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Abstract: Robotic insertion tasks remain challenging due to uncertainties in per-
ception and the need for precise control, particularly in unstructured environments.
While humans seamlessly combine vision and touch for such tasks, effectively in-
tegrating these modalities in robotic systems is still an open problem. Our work
presents an extensive analysis of the interplay between visual and tactile feedback
during dexterous insertion tasks, showing that tactile sensing can greatly enhance
success rates on challenging insertions with tight tolerances and varied hole ori-
entations that vision alone cannot solve. These findings provide valuable insights
for designing more effective multi-modal robotic control systems and highlight
the critical role of tactile feedback in contact-rich manipulation tasks.
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1 Introduction

Figure 1: Dexterous insertion platform using vi-
sion and touch. ovis shows the visual observation
and otac the tactile observation.

Humans solve insertion tasks, like plugging a
plug into a socket, without much effort on a
daily basis. Yet, in robotics insertion in an un-
structured environment remains an open prob-
lem. The crucial challenge in insertion tasks
or contact-rich manipulation tasks, in general,
is uncertainty. The robot’s perception system is
prone to inaccuracy, so it usually does not know
the plug’s and socket’s locations exactly. For
successful insertion, however, precision is key
as error margins are usually small.

When performing insertion tasks, humans rely
on a combination of vision, touch, and compli-
ance to achieve the necessary precision for suc-
cessful insertion. With the recent rise of tac-
tile sensors [1, 2, 3, 4, 5], both these sensing
modalities are now available to robots. However, implementing a perception and control system that
integrates both modalities and effectively deals with the remaining uncertainty remains challenging.

Robotic dexterous manipulation has been an active field of research for a long time. Many ap-
proaches rely on vision as their sole sensing modality [6, 7, 8]. Andrychowicz et al. [6] learn to
rotate a cube in-hand into arbitrary target orientations using a combination of a vision-based pose
estimation network and Proximal Policy Optimization [9]. Instead of simulation, Pinto and Gupta
[7], Levine et al. [8] rely on large, autonomously collected datasets to learn grasping of various ob-
jects. While these works highlight the importance of vision for robotic manipulation tasks, vision
alone is often insufficient, as it provides no information on forces acting at the contact points and
suffers from occlusion by the robot’s end-effector.
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Prior work has utilized tactile sensing for dexterous manipulation [10, 11, 12, 13, 14]. Many recent
approaches rely on vision-based tactile sensors [11, 12, 14], as they provide a rich, high-resolution
representation of the contact patch while also allowing force estimation [15]. A challenge is that
tactile data is often difficult to interpret, making designing control loops with tactile sensors non-
trivial. To address this, many prior works choose a data-driven approach to extract interpretable
features from tactile data [12] or directly map tactile data to actions via end-to-end learning [10, 14].

Both tactile and vision sensors provide limited information about the environment. While tactile
sensors can only provide information about objects the agent is in contact with, vision sensors suffer
from occlusion and cannot measure contact forces. By combining both sources of information, one
sensor can compensate for the other’s shortcomings. The combination of vision and touch has been
explored for 6D-pose estimation [16], grasping [17, 18], object manipulation, and insertion [19, 20].
Like our work, Lee et al. [19] also learns peg insertion with reinforcement learning from vision and
touch. However, they first learn a representation of the multi-modal input with a Variational Auto
Encoder (VAE) [21] and then optimize the policy on the representation. While such a scheme can
simplify the policy learning algorithm, it also means that the representation is not task-specific and
potentially contains unnecessary information.

In this work, we explore the role of tactile sensing in improving robotic insertion tasks and analyze
the interplay between visual and tactile inputs during complex manipulations. We adapt the plat-
form proposed in [22] to include visual observations from an external camera and learn a policy
using Dreamer-v3 [23]. Dreamer-v3 is an actor-critic algorithm that learns latent representations of
sensory inputs to inform its policy. Each input modality — visual and tactile — is concatenated and
encoded into an embedding, which is fed into a recurrent state-space model that captures temporal
dynamics essential for continuous control. By jointly learning input representations and the policy,
Dreamer-v3 effectively aligns the learning process of sensory inputs with action optimization. The
latent representation is learned via a VAE, enabling the model to generalize across complex manip-
ulative tasks and adapt to variations in input signals. This approach allows us to investigate how
visual and tactile cues can complement each other in the context of precise and adaptive control.

2 Autonomously Learning Visual-Tactile Peg Insertion in the Real World

Preliminaries. We consider solving a challenging insertion task from visual and tactile feedback,
which will be formulated as an infinite horizon finite-time partially observable Markov decision
process (POMDP). We denote observations by o ∈ O, the (hidden) state by h ∈ H, actions by
a ∈ A, the reward by r ∈ R, and the discount factor by γ ∈ [0, 1]. To solve the decision-making
problem, we leverage Dreamer [24], which learns a policy π(at|ht) conditioned on the latent state
representation. To deal with the partial observability, Dreamer learns a recurrent state-space model
p(ht|ht−1,at−1,ot) [25]. To see the direct influence of the different input modalities on the action
predictions, we rewrite the conditional dependence of the policy as π(at|ht−1,at−1,ot).

Hardware setup. Our setup is inspired by the work of [22] and extends the authors’ setup. Fig-
ure 1 show our full task setup, which requires inserting a peg into a hole in the base plate. The base
plate is modular and the holes can be swapped for different tolerances t with respect to the peg. The
peg is being held by a parallel gripper equipped with Gelsight sensors [2] at the finger tips. We
add an external Intel RealSense camera [26] for an external view of the scene. The observations
are the downsampled RGB images of the scene camera ovis ∈ R64×64×3 and the tactile sensor
otac ∈ R64×64×3 at 25Hz. The policy outputs the relative new positions a = [∆x,∆y,∆z]⊺ of the
end-effector at 10Hz. The target positions are passed to the franky control library [27], which inte-
grates ruckig [28] for smooth motion planning and leverages Franka’s internal Cartesian impedance
controller for execution. To ensure safe exploration, the workspace W is restricted to the area
around the hole. The peg’s pose is continuously tracked using OptiTrack [29], but this data is used
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Figure 2: (left) Performances of the visual-only (v) and the visual-tactile (vt) policies trained
on 2mm tolerance insertion hole and 0.5mm respectively. (middle) Final performance is
reported as the success rate (middle) and the mean rollout length of successful insertions
(right) over 20 trials across four varying insertion holes, with increasing evaluation task dif-
ficulty from left to right due to decreasing tolerances and increasing hole angles (tol, α) ∈
{(2, 0), (1, 4), (0.5, 0), (0.5, 4)}[mm, ◦].

exclusively for evaluation and not provided as input to the policy. The reward function

r = 5 · (0.1− |pg − pe|)︸ ︷︷ ︸
rd: proximity to the goal

+500 · 1{G}(pg)︸ ︷︷ ︸
rg : terminal reward upon reaching goal

−50 · 1{R}(pr)︸ ︷︷ ︸
rr: peg rotational penalty

+10−3 · |a|︸ ︷︷ ︸
ra: action penalty

is comprised of four components. (i) rd proximity to the goal, (ii) rg a terminal reward upon reaching
the goal G = {x ∈ R3 : |pg − x| < (5, 5, 5)[mm]}, (iii) rr a penalty to prohibit large rotational
deviations R = {θ | |θ−pr| > 10◦} of the end-effector rotation pr, and (iv) ra an action penalty to
encourage smooth motions. For more details of the base-setup, we refer to the previous work [22].

3 Experimental Results

We present two studies, which are designed to showcase the importance of touch for dexterous
insertion tasks. The first involves training vision-based policies with and without the added sense of
touch. The second analyzes the relative importance of each modality for action prediction.

The impact of tactile feedback during learning. We train four policies – two based solely on
vision and the other two combining vision with tactile feedback – for insertion tasks involving dif-
ferent tolerances t between the insertion hole and the peg. The first set of experiments is performed
for tol = 2mm over three seeds, where minimal jamming of the peg is expected. The second con-
figuration uses a hole with tol = 0.5mm, which is anticipated to result in considerable jamming
during insertion and increased interaction forces between the gripper and the peg. We report the
training curves and the final performance of the respective models solving separate evaluation tasks
in Figure 2. In the training phase, all policies, except the vision-only policy trained on the 0.5mm
tolerance, successfully (r > 500) completed the peg insertion after 100k environment steps. During
the evaluation, the 2mm and 1mm configurations could be solved reliably by all policies within
2.5 to 4 s. In the more challenging 0.5mm tolerance tasks, both the vision-only and vision-tactile
policies exhibit a significant drop in success rates, except for the vision-tactile policy trained on the
0.5mm configuration, which maintains strong performance. The increased episode length for suc-
cessful insertions is directly related to more frequent jamming and tilting, highlighting the vt 0.5

policy’s ability to effectively handle these challenges.

Explaining the role of touch during an episode. To evaluate the influence of the two different
observation modalities, we leverage Shapley value [30] analysis. Shapley values provide a system-
atic way to assess the influence of different input components of x on the output of a model f(x). In
Dreamer, the input x for the action prediction at = f(x) consists of the previous hidden state ht−1,
the visual ovis

t−1 and tactile information otac
t−1, and the previous action at−1. To evaluate the indi-

vidual impact of each feature, we mask them by substituting their values with a default placeholder.
This results in a total of 2N , N = 4 distinct features, each identified by an integer label, allowing
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Figure 3: Shapley value analysis over a single exemplary trajectory of the vt 0.5 experiment on
the most challenging hole (tol = 0.5mm, α = 4◦). We report the individual contributions of the
four input modalities on the action prediction in x-, y-, and z-direction.

us to systematically analyze their respective contributions to the model’s performance. Formally,
we denote F as the set of the N different features, then the Shapley value of feature i ∈ F is the
attribution that the feature has on the outcome of the model

ϕi(x) = |F|−1
∑

S⊂F\{i}
(|F|−1

|S|
) (

f(xS∪{i} − f(x))
)
. (1)

Calculating Shapley values often becomes intractable due to the exponential scaling with 2N [31].
However, in our case, with only 16 possibilities, we compute the Shapley values of the individ-
ual contributions exactly shown in Figure 3. Along the x-axis, the model predominantly relies on
its hidden state, with minimal influence from vision and tactile inputs. This may be attributed to
the camera’s orientation, which is primarily aligned along the x-direction, making depth perception
more challenging. In contrast, along the y-axis, visual observations contribute most to action pre-
diction, suggesting that visual feedback plays a key role in aligning the peg with the insertion hole.
Finally, along the z-axis, tactile feedback has the greatest influence on action prediction, likely be-
cause vertical movements of the end-effector lead to increased tilts and jams, resulting in the highest
impact on the contact forces applied between the peg and the hole.

4 Conclusion

In this work, we presented a comprehensive analysis of the interplay between visual and tactile
feedback for robotic insertion tasks. Our results demonstrate that incorporating tactile sensing can
significantly improve success rates on challenging insertions with tight tolerances (0.5mm) and var-
ied orientations (up to 4° tilted insertion hole) that vision alone struggles to solve. Through Shapley
value analysis, we revealed that different input modalities dominate action prediction along differ-
ent axes – vision primarily guides alignment in the camera plane, while tactile feedback is crucial
for controlling vertical movements where contact forces are highest. However, it is essential to
acknowledge that this analysis is confined to single trajectories and could benefit from additional
explainability studies, such as gradient-based analyses. Furthermore, categorizing trajectories into
distinct insertion stages may enhance the study’s depth and facilitate statistical evaluation.

Our results suggest that the information the agent extracts from vision is effectively complemented
by tactile sensor data. In particular, when the hole tolerances are smaller and vision alone is insuf-
ficient for robust insertion, the agent learns autonomously to rely more heavily on tactile sensing.
Hence, our work demonstrates that RL is a powerful tool for learning robust policies from multi-
modal sensor inputs.

As the vision-tactile policies manage to insert the peg successfully even for tight tolerances and
varying inclination angles, increasing the task difficulty to different objects is a logical next step. In
particular, screw and light-bulb insertion is a challenging task with many real-world applications,
which might significantly benefit from tactile feedback. A crucial future direction is optimizing
the representation learning part during policy optimization. To reduce the number of real-world
interactions required, leveraging pre-trained vision and visual-tactile models could be beneficial.
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M. Plappert, G. Powell, A. Ray, J. Schneider, S. Sidor, J. Tobin, P. Welinder, L. Weng, and
W. Zaremba. Learning dexterous in-hand manipulation. International Journal of Robotics
Research, 39(1), 2020.

[7] L. Pinto and A. Gupta. Supersizing self-supervision: Learning to grasp from 50k tries and 700
robot hours. In D. Kragic, A. Bicchi, and A. D. Luca, editors, International Conference on
Robotics and Automation, pages 3406–3413. IEEE, 2016.

[8] S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, and D. Quillen. Learning hand-eye coordination
for robotic grasping with deep learning and large-scale data collection. International Journal
of Robotics Research, 37(4-5):421–436, 2018.

[9] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

[10] L. Lach, N. Funk, R. Haschke, S. Lemaignan, H. J. Ritter, J. Peters, and G. Chalvatzaki. Placing
by touching: An empirical study on the importance of tactile sensing for precise object placing.
In International Conference on Intelligent Robots and Systems, 2023.

[11] F. R. Hogan, J. Ballester, S. Dong, and A. Rodriguez. Tactile Dexterity: Manipulation Primi-
tives with Tactile Feedback. In 2020 IEEE International Conference on Robotics and Automa-
tion (ICRA), pages 2020–31. IEEE. doi:10.1109/ICRA40945.2020.9196976.

[12] T. Kelestemur, R. Platt, and T. Padir. Tactile Pose Estimation and Policy Learning for Unknown
Object Manipulation. arXiv, Mar 2022. doi:10.48550/arXiv.2203.10685.

[13] S. Kim and A. Rodriguez. Active extrinsic contact sensing: Application to general peg-in-hole
insertion. In International Conference on Robotics and Automation, 2022.

[14] S. Dong, D. K. Jha, D. Romeres, S. Kim, D. Nikovski, and A. Rodriguez. Tactile-rl for inser-
tion: Generalization to objects of unknown geometry. In International Conference on Robotics
and Automation, 2021.

5

https://syntouchinc.com/robotics
https://syntouchinc.com/robotics
http://dx.doi.org/10.1109/ICRA40945.2020.9196976
http://dx.doi.org/10.48550/arXiv.2203.10685


[15] N. Funk, P. O. M”uller, B. Belousov, A. Savchenko, R. Findeisen, and J. Peters. High-
resolution pixelwise contact area and normal force estimation for the gelsight mini visuotactile
sensor using neural networks. In Embracing Contacts - Workshop at ICRA 2023, 2023.

[16] S. Dikhale, K. Patel, D. Dhingra, I. Naramura, A. Hayashi, S. Iba, and N. Jamali. Visuotactile
6d pose estimation of an in-hand object using vision and tactile sensor data. IEEE Robotics
and Automation Letters, 7(2):2148–2155, 2022.

[17] Y. Han, K. Yu, R. Batra, N. Boyd, C. Mehta, T. Zhao, Y. She, S. Hutchinson, and Y. Zhao.
Learning generalizable vision-tactile robotic grasping strategy for deformable objects via trans-
former. IEEE/ASME Transactions on Mechatronics, 2024.

[18] R. Calandra, A. Owens, D. Jayaraman, J. Lin, W. Yuan, J. Malik, E. H. Adelson, and S. Levine.
More than a feeling: Learning to grasp and regrasp using vision and touch. IEEE Robotics and
Automation Letters, 3(4):3300–3307, 2018.

[19] M. A. Lee, Y. Zhu, P. Zachares, M. Tan, K. Srinivasan, S. Savarese, L. Fei-Fei, A. Garg, and
J. Bohg. Making sense of vision and touch: Learning multimodal representations for contact-
rich tasks. IEEE Transactions on Robotics, 36(3):582–596, 2020.

[20] K. Yu, Y. Han, Q. Wang, V. Saxena, D. Xu, and Y. Zhao. Mimictouch: Leveraging multi-
modal human tactile demonstrations for contact-rich manipulation. In 8th Annual Conference
on Robot Learning, 2024.

[21] D. P. Kingma and M. Welling. Auto-encoding variational bayes. In International Conference
on Learning Representations, 2014.

[22] D. Palenicek, T. Gruner, T. Schneider, A. Böhm, J. Lenz, I. Pfenning, E. Krämer, and J. Pe-
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