A = X + hg >s(1).
Then for any n > 0, we have

~ /\e 2
153 = Fisll e = eap(D) - (I fallzeen + 02). @7)
The proof of Theorem [7)is deferred to Section|C.4]

Let us expound on the predictions of Theorem First, recall that f;fefﬂ is given explicitly in Eq.
by a shrinkage operator with parameter A.s. From Assumption [I|and taking A = 0, the shrinkage
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operator is of order 1

q
)\eff = hq,>s(1) = Z &MB(Q’I;[) = @q(1)~
f=s+1

From the eigendecomposition of HX introduced in Proposition |1} KRR fits perfectly f, along the
eigendirection Yg with |S| = £ if n - &47r(S)/d > A, while it does not fit this eigendirection at
all if n - £4,07(9)/d < Ar. Consider n = d - ¢~ 17

e KRR fits the eigendirections corresponding to the homogeneous polynomials of degree
s — 1 and less, and of degree s for subsets .S such that v(S) < ¢ — ¢*~°.

o KRR does not fit at all the eigendirections correpsonding to homogeneous polynomials of
degree s + 1 and larger, and degree s for subsets .S such that v(S) > ¢ — ¢! =,

In words, for d - ¢~ < n < d - ¢°, KRR fits at least a degree-(s — 1) polynomial approximation to
f+ and at most a degree-s polynomial approximation. As n increases from d-¢*~! to d- ¢°, KRR first
fits degree-s homogeneous polynomials that have smaller diameter v(S) (i.e., ‘more localized’).

Test error of CK with global average pooling: we consider the kernel HSf given by a convolu-
tional layer followed by global average pooling:

1
HE@y) =5 > h((zw yw)/a) , (48)
k, k' €[d)

In addition to the genericity condition, we will assume that the kernels {h, }4>1 verify the following
differentiability condition.

Assumption 2 (Differentiability assumption on {hq}¢>1 atlevel s € N). For {hq},>1 a sequence
of inner-product kernels h, : R — R, we assume the following conditions to hold. There exists
v > max(2/6,s) where § > 0 verifies ¢ > d° such that hy is (v + 1)-differentiable and for k < v,

sup |h{'S) (9)] < 0,4(1),

q,>v
yE[-1.1]

|20 (0)] < OgqH17172),

q,>U

where we denoted hy, -, the truncated inner-product kernel hq as in Eq. (#6).

Assumption is used to extend the following theorem to non-polynomial kernel h,, (in particular, it
is trivially verified for polynomial kernels by taking v larger than the degree of k). This assumption
is difficult to check in practice, however we provide some examples where it holds in Appendix[C.2}

Recall that we denoted L? (.29, CycLoc,) the space of functions that are given by the convolution
of a function g : RY — R with the image = € 2% ie., f(2) = >y ciq 9(T(h))

Theorem 8 (Test error of CK with GP in high dimension). Ler {fs € L?(2%, CycLoc,)}q>1

be a sequence of convolutional functions. Assume ¢ 'T° < n < ¢ for some 6 > 0 and let
{hq}q>1 be a sequence of activation functions satisfying Assumptions I | and 2 I at level s. Consider

{HZE™ 1 the sequence of convolutional kernels with global pooling associated to {hy}y>1 as

defined in Eq. . Then the solution f» of KRR with kernels {Hgs’d}qzl verifies Eq. with
)\eff =\ + hq,>s 1)

The proof of Theorem []is deferred to Section

The predictions of Theorem 8]are similar to the ones of Theorem [7]but with a factor d gain in statisti-
cal efficiency: this is due to the eigenvalues of HSK being a factor d larger than for H¥. Therefore,
with global average pooling, for ¢! < n < ¢°, KRR fits at least a degree-(s — 1) invariant
polynomial approximation to f, and at most a degree-s invariant polynomial approximation. As n
increases from ¢°~! to ¢°, KRR first degree-s invariant homogeneous polynomials with increasing
diameter v(S).
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Test error of CK with local average pooling: In the case of local average pooling withw < d, the
eigenvalues are harder to control. Indeed, we have mixing of the eigenvalues between polynomials
of different degree: there exists j, j* € [d] such that {, sk; < &g e+1k;.. The eigenvalues are
not ordered in increasing degree of their associated eigenfunctions anymore. While this case is
potentially tractable with a more careful analysis, we instead introduce a simplified kernel which we
believe qualitatively captures the statistical behavior of local average pooling.

Assume ¢ < w/2 and w is a divisor of d. Denote zkw) = (kw1 - - - s Thwtw) the k-th segment

of length w in [d] and wgf)w) = (Thw+tis - - - » Tho+q+i) the patch of size ¢ with cyclic convention in

{kw+1,..., kw+w}. Consider the following convolutional kernel with ‘non-overlapping’ average
pooling:

1 kw kw
HEO(@,y) == S 3 ho(ll ul)/a), (49)
keld/w] i,j€(w]

In words, HZNO is the combination of d/w non-overlapping convolutional kernels with global
average pooling on images of size w:

HSK,NO: Z Hgﬁ(a:(’““),y(’““’))
keld/w]

= qu! Z Z Yr,s(T)Vr,s(y),

(=0  keld/w] SEC

(50)

where 9y, s(x) = ﬁ Diclw] Yi+s (x(#<)) where i + S is the translated set with cyclic convention
in [w].

Denote L?(2¢, LocCycLoc,) the RKHS associated to HSN°, which contains functions that are
locally convolutions on segments of size w. For this simplified model, the proof of Theorem [§] can
be easily adapted and we obtain the following result:

Corollary 1 (Test error of CK with NO pooling in high dimension). Ler {f; €
L?(2%, LocCycLoc, ) }q>1 be a sequence of local convolutional functions. Assume (d/w) -

¢ 1 < n < (d/w) - ¢ for some 5 > 0 and let {h,},>1 be a sequence of activation func-

tions satisfying Assumptions |I|and EI at level s. Consider { HSKN1} 1 the sequence of convolu-
tional kernels with non-overlapping pooling associated to {hq},>1 as defined in Eq. (@) Then the

solution fy of KRR with kernels {HE*NOAY <, verifies Eq. With At := X + %hq,>s(1).

Corollary |1|shows that HZNO enjoys a factor w gain in statistical efficiency compared to H¥, due
to a factor w smaller effective ridge regularization. Therefore, with (non-overlapping) local average
pooling, for (d/w) - ¢*~! < n < (d/w) - ¢°, KRR fits degree-(s — 1) locally invariant polynomials
and none of the polynomials of degree-(s + 1) and larger. Heuristically, we see that this yields the
same statistical efficiency than H° for w = 1 and HSf for w = d, and interpolates between the two
cases for 1 < w < d.

Test error of convolutional kernels with downsampling: We consider adding a downsampling
operation to the previous kernels. Let A be a constant and a divisor of d and w and consider the
following ‘downsampled’ kernels:

keld/A]
CcK A
Hgp A, y) = ¥ Z h({®kay Yra))/q) , (52)
k& €[d/A]
HO\O(x,y) = Y HE A(x*), y*)) . (53)
keld/w]

We can easily adapt the proofs of Theorems [7]and[8] and Corollary [T]to these kernels. In particular,
their conclusions do not change (for any constant A) and downsampling do not provide a statistical
advantage.
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C.2 CHECKING THE ASSUMPTIONS

In this section, we discuss Assumptions |1| and [2 and present sufficient conditions for them to be
verified.

Genericity assumption: Recall that the inner-product kernel b, : R — R has the following
eigendecomposition on 29 as

he((u,v)/q) = qu’ Z Ys(u)Ys(v).
=0 5C[q],|S|=¢
The genericity assumption amounts to: 1) A universality condition in Eqs. @#3) and @#4): if
Pih({1,-)/q) = 0, then h does not learn degree-k homogeneous polynomials; 2) A constant or-
der scaling of the self-induced regularization h, »s(1), from hy(1) < C and Eq. with ¢/, i.e.,
hg>s(1) < hg(1) = O4(1) and hg >s(1) > &, B(g,s") = Qq(1); 3) The last eigenvalues decay
sufficiently fast in Eq. (#3) in order to avoid pathological cases.

For generic kernels, we have typically &, < ¢~ (for fix ¢). For example, if h is smooth, &, , =

~(h*)(0)+0,(1)) and it is sufficient to have h(*)(0) > 0. See Appendix D.2 in Mei et al.|(2021a)
for a proof of Eq. when h is sufficiently smooth.

Below, we present instead sufficient conditions on the activation o such that the induced neural
tangent kernel verifies the ‘genericity’ assumption. More precisely, we display sufficient conditions
on the sequence {0, },>1 of activation functions o, : R — R, such that the induced neural tangent
kernels {hq }4>1 verifies Assumption|[1} where h, was derived in Section[A.2]and is given by (u, v €

219)
h((u, ) /q) = BSM ((u, v) /q) + h{) ((u,v)/q), (54)
where
WD ((u,v)/q) = Ewaunit(en) [0 (u, w) /y/q)oq((v,w) /)] , (55)
WP ((u, v) /np.sqrt(q)) = Eavnit(20) [0 (w, w) /v/Q) oy (v, w) /\/q) (w,v)] /q.  (56)

Assumption 3 (Assumptions on {og},>1 at level s € N). For {o4}4>1 a sequence of functions
¢ : R = R, we assume the following conditions to hold. There exists s' > 1/6 + 2s + 3 where
§ > 0 verifies ¢ > d°, such that

(a) The function o is differentiable and there exists co > 0 and c1 < 1 independent of q, such
that |04 ()|, o} (x)| < coexp(c12?/2).

(b) We have
k'glsiill qSﬂik”PkC’q(@a VD L2 (20 =24(1), 67
i P : 2(9a =0,(1
reiin  IPkoq((e, )/ Va2 n =04 (1), (58)

where e € 21 is arbitrary.

(c) We have for a fixed § > 0

kf(}ax ,qSLkHHPkUq((ev'>/\/§)|\L2(gq) =0,4(1), (59)
Jmax ¥ P (o) /Va) luaan = 04(1). (60)

Proposition 6. Consider a sequence {o,},>1 of activation functions o4 : R — R that satisfies
Assumption 3| Let {hg}q>1 be the sequence of neural tangent kernels associated to {o4}q>1 as
defined in Eq. . Then the sequence {hy},>1 satisfies the ‘genericity’ Assumption

Differentiability assumption: As mentioned in the previous section, this condition is required in
our proof technique to extend Theorem |8]to non-polynomial kernel functions. While we believe that
weaker conditions should be sufficient, we leave checking them to future work. Note that Assump-

tionwas proved for z ~ Unif(S*1(v/d)) and h,((x,y)/q) = Ew{o((z,w))o((y,w))} for
w ~ Unif(S?~1(1)), given that o satisfies some differentiability conditions, in Mei et al.[(2021b).
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C.3 PROOF OF PROPOSITION

Proof of Proposition[6] Step 1. Effective activation function.

Let us decompose both functions o, and 0’; in the Gegenbauer polynomial on the hypercube basis:

0q((u,0) /@) = > xq. B(2%0Q (u,v)), 61)
=0

oh((u,v) /) = 3 kaeB(2%0Q (u, ), (62)
=0

where we recall B(29;¢) = (}) and (for e € 29 arbitrary)

Xa.t(04) = Eununitcon [00(u,€) /VDQL” (. €))].
a.t(04) = Bunvmitcom [0 (u. €)/ VD Q4" ((u, €))].
From the definition of hgl) in Eq. and the eigendecomposition , we have

B ((u, v) /q) = qu 0Q" ({u, v)).

Similarly, from the definition of h,(f) in Eq. , the eigendecomposition lb and using Lemma
stated below, we get

q

h$ ((u, v)/q) = Zn (B(2%0Q4 ((u, ) (w,v) /g =Y 2, B(2% QY ((u,v)),
=0
where ' '
Ge=hne qui,M (63)

)

We can therefore define 7,0 = /X2 , + (2, and o o ((, )/ /@) : 27 x 27 — R by

Oettq (u,0) /) = 3 7.0 B(2% 0QY” ((u, v)),

£=0
such that the NT kernel (54) can be written as the kernel of the effective activation o 4:

h((u,0)/0) = Bg-mis(2) [outa( {101/ VDOt {w109: 01/ D)
q (64)
= > 72, B(2%0Q (u,v)).

=0
We will show that h, with Gegenbauer coefficients &, , := 7'('3’ , verifies Assumption
Step 2. Decay of the eigenvalues.

Recall that the sequence {o}4>1 satisfies Assumption |3|at level s. From Assumption (a) (for
example by adapting the proof of Lemma C.1 in |Ghorbani et al.| (2021) to the hypercube), there
exists C' > 0 such that

hq(1) = lloem gl on = RV (1) + hE (1) = llogllie g0y + logl122(20) < C,

and we deduce that xg,z, ng’g, Wg,e = O4(B(2%4)~"). Using that B(2% /) = (), we deduce
that for any fixed /, X; o /ig_ o 7r§7 , = O4(q~"). Furthermore, from Assumptlon(c), we have for
k=0,...,s+1, /

’

Ngi = B2%.0 = ) Py-koyllFe o) = Oula™ 1),
K2 gk = B(2% 0= K) " Pysoy B2 on = Ogla™ ),
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By Eq. l| and the definition of 7r > we have w2 Od(q_sl_l) for any k < s/, which verifies

Eq. @5) in Assumption [I]
Furthermore, by Assumption(b), using that X2, = B(27; k) ™! |[Prog||32( ga) and €2, > X2,

a,q—k =

we get )
— —s+
krgsl 1£q”C = 2(q ),
and 2 2 1 2 ¢
q,s Qq(qis)v Eq,s-‘,—l = Qq(q737 )7 Eq,f’ - Qq(qi )
In particular, this implies that ||O'eﬂf’d’>5||%2(gq) > ||Ps aqH%Q(Qq) = Q,(1). O

Lemma 1. Let ¢ be an integer such that 0 < £ < q. Consider the following Gegenbauer polynomial
defined on the g-dimensional hypercube (see Section|D)): for x,y € 29,

Do) = gy L Vs@Yslw)

SClql,|S|=¢

where we recall the definition of the homogeneous polynomial Ys(x) = % = [L;cg wi We have

QY (2, y)(@,y)/q = cz@ ((, >>+—Q@+l<< ),

with the convention Q(_Q) = Qfﬂgl =0.

Proof of Lemmall] Consider 1 < ¢ < g — 1. We have
(@) __1 . .
Q' ((z,y)) (@, y)/q = W Z Z Ys(@)x; - Ys(y)yi-

Sclql,|S|=¢i€lq]
We have Ys(x)z; = Yoy (x) if i € S, and Ys(z)z; = Yg\ (53 () if i € S. Hence, the above sum
contains sets of size £ — 1 and ¢ + 1. For each set S C [¢] with |S| = ¢ — 1, there ¢ + 1 — £ sets
|S| = ¢, such that by removing one element we can obtain S. For each set S C [q] with |S| = £ +1,
there £ 4 1 sets |S| = £, such that by adding one element we can obtain S.

We deduce that
(2, y) . y) /g
SIS Y M@t S Ve

SClq],|S|=¢—1 SClql,|S|=0+1

Using B(29; () = (1), we obtain

QY ((z,y))(z, y>/q:@<q> ((z, >>+—Q§‘£1<< y)).

The cases { = 0 and ¢ = g are stralghtforward. O

C.4 PROOF OF THEOREM[7]

Let {d(q)},>1 be a sequence of integers with 2¢ < d(q) < ¢'/° for some § > 0. We will denote
d = d(q) for simplicity. Consider & ~ Unif(2%), dg*~'*% < n < dg*~° for some § > 0 and a
sequence of inner-product kernels {h,},>1 that satisfies Assumption [1|at level s. We consider the
vanilla one-layer convolutional kernel

d
1
HA (g, y) QZ (@) Yr)) /)

Theorem I is a consequence of Theorem 4 in Mei et al| (2021a) where we take Xy = 24 v, =
Unif(X,) and Dy = L?(2%,Loc,) C L?(2%). The proof amounts to checking that {HCK 4 1
verifies the kernel concentration properties and eigenvalue condition (see Section 3.2 in Mei et al.
(2021a)). We borrow some of the notations introduced in|Mei et al.|(2021al) and we refer the reader
to their Section 2.1.
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Proof of Theorem[/] Step 1. Diagonalization of the kernel and choosing m = m(q).

From Proposition |1} we have the following diagonalization of HCK:

Hy(z,y) == H*(z,y) Z > Laer(S) - Ys(a@)Ys(y),

Z 0Se&

Wherer( )=dandr(S)=q+1-— (S) forS C [g] \ {0}, and we recall & = {S C [d] : |S| =
,7(S) < q}. Using that B(29;£) = O,(q"), £,.¢B(2%;¢) < hy(1) and Assumptlon we have

ngnsiza gq,l = Qq(q_s+1)v 54,5 = @lI(q )’

Sgs1 = @q(qisil% sup &g = Oq(qisi2)~
£>s+2

Further define &, = {S € & : v(S) = h} forh = ¢, ..., q. Itis easy to check that |, ;| = d(}~2)
and . .
h—2 qg—1
€l =D lEenl =d )y (e_ 2) = d(g_ 1)7
h=t h=t
and therefore |£;| = O4(d - ¢*71).

(65)

Denote {\g ; },>1 the eigenvalues {&, ,7(S)/d}¢=o,... ¢;:5c€, in nonincreasing order, and {tq ;};>1
the reordered eigenfunctions. Set m to be the number of eigenvalues such that A\, ; > ¢&;s+1/d

(recall g€ 511 = Oq(g™®)). Denote o = g€, 5+1/&,s- From the bounds on &1 and &g,
we have & = ©4(1). Denote & = g+ 1 —aand & >5 = {S € & : y(S) > a} and & <5 =
&\ &,>a. Using Eq. and that 1 < r(S5) < ¢, we have {\g;} c[m) that contains exactly the
eigenvalues associated to homogeneous polynomials of degree less or equal to s — 1 and of degree s
with S € & .5 (which corresponds to the sets .S such that 7(S) > a, i.e., {;s7(S) > ¢€q,s+1). In
particular, if o < 1, then {\g ; } jcm] contains exactly the eigenvalues associated to all homogeneous
polynomials of degree less or equal to s.

Note that we have

m <> |&] = Oy(dg"™") = Oylqg’n). (66)

Step 2. Diagonal elements of the truncated kernel.

Define the truncated kernel Hy ~, to be

Hy>m(z,y) Z Aq.i¥q.i(®)Ya,;(Y)

j>m+1
S T () Ye@ s+ D 6 T r(S) - Ye@Valw)
SE€& >4 4,5 Se&

The diagonal elements of the truncated kernel are given by: for any € 2%,

q
Hysm(z, ) = % > oS+ é > &oe > r(S) = Tr(Hasm). (67)

S€& >a l=s+1 S€eE&,
Notice that

q
h—=2\  [(q\ _ 7.
> (s ;q+1 |6eh|—d;q+1 h)(EQ)—d@—dB(e@,fx

Seé&y
q q- 2
Z r(S) <a Z |Es,n] < d062< 2> = Oa(dg®?).
S€& >a h=g+1—a S

Hence using that £, = O4(¢—°), we have

q
To(Hiom) = 55 30 r(8) 4 D2 GuB(250) = hyss1) + 0y (1)

Se& >a t=s+1
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where hg s is the inner-product kernel with the (s + 1)-first Gegenbauer coefficients set to zero,
ie., hg>s((u,v)/q) = > ., £q7gB(°@q;£)Qéq)(<’u,,’U>), for any u,v € 29. From Assumption
[1]at level s, we have Q4(1) = &0 B(29;0') < hq>s(1) < he(1) = O4(1). Hence, Tr(Hy >m) =
Oa(1).

Similarly,

2 q
Eo [Hysm(z, 2')?] = 52,5 3 T(S)2+$ > & r(8)? = Tr(Hy . p)- (68)

SEE >a (=s+1  Se&

Step 3. Choosing the sequence u = u(d).
Let s’ be chosen as in Assumption[l} i.e., such that £, ¢ B(27;s") = Q,(1). We have

gq,s’ = Gq(q_S/)> sup éq,f = Oq(q_S/_l)' (69)
£>5'+1

Set u = u(d) to be the number of eigenvalues such that \, ; > ¢&,«/d = ©,(¢">+'/d). From
Egs. and , and recalling that 1 < r(S5) < ¢, we deduce that {\g;} e[, must contain all
the eigenvalues associated to homogeneous polynomials of degree less or equal to ¢ and does not
contain any of the eigenvalues associated to homogeneous polynomials of degree larger or equal to

s,

‘We have
Tr(Hy sy) = Z Agj < Tr(Hg sm) = O4(1),
i>u
Tr(Hg,>u) > % D r(8) = & B(2%5)) = Q,(1).

Se&y
Similarly, we have
Te(HS ) = D A2, < Tr(Hosu) - 50D Ay = 07 €00 Te(Eyom) = Og(d™ g™ +),
ji>m

j>u
2

T 5,) = 2550 D7 r(S) 2 d7'6 o B(2%) = Qu(d g %),
Se&y

Finally, ,
Hjoy) = Y N <d2¢°€ JTr(Hysm) = Og(d ™3~ ).

ji>u

Step 4. Checking the kernel concentration property at level {(n(q), m(q))}4>1-

Let us check the kernel concentration property at level (n,m) with the sequence of integers
{u(q)}¢>1 defined in the previous step (Assumption 4 in Mei et al.|(2021a)):

(a) (Hypercontractivity of finite eigenspaces) The subspace spanned by the top eigenvectors
{%q.5}jeu) is contained in the subspace of polynomials of degree less or equal to s" — 1
on the hypercube. The hypercontractivity of this subspace is a consequence of a classical
result due to Beckner, Bonami and Gross (see Lemmad]in Section D).

(b) (Properly decaying eigenvalues.) From step 3 and recalling thats’ > 1/6 + 2s + 3 where
§ > 0 verifies ¢ > d°, we have

Tr(Ha,>u)? '—1 2 2 ’
ST = (1) - dgt T = Qu(1) - dPgBTE > 2t
TI'(HZ >u) Q( ) q q( ) q Zn )
for §’ > 0 sufficiently small. Similarly,
TI'(H% > ) ’ ’
—— 2 0 (1)-dg® 2 = Qu(1) - d?¢* > n?P0
Tr(Hili >u) Q( ) q q( ) qg - =Zn )

for ' > 0 chosen sufficiently small.
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(c) (Concentration of the diagonal elements of the kernel) From Eqs. (67) and (68), the diago-
nal elements of the kernel are constant and the assumption is automatically verified.

Step 5. Checking the eigenvalue condition at level {(n(q), m(q))},>1-

Let us now check the eigenvalue condition at level {(n(q), m(¢))}4>1 which corresponds to As-
sumption 5 inMei et al.|(2021a)):

(a) First notice that

> r(8)?=d Eq: (q+1—h)2(}::11> >d qu (q+1—h)2<’;:11>

SE£5+1 h=s+1 h=s+1

La/2] 70
dg® <~ (h—=1\ _ dg* (1g/2] 2
> = == =Q,(1) - dg*™.
=4 Z s—1 4 s a(1) - dq
h=s+1
Hence ) ) )
Tr(H r(S
(2 d,>m) > ZSEES+21 id,s+1 ( ) _ Qq(l) ) dqs > ’I’Ll+57
Admt1 &G et
for 6 > 0 sufficiently small. Similarly,
Tr(Hg >m d
I‘( d,> ) _ Qq(l) . _ Qd(l) . dqs > n1+5'
)\d,m+1 qu,erl
(b) This is a direct consequence of Eq. (66).
We can therefore apply Theorem 4 in|Mei et al.|(2021a), which concludes the proof. O

C.5 PROOF OF THEOREM[§]

Consider qS*H‘s <n< qs"‘ for some ¢ > 0 and a sequence of inner-product kernels {hq}qzl that
satisfies Assumptions[I]and[2)at level s. We consider the one-layer convolutional kernel with global

average pooling
d

1
Hes"(@,y) = = > ho({@w: yow)/a).
k,k'=1

Again, the proof of Theorem [§] will amount to checking that the conditions of Theorem 4 in [Mei
et al.|(2021a) hold.

For the sake of simplicity, we will further assume that {;, s > &, s4+1, which simplifies some of
the computation. This condition can be removed as in Theorem{7] by considering the set Cs <5 =
{S € Cs : v(S) < a} and showing that the extra terms corresponding to these eigenfunctions are
negligible.

Proof of Theorem[8| Step 1. Diagonalization of the kernel and choosing m = m(g).

From Proposition 2f with w = d, we have the following diagonalization of H g} a7

Hy(x,y) = Hep'(m,y) = Y, Y &qer(S) - ¢s(@)vs(v),

¢=0 SeCy
where we recall ¢¥g(x) = ﬁ Zke[d] Yi+s(x) and that C; is the quotient space of & with the
translation equivalence relation. It is easy to check that |C;| = (Z:})

From Assumption I} we get the same bounds on the Gegenbauer coefficients &, ¢ as Eq. in the
proof of Theorem [7| Denote {)\, ;};>1 the eigenvalues {&; ¢(S)}i=0,....¢;5¢¢, in nonincreasing
order, and {1/ ;};>1 the reordered eigenfunctions. Set m to be the number of eigenvalues such that
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Agj > G€q st (recall g€; <11 = O4(¢™®)). From the bounds and our simplifying assump-
tion that {;s > ¢€gs+1, We have {\g;};e[m) that contains exactly the eigenvalues associated to
homogeneous polynomials of degree less or equal to s.

Note that we have

m = "|Co| = Oy(g"") = Oylqg’n). (1)
=0

Step 2. Diagonal elements of the truncated kernel.
Define the truncated kernel Hy ~, to be

Hd >m :E y Z /\dj¢d] T/)d,J Z Z fq,[’“ )wS( )

j>m+1 ¢=s+1SeC,

The diagonal elements of the truncated kernel are given by: for any = € 2%,

Hyom(z, ) Z £,.0B(2907 (@),
l=s+1

Y0@) = g X S

SeCy

where

Notice that we have now
I h—2 q

5 1= S -n(122) - (1) e

SeCy h=¢{
Therefore E,, [qu)(m)] =1and

q
Tr(Hasm) = Eo[Haom(@, @)] = Y &B(2%0) = hy 5s(1).
l=s+1

From Proposition [7| with £ = s, we have

?’up Hd,>m(w7i7 xz) - Ew[Hd,>m(wv :B)]‘ = Tr(Hd.,>m) : Od,P(l)v

i€ [n] (72)
bu[P] Eo [Ha,>m(@i, @)% — Eq o [Hd,>m($7w’)2]‘ = Tr(H3 »m) - 0a8(1)-
i€n

Step 3. Choosing the sequence v = u(d).

Let s’ be chosen as in Assumption [} Similarly to step 3 in the proof of Theorem take u = u(d)
to be the number of eigenvalues such that A\, ; > ¢&,.¢. We get

Tr(Hg>u) = O4(1),
Tr(H7~.,) = Og(g =),
Tr(Hj~.,) = 2(a7"),

Te(HY »,) = Oq(q~* ™)

Step 4. Checking the kernel concentration property at level {(n(q), m(q))}¢>1-

The kernel concentration property at level (n, m) hold with the sequence {u(q)},>1 as defined
in step 3. The hypercontractivity of finite eigenspaces and the properly decaying eigenvalues are
obtained as in step 4 of the proof of Theorem 7] while the concentration of the diagonal elements of
the kernel is given by Eq. (72).

Step 5. Checking the eigenvalue condition at level {(n(g), m(q))}¢>1.
This is obtained similarly as in step 5 of the proof of Theorem
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C.6 AUXILIARY RESULTS

Proposition 7. Let s > 1 be a fixed integer. Assume that the sequence of inner-product kernels
{hg}¢>1 satisfies Assumptionsand at level s. Define H7® : 2% x 2% — R as the convolutional
kernel with global average pooling

1
H;S(:B, y) = a Z hq,>5(<w(k‘)a y(k/)>/q)7
k,k'€[d]
where hq - is the inner-product kernel where the s + 1 first Gegenbauer coefficients are set to 0.

Then for n. = Oq(qP) for some fixed p, letting (;);c() ~ Unif(2), we have

sup | H7* (@i, @:) — Eo[H7* (. 2)]| = EalH;*(@,@)] - 04z(1), (73)
i€[n]
Sup [Ea [H7*(1,2)%] — Eo 0 [H7 *(2,2)%]| = Bowr [H7*(@,@')?] - 00(1).  (74)
i€[n]

Proof of Proposition[]] Step 1. Bounding sup; ¢, |H;*(xi, z;) — Ez[H7*(x, x)]|.

Recall that we defined
1

(a9) _ 2
T, (x) = B(29:0) S%C:ZT(SWS(QJ) :

Following the same proof as Proposition 8 in [Mei et al.| (2021b), notice that for the integer v in
Assumption 2} by Lemma 2] stated below, we have

sup |H7* (e 20) ~ Bl H7%(@.2)]|
i€n

< sup [H7* @ @i) ~BalH7 (2, 2)]| + D2 &eB(27%0)  max |1} (@)~ Ba[T(" @)

1€[n] ey i€[n]
= sup |H;"(z;,x;) — Em[H;“(a:,a:)}‘ + ( Z fq’gB(Qq;£)> -ogq,p(1).
i€[n] f=st1
By Assumption there exists C' > 0 such that for any v € [—1, 1],
- 1 T T v
[faiso () = 32 L7 < Ol (75)

r=0

and \hf;)>1,(0)| < Cq~W+1=7)/2 for < v. Moreover, by Hanson-Wright inequality as in Lemma

using n = Oy (¢”) (at most polynomial in ¢) and a union bound, we have for any 1 > 0,

Sup sup sup
1<r<v+1 k#l i€[n]

(=) (k) » (wi)u)V’ g =0, 5(1),

swp e [|(w s, 2)' || a7 = 0q (1)
1<r<v+1 ksl

Therefore, injecting these bounds in Eq. (75), we get

sup sup |hg,>o ({(@i) k), (wi)(l)>/q)‘ = O, p(q~HD/2Hn),
k#l i€[n]
il;lz)E th,>u(<m(k),w(l)>/q)u = O, p(q~@+V/24m),
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Hence, we deduce that

sup |H7"(zi, ;) — Ex[H] " (x, :r,)]‘
i€[n]
1
=7 Z sup ‘hq7>v(<(mi)(k)a (®i)1))/2) — Exlhg,>o((xr), @ l)>/Q)]’
kle[d] €M
< dsup { sup [ > ((@0)a: (@)10)/0)| + B [[hasol(@ier,20) /0| }
1e|n

= Oq,p(dq_(”“)/%") — Od,]P’(l)-

Furthermore, recall that by Assumption we have E[H (z,z)] > &, B(2%5s) = Q,(1). We
get

sup
i€[n]

which concludes the proof of the first bound.

H3 (s, 1) — Bo[H7" (,2))| = B[H; (2,2)] - 042(1),

Step 2. Bounding SUPje[n)

Eo [H7*(@i,2')?] = Baor [H7* (2, 2')?]|.
Notice that we can write,
q
Eo[H7(z,@)Y) = Y & Re-E" (@),
l=s+1
where we denoted Ry = Y g0, 7(5)? and
—(d 1
=0 (@) = - > (9 us(@)
¢ SeCy
Then, by Lemma[2} we get for any u > s,

Sup | B [Hy* (@i, @')?] = B [H7*(,')?)
i€[n]

< sup |Eg [H7"(xi, )% — Egw [HT"( ‘ Z 5 R max d)(wi) —Em[Egd)(:c)]
i€[n] t=s+1

= sup |Eu/[H7"(xi, )% — Eq o [H] " (z ‘ (Z gqém) oa,p(1).
i€[n] l=s+1

We conclude following the same argument as in the proof of Proposition 9inMei et al.|(2021b). O

Lemma 2. Let ¢ > 2 be an integer. Define T( : 249 S Rand 2, : 24 — R to be
1
T (@) = s r(S)ws(w)Q, (76)
O B 2
_ 1
= (@) = = 3 r(S)2ws(x)?, (77)
- SeCy

where Ry =Y gc0, 7(5)%.

Let n < gP for some fixed p. Then, for (a:i)ie[n]i'ﬁbd'Unif(,@d), we have

max [ T("(w,) ~ Ea[1}" (@)]] = 0uz(1). 78)
?61[85]( EEd) (z;) — Eg [Eéd) (m)]‘ = oqp(1), (79)

where Eg [ng) (0)] = E, [E§d)(x)] =1
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Proof of Lemma([2} Step 1. Bounding max; ¢y ng) (z;) —Ep [va,d)(a:)} ‘

Define Fy : 2% — Rto be

Fi(e) = (@) ~ BT @) = 75575 2 7(8) ¥ Vaus@is@. g
7 sec, i#j€ld)

Notice that Fy(x) is a degree 2¢ polynomial and therefore satisfies the hypercontractivity property.
For any m > 1, there exists C' > 0 such that

Eo[Fo(x)?™]Y/ ™) < €. Eg[Fo(x)?)*/2. (81)
Let us bound the right hand side. We have
1
2] _
E[Fy(z)?] = EBDI? > r(S)r(s) Y. w(Bi, By, Bs, By),

S,S"€C, 4,34 ,5'€[d]

where B1 =i+ S5,By =5+ 5,B3 =14+ 5" and By = j' + S’, and we denoted
W(Bla B27 B3a B4) = Eg |:YBl (w)YBQ (w)YB3 ($)YB4 ((IJ)] 131¢32133¢B4.

Notice that w(B1, B2, B3, By) = 1 if BiABy; = B3AB, (the symmetric difference) and 0 oth-
erwise. In other words, every elements in By U By U Bs U By appears exactly in 2 or 4 of these
sets.

Letus fix ¢ € [d] and S € Cy, and bound

> r(S) > w(Bi, By, Bs, By). (82)

5'€Cq,0 3, #5’ €ld]

Denote |BiABy| = 2k with 1 < k < £. In order for w(By, Ba, B3, By) = 1, B3 must contain
exactly k points in By A By while By must contain the remaining & points.

e Case k < (. There are at most £2 ways of choosing j such that B; N By # (). Fixing j
(i.e., By and Bs) and 5, then there are 2k¢ ways of choosing i’ and 2k¢ ways of choosing
j' such that B3 N (B1AB5) # () and By N (B1ABs) # 0. Hence the contribution of these
terms in Eq. (82)) is upper bounded by

l—1
Dr(S)Y (260 <4 N r(S) =407 B(29% ). (83)
S’eCy k=1 S’eCy

e Case k = (. There are at most d ways of choosing j. Furthermore, for j fixed, there

are at most (2;) ways of choosing B3 and B, such that B3 U By = By U By (note that

B1N By = () and therefore B3N B4 = (). Hence the contribution of these terms in Eq.
is upper bounded by

2¢
Z T(S/) “d- 1BsuBs=B,UB, < d(]<€ )7 (34)

S7€Cy,i’,j'€[d]

where we used that (S") < q.

Combining Egs. and and using there are dB(297;¢) choices for i and S, we get

1 . 20
< 3 oL ()

=04(1) - [d™" +qB(2%6) 7' = O4(a7 ),
where we used that £ > 2 and B(2%;¢) = Q,(¢").
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Using Eq. (8T), we deduce

1/(2m) 1/(2m)
E[m;{n}c |Fg(:ci)|} < E[mz[u]{Fg(miVm} < n1/<2m>1E[Fg(mi)2m}
1€[n i€n
< C’nl/(zm)E[Fg(:l?)Q}l/z _ nl/m . Oq(q71/2).

Using Markov’s inequality and taking m sufficiently small yield Eq. (78).
Step 2. Bounding max;c|, E&d) (x;) — Eg [Egd) ()] ’
The second bound (79) is obtained very similarly. Define G, : 2¢ — R to be

—(d —(d 1

Gulw) =5 (@) ~ Bo[=)" (@) = = D" () Y Yies@Vjis(@). (89
t sec, ijeld]
Then, we have
1
2] _ 2 2
E[Gy(x)?] = ET > r(S)*r(9) . Z w(By, By, Bs, By).
S,S7€Cy i,4/,7,7' €[d]
Further notice that following the same computation as in Eq. (70), we get
! h—2
- 2 _ _7\2 _ 1t
D SECE SRS IE (g B
Sec, h=¢

Hence, the same computation as for Fy in step 1 yields

E[Gy(x)?] < L door(9)? [4@71?,@ + dg? 26 ]

~ d’R? l
i€[d],S€eC,
=0,(1) - [dil + quz_l} = Oq(q71)7

where we used that £ > 2. We deduce Eq. similarly to step 1. O

Lemma 3 (Hanson-Wright inequality). There exists a universal constant ¢ > 0, such that for any
t>0and ¢*/* > d > q € N for some § > 0, when x € Unif(2%), we have

P{ sup [{zm),zu)l/¢>t] < 2q2/6 exp{—cq - min(tQ,t)},
k#le[d]

where we recall that x () = (Tk, ..., Thiqg—1)-

Proof of Lemma[3| For any k # [, denote A = (aij)me[d] the matrix with a4y 144 = 1 for
i =0,...,9 — 1and a;; = 0 otherwise, such that (x, Ax) = (x),)). Note that we have
lAlFr = V& [|Allop < 1 and E[(z, Ax)] = 0. By Hanson-Wright inequality of vectors with
independent sub-Gaussian entries (for example, see Theorem 1.1 in|Rudelson & Vershynin|(2013)),
we have

P (|(x, Az)|/q > 1) < 2exp{—cq - min(?, 1)}.
Taking the union bound over k # [ concludes the proof. O
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D TECHNICAL BACKGROUND OF FUNCTION SPACES ON THE HYPERCUBE

Fourier analysis on the hypercube is a well studied subject |(O’Donnell| (2014). The purpose of this
section is to introduce some notations and objects that are useful in the statement and proofs in the
main text.

D.1 FOURIER BASIS

Denote 29 = {—1, +1} the hypercube in d dimension, and 74 to the uniform probability measure
on 27, All the functions will be assumed to be elements of L?(2¢ ;) (which contains all the

bounded functions f : 2¢ — R), with scalar product and norm denoted as (-, )72 and || - || z2:
(f,9)1e = /f yrlde) = o 3 flwlg
ze2d

Notice that L?(29,7,) is a 2" dimensional linear space. By analogy with the spherical case we
decompose L?(24,74) as a direct sum of d + 1 linear spaces obtained from polynomials of degree

(=0,...,d
Q Td @Vdg

For each ¢ € {0,...,d}, consider the Fourier basis {}/é(’(é)}sg[d]7‘5‘:g of degree ¢, where for a set
S C [d], the basis is given by
Y(d) S — H ;.

i€S

It is easy to verify that (notice that z¥ = x; if k is odd and z¥ = 1 if k is even)
<Yz(ds)vyk(ds)/> = E2% x 2% = 6¢ 4055/

Hence {Yf(‘é) }scd),|s|=¢ form an orthonormal basis of V¢ and

dim(Vy,) = B(2%¢) = (j)

We will omit the superscript (d) in YZ(,? when clear from the context and write Yg := Ye(,?-

We denote by P, the orthogonal projections to V, in L?(2%). This can be written in terms of the
Fourier basis as

Pof@)= D ([, Ys)2Ys(x). (86)

SCld],|S|=¢

We also define P<g = 37y _ P, Pse =I1—-Pey =300, Proand Poy = P<y_1, P5y = Py

D.2 HYPERCUBIC GEGENBAUER

We consider the following family of polynomials {di) }o=o,... q that we will call hypercubic Gegen-
bauer, or Gegenbauer on the d-dimensional hypercube, defined as

@ 1 @)y (@
(tz.9) = 57z g Sqd]zwn,s ()Y, 5 (¥)- (87)

Notice that the right hand side only depends on (x,y) and therefore these polynomials are well
defined. In particular,

@1 Q" (L)1 = Frgagon
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Hence {Q\"}/—o..... form an orthogonal basis of L2({—~d, —d + 2,...,d — 2,d}, 7}) where 7} is
the distribution of (1, z) when & ~ 74, i.e., 7} ~ 2Bin(d, 1/2) — d/2.
It is easy to check more generally that

(@4 (@ ). Q" (. M = gy @el(@ 9

Furthermore, Eq. imply that —up to a constant— Q,(Cd) ({x,vy)) is a representation of the pro-
jector onto the subspace of degree-k polynomials

(Pef)(a) = B2 K) /J Q) () raldy) (58)
For a function o(-/vd) € L*({—d,—d + 2,. — 2,d},7;), denote its hypercubic Gegenbauer
coefficients &4 1 (o) to be
(o) = | ol VAR ()7} (o) (59)
{~d,~d+2,...,d—2,d}

To any inner-product kernel Hy(x1,x2) = hq({(z1,x2)/d), with hd ‘/\f € L*({-d,—d +
.,d—2,d},7}), we can associate a self adjoint operator 7 : ) = L*(27) via

Haf(x) = L ha(@, 21)/d) f(21) Ta(dey) (90)

By permutation invariance, the space V}, of homogeneous polynomials of degree k is an eigenspace
of #;, and we will denote the corresponding eigenvalue by &4 1. (hq). In other words S f(x) =
>t _o&ak(ha)Prf. The eigenvalues can be computed via

Sd,k(hd):/ ha(z/d)Q\™ (x)7} (dz) . )
{—d,—d+2,...,d—2,d}

D.3 HERMITE POLYNOMIALS

The Hermite polynomials {Hey}r>o form an orthogonal basis of L?(R,~), where y(dz) =

e 2dg /+/2m is the standard Gaussian measure, and Hey, has degree k. We will follow the classi-
cal normalization (here and below, expectation is with respect to G ~ N(0, 1)):

E{Hej(G) Hek(G)} =kl . 92)
As a consequence, for any function g € L?(R, ), we have the decomposition
0@ =3 "D e,w), ulg) = E{o(6) He(O)) ©3)
k=0 ’

The Hermite polynomials can be obtained as high-dimensional limits of the Gegenbauer polyno-

mials introduced in the previous section. Indeed, the Gegenbauer polynomials (up to a /d scaling
in domain) are constructed by Gram-Schmidt orthogonalization of the monomials {z*};>¢ with
respect to the measure 7, wh1le Hermite polynomial are obtained by Gram-Schmidt orthogonaliza-
tion with respect to . Since 7; = 7 (here = denotes weak convergence), it is immediate to show
that, for any fixed integer &,

lim Coeff Q)" (Vi) B(2:k)"/?} = Coeft { (k,;l/z Hey, (z )} . (94)

Here and below, for P a polynomial, Coeff{P(x)} is the vector of the coefficients of P. As a
consequence, for any fixed integer k, we have

pi(0) = lim €q4(0) (B(2% k)2, (95)

where 41 (o) and &, 1, (o) are given in Eq. and (89).
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D.4 HYPERCONTRACTIVITY OF UNIFORM DISTRIBUTIONS ON THE HYPERCUBE

By Holder’s inequality, we have || f||z» < ||f||r« for any f and any p < ¢. The reverse inequality
does not hold in general, even up to a constant. However, for some measures, the reverse inequality
will hold for some sufficiently nice functions. These measures satisfy the celebrated hypercontrac-
tivity properties (Gross| (1975)); Bonami| (1970); Beckner| (1975} |1992).

Lemma 4 (Hypercube hypercontractivity Beckner, (1975)). For any ¢ = {0,...,d} and f; €
L2(2%) to be a degree { polynomial, then for any integer q > 2, we have

il a2y < (a=1)° - |1 fallZ2(0a)-
(
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