
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DATA PRUNING BY INFORMATION MAXIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

In this paper, we present InfoMax, a novel data pruning method, also known
as coreset selection, designed to maximize the information content of selected
samples while minimizing redundancy. By doing so, InfoMax enhances the overall
informativeness of the coreset. The information of individual samples is measured
by importance scores, which capture their influence or difficulty in model learning.
To quantify redundancy, we use pairwise sample similarities, based on the premise
that similar samples contribute similarly to the learning process. We formalize
the coreset selection problem as a discrete quadratic programming (DQP) task,
with the objective of maximizing the total information content, represented as
the sum of individual sample contributions minus the redundancies introduced by
similar samples within the coreset. To ensure practical scalability, we introduce an
efficient gradient-based solver, complemented by sparsification techniques applied
to the similarity matrix and dataset partitioning strategies. This enables InfoMax
to seamlessly scale to datasets with millions of samples. Extensive experiments
demonstrate the superior performance of InfoMax in various data pruning tasks,
including image classification, vision-language pre-training, and instruction tuning
for large language models.

1 INTRODUCTION
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Figure 1: Summarization of InfoMax’s perfor-
mance in vision-language pre-training and image
classification (both at 10% selection ratio), and
instruction fine-tuning for large language mod-
els (5% selection ratio). The results show that
InfoMax has demonstrated substantial progress
in various scenarios, see Section 4 for details.

Large-scale datasets have been pivotal in the re-
cent breakthroughs in deep learning (Brown, 2020;
Kirillov et al., 2023; Radford et al., 2021; Rom-
bach et al., 2022). However, the growing size of
training data substantially increases both training
costs and storage demands. Moreover, significant
redundancies within these datasets highlight the
importance of data-pruning methods that remove
redundant samples and identify a compact yet in-
formative subset, known as a coreset, to enable
more efficient model training and data storage.

Research in this field can be broadly divided into
two categories: score-based methods (Sorscher
et al., 2022; Radford et al., 2021) and geometry-
based methods (Sener & Savarese, 2017; Ash et al.,
2020). Score-based methods focus on developing
metrics to evaluate a sample’s informativeness,
such as prediction uncertainty (Har-Peled et al.,
2007), loss value (Cody Coleman et al., 2019), or
influence score (Xia et al., 2024; Tan et al., 2023).
However, as shown in Figure 2(a), these methods
often select samples densely concentrated in re-
gions with the highest scores, leading to redundancies and failing to consider simpler samples with
lower scores, which results in biased selections. Recent work (Sorscher et al., 2022) highlights
that even simple samples are important for improving model generalization. On the other hand,
geometry-based methods aim to select a diverse subset of the data, reducing redundancies between
samples (Sener & Savarese, 2017). As illustrated in Figure 2(b), while these methods prioritize
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(a) Score-based (b) Diversity-based (c) 𝐷"-Pruning (d) InfoMax

Figure 2: The coreset distributions from InfoMax, and, the score-based method (output margin
(Har-Peled et al., 2007), and diversity-based method (k-Median clustering (Feldman & Langberg,
2011; Har-Peled & Mazumdar, 2004)), hybrid method (D2-Pruning (Maharana et al., 2023)). In the
upper figures, the background illustrates the distribution density of the data in the space after PCA
dimensionality reduction. Brighter colors indicate a higher density of samples. Simultaneously, we
present the locations of the samples selected by different methods using scatters. The figures below
show the distribution of the scores of the corresponding coreset. This set of experiments is conducted
on CIFAR-100 (Krizhevsky, 2009). The coreset selected by our InfoMax is capable of covering both
high-density and low-density regions in terms of spatial uniformity, and also high-information and
low-information data in terms of score distribution.

diversity, they often overlook informative samples with high-importance scores, leaving a large
number of low-scoring samples in the selection.

Recently, hybrid approaches have emerged that combine importance scores with diversity to design
more effective algorithms (Ash et al., 2020; Maharana et al., 2023; Zheng et al., 2022; Yang et al.,
2024). One of the most notable examples is D2-Pruning (Maharana et al., 2023), which models a
dataset as a graph. In this framework, node scores represent a sample’s informativeness, such as
difficulty or importance, while edges capture the similarities between samples. The data pruning
process is formulated as an iterative node selection problem, where at each step, nodes with the
highest scores are selected, and the scores of neighboring nodes are reduced to account for redundancy.
However, due to its greedy selection process, the algorithm is prone to getting stuck in suboptimal
solutions, making it challenging to maintain a proper balance between importance and diversity. For
example, as shown in Figure 2(c), many samples remain concentrated in high-density areas with low
scores, leaving significant portions of the space uncovered.

Low-informative High-informative

Figure 3: Cases of samples with low
informativeness (left) and high infor-
mativeness (right).

In this paper, we introduce InfoMax, a new and effective
approach for data pruning and coreset selection. Our core
insight is to find a subset of samples that maximizes overall
information by simultaneously considering each sample’s
information contribution and the information overlap among
them. First, a sample’s informativeness can be explained
by its importance or difficulty. For instance, a sample with
intricate structures, complex backgrounds, and occlusions
provides more information than one with simple patterns see
Figure 3. Therefore, we explore score-based metrics that
evaluate a sample’s difficulty or importance, providing an
information assessment. Second, the information overlap
among samples is evaluated in a pairwise manner and quan-
tified by their pairwise similarities. Samples with greater
similarity will have a higher degree of information overlap. Using these considerations, we formulate
coreset selection as a discrete quadratic programming (DQP) problem with equality constraints that
specify the desired number of selected samples, see Eq. (2). The objective function represents the
overall information as the sum of each sample’s individual information, reduced by redundancies
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introduced by the presence of similar samples within the coreset. Furthermore, we propose an efficient
and robust gradient-based solver to address scalability. This solver is enhanced by sparsification
techniques applied to the similarity matrix and dataset partitioning strategies, enabling practical and
scalable computation. For instance, our method processes 12 million data points in just 37 minutes
(see Section B.2 for details). By solving this problem, InfoMax identifies a subset of samples that
maximizes overall information, thereby reducing the likelihood of suboptimal solutions often seen
with greedy-based methods, see the discussion in Section 3.3. As shown in Figure 2(b), the coreset
generated by our approach strikes a good balance between diversity (i.e., well-distributed across
the entire space) and informativeness (i.e., containing a reasonable number of important samples).
The superior performance across multiple tasks, including image classification, vision-language
pretraining, and instruction fine-tuning for large language models, see Section 4, further supports
the effectiveness of our new formulation. We have summarized the overall pipeline in Figure 4 and
Algorithm 1. In summary, our contributions are:

• We propose InfoMax, a new coreset algorithm designed to maximize overall information by
accounting for each sample’s individual contribution while reducing information overlap, with a
simultaneous focus on maintaining diversity and importance.

• We propose an efficient gradient-based solver enhanced by sparsification techniques and dataset
partitioning strategies to make InfoMax scale to large-scale datasets.

• Extensive experiments show that InfoMax exhibits the best performance and consistently out-
performs the state-of-the-art schemes in a series of tasks, including image classification, and
vision-language pre-training (Radford et al., 2021), large language model supervised fine-tuning
(Xia et al., 2024) experiments. Notably, it brings about a significant improvement of approximately
5.5% compared to the previous best methods at a 5% selection rate in instruction fine-tuning
experiments. Additionally, it shows around 2% performance enhancements on classification tasks
at a 10% selection rate, see Figure 1.

2 PRELIMINARIES

In this section, we first present the problem definition for data pruning, followed by a discussion of
existing methods, including score-based, diversity-based, and hybrid approaches.

2.1 PROBLEM DEFINITION

Before diving into the literature review of existing methods, we first define the problem of data
pruning, also known as coreset selection (Sener & Savarese, 2017; Mirzasoleiman et al., 2020;
Killamsetty et al., 2021). Let D “ pziq

N
i“1 represent the training set, drawn independently and

identically distributed (i.i.d.) from an underlying data distribution. The goal of dataset pruning is
to identify the most informative subset of the training data that minimizes information loss while
maximizing model performance. Formally, the problem can be stated as:

S˚ “ arg max
SĂD,|S|“p

IpSq, (1)

where p is the budget of the target coreset and | ¨ | represents the cardinality of a set. IpSq measures
the set-level information of the candidate subset S. There are multiple choices (Sorscher et al.,
2022; Wei et al., 2015; Kaushal et al., 2021) for the instantiation for the set information IpSq. For
example, given the loss function lp¨q and the network parameters w, previous works Yang et al.
(2023); Zheng et al. (2022) often use the overall test loss reduction caused by training the model
on S as the information measure IpSq “ Ez„P

”

lpz,w0q ´ lpz,w˚
Sq

ı

, Eq. (1) would be identical as

S˚ “ argmin
SĂD,|S|“p

Ez„P

”

lpz,w˚
Sq

ı

, where w0 is the initial parameter and w˚
S indicates the optimal

network parameter learned on S. The key distinction between various data pruning methods lies in
how they define IpSq, which is detailed below.

2.2 SCORE-BASED METHOD

The score-based method (Paul et al., 2018; Tan et al., 2023; Toneva et al., 2018) often selects samples
solely based on the score values. They generally model IpSq as: IpSq “ Ipz1q ` Ipz2q ` ...` Ipzpq,

3
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Figure 4: The overall pipeline of our InfoMax. In the first two steps, we use a network to extract
features to calculate the similarity matrix and the intra-sample information terms. Then, in step 3, we
construct the quadratic optimization problem for infoMax, see Eq. (2) for details. Finally, we perform
the iterative InfoMax solver as defined by Eq. (3) to obtain the final InfoMax coreset. In step 4, p
indicates the budget-size and α is the pairwise term’s weight.

where S “ tz1, . . . , zpu Ă D, with each z representing a data sample, and Ipzq denoting the
information associated with that sample. The primary task then becomes identifying a suitable score
metric to evaluate a sample’s individual contribution, Ipzq, of each sample. Various scores have
been proposed to quantify Ipzq, such as model uncertainty (Har-Peled et al., 2007), loss value (Cody
Coleman et al., 2019), and influence score (Tan et al., 2023; Pruthi et al., 2020).

The assumption underlying the score-based formulation is that there is no information overlap between
different samples, allowing the individual contributions of samples to be summed to represent the
overall contribution. However, this approach fails to account for overlap in the information provided
by different samples. For instance, if two identical samples, zi and zj , both receive high scores,
the information gained from adding zj after selecting zi would be negligible. As a result, this
method cannot ensure that the selected samples offer broad coverage of the data space, leading to a
loss of diversity and suboptimal solutions. This limitation is illustrated in Figure 2(a), they select
samples densely concentrated in regions with the highest scores, leading to redundancies and failing
to consider simpler samples with lower scores, which results in biased selections.

2.3 GEOMETRY-BASED METHOD AND HYBRID METHOD

Geometry-based Method In contrast to score-based methods, geometry-based methods de-
sign IpSq to consider maximizing the diversity and minimizing the information overlap among
samples. For many works (Lloyd, 1982; Tan et al., 2006; Coates & Ng, 2012; Har-Peled &
Mazumdar, 2004; Feldman & Langberg, 2011), the set-level information IpSq is regarded as:
IpSq 9

ř

pzi,zjqPS ´Ipzi; zjq, where Ipzi, zjq measures the similarity of two samples, indicating
information overlap (also the mutual information). To solve the above problem, Sener & Savarese
(2017) applied greedy k-center to choose the coreset with good data coverage.

This formulation assumes that all individual samples carry equal amounts of information, disregarding
the varying significance of each sample. Consequently, it tends to overlook critical samples while
retaining a large number of non-informative ones. As illustrated in Figure 2(b), while these methods
prioritize diversity, they often overlook informative samples with high-importance scores, leaving a
large number of low-scoring samples in the selection.

Hybrid Method More recently, hybrid methods (Zheng et al., 2022; Ash et al., 2020; Maharana
et al., 2023) have been developed that account for both the individual importance and diversity of
samples simultaneously. For instance, CCS (Zheng et al., 2022) sets different sampling ratios for
samples with different scores to enhance data coverage and balance both easy and hard samples.
D2-Pruning (Maharana et al., 2023) proposes to select data on the graph. One of its core steps is
the Inverse Message Passing operation. Specifically, it selects the sample with the highest score
among all unselected candidates and subsequently reduces the scores of the neighborhood. However,
the above approaches are primarily based on heuristic designs and are often solved using greedy
algorithms. These methods are prone to local optima, as the algorithm lacks a holistic view of the
problem at each step, resulting in suboptimal outcomes. In Figure 2, the selected samples demonstrate
inadequate coverage of the entire space, with many concentrated in low-importance regions, hence
results in the suboptimal performance in practice, see Figure 1 for details.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

In this paper, we propose a unified formulation with a scalable solver for coreset selection, aimed at
maximizing the information of the selected subset by accounting for both the individual contributions
of samples and their redundancies.

3 METHOD

3.1 INFOMAX: FORMULATIONS AND SOLUTIONS

The objective of InfoMax is to identify a subset of data samples that maximize intra-sample infor-
mation while minimizing inter-sample redundancies caused by similar samples, thereby achieving
an optimal balance between diversity and importance. For a sample z, we represent its information
content as Ipzq. For two samples z and s, their information overlap or redundancy is denoted as
Ipz, sq. The total information is measured by summing the individual information of the samples,
with deductions for inter-sample redundancy, as outlined below. We will discuss in Section 3.3 that
under some mild settings, this optimization problem in Eq. (2) is equivalent to solving the original
information maximization problem for data pruning as defined in Eq. (1).

Problem Formulation for InfoMax Here, we consider inter-sample redundancy in a pairwise
manner using Ipz, sq and the matrix containing all pairwise sample similarities is denoted as Kz,s.
Then, given the dataset D “ tz1, z2, ..., zNu, we introduce a variable Xz P t0, 1u to represent
whether a sample is selected (Xz “ 1) or pruned (Xz “ 0), the overall information is formulated as
a quadratic function of variable X as:

max
XPt0,1uN

ÿ

zPD

XzIpzq ´ α ¨
ÿ

z,sPD

Kz,sXzXs, s.t.
ÿ

zPD

Xz “ p, (2)

where p “ p1´ δqN is the size budget of the selected set. In the formulation, the first-order term Ipzq

measures the intra-sample information of the sample z, which can be instantiated using any existing
sample-wise scores, e.g., EL2N (Paul et al., 2018) or SSP (Sorscher et al., 2022). The quadratic term
Kz,s measures the inter-sample redundancy between the sample z and s.

Objective Construction For the intra-sample information I P RN and the pairwise feature similar-
ity K P RNˆN , we introduce two calculation modes by following Maharana et al. (2023), namely
the supervised mode and the unsupervised mode.

The supervised mode. We initially train a surrogate model on the dataset. Subsequently, we employ it
to calculate sample-wise scores, such as the loss value (Cody Coleman et al., 2019) and gradient norm
(Paul et al., 2018). Additionally, we use features before the classification layer as features FNˆd,
where d is the feature dimension. We utilize the inner product as the pairwise feature similarity, that
is, K “ FTF. However, the supervised mode is somewhat unfriendly as training an additional model
incurs a non-negligible expense, especially on large-scale datasets.

The unsupervised mode. We extract features using existing open-source models such as DINO (Oquab
et al., 2023). Additionally, we use the inner product as the pairwise feature similarity. For the
intra-sample information, we employ the SSP score (Sorscher et al., 2022). Specifically, it entails
first conducting clustering in the feature space. The distance between a sample and the corresponding
cluster center constitutes the SSP score.

Analysis If we only preserve the first-order term by setting α as a very small value that is near zero,
InfoMax will degenerate into a vanilla score-based scheme, that is, those samples with the highest
scores will be selected. If we discard the first-order term by setting α as a very huge value, it would
degenerate into the problem of finding a coreset S P D to minimize

ř

z,sPS Kz,s. In other words, it
is to find a subset with the minimum similarity within the set. This is a variant case of the classic
k-Median problem (Lloyd, 1982; Tan et al., 2006; Har-Peled & Mazumdar, 2004), that minimizing
the CostpS,Dq “

ř

sPS

ř

zPD{S dpz, sq if we set the distance measurement as dpz, sq “ 1 ´ Kz,s.

3.2 SALABLE INFOMAX SOLVER

Solving the quadratic problem defined in Eq .2 directly can be extremely computationally burdensome
and may even prove intractable since the budget size p is generally on the order of tens of thousands

5
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or even millions (Krähenbühl & Koltun, 2011; Larsson et al., 2018). Here, we propose a continuous
relaxation of the problem, enabling the use of a gradient-based solver for more efficient optimization.
Firstly, we conduct convex relaxation on the feasible domain of the original optimization problem
by relaxing the binary constraint X P t0, 1uN to a continuous version X P r0, 1sN . Then, we derive
a solver based on the proximal gradient method (Baqué et al., 2016; Tan et al., 2021). This solver
decomposes the original complex and non-convex continuous problem into a series of simple and
convex sub-problems, see Appendix D for details. Each sub-problem has an analytic solution that
serves as the update rule of our InfoMax solver as follows:

Xt`1
“ Softmax

´

p ¨ I ´ 2pα ¨ KXt
¯

, (3)

where I P RN is the vectorized Ipzq that Iz “ Ipzq, and K P RNˆN is the similarity matrix. Softmax
is the operation to map the real-valued vector rX to a non-negative vector with the summation of
1, specifically, SoftmaxpXq “ exppXq{

ř

i exppXqi. After T iterations, we get the final solution
XT , of which each item represents the probability that the corresponding sample should be selected.
Finally, we take the coreset corresponding to the top-p largest values.

We have summarized InfoMax in Algorithm 1. First, the algorithm requires the input of the intra-
sample information vector I P RN and the pairwise feature similarity K P RNˆN . Then, it will
iteratively execute the iterative solver defined in Eq. (3) for T iterations. Next, we present additional
design enhancements to further improve efficiency.

Efficiency Enhancement Technique Naively applying the InfoMax solver in Eq. (3) on the original
dataset leads to a quadratic complexity of OpN2q, where N is the number of samples to be processed.
This complexity is rather high when dealing with large-scale datasets. Here, we introduce two
practical techniques to boost the efficiency of InfoMax.

Dataset partition: Before executing the InfoMax algorithm, we divide the original dataset into d
smaller random subsets and then conduct pruning on each subgroup independently. With this scheme,
the complexity of the algorithm on each subset is significantly reduced to OpN2{d2q. At the same
time, pruning for each subset can be carried out simultaneously on multiple computing devices,
further reducing the time consumption.

Sparsification: Since the information overlap between distant samples is minimal, we further improve
computational efficiency by sparsifying the similarity matrix K, retaining only the top k values as
non-zero and setting the rest to zero. Specifically, we only take into account the similarity between
each sample and its k nearest neighbors (for instance, k “ 5). As a result, K has only Nk non-zero
elements. With the sparsification technique, the complexity of the algorithm on each subset is
significantly reduced to OpNk{d2q.

Note that the partition factor d and the sparsification rate k are two hyperparameters that determine
the trade-off between efficiency and performance. In experiments (Sec. 4.4), we also study the effects
of these two hyperparameters.

3.3 HOW DOES INFOMAX FIND THE MOST INFORMATIVE CORESET?

We explain why InfoMax can find the most informative coreset from the perspective of information
theory. First, we restate the information maximization formulation of data pruning defined in Eq. (1),
S˚ “ argmaxSĂD,|S|“p IpSq, where p is the size of the target coreset. The IpSq measures the
set-level information of the candidate subset S, specifically,

IpSq “ Ipz1q ` Ipz2|z1q ` ... ` Ipzp|z1, ..., zp´1q “ Ipz1q `

p
ÿ

2ďk

Ipzk|z1, ..., zk´1q. (4)

where tz1, ..., zpu P S are all samples from the set. Note that this equation always holds regardless
of the order of samples. The intra-sample information Ipz1q of the sample z1 could be instantiated
by various sample-wise scores (Sorscher et al., 2022; Cody Coleman et al., 2019; Tan et al., 2023;
Paul et al., 2018). Regarding the conditional gain term Ipz|Zq, we refer to the recent progress in
submodular information measures (SIM) Wei et al. (2015); Kaushal et al. (2021); Kothawade et al.
(2021), which present several instantiations for the submodular conditional gain. Here, we select
the simplest yet effective instantiation, Graph Cut conditional gain (GCCG), Ipzk|z1, ..., zk´1q “

6
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fpzkq ´ 2λ
ř

iăk Kzi,zk . It measures the dissimilarity between the sample zk and all conditional
samples. Specifically, Kzi,zk measures the similarity between the sample i and the sample k, λ is an
undetermined coefficient and is a hyperparameter in the system. The submodular function f maps
from a ground set to a real value, and we can simply set it with fpzq “ Ipzq. Hence, we have the
following instantiation for the conditional gain term: Ipzk|z1, ..., zk´1q “ Ipzkq ´ 2λ

ř

iăk Kzi,zk .
By substituting it into the Eq. (4), we can instantiate and reformulate the set-level information as:
IpSq “

ř

zPD Ipzq ´ 2λ
ř

z‰sPD Kz,s. We introduce a set of binary variables X P t0, 1uN where
N “ |D| is the size of the whole training set. In the selection procedure, Xz “ 1 indicates the
sample z was selected, otherwise it was pruned. By the problem definition in Eq. (1) and the set-level
information formulation Eq. (4), we can transform the original information maximization problem in
Eq. (1) into the following combinatorial optimization problem,

max
XPt0,1uN , |X|“p

:
ÿ

zPD

Ipzq ¨ Xz ´
λ

p ´ 1

ÿ

z‰sPD

Kz,s ¨ XzXs, (5)

where λ is a flexible hyperparameter to be determined in Eq. (4). Hence, if we set α “ λ
p´1 , then we

obtain the quadratic programming problem as defined in InfoMax. Therefore, we have proved that
under the premise of using the instantiation of Graph-cut conditional gain (GCCG) for the conditional
gain term, solving the data pruning problem in Eq. (1) to find the most informative subset is equivalent
to solving the quadratic problem defined in Eq. (2). See Appendix D.2 for the proof.

4 EXPERIMENTS

We carried out extensive experiments on three tasks, namely image classification, multi-modality
pretraining, and instruction tuning for Large Language Models (LLMs), to investigate the performance
of our InfoMax. Subsequently, we conducted ablation studies to explore the component design within
InfoMax. Each result of InfoMax is the average of five independent runs. The standard deviation
corresponding to each result of InfoMax is less than 0.85.

4.1 IMAGE CLASSIFICATION

The image classification task encompasses experiments on three datasets, namely CIFAR-10, CIFAR-
100 (Krizhevsky, 2009), and Imagenet-1K (Russakovsky et al., 2015). Following coreset selection,
we will train a model on the chosen subset to examine its performance as the performance of the
coreset. The model employed here is ResNet-18 for CIFAR and ResNet-34 for ImageNet. For
InfoMax, the dataset partition scheme is not employed herein as the dataset scale is not large. The
sparse-rate k is set to 5, the pairwise term weight α is set as 0.3, and the iteration T is set as 20.
Regarding the detailed experimental settings, please refer to the Appendix.

For the supervised setting, we compare InfoMax with several baselines: 1) Random selection of
examples. 2) Entropy (Cody Coleman et al., 2019) of the model’s prediction. 3) Forgetting (Toneva
et al., 2018) score for each example i.e., the number of times a model predicts the example incorrectly
after having predicted correctly in the previous epoch. 4) EL2N (Paul et al., 2018), the L2 norm
of error vectors. 5) Moderate coresets (Xia et al., 2023) that selects samples at about the median
distance from the class center, 6) CCS (CCS) divides a range of difficulty scores into equal-sized bins
and randomly samples from each bin. 7) D2-Pruning (Maharana et al., 2023) selects samples by
performing message passing on the data graph. The scoring model for each method is a ResNet model
trained on the target dataset. 8) K-center (Sener & Savarese, 2017) the standard geometry-based
coreset method.

For the Unsupervised setting, we select the following baseline: 1) SSP (Sorscher et al., 2022) that uses
self-supervised embeddings to compute k-means clusters and treats samples at a farther distance from
the cluster center as more important, 2) CCS over SSP scores, and 3) D2-Pruning over SSP scores
coreset selection. The unsupervised feature used here is from the officially public DINO-ViT-Base-V2
model (Oquab et al., 2023).

Table 1 presents the results on three image classification datasets comparing the performance (ac-
curacy) of InfoMax with several baselines. Firstly, let’s focus on the performance in the supervised
setting. On CIFAR-10, at various pruning rates (30% - 90%), InfoMax outperforms other methods
in terms of accuracy in most settings. For instance, at a 90% pruning rate, InfoMax achieves an
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Table 1: A comparative analysis of the performance ((Acc@1)) of InfoMax on image classification
datasets with ResNet-18 (on CIFAR) and ResNet-34 (on ImageNet). The best results are bolded.

Dataset CIFAR-10 CIFAR-100 ImageNet-1K
Selection Rate 100% 70% 50% 30% 20% 10% 100% 70% 50% 30% 20% 10% 100% 70% 50% 30% 20% 10%

Random 95.5 94.3 93.4 90.9 88.0 79.0 78.7 74.6 71.1 65.3 57.4 44.8 73.1 72.2 70.3 66.7 62.5 52.3

Entropy - 94.8 92.9 90.1 84.1 72.1 - 74.7 68.9 60.3 49.6 35.0 - 72.3 70.8 64.0 55.8 39.0
K-center - 94.1 92.5 91.0 82.5 68.4 - 73.4 69.5 61.4 47.2 40.5 - 73.0 71.4 64.8 53.1 42.0
Forgetting - 95.7 94.9 88.1 73.8 46.3 - 76.0 68.1 49.3 30.3 20.6 - 72.6 70.9 66.5 62.9 52.3
EL2N - 95.4 94.8 89.2 78.6 30.3 - 75.6 68.1 47.2 24.8 11.8 - 72.2 67.2 48.8 31.2 12.9
SSP - 93.8 93.1 81.2 64.4 42.9 - 76.5 66.4 50.3 27.9 19.4 - 71.1 68.5 52.7 40.3 20.5
Moderate - 93.9 92.6 90.6 87.3 81.0 - 74.6 71.1 65.3 58.5 45.5 - 72.0 70.3 65.9 61.3 52.1
CCS (unsupervised) - 95.2 93.4 90.6 85.5 80.6 - 76.4 71.8 61.2 37.5 25.4 - 71.6 69.5 62.1 47.4 30.2
CCS - 95.4 95.0 93.0 91.0 86.9 - 77.1 74.4 68.9 64.0 57.3 - 72.3 70.5 67.8 64.5 57.3
D2-Pruning (unsupervised) - 94.4 94.2 87.6 86.1 83.9 - 77.8 70.0 66.6 62.3 51.7 - 72.6 69.4 66.1 60.9 52.5
D2-Pruning - 95.7 94.9 93.3 91.4 87.1 - 78.2 75.9 70.5 65.2 56.9 - 72.9 71.8 68.1 65.9 55.6

InfoMax (unsupervised) - 94.9 93.6 92.2 90.1 87.0 - 77.9 74.6 70.1 64.7 56.2 - 72.8 70.5 68.0 64.9 56.8
InfoMax - 95.5 94.7 94.1 92.7 89.1 - 79.0 76.7 71.5 67.9 58.7 - 73.3 72.8 69.4 66.5 59.0

accuracy of 89.1, outperforming other methods (such as D2-Pruning) by 2.0% in accuracy. On
CIFAR-100 and ImageNet, InfoMax has higher accuracy values compared to other methods across
different pruning rates. Moreover, this advantage becomes more pronounced under a high pruning
ratio. For example, at a 90% pruning rate, InfoMax surpasses the second-ranked CCS by 1.4% and
1.7% on the two datasets respectively, and outperforms the third-ranked D2-Pruning by 1.8% and
3.4% on the two datasets respectively. Next, we must highlight the performance of InfoMax under
the unsupervised setting. The performance of InfoMax in the unsupervised setting steadily exceeds
that of other schemes in the unsupervised setting. Even under the setting of a high pruning ratio,
it can approach and even outperform most supervised schemes. For example, at a 90% pruning
rate, the unsupervised InfoMax on CIFAR-10 lags only 0.1% in performance compared with the
supervised D2-Pruning, and the unsupervised InfoMax on ImageNet leads the supervised D2-Pruning
by a performance advantage of 1.2%. It showcases that InfoMax exhibits superior performance and
notable effectiveness across different settings.

4.2 MULTI-MODALITY PRE-TRAINING

For multi-modality pretraining tasks, we conducted experiments on the popular vision-language
dataset CC12M (Changpinyo et al., 2021), which contains 12 million image-text pairs from the
Internet, for CLIP-like vision-language pre-training (Radford et al., 2021). A common practice
(Schuhmann et al., 2022; Gadre et al., 2024) for selecting coreset from VL datasets is to use the
pre-trained CLIP model (Radford et al., 2021) to score each image-text pair, where a higher CLIP
score indicates better image-text alignment. Hence, we set this as the most basic baseline, termed,
1) CLIP score. Additionally, we also select the following baseline: 2) Clustering + CLIP: Since
using only the score for screening is based on the matching degree of images and texts it is difficult
to reflect the redundancy degree of samples. Consequently, some schemes (Li et al., 2022; 2023)
combine Clustering and CLIP scores, that is, first clustering in the feature space and then selecting a
portion of samples with high scores within each cluster. 3) Moderate coreset (Xia et al., 2023) over
CLIP scores: Selecting those samples with the median score since the highly-scored samples may be
the too-easy samples. 4) CCS over CLIP scores: By following the implementation in Maharana et al.
(2023), it divides a range of CLIP scores into equal-sized bins and randomly samples from each bin.
5) D2-Pruning over CLIP scores: It constructs a sample graph by using the CLIP score as the node
value and using image features from the CLIP vision encoder to calculate the edge value (similarity).

For our InfoMax approach, we also designate the CLIP score as the intra-sample information
measurement. For the pairwise similarity, we employ the inner product between the features of
samples from the CLIP vision encoder. The dataset partition factor d is set to 10; that is, we
randomly partition the 12M data into 10 subsets each of size 1.2M. The sparse-rate k is set at 5,
the pairwise term weight α is set as 0.3, and the iteration T is set to 20. After data selection, we
perform CLIP pre-training on the coreset and evaluate the trained model on four downstream tasks:
Zero-shot ImageNet-1K Classification, Linear Probing ImageNet-1K Classification, Image-to-Text
(I2T) Flickr30K (Plummer et al., 2015) Retrieval and Text-to-Image (T2I) Flickr30K Retrieval. For
the detailed experimental settings and results along with standard errors, please refer to the Appendix.

The experimental results are presented in Table 2. InfoMax consistently outperforms all baselines
across all selection ratios. This leading advantage is particularly prominent when the selection ratio is
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Table 2: Experimental results of coreset selection on CC12M (Changpinyo et al., 2021) for multi-
modality (vision-language) pre-training on CLIP-ViT-B/32 (Radford et al., 2021) model. The highest
results are bolded.

Dataset Zero-shot ImageNet-1K (Acc@1) I2T Flickr30K (Recall@1) T2I Flickr30K (Recall@1) Linear-prob ImageNet-1K (Acc@1)

Selection Rate 100% 60% 40% 20% 10% 100% 60% 40% 20% 10% 100% 60% 40% 20% 10% 100% 60% 40% 20% 10%

Random 37.2 29.0 25.3 21.3 19.7 51.7 42.3 38.1 32.1 29.9 44.5 28.6 25.4 23.1 21.2 67.5 59.1 51.3 45.4 41.6

CLIP score - 34.1 32.4 27.4 24.1 - 47.1 45.2 39.1 33.9 - 40.3 36.4 28.4 23.7 - 62.1 59.3 52.9 47.4
Clustering + CLIP - 34.7 33.1 29.2 27.9 - 48.3 46.5 40.7 35.2 - 41.2 37.1 29.7 26.2 - 62.7 60.5 53.3 48.5
Moderate - 32.0 31.7 27.7 24.7 - 43.7 41.0 37.5 33.4 - 38.9 34.2 25.8 22.7 - 60.2 56.5 51.4 47.9
CCS - 31.1 29.6 25.3 23.4 - 42.4 37.5 33.8 29.9 - 37.1 33.6 22.9 20.2 - 61.5 54.3 49.7 44.6
D2-Pruning - 34.3 33.5 30.5 28.1 - 48.1 47.1 41.7 35.8 - 41.3 37.7 30.2 27.5 - 62.6 60.4 54.0 49.3

InfoMax - 35.2 34.2 31.3 29.6 - 48.5 47.7 42.1 37.1 - 42.0 38.5 32.1 30.2 - 62.8 61.1 54.5 50.3

relatively small. For instance, when selection ratios = 10%, InfoMax surpasses D2-Pruning by 1.5%,
1.3%, 2.7%, and 1.0% respectively on these four downstream tasks, and exceeds the widely-used
selection method of Clustering + CLIP by 2.1%, 1.9%, 4.0%, and 1.8% respectively on the four
tasks. This demonstrates the superiority and effectiveness of InfoMax in different scenarios and under
various selection conditions, highlighting its significance in data-centric research areas.

4.3 INSTRUCTION TUNING FOR LARGE LANGUAGE MODELS

Recently, some works (Xia et al., 2024; Maharana et al., 2023) have demonstrated significant
redundancy in language datasets. For instance, LESS (Xia et al., 2024) reduced the size of instruction
tuning datasets to merely 5% of their original amount. The core of LESS is the influence score (Pruthi
et al., 2020; Tan et al., 2023), which gauges how a particular data point impacts the performance of
the learned model on the validation set.

Following (Xia et al., 2024), we also conduct coreset selection on a mixed dataset containing data
from FLAN-V2 (Longpre et al., 2023), COT (Wei et al., 2022), DOLLY (Conover et al., 2023),
OPEN-ASSISTANT-1 (Köpf et al., 2023). The mixed training set, consisting of approximately
270K data points, exhibits a wide variation in its format and the underlying reasoning tasks. After
the selection process, we conduct LoRA-finetuning (Hu et al., 2021) on the selected coreset for a
LLaMA2-7B model (Touvron et al., 2023). For D2-Pruning (Maharana et al., 2023) and our InfoMax,
we employ the LESS score as the intra-sample measurement and utilize the gradient of the sample as
the sample’s feature. Additionally, we select Moderate (Xia et al., 2023) over LESS and CCS (Zheng
et al., 2022) over LESS as the baselines.

Table 3: A comparative analysis of the performance of InfoMax on instruction tuning datasets for
LLaMA2-7B (Touvron et al., 2023) model. Best results are bolded.

Dataset MMLU (5-shot Accuracy) TYDIQA (1-shot F1 score) BBH (3-shot Exact Match score)

Selection Rate 100% 50% 10% 5% 1% 100% 50% 10% 5% 1% 100% 50% 10% 5% 1%

Random 51.6 50.0 48.4 46.3 42.5 54.2 53.8 53.1 52.5 50.3 42.9 41.9 40.3 38.6 34.1

LESS - 51.7 51.2 50.2 46.7 - 55.1 55.7 56.2 55.6 - 43.1 42.9 41.5 40.7
Moderate - 50.1 48.9 47.3 44.5 - 53.5 52.9 51.7 50.9 - 42.4 41.7 40.0 38.4
CCS - 49.4 47.8 46.9 42.1 - 52.2 51.5 51.4 49.9 - 41.3 40.5 38.2 32.6
D2-Pruning - 51.9 51.8 50.4 47.4 - 54.9 54.3 56.1 55.9 - 43.2 42.4 41.7 41.1

InfoMax - 51.6 52.6 51.8 50.2 - 54.7 56.8 57.3 57.1 - 44.3 45.5 47.2 45.7

After the training process, we assess our method using three widely recognized benchmarks: 1)
MMLU (Hendrycks et al., 2020) offers a diverse range of knowledge domains for evaluation, covering
57 knowledge areas, like mathematics, computer science, and others. 2) TYDIQA (Clark et al., 2020)
is a multilingual question-answer dataset that includes 9 kinds of languages. 3) BBH (Suzgun et al.,
2023) encompasses 27 arduous tasks to assess whether the model can handle complex reasoning
situations. The experimental results are presented in Table 3. InfoMax, our proposed method,
demonstrates significant performance advantages over other competing methods, particularly at
small selection rates (ď 5%). On MMLU, it shows notable improvements compared to the second-
ranked method, D2-Pruning. For example, at the 95% and 99% pruning rates, InfoMax achieves an
accuracy of 51.8 and 50.2, compared to D2-Pruning’s performance, an improvement of about 2%
in performance. Similar trends are observed on TYDIQA, InfoMax outperforms LESS (the second-
ranked approach) at 90%, 95%, and 99% pruning rates, with differences ranging from about 1.1 to
1.5 percentage points. For the BBH dataset, the superiority of InfoMax is even more pronounced.
At a 95% pruning rate, it has an accuracy of 47.2 compared to D2-Pruning’s 41.7, a substantial
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improvement of about 5.5 percentage points. Overall, InfoMax consistently shows better results,
highlighting its effectiveness even when a large portion of the data is pruned.

4.4 ANALYSIS & DISCUSSION

Here, we have investigated four hyperparameters in InfoMax: the dataset partition rate d, the sparse
rate k, the weight α of the pairwise term, and the iteration T for InfoMax. In Appendix Sec. B,
we will study the time cost and generalization ability of InfoMax. (a) Partition strategy. The
experiments on CC3M/CC12M (Changpinyo et al., 2021) in Figure 5(a) studies the effect of the
dataset partition strategy. It suggests that a decrease in the partitioned subset size inevitably reduces
the performance of the coreset. This decline exhibits a significant downward tendency when the size
of each subset is less than approximately 1M. Consequently, when dealing with relatively large-scale
datasets, we recommend ensuring that the size of each subset is at least 1M samples. (b) Sparse
rate k: The sparse rate k represents the size of the neighborhood of each sample. For details, see
Sec. 3.2. A smaller k implies more 0 items in the similarity matrix K. In Figure 5(b), we found
that the performance of InfoMax is relatively robust to the choice of k. Hence, we set k “ 5 for
better efficiency in all experiments. (c) Pairwise weight α: The pairwise weight α determines the
tradeoff between the first-order term and the second-order term in the formulation of InfoMax as in
Eq.2. As shown in Figure 5(c), it is observed that the optimal range of α varies for different selection
ratios. However, all these ranges yield satisfactory results when α is around 0.3 to 4. Consequently,
we recommend setting α “ 0.3. (d) Iteration T : Figure 5(d) reveals that the performance of
InfoMax rises with the increase in the iteration number T . Nevertheless, this gain tends to saturate
after T ą 20. Hence, we suggest setting T “ 20 to balance good performance and efficiency.

(a) (b) (c) (d)
Figure 5: Ablation study for hyperparameters in InfoMax: the dataset partition strategy (the size of
each subset), the sparse rate k, the weight α of the pairwise term, and the iteration number T of the
InfoMax solver. Experiments in (a) are conducted on CC3M & CC12M (Changpinyo et al., 2021).
All experiments in (b,c,d) are conducted on CC12M. The selected model is CLIP-ViT-B/32 (Radford
et al., 2021). The reported metric focuses on the accuracy of the coreset-trained CLIP-ViT-B/32 on
the zero-shot ImageNet-1K classification tasks.

5 CONCLUSION

This paper has presented InfoMax, a novel and effective data pruning method. InfoMax is formulated
as a quadratic optimization problem to maximize the sample-wise informativeness and minimize
the redundancy of selected samples. It measures sample information through importance scores and
quantifies redundancy using pairwise sample similarities. Furthermore, an efficient gradient-based
solver along with sparsification techniques and dataset partitioning strategies is introduced to ensure
scalability, enabling it to handle datasets with millions of samples within tens of minutes. Extensive
experiments have validated the superior performance of InfoMax in multiple data pruning tasks such
as image classification, vision-language pretraining, and instruction tuning for large language models.
Overall, InfoMax shows great potential and effectiveness in the field of data pruning to improve the
efficiency and performance of data processing in various applications.

Limitations This paper proposes an efficient and high-performance coreset selection scheme. How-
ever, due to the limitations of experimental equipment, the maximum scale of the experiments in
this paper only reaches a data scale of 12M. In the future, we will consider investing more to rent or
purchase more computing equipment and explore the performance boundaries of InfoMax on a larger
scale (at the billion level) dataset.
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BROADER IMPACT

This paper presents a novel and effective data pruning algorithm to advance the deep learning area.
There are some potential positive societal effects, such as helping people better understand the role
of data to develop more robust deep learning systems and possibly even be used to reduce training
and storage costs. Additionally, with the explosive growth of data, similar data-centric deep learning
schemes can also be easily applied to inhumane surveillance or scenarios that violate data privacy
and data copyright. Therefore, we believe that strict legislation is needed to constrain the occurrence
of these.

Table 4: Comprehensive overview of the notational convention.

Notation Description

D The training set, and the size of the training set is |D| “ N .
S Ă D A subset from D.
S˚ Ă D The optimal coreset.
p The coreset budget and the target coreset size.
z P D A training data.
Ipzq The information of sample z.
IpSq The set-level information of the set S.
Ipz|...q The conditional information gain of sample z.
Ipz1, ..., znq The set-level information of the set rz1, ..., zns.
Ipz; sq The mutual information between sample z and s.
I P RN The information vector, where each item measures the informativeness of the

corresponding sample, that is, Iz “ Ipzq.
K P RNˆN The similarity matrix measures the similarity between samples.
Kz,s The similarity between sample z and sample s.
k The sparse rate of K.
d The dataset partitioning rate.
α The pairwise weight in the objective of InfoMax, see Eq. (2).
λ The hyper-parameter in the Graph-Cut Conditional Gain measurement

(Kothawade et al., 2021), see Eq. (15).
X P t0, 1uN The binary variable in Eq 2 (before continuous relaxation).
Xz The variable item corresponding to the sample z.
Xt P RN

` The iterant variable in the t-th iteration (after continuous relaxation).
T The maximum iteration number of the InfoMax solver.

Algorithm 1: InfoMax Coreset Selection.
1: Input: A dataset D with N samples, the division coefficient d, the target coreset size budget p.
2: Initialization: Set the coreset as a null-set S˚ “ H; Divide the dataset D into d random subsets

rD1, ...,Dds, where each subset is size of N{d.
3: Initialization: Uniformly initialize the initial guess X0 “ r 1

N sN{d;
4: for i P t1, ..., du do
5: // Objective construction: supervised or unsupervised mode.
6: Calculate the intra-information information vector I and the similarity matrix K;
7: // Iteratively perform the InfoMax solver.
8: for t P t0, ..., T ´ 1u do
9: Xt`1 “ Softmax

´

p ¨ I ´ 2pα ¨ KXt
¯

;
10: end for
11: Append the samples corresponding to the top-k largest item in XT into S˚.
12: end for
13: Output: The InfoMax coreset S˚.
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A EXPERIMENTAL SETTINGS

A.1 IMAGE CLASSIICATION

We utilized Pytorch Paszke et al. (2017) to implement our method. Our experiments were con-
ducted on a server equipped with 8 Tesla-V100 GPUs. Additionally, we maintained identical
hyper-parameters and experimental settings for training before and after dataset pruning. To ensure
fairness, we made sure that the number of iterations on the selected subset and the full set was the
same by following Zheng et al. (2022); Maharana et al. (2023). For CIFAR-100, we utilize the
SGD optimizer with weight-decay set to 5e-4, a learning rate of 0.1, and a batch size of 128. For
TinyImageNet, we use the SGD optimizer with weight-decay set to 5e-4, a learning rate of 0.3, and
a batch size of 64. For ImageNet-1K, we use the SGD optimizer with weight-decay set to 1e-4,
warmup for 5 epochs, a learning rate of 0.4, and a batch size of 256. Regarding data augmentation,
we solely adopt RandomResizedCrop and RandomHorizontalFlip for all experiments.

A.2 VISION-LANGUAGE PRETRAINING

For coreset selection on the vision-language dataset CC12M (Changpinyo et al., 2021), all experiments
are conducted on 2 servers with a totally of 16 NVIDIA V100 GPUs. The selected model is CLIP
model (Radford et al., 2021). We follow the settings provided in the original paper. Specifically, the
CLIP model Radford et al. (2021) is trained for 32 epochs with AdamW optimizer, weight decay 0.2,
and a batch size of 2048. After 1 warmup epoch, the learning rate gradually decreases from 1e-4
following the cosine strategy.

Zero-shot ImageNet classification. The CLIP model has two encoders, one for text and one for
images. During the zero-shot classification process, text descriptions corresponding to the ImageNet
classes are formulated. For example, if a class "dog" exists, a text description like "a picture of a
dog" might be created. These text descriptions are encoded by the text encoder of CLIP to obtain
text embeddings. At the same time, the images from the ImageNet dataset are encoded by the image
encoder of CLIP to get image embeddings. Then, the similarity between each image embedding and
all the text embeddings (representing different classes) is calculated. The image is classified into the
class whose text embedding has the highest similarity to the image embedding.

Linear Prob. This is a technique used to evaluate and analyze the performance of a pre-trained model.
For the CLIP model, linear probing involves adding a linear layer on top of the pre-trained CLIP
model and then training only this linear layer while keeping the rest of the CLIP model’s parameters
fixed.

Image-Text Retrieval. This is a task where the goal is to find the most relevant text description for a
given image or find the most relevant image for a given text description. Let us use the Image-to-Text
Retrieval as an example. The image is encoded using the vision encoder. This results in an image
embedding that represents the visual features of the image. Then, text documents are also encoded
(using the text encoder) to obtain their respective text embeddings. The similarity between the image
embedding and all the text embeddings is computed. The text with the highest similarity score is
retrieved as the relevant description for the image.

A.3 INSTRUCTION TUNING

The specific settings for LoRA fine-tuning are as follows: the Lora-rank is 64, bf-16 precision is used,
the number of epochs is 4, the Lora-target-modules include q-proj, k-proj, v-proj, o-proj, the learning
rate is 1e´05, the batch size is 8, the gradient accumulation steps is 16, and the AdamW optimizer is
used. This experiments is conducted on a server with 8 A100 GPUs. As for the calculation of the
LESS score, please refer to (Xia et al., 2024) for details. Before computing the score, it performs
LoRA fine-tuning on the LLM on the training dataset and then retains the randomly-projected LoRA
gradient corresponding to each sample. The LESS score reflects how well the gradient of a training
sample is consistent with the gradient of the target dataset we are concerned about.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

B FURTHER ANALYSIS

B.1 GENERALIZATION ABILITY TEST

Here, we demonstrate the generalization ability of InfoMax. In the test for cross-model generalization
ability, we observe that InfoMax’s coreset exhibits superior generalization ability compared to other
coresets. Experimental results are reported in Table 5. InfoMax achieves the best performance in the
cross-model generalization ability test. Notably, when using unsupervised scores (SSP (Sorscher et al.,
2022)) and unsupervised features from DINO (Oquab et al., 2023), InfoMax has better cross-model
generalization ability compared to the supervised version. This also indicates the significance of
using unsupervised base models to extract features during data selection.

Table 5: Cross model generalization ability test, including the setting of ResNet to SENet, and the
setting of ResNet to EfficientNet-B0. The experiments are conducted on CIFAR-10 (Krizhevsky,
2009). InfoMax (unsupervised) uses the unsupervised scores (SSP (Sorscher et al., 2022)) and
unsupervised features from DINO (Oquab et al., 2023), while all remaining methods are based on the
EL2N score (Paul et al., 2018) and the feature extractor trained on CIFAR-10.

Dataset ResNet ResNet to SENet ResNet to ENet-B0
Selection Rate 50% 30% 20% 50% 30% 20% 50% 30% 20%

Random 93.4 90.9 88.0 93.8 92.9 88.8 90.0 87.2 84.6

Moderate 92.6 90.6 87.3 91.4 88.3 85.7 87.1 86.9 82.2
CCS 95.0 93.0 91.0 92.7 89.4 88.1 90.5 86.7 84.1
D2-Pruning 93.3 91.4 87.1 94.3 91.4 87.1 93.3 91.4 87.1

InfoMax 94.1 92.7 89.1 94.4 93.3 89.9 92.5 90.6 87.8
InfoMax (Unsupervised) 93.6 92.2 90.1 94.4 93.8 90.5 93.1 90.8 88.4

Furthermore, we assess the cross-setting generalization ability by varying the score (Forgetting
(Toneva et al., 2018) and Margin (Har-Peled et al., 2007)) and the type of feature (unsupervised
DINO features (Oquab et al., 2023), unsupervised VQGAN features (Esser et al., 2020)). We observe
that regardless of the configurations, InfoMax can achieve remarkably superior results compared to
score-based approaches that only utilize score or schemes that conduct K-Median Coreset solely with
features. This thoroughly demonstrates the cross-setting generalization ability of InfoMax.

Table 6: Cross setting generalization ability test. The experiments are conducted on CIFAR-10
(Krizhevsky, 2009). The pruning ratio is 10%. VQGAN features are obtained from the VQGAN
model (Esser et al., 2020).

Method Accuracy

Forgetting (Score-based) (Toneva et al., 2018) 46.3
Margin (Score-based) (Har-Peled et al., 2007) 34.3
Supervised feature (K-Median diversity-based) 38.9
DINO feature (K-Median diversity-based) (Oquab et al., 2023) 31.7
VQGAN feature (K-Median diversity-based) (Esser et al., 2020) 28.2
InfoMax: forgetting + supervised feature 89.4
InfoMax: margin + supervised feature 88.0
InfoMax: margin + DINO feature 85.4
InfoMax: margin + VQGAN feature 83.7

B.2 TIME COST TEST

We study the time cost of InfoMax in Table 7. There are two main stages for InfoMax, the first one
is the objective construction stage, including inferencing on all data and calculating the similarity
matrix K and calculating the sample-wise score I, and the second stage is the optimizing stage, which
iteratively running the solver defined in Eq. (3). It is easy to find that although the computational
efficiency of our method is slower than that of score-based schemes, it is still faster than D2-Pruning
(Maharana et al., 2023). This is because InfoMax does not have a greedy selection process on a
per-sample basis. For CC12M (Changpinyo et al., 2021), we divide the dataset into 10 subsets, each
with a size of approximately 1.2 million. We run InfoMax in multiple threads on two server nodes
with eight GPUs each to process these subsets. The overall time consumption is approximately 37
minutes. Note that this time is significantly longer than that for processing 1 million ImageNet data
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because multiple processes occupying the common disk I/O slow down the time efficiency. It is not
difficult to observe that the main sources of the aforementioned time consumption are the first stage,
including the inference process on all the data and the construction process of the similarity matrix
K with the k-NN algorithm. The block of disk IO by multiple operations will further drag down
the efficiency. Therefore, using a more advanced K-NN algorithm and a more advanced disk can
significantly improve efficiency.

Table 7: A study on the time cost of InfoMax and two selected competitors, D2-Pruning (Maharana
et al., 2023) and score-based method (Entropy (Cody Coleman et al., 2019)), for 1 million image data
(the training set of ImageNet-1K (Russakovsky et al., 2015)).

Name Time cost (min)

Stage-1 of InfoMax 14.6
Stage-2 of InfoMax 1.7
Overall of InfoMax 16.1

D2-Pruning (Maharana et al., 2023) 23 (Maharana et al., 2023)
Score-based method (entropy (Cody Coleman et al., 2019)) 4.1

B.3 ABLATION ON MORE DATASETS

We further conduct ablation for the partition strategy, sparse rate k, pairwise weight α, and iteration
T of InfoMax on two additional tasks, namely image classification on ImageNet-22K and SFT
training for Llama-3-8B-Instruct on OpenMathInstruct-v2 (Toshniwal et al., 2024). ImageNet-22K
is a dataset containing 14M images divided into 21841 classes. OpenMathInstruct-v2 is a high-
quality math reasoning dataset for supervised fine-tuning for large language models. It contains 14M
question-answer pairs.

For ImageNet-22K, we first pre-train Swin-T on ImageNet-22K for 90 epochs. Then we fine-tune
the model on ImageNet-1K for 30 epochs and report the performance on ImageNet-1K Val. We
choose the EL2N as the sample-wise score and the class token from Swin-T as the feature. For
OpenMathInstruct-v2, we fully SFT the Llama-3-8B-Instruct model for 1 epoch. The perplexity
score is used as the sample-wise score, and the gradient of the prediction head is used as the sample
feature. All experimental results are shown in Table 8.

As for the partition strategy, we study the effect of each subset size on the final performance. When
the size increases from 0.1M to 1M, the performance also increases by 3.85 top-1 acc for ImageNet-
22K and 1.85 for OpenMathInstruct-v2. However, when the size increases from 1M to 2M, the
performance improvements are 0.17 and 0.3 for ImageNet-22K and OpenMathInstruct-v2 respectively.
The experimental result is consistent with the ablation for the partition strategy in Section 4.4 on
CC12M, that is, when the subset size is greater than 1M, the performance improvement would be
saturated. A larger subset size will yield better performance but will result in higher computational
complexity. For a better trade-off between efficiency and performance, we set the partition strategy to
ensure that each subset size is at least 1M.

Regarding the sparse rate k (the size of the neighborhood when constructing the samples’ k-NN graph),
we also observed marginal performance improvements for both ImageNet-22K and OpenMathInstruct-
v2 when k ě 5 (e.g., increasing k from 5 to 200 only brings an improvement on performance by 0.06
for OpenMathInstruct-v2). Considering that larger values of k often lead to increased computational
complexity, we recommend maintaining k “ 5 across different scenarios. This recommendation is
consistent with the ablation study on the sparse rate k presented in Section 4.4. This experiment
demonstrates that InfoMax exhibits strong generalization capabilities for hyper-parameters across
various scenarios.

Regarding the pairwise weight α, we found that its impact on performance generally follows a trend
of initial improvement followed by a decline as α increases, consistent for both ImageNet-22K and
OpenMathInstruct-v2. Notably, the optimal performance ranges for these datasets are between 0.01
to 10 and 0.3 to 3, respectively. Therefore, we recommend setting α “ 0.3. This recommendation
aligns with the conclusions drawn from the ablation study in Section 4.4. This experiment illustrates
that InfoMax demonstrates robust generalization capabilities for hyper-parameters across different
scenarios.
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Finally, for the number of iterations T , increasing T from 5 to 20 results in significant performance
improvements of 1.78 and 2.72 for ImageNet-22K and OpenMathInstruct-v2, respectively. However,
beyond this point, further increases yield only marginal benefits. For instance, increasing T from
20 to 60 produces improvements of only 0.04 and 0.28 for ImageNet-22K and OpenMathInstruct-
v2, respectively, while the computational complexity triples. Therefore, we recommend setting
T “ 5, which is consistent with the conclusions of the ablation study in Section 4.4. This further
demonstrates the strong generalization capabilities of InfoMax regarding hyper-parameters across
various scenarios.

In conclusion, our results match the conclusions in Section 4.4 about the vision-language pretraining
task on CC12M for both experimental setups. Regarding the partition strategy, our experiments indi-
cate that the subset size should not be less than 1M, as smaller sizes result in significant performance
loss. For the sparse rate k, we observed that increasing k does not lead to substantial performance
improvements. Therefore, to enhance computational efficiency, we recommend setting k=5. As for
the pairwise weight α, we found that the optimal range lies between 0.3 and 3. For convenience, we
suggest setting α “ 3. Additionally, we discovered that increasing the number of iterations T beyond
20 does not yield significant performance gains. In conclusion, the ablation results are generally
consistent across different scenarios!

Table 8: Ablation study on the coreset for the large-scale image classification dataset, ImageNet-22K,
and the LLM SFT dataset, OpenMathInstruct-v2, where the metric is the top-1 val-accuracy on
ImageNet-1K and the 8-shot accuracy on GSM8K, respectively. The selection ratio settings are 0.1
for all.

Dataset Partition strategy (the size of each subset) Sparse rate k Pairwise weight α Iteration T

Value 0.1M 0.5M 1M 1.5M 2M 5 20 40 100 200 0.001 0.01 0.3 1 3 5 10 20 5 10 20 40 60

ImageNet-22K 75.31 77.25 79.16 79.29 79.33 79.16 79.20 79.18 79.22 79.29 74.25 79.04 79.16 79.14 79.20 79.22 79.04 77.22 77.38 78.84 79.16 79.21 79.20

OpenMathInstruct-v2 85.26 86.09 87.11 87.35 87.41 87.11 87.18 87.21 87.22 87.16 85.72 86.89 87.07 87.11 87.18 87.04 87.15 86.31 84.39 86.20 87.11 87.42 87.39

C RELATED WORKS

Score-based methods. The score-based techniques are the most popular data selection approaches.
The EL2N score (Paul et al., 2018) measures the data difficulty by computing the average of the
ℓ2-norm error vector from a set of networks. GraNd (Paul et al., 2018) measures the importance by
calculating the expectation of the gradient norm. The Forgetting score (Toneva et al., 2018) counts
how many times a model changes its prediction from correct to incorrect for each example during the
training process. Memorization (Vitaly Feldman & Chiyuan Zhang, 2020) assigns a score to each
example based on how much its presence or absence in the training set affects the model’s ability
to predict it correctly. Diverse ensembles (Kristof Meding et al., 2022) gave a score to each sample
based on how many models in a group misclassified it. (Sorscher et al., 2022) proposed to use the
distance between the sample and its corresponding cluster center as the importance score. Influence
score (Tan et al., 2023; Xia et al., 2024) measures the sample-wise leave-one-out retraining influence
on the model’s performance. The score-based approach often suffers from performance problems
in application, especially when the pruning ratio is large. Some recent works have tried to solve
this problem through various methods, for example, Moderate (Xia et al., 2023) suggested selecting
data points with scores close to the score median. Note that Moderate (Xia et al., 2023) can use any
selection criterion, such as EL2N score (Paul et al., 2018), as a basis. Dyn-Unc He et al. (2024)
proposed an efficient uncertainty-based score with awareness of training dynamics. Some related
works also use sample-wise scores (Radford et al., 2021; Mahmoud et al., 2024) to reflect the quality
of multi-modality data.

Diversity-based (Geometry-based) methods. Traditionally, diversity-based coreset schemes are a
very classic computer science problem (Lloyd, 1982; Tan et al., 2006; Coates & Ng, 2012; Har-Peled
& Mazumdar, 2004; Feldman & Langberg, 2011; Feldman et al., 2013; Jiang et al., 2024). These
schemes aim to find a subset of data points that maximizes the diversity among the selected elements.
Sener & Savarese (2017) applied greedy k-center to choose the coreset with good data coverage. Yu
et al. (2020); Chan et al. (2022) proposed to use the coding rate to model measure the diversity. Yu
et al. (2022) formulates the problem of finding the most diverse subset into the problem of maximizing
the dispersion or convex hull volume. In addition, some works proposed to prune data from the
perspective of submodule theory (Wei et al., 2015; Kaushal et al., 2021; Kothawade et al., 2021) and
linear programming (Yang et al., 2023) to ensure diversity.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Hybrid methods. Solely using the diversity-based method alone can hardly perform satisfactorily
because they do not consider the intra-sample information. Recently, some hybrid works have also
attempted to introduce that score-based scheme into the diversity-driven pipelines to achieve better
performance. CCS (Zheng et al., 2022) sets different sampling ratios for samples with different scores
to enhance data coverage and balance both easy and hard samples. Yang et al. (2024) introduces
reconstructing the classification boundary on the original dataset as a goal and brings it into the
framework of CCS. BADGE (Jordan T Ash et al., 2019) is a diversity-based selection method in
active learning that clusters the gradient embeddings of the current model using k-means and selects a
subset from each cluster. D2-Pruning (Maharana et al., 2023) views data pruning as a node selection
problem based on Message-Passing on a graph, where the intra-sample information is utilized as
the node values on the sample graph. One of the core steps of D2-Pruning is the Inverse Message
Passing operation, which iteratively performs a greedy sample selection step. In each iteration, it
will select the sample with the highest score from all unselected candidates and then reduce the
score of samples in the neighborhood to guarantee that highly redundant parts are not selected in
the subsequent iterations. Among the above methods, D2-Pruning is currently the most advanced
solution in terms of performance. However, due to the heuristic or greedy nature of the algorithm, the
result obtained by using is often suboptimal, check Figure 1 for details.

D PROOF

D.1 DERIVATION OF THE INFOMAX SOLVER

Firstly, we restate the quadratic optimization problem of InfoMax:

max
XPt0,1uN

ÿ

zPD

XzIpzq ´ α ¨
ÿ

z,sPD

Kz,sXzXs, s.t.
ÿ

zPD

Xz “ p, (6)

Solving the quadratic problem defined in Eq .2 directly can be extremely computationally burdensome
and may even prove intractable since the budget size p is generally on the order of tens of thousands
or even millions (Krähenbühl & Koltun, 2011; Larsson et al., 2018). Continuous relaxation simplifies
the problem by relaxing some of the discrete constraints to continuous ones, reducing the complexity
of the search space and making the problem more amenable to efficient optimization algorithms, such
as the gradient-based methods (Krähenbühl & Koltun, 2011; Larsson et al., 2018). Here, we also
introduce a continuous relaxation of the problem, enabling the use of a gradient-based solver for
more efficient optimization:

max
XPRN

`

ÿ

zPD

XzIpzq ´ α ¨
ÿ

z,sPD

Kz,sXzXs, s.t.
ÿ

zPD

Xz “ p, (7)

According to (Krähenbühl & Koltun, 2011; Larsson et al., 2018; Baqué et al., 2016; Tan et al., 2021),
the continuous (complex and non-convex) problem in Eq. (7) could be optimized by solving a series
of the following (convex) sub-problems:

Xt`1 “ arg min
XPRN

`
,
ř

zPD Xz“p
´XT

´

I ´ 2αKXt
¯

` λhp
X

p
q `

1

β
DpX,Xtq, (8)

where Xt is the solution of the t-th sub-problem,
´

I ´ 2αKXt
¯

is the gradient of the objective

in Eq. (7) at Xt. We introduce the convex entropy function hp¨q controlled by a factor λ the
regularization term. A large λ value makes the problem easier to solve (Krähenbühl & Koltun, 2011;
Larsson et al., 2018; Baqué et al., 2016; Tan et al., 2021), but it may deviate from the original problem.
The proximal operator DpX,Xtq is an optional regularization term to prevent the solution difference
between the two iterations is too large. Following tradition (Krähenbühl & Koltun, 2011; Larsson
et al., 2018; Baqué et al., 2016; Tan et al., 2021), we use DpX,Xtq “ X

p log X
p ´ X

p log Xt

p , which

is the Kullback-Leibler divergence measure the discrepancy between X
p and Xt

p . Note that due to the
non-negativity of X and the property that the sum is a fixed value p, X

p has a probabilistic meaning.
Each element of it represents the probability that each sample is selected. If we differentiate this
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convex sub-problem, the optimal solution is identified by solving the following equation:

0 “ ´

´

I´2αKXt
¯

`λ
´

´
1

p
log

X˚

p
´1

¯

`
1

β

´1

p
logp

X˚

Xt
q`

1

p
Xt

¯

, s.t. X˚ P RN
` ,

ÿ

zPD

X˚
z “ p,

(9)
This has an analytic solution to (Krähenbühl & Koltun, 2011; Larsson et al., 2018; Baqué et al., 2016;
Tan et al., 2021),

X̂˚ “ exp
´ βp

λβ ´ 1
pI ´ 2αKXtq `

1

1 ´ λβ
plog

Xt

p
´ Xtq `

λβp

1 ´ λβ

¯

, (10)

Xt`1 “ X˚ “ X̂˚{p
ÿ

z

X̂˚
z q. (11)

Since the third term in Eq.10 is a constant, the solution could be formulated as the following form:

Xt`1 “ Softmax
´ βp

λβ ´ 1
pI ´ 2αKXtq `

1

1 ´ λβ
plog

Xt

p
´ Xtq

¯

. (12)

The mapping by the exponential function exp followed by the summation normalization is just
equivalent to the Softmax operator which is widely used in deep learning. By just setting λ “ 1 and
setting β Ñ 8, we have the most simplified iterative solution:

Xt`1 “ Softmax
´

p ¨ I ´ 2p ¨ αKXt
¯

. (13)

Note that the convergence rate of this solver is quite fast. In particular, the norm of the iterant
difference |Xt`1 ´ Xt| converges at a rate of Op 1

T q according to (Baqué et al., 2016; Tan et al.,
2021).

D.2 PROD: HOW DOES INFOMAX FIND THE MOST INFORMATIVE CORESET?

We explain why InfoMax can find the most informative coreset from the perspective of information
theory. First, we restate the information maximization formulation of data pruning defined in Eq. (1),
S˚ “ argmaxSĂD,|S|“p IpSq, where p is the size of the target coreset. The IpSq measures the
set-level information of the candidate subset S, specifically,

IpSq “ Ipz1q ` Ipz2|z1q ` ... ` Ipzp|z1, ..., zp´1q

“ Ipz1q `

p
ÿ

2ďk

Ipzk|z1, ..., zk´1q.
(14)

where tz1, ..., zpu P S are all samples from the set. Note that this equation always holds regardless
of the order of samples. The intra-sample information Ipz1q of the sample z1 could be instantiated
by various sample-wise scores (Sorscher et al., 2022; Cody Coleman et al., 2019; Tan et al., 2023;
Paul et al., 2018). Regarding the conditional gain term Ipz|Zq, we refer to the recent progress in
submodular information measures (SIM) Wei et al. (2015); Kaushal et al. (2021); Kothawade et al.
(2021), which present several instantiations for the submodular conditional gain. Here, we select the
simplest yet effective instantiation, Graph Cut conditional gain (GCCG),

Ipzk|z1, ..., zk´1q “ fpzkq ´ 2λ
ÿ

iăk

Kzi,zk . (15)

It measures the dissimilarity between the sample zk and all conditional samples. Specifically, Kzi,zk
measures the similarity between the sample i and the sample k, λ is an undetermined coefficient
and is a hyperparameter in the system. The submodular function f maps from a ground set to a real
value, and we can simply set it with fpzq “ Ipzq. Hence, we have the following instantiation for
the conditional gain term: Ipzk|z1, ..., zk´1q “ Ipzkq ´ 2λ

ř

iăk Kzi,zk . By substituting it into the
Eq. (14), we can instantiate and reformulate the set-level information as:

IpSq “
ÿ

zPD

Ipzq ´ 2λ
ÿ

z‰sPD

Kz,s. (16)

We introduce a set of binary variables X P t0, 1uN where N “ |D| is the size of the whole training
set. In the selection procedure, Xz “ 1 indicates the sample z was selected, otherwise it was pruned.
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By the problem definition in Eq. (1) and the set-level information formulation Eq. (14), we can
transform the original information maximization problem in Eq. (1) into the following combinatorial
optimization problem,

max
XPt0,1uN, |X|“p

:
ÿ

SĂD

ź

zPS

XzIpSq

“
1

p!

ÿ

z1‰...‰zpPD

ź

iďp

Xzi
Iprz1, ..., znsq //z1, ..., zn are several different samples from the training set.

“
1

p!

ÿ

SĂD

ź

zPS

Xz

´

ÿ

zPS

Ipzq ´ 2λ
ÿ

z‰sPS

Kz,s

¯

,

“
1

p!

ÿ

z‰z1...‰zp´1PD

XzIz

p´1
ź

1ďi

Xzi
´ 2λ

1

p!

ÿ

z‰s‰z1...‰zp´2PD

XzXsKz,s

p´2
ź

1ďi

Xzi

“
1

p!

ÿ

z‰z1...‰zp´2PD

XzIz

p´2
ź

1ďi

Xzi

´

ÿ

zp´1

Xzp´1
´

p´2
ÿ

j“1

Xzj

¯

´ 2λ
1

p!

ÿ

z‰s‰z1...‰zp´3PD

XzXsKz,s

p´3
ź

1ďi

Xzi

´

ÿ

zp´2

Xzp´2
´

p´3
ÿ

j“1

Xzj

¯

“
1

p!

ÿ

z‰z1...‰zp´2PD

XzIz

p´2
ź

1ďi

Xzi

´

p ´

p´2
ÿ

j“1

Xzj

¯

´ 2λ
1

p!

ÿ

z‰s‰z1...‰zp´2PD

XzXsKz,s

p´3
ź

1ďi

´

p ´

p´3
ÿ

j“1

Xzj

¯

(17)

Since X is binary, hence,

max
XPt0,1uN, |X|“p

:
ÿ

SĂD

ź

zPS

XzIpSq

“
1

p!

ÿ

z‰z1...‰zp´2PD

XzIz

p´2
ź

1ďi

Xzi

´

p ´

p´2
ÿ

j“1

Xzj

¯

´ 2λ
1

p!

ÿ

z‰s‰z1...‰zp´2PD

XzXsKz,s

p´3
ź

1ďi

Xzi

´

p ´

p´3
ÿ

j“1

Xzj

¯

“
1

p!
p ¨

ÿ

z‰z1...‰zp´2PD

XzIz

p´2
ź

1ďi

Xzi
´

1

p!
pp ´ 2q ¨

ÿ

z‰z1...‰zp´2PD

XzIz

p´2
ź

1ďi

Xzi

´ 2p ¨ λ
1

p!

ÿ

z‰s‰z1...‰zp´2PD

XzXsKz,s

p´3
ź

1ďi

Xzi
` 2pp ´ 3q ¨ λ

1

p!

ÿ

z‰s‰z1...‰zp´2PD

XzXsKz,s

p´3
ź

1ďi

Xzi

“ 2
1

p!
¨

ÿ

z‰z1...‰zp´2PD

XzIz

p´2
ź

1ďi

Xzi
´ 6 ¨ λ

1

p!

ÿ

z‰s‰z1...‰zp´2PD

XzXsKz,s

p´3
ź

1ďi

Xzi

(18)

By applying a similar reduction process to the rest variables, we have:

max
XPt0,1uN, |X|“p

:
ÿ

SĂD

ź

zPS

XzIpSq

“
1

p!
pp ´ 1q! ¨

ÿ

zPD

XzIz ´ pp ´ 2q! ¨ λ
ÿ

z‰sPD

XzXsKz,s

“
pp ´ 1q!

p!

´

ÿ

zPD

Ipzq ¨ Xz ´
λpp ´ 2q!

pp ´ 1q!

ÿ

z‰sPD

Kz,s ¨ XzXs

¯

,

(19)

where ppq! is a factorial function of p, and λ is a hyperparameter to be determined in Eq. (4). And we
have pp´2q!

pp´1q! “ 1
p´1 . Hence, if we use α to indicate λpp´2q!

pp´1q! , we obtain the quadratic programming
problem as defined in InfoMax. Therefore, we have proved that under the premise of using the
instantiation of Graph-cut conditional gain (GCCG) for the conditional gain term, solving the data
pruning problem in Eq. (1) to find the most informative subset is equivalent to solving the quadratic
problem defined in Eq. (2).
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Table 9: A comparative analysis of the performance ((Acc@1)) of InfoMax on image classification
datasets with ResNet-18 (on CIFAR) and ResNet-34 (on ImageNet). The best results are bolded.

Dataset CIFAR-10 CIFAR-100 ImageNet-1K
Selection Rate 100% 70% 50% 30% 20% 10% 100% 70% 50% 30% 20% 10% 100% 70% 50% 30% 20% 10%

InfoMax (unsupervised) - 94.9˘0.34 93.6˘0.29 92.2˘0.44 90.1˘0.38 87.0˘0.31 - 77.9˘0.28 74.6˘0.30 70.1˘0.19 64.7˘0.22 56.2˘0.20 - 72.8˘0.54 70.5˘0.65 68.0˘0.67 64.9˘0.58 56.8˘0.75
InfoMax - 95.5˘0.15 94.7˘0.26 94.1˘0.22 92.7˘0.19 89.1˘0.12 - 79.0˘0.22 76.7˘0.35 71.5˘0.30 67.9˘0.37 58.7˘0.42 - 73.3˘0.54 72.8˘0.68 69.4˘0.52 66.5˘0.61 59.0˘0.60

Table 10: Experimental results of coreset selection on CC12M (Changpinyo et al., 2021) for multi-
modality (vision-language) pre-training on CLIP-ViT-B/32 (Radford et al., 2021) model. The highest
results are bolded.

Dataset Zero-shot ImageNet-1K (Acc@1) I2T Flickr30K (Recall@1) T2I Flickr30K (Recall@1) Linear-prob ImageNet-1K (Acc@1)

Selection Rate 100% 60% 40% 20% 10% 100% 60% 40% 20% 10% 100% 60% 40% 20% 10% 100% 60% 40% 20% 10%

InfoMax - 35.2˘0.76 34.2˘0.79 31.3˘0.84 29.6˘0.75 - 48.5˘0.52 47.7˘0.60 42.1˘0.69 37.1˘0.59 - 42.0˘0.66 38.5˘0.70 32.1˘0.68 30.2˘0.52 - 62.8˘0.38 61.1˘0.31 54.5˘0.27 50.3˘0.44

E EXPERIMENTAL RESULTS OF INFOMAX WITH STD

F DISCUSSION: WHY DOES INFOMAX OUTPERFORM OTHERS?

The data pruning or coreset selection problem could be formulated in the following form:

S˚ “ arg max
SĂD,|S|“p

IpSq,

where IpSq “ Ipz1q ` Ipz2|z1q ` ... ` Ipzp|z1, ..., zp´1q

“ Ipz1q `

p
ÿ

2ďk

Ipzk|z1, ..., zk´1q.

(20)

where tz1, ..., zpu P S are all samples from the set. Note that this equation always holds regardless of
the order of samples. The intra-sample information Ipz1q of the sample z1 could be instantiated by
various sample-wise scores (Sorscher et al., 2022; Cody Coleman et al., 2019; Tan et al., 2023; Paul
et al., 2018). This is a very high-order non-convex and discrete combinatorial optimization problem.
Directly solving it is impossible.

Score-based Method. Empirically, we have found that the reason vanilla score-based methods
lag in performance is that the diversity of the selected coreset is difficult to guarantee. Let’s
explain it theoretically. The score-based method (Paul et al., 2018; Tan et al., 2023; Toneva et al.,
2018) often selects samples solely based on the score values. They generally approximate IpSq as:
IpSq “ Ipz1q ` Ipz2q ` ... ` Ipzpq, where S “ tz1, . . . , zpu Ă D, with each z representing a data
sample, and Ipzq denoting the information associated with that sample. Since the approximation
strategy of such schemes completely ignores the mutual information among samples, which is the key
to measuring the redundancy among samples, it is difficult for such schemes to ensure the diversity
of selection results.

Geometry-based Method. Empirically, we find that the pure geometry-based method can generally
find a coreset with satisfied diversity, but the importance/score/information of the selected sample
is often not sufficiently high. Geometry-based methods (Lloyd, 1982; Tan et al., 2006; Coates &
Ng, 2012; Har-Peled & Mazumdar, 2004; Feldman & Langberg, 2011) approximate the set-level
information IpSq as: IpSq 9

ř

pzi,zjqPS ´Ipzi; zjq, where Ipzi, zjq measures the similarity (mutual
information) of two samples, indicating information overlap (also the mutual information). To solve
the above problem, Sener & Savarese (2017) applied greedy k-center to choose the coreset with good
data coverage. However, the sample-wise importance/score/information term Ipzq is discarded.

Hybrid Method. Some hybrid methods attempt to combine the two aforementioned kinds of
methods by: firstly partitioning the datasets (e.g., by clustering), then selecting samples from each
partition (by random sample (Zheng et al., 2022) or by the guidance of the sample’s importance
Schuhmann et al. (2022); Jiang et al. (2024)). However, this combination pipeline often performs
inferiorly since the diversity within each partition cannot be guaranteed.

Hybrid Method-D2-Pruning. D2-Pruning is a superior hybrid method. It is inspired by the graph
message passing scheme in GNN. Before selection, it first constructs a graph, where each node
corresponds to a sample. The sample’s score is set as the node value, and the pairwise similarity
between samples is set as the edge value. The core of D2-Pruning is a greedy selection procedure.
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Table 11: A comparative analysis of the performance of InfoMax on instruction tuning datasets for
LLaMA2-7B (Touvron et al., 2023) model. The best results are bolded.

Dataset MMLU (5-shot Accuracy) TYDIQA (1-shot F1 score) BBH (3-shot Exact Match score)

Selection Rate 100% 50% 10% 5% 1% 100% 50% 10% 5% 1% 100% 50% 10% 5% 1%

InfoMax - 51.6˘0.45 52.6˘0.60 51.8˘0.75 50.2˘0.82 - 54.7˘0.48 56.8˘0.26 57.3˘0.75 57.1˘0.42 - 44.3˘0.49 45.5˘0.30 47.2˘0.75 45.7˘0.69

In this procedure, it iteratively selects the sample with the highest score and then reduces the
neighbors’ score. Intuitively, each time, the sample with the highest score that is least similar to all
already-selected samples would be selected. Theoretically, it could be regarded as solving Eq.20 via:

zt “ arg max
zPDnot-selected

Ipz|Dalready-selectedq “ arg max
zPDnot-selected

´

Ipzq ´ Ipz;Dalready-selectedq

¯

,

where zt is the sample selected at the t-th greedy iteration step of D2-Pruning, Ipzq is the sample-wise
importance/informativeness/score, Ipz;Dalready-selectedq measures the similarity/mutual-information
between the candidate sample z and all already-selected samples. D2-Pruning is better than the
previous Hybrid Methods because it takes into account trade-offs between diversity and sample
importance throughout. However, due to its greedy nature, D2-Pruning often falls into suboptimal
solutions.

InfoMax. InfoMax directly transforms the data pruning problem formalized by Eq.20 into a high-
order combinatorial optimization problem shown in Eq.2. InfoMax does not approximate set-level
information measurement like Score-based and Diversity-based schemes, nor does it use greedy
algorithms like D2-Pruning. Instead, InfoMax uses the graph cut conditional gain scheme (Eq.15) in
Submodular information measurement theory (Wei et al., 2015; Kaushal et al., 2021; Kothawade et al.,
2021) instantiates conditional information gain term Ipz|¨q, and then transforms the higher-order
combinatorial optimization problem into a more concise second-order problem, as shown in Eq.2,
see Sec.D.2 for detailed proof.

As shown in the optimization objective in Eq. 2, InfoMax globally maximizes sample-wise infor-
mativeness while minimizing redundancy to identify the most informative coreset. Therefore, while
D2-Pruning can often become trapped in local solutions, InfoMax aims to find the globally most
informative subset. Additionally, InfoMax is equipped with an efficient proximal gradient-based
solver that ensures convergence, resulting in consistently superior performance.

To gain a deeper understanding, we conducted experiments with a selection ratio of 10% on ImageNet.
We performed a quantitative analysis of InfoMax, D2-Pruning, El2N (vanilla score-based), and K-
center (vanilla geometry-based), based on the final coreset measurements, including mean redundancy
and mean informativeness. Specifically, mean redundancy is defined as the average similarity among
all samples, while mean informativeness is defined as the average sample-wise score value. EL2N’s
coreset has very high redundancy, while the K-center coreset has very low mean-informativeness.
The final performance of these two schemes is relatively inferior. The coreset found by InfoMax can
have higher information and lower redundancy than D2-Pruning, leading to better performance for
the model trained on the coreset.

Method Mean-informativeness (Ò) Mean-redundancy (Ó) Top-1 Accuracy (Ò)
EL2N 0.726 0.743 12.9
K-center 0.179 0.130 42.0
D2-Pruning 0.491 0.292 55.6
InfoMax 0.563 0.216 59.0

Table 12: Comparison of methods based on informativeness, redundancy, and accuracy.
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