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ABSTRACT

This paper studies a novel problem of out-of-distribution graph models merg-
ing, which aims to construct a generalized model from multiple graph mod-
els pre-trained on different domains with distribution discrepancy. This prob-
lem is challenging because of the difficulty in learning domain-invariant knowl-
edge implicitly in model parameters and consolidating expertise from potentially
heterogeneous GNN backbones. In this work, we propose a graph generation
strategy that instantiates the mixture distribution of multiple domains. Then,
we merge and fine-tune the pre-trained graph models via a MoE module and a
masking mechanism for generalized adaptation. Our framework is architecture-
agnostic and can operate without any source/target domain data. Both theoret-
ical analysis and experimental results demonstrate the effectiveness of our ap-
proach in addressing the model generalization problem. The code is available at
https://anonymous.4open.science/r/OGMM—-Anonymoush

1 INTRODUCTION

As the scale and complexity of observed graph data continue to increase, graph models have become
essential tools for extracting insights from real-world scenarios (Zhu et al.| 2022} [Li et al., 2022
Zhang et al.,2024; [Wu et al.,|2024). Recently, Graph Model Generalization (GMG) aims to transcend
the limitations of multi-domain datasets with distribution shifts by identifying invariant features
(Arjovsky et al.| [2019; (Chang et al.,[2020; |Ahuja et al., 2021])), causal relationships (Gui et al., 2024;
Chen et al., 2024a), or risk extrapolation (Xu et al.,2020; Ziyin et al., [2020; [Ye et al., [2021; Li et al.,
2024c) underlying the graph data distributions. The objective is to maintain robust performance on
unseen, out-of-distribution graphs.

Current research focuses on training a generalized model from scratch using graph data from multiple
domains with distribution discrepancy. However, a less explored yet practical scenario emerges
when graph models have already been trained individually on these different domains—referred to
Out-of-Distribution Graph Models. For instance, in social networks, models trained on user data
from different groups or with varying architectures capture diverse behavior patterns.

As presented in Figure[T] these models are designed for similar tasks but on different datasets, each
preserves specialized knowledge. Figure[2illustrates the performance of GNN models pre-trained on
one domain and tested on both their own and other domains with distribution shifts (detailed setting
is in Sec. [4.T). While models perform well in their own domain, their performance degrades in others,
and different GNN architectures may excel in different domains. These suggest that by merging
these models’ intrinsic invariability and complementary expertise, it is possible to address challenges
arising from distribution shifts and achieve generalization on all domains, even without retraining
from scratch on the original training datasets or labels.

Therefore, this paper investigates a novel and practical problem, named Out-of-Distribution Graph
Models Merging: How to consolidate the knowledge of multiple pre-trained GNNs into a unified
model that generalizes under distribution shifts? Achieving this goal is non-trivial due to the follow-
ing challenges: (1) Unlike conventional domain generalization approaches, learning the domain-
invariant knowledge from the domain data explicitly, learning from the model parameters in our
setting is inherently complicated. (2) Furthermore, the pre-trained models may differ in their architec-
tures and hyperparameters, making it difficult to consolidate the expertise of these diverse models
into a unified representation.



https://anonymous.4open.science/r/OGMM-Anonymous

Under review as a conference paper at ICLR 2026

GNN | | NN Merge 1 Merged GNN
I h0,0,050)
Fine-tune §

Training Domain Training Domain Training Domain
A B C A B C A B C

c
- 7596 JUREN 49.14 ‘c <C JREKER 57.72 LR

o o
O m - 56.58 (LNt 5164 O m - 53,68 {00 52.16
o

£ oo e
Pre-train bamain Generatisation TSt @u 45.18 50,44160459 éu 47.72 | 5175 QSN
;” Distribution Shifts \il\’/ 1 (a) GCN (b) GAT (C) GIN
R} @ /:%" f’%@é i Figure 2: Comparison of different GNN models’ gener-
{ Domain1 _Domanz pomam3s | | New Domains /  alization performance on PTC between in-distribution

and OOD scenarios, with three domains represented as
Figure 1: Illustration of Out-of-Distribution A /B /C. Values indicate Acc (%). The results within
Graph Models Merging. the red dashed box represent best performance.

To address these challenges, we propose a novel Out-of-distribution Graph Models Merging (OGMM)
framework for domain generalization, which is depicted in Figure[3] Specifically, we explore the
theory of multi-domain generalization defining generalization risk in functional space and deriving a
two-stage objective function. The first stage is a domain knowledge generation process. We “invert”
each pre-trained GNN (expert), to generate a small set of label-conditional graphs starting from
random noise. These generative graphs are then aggregated as the training data for the second stage.
The second stage involves experts fine-tuning and merging. To effectively retain the source domain
knowledge learned by models with different parameters and architectures, we employ a Mixture-
of-Experts (MoE) module for merging. Meanwhile, based on the mixture distribution assumption,
we prove that the fine-tuned MoE with masks serves as an approximation of the generalization
risk function. The lightweight sparse gating weights and the masked experts are trained with the
generative graphs, enabling the allocation logic of “sample-expert” pattern. The main contributions
of OGMM are summarized as follows:

e We propose a novel framework named out-of-distribution graph models merging, which aims to
learn a generalized model from multiple graph models pre-trained under domain shifts.

e We propose a graph generator for concentrating the model knowledge effectively, and develop an
innovative model merging function utilizing fine-tuned MoE to address adaptive integration of
multiple pre-trained models, thereby enhancing generalizability to unseen graphs.

e We validate OGMM on various tasks, demonstrating substantial improvements on out-of-
distribution data compared to both individual model and traditional model merging methods.

2 PROBLEM FORMULATION

Graph Neural Networks(GNNs). A graph is represented as G = {4, X'}, where A € R"*" is the
adjacency matrix and X € R™*? denotes the node features, with n being the number of nodes in G.
We consider a basic GNN consisting of two parts: {U, ®}, i.e., f(O) = 6y 0 0 — ), where Oy is
parameters in the graph encoder, 6 corresponds to the classifier parameters, and ) is the graph-level
(or node-level) label space in the downstream tasks. Specifically, ¥ represents a multi-layer message
aggregation function, where the update mechanism in the L-th layer can be written as follows:

hPT! = o(AGGR(hF, {hE|v € N (i)}), @)

where hY = z;, and h¥ is the output representation for node i. o is an activation function. AGGR
defines the aggregation of nodes and their neighbors A/(+). The classifier ® will be trained to assign a
label for each graph (or node) from the label space Y = {Y7, Y5, ..., Y.} with c classes.

Out-of-distribution Generalization on Graphs. The objective of Out-of-distribution Generalization
(also known as multi-domain generalization) is to leverage joint data samples from multiple source
domains to capture cross-domain invariant knowledge (Crammer et al., 2008} Mansour et al., 2008).
Here, we present its formulation in the context of graph domains. Suppose we are given M sets of
source data, denoted as {G; };cnr, where G; = {G1,Ga, ..., Gn,} represents the i-th source dataset.
Each G; maps to the label space ). Additionally, we are provided with a target dataset consisting
of N; graphs (N; = 1 for node-level tasks), Gr = {G1,Ga, ..., Gn, }, which shares the same label
space ) as the source data but follows different distributions. The goal is to optimize a GNN model
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Figure 3: Architecture overview. The architecture of OGMM consists of two primary stages: (1)
Graph generation. Each pre-trained GNN serves as a supervisor to train its corresponding generator,
which reconstructs label-conditional graphs from random noise. (2) Model merging. The generative
graphs are aggregated to train a merged GNN using a MoE module. It comprises a gating layer and
a set of fine-tuned masked experts. Gradient updates are guided by mask and gating regularization
terms alongside classification loss.

f with parameter O from scratch to minimize the generalization error under the unobserved shifts as:
f(@*) = arg m@%n EQTJ} [E(f(@, {g17 g27 () gM})7 gT? y)} . (2)

Out-of-distribution Graph Models Merging. Different from the conventional conditions of Out-
of-distribution Generalization, Out-of-distribution Models Merging assumes that the task-specific
GNNs {f(0;)}icar have already been trained on different datasets {G; };cs and aims to learn a
unified model utilizing the parameters of multiple pre-trained models. The objective is to optimize a
multi-model merging function to obtain a model with higher generalization capabilities. Under the
proposed Graph Models Merging setting, we define an objective function as follows:

I' = arg moinIEgTy [K(F(a, {01,09,..., @M}),QT,\)))], 3)

where I'* is the expected model merging function, « is the combining weights, and ¢ is the loss
function that measures the prediction error.

3 METHODOLOGY

In this section, we present a framework for out-of-distribution graph model merging that constructs a
unified model from multiple pre-trained GNNs without access to original data. Building on multi-
domain generalization theory, we develop a two-stage approach that addresses the fundamental
challenge of extracting and consolidating domain-invariant knowledge from model parameters.

3.1 OVERALL FRAMEWORK

Here we justify Eq. [3] based on multi-domain out-of-distribution generalization theory, enabling
out-of-distribution models merging. To begin, we establish a mixture distribution assumption for this
problem, stating that the target distribution is a mixture of distributions from multiple sources.

Assumption 3.1 (Mixture Distribution). The input to the problem is the set of M source distributions,
denoted as {G1,Ga, ..., Gar}. The distribution of the target domain, Gr is assumed to be a linear

combination of the M source distributions: Gr = Ziw «;G;.

This assumption is widely accepted in multi-domain generalization problems (Crammer et al.|
2008; [Mansour et al.,2008)), and leads to the rule of linear combination of functions, expressed as
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I' = S M, f(©;). Next we provide the definition of HAX-divergence to define the symmetric

differenée in hypothesis space H.

Definition 3.2. [HA%H-divergence]. Let H be a hypothesis class. f(©;), f(©,) € H are the
functions trained on distributions G; and G, respectively. We define the divergence between G; and
G; in the function space:

dyan(Gi,G;) = 2sup | Ecg,[|f(0i, G) — (05, G)] — Eang,[|f(©:,G) — £(8;,G)]| 4

By the linear assumption and the definition of divergence, we prove the generalization error bound of
T'(+) on the target distribution G in the following theorem.

Theorem 3.3. If each f(©;) is an optimal learner trained on the marginal distribution G;, the
upper bound of the generalization error for T'(-) on the target domain is given by the sum of the
cross-validation errors of these sub-learners across different distributions.

The proof is shown in Appendix [A.T|due to the page limit. To enhance the generalization capability
of the I'(+), we can introduce fine-tuning weights w' for f(©;) to decrease the cross-validation error.
The overall objective for merging function can be formulated as:

M

argmrinZ[nggi(f(@i,G), (a,w,G)) Jqu JrZe] (©4,wW))+ A, (5)

where €;(+) denotes the empirical error on G;. C is a loss function like cross-entropy. The A represents
the minimum sum of errors achievable by the optimal hypothesis i across all domains within
our hypothesis class H. This value is determined by the design of # itself (like neural network
architecture) and is independent of our optimization over I'(+).

Then, we consider the expansion of ¢;(f(0;)) as a starting point for knowledge extraction from
f(0;). Consequently, Optimization can be reformulated as a two-stage objective function:

N M
arg algué Z Ca,~g (Ui, Z a; f(©;,w,G;)) [Sec.

J

. ©)
sLGf = argmin Y Ca,ng, (35, (01, Gy)) [Sec. B2,
g
where g; is the conditional labels sampled from the label space for samples on G;. G* = Efw ;G is

the mixture distribution generated from pre-trained GNNs, which will be introduced in Sec. [3.2] The
N; represents the number of samples drawn from G;. We use these generative samples to fine-tune
« and w in merging function I'(+), which will be introduced in Sec. The analysis details are
provided in Appendix[A.3] This theorem shows that under the mixture distribution assumption, the
generalization ability of the merged GNN depends on three factors: the pre-training error of the each
model, the fine-tuning error of the models on the new domains, and the training error of the merged
model on the generated samples. Next, we will provide the detailed implementations of OGMM.

3.2 LABEL-CONDITIONAL GRAPH GENERATION

In the first stage, we use pre-trained graph models to generate synthetic graphs for subsequent
fine-tuning and merging. Instead of using the original graphs, we opt for generated graphs because:
the original datasets may not always be accessible for every model, generating a smaller set of graphs
is more efficient than using the entire dataset, and the generated graphs may sometimes distill and
refine knowledge more effectively, making them more representative than the original data. Still, our
method is capable of utilizing the original data, and a comparison is provided in Table 2]

As defined by Optimization [6] the goal is to fix all parameters of the pre-trained GNN while
optimizing the inputs to minimize the label-conditional posterior error. For graph data, a unique
challenge arises due to the inputs’ composition of both node features X and graph structure A, with
A often represented as a discrete variable. This discreteness hinders the direct application of inversion
technique (Zagoruyko & Komodakis} 2016;|Yin et al., |2020). To address this, Deng & Zhang| (2021)
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employs a discrete gradient approximation method tailored for optimizing A.|[Zhuang et al.| (2022])
parameterizes X alone while constructing A from the inner product space of X, thus preserving
feature similarity. Better methods like (Liu et al.;,|2022;|Gao et al., [2024; Jin et al.,|2021) use edge
encoder to retain inherent relationships between node features and edges. Here, we propose a discrete
edge encoder to handle graph structures.

Graph Generator. Specifically, for each pre-trained GNN f(0;), we construct a generator P; to
produce label-conditional graphs that maximize f(©;)’s agreement. P; samples feature X* € R"#*4
from a standard normal distribution, representing n; generative nodes, as the initial input for every
graph G;. For each X, P; samples a label §j; from a uniform distribution, serving as the conditionally
posterior ground-truth. To generate A’ from X ¢, we introduce an edge encoder defined as follows:

i = o(MLPo([X1: X)), 7

where MLPy is a three-layer fully-connected neural network, o is an activation function, and [-; -]
denotes the concatenation operator. To enforce discrete edge weights, we assume edges follow a
Bernoulli distribution and employ the Gumbel-Softmax to approximate values in [0, 1]:

, log( A%, ) +
A%y, = softmax (W) , )
where 1 = —log(—log(e)) and e ~ Uniform(0, 1). Here, 7 denotes the temperature hyperparameter,

with 7 — 0 leading A’ toward binary value. By feeding batches of generated samples (X", A’ g;)

into the generator P;, we can use the label-conditional posterior loss C(;, f(0;, X*, A?)) to fit the
source domain distribution, obtaining G.

Regularizers for Generation. In addition to the label-conditional posterior loss, we leverage priors
stored in the batch normalization (BN) layers of the pre-trained models. Following (Deng & Zhang,
2021)), we enforce the mean and variance values of the generative graph embeddings to match those
recorded in the BN layers of the GNNs. Common GNN models perform well with relatively few
layers, correspondingly having a limited number of BN layers (A 2-layer GCN or GAT model
typically has only one BN layer while GIN has two). We utilize all BN layers from GNN models to
calculate this regularization term:

Ron = » {HuL(Xi) —Elur (XY | X7, + |03 (X?) — E[o} (X7) | X7] ||2}, )

where X denotes the intermediate representations of a graph in the BN layers, while X'? is the data
memorized during training BN layers. pp,, 0% are represented as the feature means and variances,
respectively, obtained from the L-th BN layer.

Another regularization term is the model’s confidence in classifying the generative graphs, which
ensures that graphs are well-calibrated rather than remaining in an ambiguous state. We define the
confidence regularization as follows:

N

Reont = Ec,ngs | = f(8;,Gi)log f(8;,Gi) | , (10)

where G7 is the data generated by the j-th generator and IV is the number of samples. Consequently,

the overall loss function for each generator is formulated as follows:

»Cgen = Z C(Qm f(Gju Gz)) + Rbn + Rconf~ (11)

With the parameterized X and 6 learned from the above loss, we can synthesize samples (graphs in
graph-level tasks or nodes in node-level tasks) that well-represent the corresponding task data. This
process ensures that each generative graph retains structural and feature integrity, without introducing
the complexity of gradient approximation methods. Finally, we merge all generated samples to
construct the dataset G* = {G}, G5, ..., G}, } for training the model merging function.
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3.3 MODELS FINE-TUNING AND MERGING

In the second stage, we need to find a solution for reusing and integrating heterogeneous GNN
backbones. This solution should both fine-tune each pre-trained GNN (expert) to adapt to knowledge
from multiple domains and be universally applicable to arbitrary model architectures. The objective
function for this stage is rewritten according to Optimization [6}

N M
argmin }  Careg; (51, ) 5/ (0;,7,G1)), (12)
i J
where IV and M denote the number for samples and models. g; is the generated label of the i-th
sample, and «; is the fusion weights, combining different models for different samples, respectively.
Indeed, Optimization@ is an innovative fine-tuned MoE architecture with Gate Layer («) and added
masks (w). The module’s capability is to fine-tune, filter and combine pre-trained experts on a mixture
distribution to reach a wider generalization plane overall.

Masked Experts. Inspired by mask tuning techniques (Ghanbarzadeh et al., 2023} |Li et al.,[2024a),
we aim to identify and re-weight the pre-trained parameters required by new tasks. Given parameters

0i = (0i,...,00)T € O, of a trained GNN ([ is the size of subset in module (*)), the mask matrix
w’ can be optimized as a downstream-related neural pathway:
0 =0 o, (13)

where © denotes Hadamard product, and éi replaces 0% in each Masked Expert. According to
Optimization |5} T'(-) represents a distribution-sensitive function, while the role of w’ is to fine-
tune f(©;) to minimize €;(f(©;,w")). In shallow networks such as 2-layer GNNS, the position
where the mask is added becomes particularly critical. We hypothesize that the weights in the
classification head are closely related to downstream tasks, making it highly susceptible to learning
domain-specific knowledge from high-dimensional representations. Thus, fine-tuning the parameters
of the classification head is a reasonable and effective strategy, which is further validated by the
experimental results provided in Sec. .2]and Appendix [C.2}

Sparse Gate in MoE. Note that we can directly replace o in Optimization |12 with a regular MoE
Gate layer, which can be written as follows:
M
H; = o() (Gate(X");H, ;)), (14)
j=1
where o is an activation function, M denotes the number of models (or experts), and Gate(-) is
employed to distribute samples to different models. H; and H; ; are the outputs of MoE and the j-th

pre-trained model, respectively, with respect to sample X*. For all the masked pre-trained GNNs, the
sparse gating strategy is as follows:

Gate(G;) = softmax(TopK (Q(G;), k)), (15)

Q(G;) = G;W, + € - softplus(G;W,,), (16)

where G; € G* is generated from pre-trained GNNs. TopK (-, k) is a selector to find the largest
(smallest) first & members in the sequence. W, and W, in Eq. are the learnable weights.

W, € R¥™M processes clean sample features to get expert selection scores, while W,, € R¥*M adds
controlled Gaussian noise € € A/(0, 1) to prevent experts from collapsing and ensure load balancing.

Summarizing the above, the loss of Optimization [I2|can be re-written as follows:
L= C@iTuw,w,(G)) a7)
G,eG*
where 'y, w, w, (Gi) = ZJA; Gate(G;); f(©;,w, G;) is our proposed model merging function.

Regularizers for Fine-Tuned MoE. Here we introduce two regularizers to constrain the optimization
direction of gates and masks. Following the strategy in (Wang et al.l 2024), we utilize an importance
loss to prevent single-selection collapse:

Reae = CV( Y (Gate(Gy)))?, (18)
(e
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where C'V (-) represents the coefficient of variation. This regularizer measures the degree of weight
disparity in “sample-expert” pairings, encouraging uniform weight distribution and enforcing all
experts to be “load-balanced”. For masks added to the pre-trained GNNS, it is necessary to mini-
mize changes to the freezing parameters while learning new knowledge to prevent “forgetting” old
knowledge. So we design the other regularizer as follows:

. 17w Zm ik —1|< 1
— 0 aer — kg Vv
Rmask = iZjCGleg*(yuf(@JaW 7G2))+;(( \oﬂ| 7p)+(
where A, is a balanced hyper-parameter, and -, v, € [0, 1] are two thresholds to control the effects
of the masks in terms of their mean values and variances, respectively. |w’| means the size of w’. The
first part in Eq. [19]is for learning new knowledge from G* and the second part for controlling the
process of fine-tuning. The overall loss function for merging is formulated as follows:

E'merge = Z C(gu F@(Gz)) + )\gateRgate + )\maskRmaska (20)
G,eG*
where & = {w, W,, W, }, and Agqse and Ay,qqr are balanced hyper-parameters. Recall the question

Eq.[3} T's(+) can achieve better generalization due to the wider plane of the mixed distribution going
over the unseen graphs.

4 EXPERIMENTS

In this section, we mainly focus on the graph classification tasks on the widely-used real-world
datasets which encompass both observed (training) and unobserved (testing) data. Supplementary
experiments (on the large-scale datasets / the node-level tasks) are provided in the Appendix [C.4]
Following common practice, we use the Accuracy (Acc) and Precision (Pre) on the OOD target
dataset for measuring the generalization performance.

4.1 EXPERIMENT SETUP

Datasets. We evaluate our method on four datasets: MUTAG, PTC, REDDIT-B, and NCI1, following
the same configurations as in (Xu et al., [2018). To simulate realistic domain shift scenarios, we
partition each dataset based on the edge-to-node ratio, following established domain partitioning
methods (Luo et al.||2024a; Zeng et al., 2024;|Luo et al.,|2024b; |Wen et al.| 2025; |Wang et al., 2025)).
This strategy creates meaningful distributional differences between domains while maintaining the
intrinsic properties of each dataset. Summary statistics of these datasets and detailed specifications of
partitioning are provided in Appendix [B.T] In this paper, we distinguish between domains using the
notation “A /B / T”. Specifically, “A” represents dataset slices with lower edge density, “B” refers to
slices with intermediate edge density values, and “T” denotes the test set with higher edge density.

Baselines. First we pre-train models on each observable domain, resulting in multiple pre-trained
models. Then, we perform graph models merging and evaluate the generalization performance on the
unseen testing domain. We use three widely-adopted GNN architectures—GCN (Kipf & Welling|
2016), GAT (Velickovi¢ et al., [2017), and GIN (Xu et al., 2018)—as off-the-shell models to be
merged. Additionally, we use the form of (architecture-A/B) to distinguish GNNs trained on different
source domains. For example, GCN-A refers to a GCN trained on source domain A. For ease of
comparison, all GNNs used in our experiments are 2-layer networks with 32 feature dimensions.
Since no known methods exist for merging GNN models with diverse architectures, we design two
baseline approaches for reference: Inverse-X and Multi-GFKD. We compare our method with seven
source-free graph domain generalization methods, which can be divided into three groups:

e Ensemble learning methods, include averaging the performance of the models (Avg-PTMs),
averaging the output probabilities of the models (Ens-Prob), and selecting the prediction from the
most confident model, defined as the one with the lowest entropy (Ens-HighConf).

e Model merging methods, include computing the element-wise mean of all models (Uni-Soup)
(Choshen et al., 2022) and the selective merging approach (Greedy-Soup) (Wortsman et al.| [2022)).

o Generative methods include Inverse-X and Multi-GFKD. Inverse-X is a baseline variant of OGMM
that uses random graph structures instead of our parameterized edge encoder. Multi-GFKD is an
extension of GFKD (Deng & Zhang|, 2021)) to multi-teacher distillation.
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Table 1: Data performance comparison across four datasets. The form (Architecture-A/B) indicates
that this architecture is pre-trained on domain A/B. Highlighted are the top first, second results.

Methods REDDIT-B PTC MUTAG NCI1
Acc/%T Pre/% 1 Acc/% T Pre/% 1 Acc/%T Pre/% 1 Acc/%T Pre/%7T

GCN-A 25.03+6.67  35.55+32.38 | 48.97+3.59  50.38+4.31 31.2548.00 37.47+31.87 | 49.62+6.53  57.85+3.97
GAT-A 242141020 27.054+34.91 | 48.10+3.67 53.30+8.56 26.88+0.94 16.22+18.79 | 49.914+3.66 58.06+1.17
GIN-A 22.46+8.28 18.47+20.35 | 47.93+4.42  50.98+7.43 28.91+6.02  27.81+31.88 | 52.58+1.98 60.46+1.52
GCN-B 66.10+3.59  60.64+4.96 | 49.90+2.85 49.77+10.69 | 32.03+9.79  33.86+33.23 | 61.614+3.22  62.4242.53
GAT-B 61.78+26.86 55.36+26.77 | 49.38+4.16 49.84+10.85 | 27.81+£2.86  19.94+26.1 60.75+1.89  63.14+1.43
GIN-B 58.80+18.56  56.74+7.01 | 50.12+5.59  55.86+8.87 | 42.03+£12.49 49.24+26.51 | 65.02+£1.66  66.79+1.11
Avg-PTM 52.4745.46 51.66+8.29 | 50.204+1.95 51.734+3.43 31.48+2.88 32.42+12.33 | 56.584+2.12 61.45+1.13
Ens-Prob 33.65+25.66  36.12+£39.06 | 50.17+£2.58  56.64+6.99 | 29.84+5.65 35.86+35.35 | 58.05+4.36  62.65+1.51
Ens-HighConf 44.46+29.00 45.86+35.70 | 48.19+1.87 50.83+3.98 | 32.34+7.94 47.99433.41 | 56.44+6.77  61.73+3.07
Uni-Soup 4326+14.09 31.65+17.22 | 50.20+2.48 47.38+6.09 | 37.40+12.03 17.97+12.17 | 48.73+8.83  47.25+11.09
Greedy-Soup 47.35+£8.89  50.70+9.62 | 50.174+2.50  42.75+9.43 | 31.46+6.23 13.914+8.51 | 38.64+10.43 28.67+11.81
Inverse-X 56.21+427.12  48.86+30.58 | 50.43+3.50 51.924+3.40 | 38.75+17.91 40.14+31.57 | 62.394+9.68 56.35+7.32
Multi-GFKD 54.354+11.40 37.96+11.40 | 50.77+1.3 44.43+4.39 44.364+8.42  29.744+10.37 | 47.57+4.84 36.75+7.42
OGMM | 76984519  63.36+0.81 | 51214374 57.39+6.71 | 45.62+18.67 56.28+26.70 | 66.84::0.45  72.90+4.89

Table 2: Ablation study about different modules. Highlighted are the top first, second results.

REDDIT-B PTC MUTAG NCI1

Variants Acc/% Pre/% Accl% Pre/% Accl% Pre/% Acc/% Pre/%

Given  w/o Mask | 43.954+26.06 72.34+23.14 | 49.31+£2.77 54.47+6.97 28.12+2.1 33.52+33.46 | 48.36+33  61.78+2.46
Source  OGMM 80.98+11.30  78.33+2.91 | 54.31+2.70 59.16+5.04 | 57.81+7.30  68.79+3.13 | 68.04+2.13  71.9+1.16
w/o MoE | 50.39+5.21 45.01+£1.71 | 50.56+0.74 51.014£2.69 | 39.53+1.70  23.29+0.81 60.62+022  66.68+2.72

Source w/o Mask | 31.98+18.77 35.99+38.87 | 50.95+2.90 55.36+6.15 | 28.28+1.47 49.39+34.98 | 51.11+£1.06  59.7+0.98
Free  wio Lgen | 41.15+26.95 39.75+36.20 | 48.884523 48.6145.63 | 453142296 25.81+22.96 | 52.69+11.61 55.824+3.46
OGMM 76.98+5.19  63.36+0.81 | 51.21+£3.74 57.39+6.71 | 45.62+18.67 56.28+26.70 | 66.84+0.45 72.90+4.89

4.2 EXPERIMENTAL RESULTS

Main Results. The comparisons of different models under the split-dataset scenarios are shown in
Table [T} OGMM consistently outperforms individual pre-trained models across all datasets, demon-
strating the MoE module’s effectiveness in capturing distribution shifts and accurately allocating
“sample-expert” pairs. Ensemble methods like Avg-PTMs, Ens-Prob, and Ens-HighConf show simi-
lar precision, suggesting that leveraging multiple models can improve generalization. In contrast,
parameter merging methods (Uni-Soup, Greedy-Soup) perform poorly, highlighting that integrating
model outputs is more effective for OOD problems. Compared to other source-free methods, OGMM
sets a new state-of-the-art, achieving superior performance across datasets, especially on larger
datasets like REDDIT-B and NCI1. While data generation-based methods (Inverse-X, Multi-GFKD)
outperform fusion approaches, OGMM surpasses both, offering significant improvements. Unlike
Inverse-X, which only learns node features, OGMM simultaneously learns node features and graph
structures, enabling better recovery of domain-specific knowledge. Additionally, OGMM preserves
more source-domain knowledge, maintaining the diversity of observable distributions.

Analysis for Masks. We apply masks to two parameter groups, MaskCL and MaskNN, across three
GNN architectures to analyze mask placement impact. MaskCL applies masks to classifier parameters
(f3) while freezing others; MaskINN applies masks to encoder parameters (fy). As shown in Figure
Ml models fine-tuned exclusively on classifier parameters achieve competitive performance across
datasets. The mask size accounts for only 20% of total parameters in a 2-layer GNN on average. This
suggests domain-specific knowledge is concentrated in classifier parameters, making classifier fine-
tuning more efficient. See Appendix [C.T|for more results on other datasets. Additionally, we analyze
parameter changes after continuous fine-tuning across multiple domains. Results demonstrate that
classifier parameters exhibit stabilizing characteristics after multiple fine-tuning rounds, providing
evidence for our mask mechanism’s effectiveness. The comprehensive parameter evolution analysis
and associated visualizations are detailed in Appendix

Ablation Studies. To evaluate the efficacy of OGMM’s components, we conduct an ablation study
comparing five variant configurations, with comprehensive details provided in Appendix [B.3]and
quantitative results presented in Table[2] The variant “OGMM (under Given Source condition)”,
which leverages access to source domain data and incorporates additional trainable parameters,
demonstrates superior performance as expected. The variant “w/o Mask (under Given Source
condition)” only optimizes merging weights with fixed pre-trained parameters, performing similarly
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means that a GNN pre-trained on domain A and fine-tuned on the Target domain. The bar chart shows
the model performance on the target domain, and the dashed line represents the average performance

of masked models with different mask positions on this dataset.
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Figure 5: The Effects of k£ in T'op K Expert Selection on four datasets.

to Ens-Prob / Ens-HighConf from Table[I} Notably, our proposed OGMM achieves optimal results
in the source-free setting, approaching the best performance despite the absence of source domain
data, thus validating its capability for effective cross-domain knowledge transfer. Removing the
MoE module, generator, or masks under the source-free constraint leads to performance declines,
underscoring the critical contributions of these components.

Impact of Top K Expert Selection. To investigate the effects of the hyper-parameter k in the T'op K
selector, we evaluate results across four datasets shown in Figure[5} The performance changes reveal
that selecting k£ between 2 and 4 generally yields optimal results across all datasets. Most datasets
exhibit similar trends, with accuracy improving as k increases initially and then stabilizing at higher
values. Notably, OGMM consistently outperforms the pre-trained baseline across most settings,
confirming the effectiveness of our MoE module. In addition, these results show that the optimal
choice requires dataset-specific tuning to accommodate varying dataset characteristics.

Impact of the Number of Synthetic Samples. .,
Theoretically, OGMM can generate unlimited -
synthetic graphs for training, but their quality
and diversity are limited by the pre-trained mod-
els, as noted by (Deng & Zhang, 2021). Figure
[6] shows the relationship between OGMM’s per-
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performance even with a small fraction of syn-
thetic graphs, as these effectively capture high-
order domain knowledge, resulting in a concen-
trated and informative distribution.

Figure 6: Impact of the number of generative
graphs. The horizontal axis is the ratio of gen-
erative samples to total source domain data.

5 CONCLUSION

This paper investigates the problem of Out-of-Distribution Graph Models Merging. The primary
challenge lies in extracting knowledge from pre-trained GNNs and guiding their reuse to address
the issue of model generalization. To tackle this challenge, we propose a novel out-of-distribution
graph models merging framework. Our approach leverages graph generation and a fine-tuned MoE
to adaptively optimize the model fusion process, enabling effective generalization under graph
OOD scenarios. Extensive experiments on several real-world benchmarks confirm that the proposed
approach outperforms state-of-the-art baselines.
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This appendix contains details about mathematical proofs, experimental implementation, supplemen-
tary experiments, related works, limitations, and future works.

A  PROOF

A.1 PROOF OF THEOREM

Proof. Given a domain G; with two trained classifiers f(©;) and f(©;). These classifiers may
have been trained on different source domains or under different conditions, leading to potentially
divergent prediction behaviors. Based on (Ben-David et al.,|2010), we can define the probability
according to the distribution G; that f(©;) disagrees with f(O;):

Ei(f(©4), [(0;)) = Ean~g,[f(0:,G) — f(8;,G)|]. (21)

If the classifier f(©;) is a good learner trained on G;, meaning it has achieved low training error and
captures the underlying patterns of domain G; effectively. We will find the generalization error of

f(©;) over G;:
Ei(f(©:), £(6;)) = Eg~g,[|Y — (05, G)l], st.f(0:,G)=D. (22)

Following Eq. [21] Definition[3.2]can be formalized as follows:

duan(9i,9;) =2 sup |&(f(©4), f(©;)) — &(f(©4), f(8;))]- (23)
F(©:),f(0;)eH

Substituting Eq. 22]into Eq. 23]yields:

dyuan(Gi,G;) =2 sup Ei(Gi, £(05)) — E;(f(O:), 7))
£(©:),f(©;)eH

o sup |log p(9:1G:, f(©;)) —logp(9;1G;, f(©:))] (24)
£(©:),f(©;)eH

st f(0:,G:) =i, £(©;,G;) = 4j,

which implies that the HAH-Divergence of G; and G; depends on the cross-validation results of the
respective optimized classifiers. Note that the disparity difference function represented by Eq. [24]
is symmetric and obeys the triangle inequality. So we can build a cross-domain objective function
based on a set of pre-trained models:

M
arg rglél Z dyan(Gi, G;)
ij

X X , X , (25)
ocargmin y _ [1og p(§i|Gi, £(0;),”) —logp(§;1G;, (04), )]
9T

s.t. G; = arg mgaxlogp@i|g, f(©,)),¥G; € G,

where w' is a learnable parameters for f(©;). Optimization [25|achieves two purposes: (1) sufficient
extraction of knowledge from the models to compose a more generalized mixture of distributions
of the data G, and (2) optimization of the added parameters to fine-tune the individual model on the
mixture of distributions. Details on solving the question Optimization [25]can be found in[A.2]

Due to the rule of linear combination, I' = Zf\/[ a; f(0;), we have I' € H. Thus, the optimization
objective of Optimization is to identify an appropriate discriminative function I'(-) that minimizes
the generalization error across arbitrary marginal distributions. Therefore, the upper bound of the
generalization error for I'(-) on the target domain (the mixture distribution according to Assumption
depends on the sum of the cross-validation errors of sub-learners. O
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A.2 DETAILS ON SOLVING OPTIMIZATION

Optimization [25]is a non-convex problem, which is hard to solve. We relax it via triangle inequality.
At the same time, we replace the log-likelihood function with regular cross-entropy loss, and finally
get a two-stage target function:

M

arg Lng} Z CGEQ;‘ (gia f(ej ’ wj7 G)) [S()’(’"
9

stG; = argminCaeg (9, (0, @), Y9} € ¢" [See. BT,

(26)

where Cgeg(-) denotes the cross-entropy loss function on distribution G. G} € G* is a batch of
generated samples. The ideal is for any fine-tuned model to have a small a posterior error on any
sampled data belonging to G*, which is very difficult to achieve. In practice, we simply approximate
it using a finite number of samples. Meanwhile, we substitute I' = wa a; f(©;) into Optimization
26
N M
al“glgig‘lzcaieg*@uzaj'f(@pw],Gi))y (27)

J

where NV and M denote the number for samples and models. ¢; is the label of G, and «; is the fusion
weights, combining different models for different samples.

According to Theorem 4 in (Ben-David et al.,|2010), for any é € (0, 1), with probability at least
(1 = 9), the error bound of the merged function I'(-) on the target domain Gr can be defined as
follows:

M
er(T) < er(hp) + Y a; (27 + duan(G;,9r))
j=1
o (28)
4 Zoﬁ <2d10g(2(N —S\fl))—i—log (f;))’
= O

where H is a hypothesis space of VC dimension d. h% = minpcy e (h) is the target error minimizer.

N represents the sum of the number of all samples in all source domains, and 8; = % is the ratio
of the samples from the j-th domain. « is a fixed weight vector. \; = minpey{er(h) + €;(h)}
means the optimal cross-domain generalization error (defined in ), and this term corresponds to our
expectations for the fine-tuned pre-trained models.

A.3  PROOF OF THE EXPANSION OF ¢;(f(0;))

Proof. First we provide the definition of H-Divergence between G; and G;:

dy(Gi, Gj) = 2 sup |Pra~g, f(©:,G) — Pra~g, f(0;,G)], (29)
F(©:),f(©;)eH

where Pra.g, f(©;, G) means the prediction of f(-) on G;. Suppose that G* is the mixed distribution
of the set {G;},, and G* can be defined as follows:

M
G => g, (30)
i=1

where «; is the mixing coefficient. Note that when no training data is available but model parameters
are known, we can optimize the inputs by minimizing the empirical error ¢;(f(0;)) on G; (i.e.,
argmazxg- log p(9:|G;, f(©:))) to generate data (Deng & Zhang, [2021). This process can be seen
as narrowing the H-Divergence between G and G according to Eq. When Prg.g, f(0;,G) is
close enough to §; (f(©;) fits well enough on G;), we can assume that G samples from G*, which
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still has the HA#H-Divergence:

duan(G7,G7) =2 sup |Ei(Ti, hy) — Ei(hiy 95)|
hi,hjEH

oc sup |logp(4ilG;, h;) —logp(9;1G7, hi)l (31)
h; ,h]‘ EH
s.t. i = argmaxlog p(5:|G, £(8:)), VG € G7,
where (h;, h;) is a set of functions used to define the lower bound of d3;a% (G}, G} ). We can use the
fine-tunable model f(©;) and f(©;) to approximate h; and h; with added parameters w. O

B IMPLEMENTATION DETAILS

B.1 DATASETS DETAILS
Table 3] shows the summary statistics of used datasets in Sec. 4.2}

Table 3: Summary of datasets.

MUTAG PTC REDDIT-B  NCI1

#Graphs 188 344 2000 4110
#Classes 2 2 2 2
#Feature Dim 7 19 37 1
#Nodes 3371 8792 859254 122747
#Edges 7442 17862 1991016 265506
Avg#Nodes 17.93 14.29 429.62 29.87
Avg#Edges 39.59 51.92 995.51 64.60

To simulate realistic out-of-distribution scenarios, we partition each graph-level dataset into multiple
domains based on graph edge density, following established domain adaptation methods (Luo et al.,
2024a; Zeng et al.| [2024; [Luo et al., [2024b; [Wen et al., [2025; (Wang et al.| [2025). Edge density serves
as a fundamental structural characteristic that creates meaningful distributional shifts across graph

domains (Fu et al.} 2024a)). For each graph-level dataset, we calculate the edge density p = %
for every graph and partition the data into domains based on density value, ensuring that each
domain contains graphs with similar structural complexity while maintaining sufficient distributional
differences between domains. The complete partitioning implementation is available in our code
repository. This partitioning strategy reflects real-world scenarios where models encounter graph
structural variations, such as in molecular datasets like MUTAG, where density variations correspond
to distinct chemical families: dense graphs typically represent highly conjugated aromatic systems
with extensive double bond networks, while sparse graphs correspond to simpler aliphatic structures
that exhibit different toxicity mechanisms and create natural domain boundaries.

Similar density-driven domain shifts appear across various graph learning applications, from social
networks where active users generate dense interaction patterns while inactive users create sparse
connectivity, to spatiotemporal trajectory analysis where dense urban movement patterns differ
significantly from sparse rural trajectories. These distribution shifts lead to models performance
degradation, which is precisely the generalization challenge our method aims to address.

B.2 PARAMETERS SETTING

For the fake graphs generation stage, the number of epochs is set to 200; for the model merging
stage, the number of epochs is set to 20. The AdamW optimizer (Shazeer & Stern, 2018)) is used for
gradient descent. The hyper-parameters Agq¢ and A,,q45 in the merging function, i.e., Eq. [20]are

chosen from {1072, 101, 1, 10, 100}, and the value of k for the TopKSelector, i.e., Eq. is chosen
from {1, 2, 3, 4, 5}. We report the mean results and standard deviations of ten runs.

B.3 ABLATION VARIANTS

We evaluate five variant configurations to analyze the contribution of each component:
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Given Source variants: (1) Variant “OGMM” represents our full method with access to source
domain data, serving as an upper bound for performance. (2) Variant “w/o Mask” removes the
parameter masks from pre-trained model classifiers while maintaining access to source data.

Source Free variants: (3) Variant “w/o MoE” eliminates the MoE module and uses simple averaging
of masked GNN predictions. (4) Variant “w/o Mask” removes the masks added to the classifiers
of each pre-trained model in the source-free setting. (5) Variant “w/o L,.,,” removes the graph
generation objective (Eq. [T), training the model merging stage with randomly generated noise
graphs instead of our synthesized graphs.

B.4 ALGORITHM ANALYSIS

We analyze the computational complexity of our model to show its efficiency. Let |V'| denote the total
number of generated nodes, | E'| represent the number of generated edges, d;,, and d,;,;4 indicate the
dimensions of the initial and intermediate layer features, respectively. The computational complexity
of the model during the fake graphs generation stage is given by: O(|V |>(dn, - dmia + d?,;4) + (| E| -
dmia+|V|-d?,,;,)). Generally speaking, d;,, and d,;,iq are significantly smaller than |V| or | E|. So the
time complexity of the first stage of OGMM is O(|V'|? + | E| + |V'|). The computational complexity
of the second stage is O(dyia-m~+m(|E|- dmia+|W|-|V]-d? ,,)), where m denotes the number of
pre-trained models and |W| represents the scale of masks. Therefore, the time complexity of OGMM
isO(|V|? + |E| + |V| + m(|E| + [W| - |[V])). Although our model demonstrates effectiveness, it

has comparable complexity with the existing baselines.

The algorithm is shown in Algorithm[I} During the experiments, we use one NVIDIA GeForce RTX
4090D GPU to train and inference.

Algorithm 1 Procedure of OGMM

Require: pre-trained graph models {f(©;)}M,
// First stage: Graphs Generation
fori =1to M do
Initialize the domain-specific graph features {X*|X* ~ N(0, 1)} and arbitrary labels.
while not converged do
Generate graph structures { A*} | by generators {P; }£, (Eq. .
Update {P;}}, and {A*}, by minimizing the generation loss L., (Eq. .
end while
end for
/I Second stage: Graph Models Merging
Concatenate the generative datasets into G*
Initialize the fine-tuning masks w in Eq. [13|and the gating layer in Eq.
while not converged do
Update {w, W, W} by minimizing the merging 10ss Lpcrge (Eq. 20).
end while

C SUPPLEMENTARY EXPERIMENTS

C.1 POSITION OF MASKS

We conducted additional experiments on PTC and NCI1 to analyze the impact of mask placement.
As shown in Figure |7} the results on these datasets further validate the conclusion: incorporating
masks into the classifier (MaskCL) achieves performance comparable to the average of the three
mask-tuning methods.

C.2 GRADIENT TRENDS
Following the criteria outlined in (Wang et al.,[2022), we calculate the proportion of large gradients

for each model layer, as illustrated in Figures E] - @} The selected criterion is the number of
parameters with a variation magnitude exceeding 0.001. Specifically, we partition the dataset into
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Figure 8: Gradient trends in 2-layer GCN on NCI1 and RED. (REDDIT-B). It illustrates the evolution

of parameters at each layer of GCN as the model is trained with an increasing number of domain
data, based on a specified criterion.

more subsets (10 / 20) based on edge density, and sequentially use these subsets to continuously train
the selected GNNs. Then we use the selected criterion to analyze the degree of parameter variation
within each module. Notably, the classifier weights exhibit a more pronounced decreasing trend in
parameter changes compared to other layers. This further indicates that fine-tuning the classifier
parameters facilitates the model’s ability to learn invariant representations, thereby enhancing the
generalization capability of individual sub-learners. The results confirm the insight provided in Sec.
the classifier weights gradually stabilize after training on multiple domains, indicating that these
parameters capture cross-domain invariant knowledge.

C.3 PERFORMANCE OF HOMOGENEOUS BACKBONES MERGING

Leveraging the MoE architecture, OGMM imposes no explicit constraints on the underlying model
architectures. To further assess the generalizability of OGMM within homogeneous GNN backbones,
we reduce the number of pre-trained models and employ only the widely adopted GCN for fusion.
As presented in Table [] even with the integration of just two basic GCNs, OGMM outperforms
existing fusion methods, setting a new state-of-the-art across all four datasets. Notably, compared to
the results in Table [T most performance metrics for OGMM improve upon reducing the number of
pre-trained models. This suggests that, while the total knowledge volume remains constant, increased
diversity among experts leads to the introduction of additional errors.
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Figure 10: Gradient trends in 2-layer GAT on NCI1 and RED. (REDDIT-B). It illustrates the evolution
of parameters at each layer of the GAT as the model is trained with an increasing number of domain
data, based on a specified criterion.

C.4 PERFORMANCE ON LARGE-SCALE DATASETS

We extend our method to larger datasets for validation. We conduct graph-level classification tasks on
ogbg-Molhiv 2020), which contains 41,127 molecular graphs where each graph represents
a chemical compound. Similar to our approach in Sec. d.2] we use edge density as the criterion for
domain partitioning, maintaining consistency with the partitioning method and pre-trained models
described previously. For node-level classification tasks, we evaluate our approach on ogbn-Arxiv
2020) and Twitch (Rozemberczki et al., [2021)) datasets. The ogbn-Arxiv dataset contains
169,343 nodes representing papers from 40 subject areas. We follow the domain partitioning method
(Qiao et al., based on the temporal shifts and partition the pre-2017 data into two domains
(1971-2013 and 2014-2017) for pre-training GNNs, and use the 2018-2020 data to test our model.
The Twitch dataset contains 36,890 nodes representing users across seven regional networks. We
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Table 4: Data performance comparison across four datasets. The experimental setup was identical to
Table [T} except that the base models used only two GCNs trained from different domains. Highlighted
are the top first, second results.

Methods ‘ REDDIT-B PTC MUTAG NCIl
ACC/%1 Pre/%* ACC/%? Pre/%1 ACC/%1 Pre/%1 ACC/%1 Pre/%1

Avg-PTM 53.8543.74  59.79+1542 | 50434228  51.0845.14 | 31.644826 356742685 | 55.62+4.52  60.14+3.13
Ens-Prob 42.25+24.82  48.29436.58 | 51.7242.94 55274390 | 28.124242 34.08+33.79 | 55.0946.26  60.62+2.61
Ens-HighConf | 50.16+27.47  54.6+34.05 | 52764425  50.87+544 | 29.844786 28.38+32.63 | 54.87+6.86  60.15+3.65
Uni-Soup 44462849 43.62+33.01 | 49.83+425 44274154 | 35.62+18.14 16.37+18.62 | 50.88£12.11  56.72+7.42
Greedy-Soup | 50.06+29.28 57.41428.04 | 48.7142.99  39.76+14.58 | 36.56+15.66 22.94424.54 | 49.12+15.37  54.57+17.81
Inverse-X 64.49423.37  70.15+1231 | 53.53+147 51164327 | 37.5+1258 404142902 | 65.65+0.67  54.00+831
Multi-GFKD | 64.10436.88 64.03+36.75 | 54.17+2291  38.87+17.39 | 46.50:12.53 34.94:27.74 | 38.0241549 54.88421.28
OGMM | 80.64+1.71  76.8149.16 | 55.34+0.34  59.87+2.60 | 50.78+20.40 43.58+25.35 | 66.38+0.04  63.12+2.76

Table 5: Additional Experiments on three large-scale datasets. The experimental setup was identical

to Tablem Highlighted are the top first, second results.

Task | Graph Classification ~ Node Classification Node Classification
ogbg-Molhiv ogbn-Arxiv Twitch
Dataset Accl%T Acc/%1 Accl%T
Avg-PTM 93.40+0.14 48.03+£0.34 45.43+1.32
Ens-Prob 95.46+0.18 46.12+0.32 48.41+2.29
Ens-HighConf 96.52+0.09 44.61+1.38 47.89+2.48
Uni-Soup 94.69+0.03 25.63+2.90 55.80+3.38
Greedy-Soup 78.61+38.16 32.63+3.75 53.29+3.36
Inverse-X 56.06+11.5 38.70+18.42 52.73+1.46
Multi-GFKD 70.43+£36.68 15.00+0.54 51.33+1.99
OGMM \ 96.72+0.91 | 53.38+0.01 59.45+0.85

pre-train GNNs using two groups of regions: (DE, ENGB, ES) and (FR, PTBR, RU), and evaluate
OGMM on the TW region.

As shown in Table[5} OGMM consistently establishes new state-of-the-art results across all bench-
marks, significantly outperforming existing fusion methods. While traditional generative methods
(e.g., Inverse-X and Multi-GFKD) struggle on large-scale datasets such as ogbg-Molhiv and ogbn-
Arxiv often underperforming even simple ensemble baselines, OGMM maintains a clear advantage.
This can be attributed to its generator design, which enables more stable and expressive expert
modeling. In particular, compared with Inverse-X, OGMM yields substantial improvements across all
datasets, highlighting its robustness to scale and task variation. The consistent superiority of OGMM
underscores its effectiveness in integrating diverse knowledge sources while mitigating the instability
typically introduced by generative fusion under large data regimes.

C.5 PARAMETERS ANALYSIS
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Figure 11: Hyper-parameter Sensitivity for OGMM on MUTAG.

Discussion about the Hyper-parameters. We conducted extensive experiments on four datasets
mentioned in Sec. [.2|to analyze the impact of hyper-parameters {k, Agates Amask} on model
performance, as shown in Figures[IT]-[T4]. Notably, on small datasets like MUTAG and PTC, the
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Figure 15: Ablation studies regarding the number of domains. The horizontal axis indicates the
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influences of {k, Agqte} are more pronounced due to the larger variations in pre-trained models
caused by limited data. In this case, the fusion process has a more significant effect on the results. On
larger datasets such as REDDIT-B and NCI1, A,,4s% plays a more crucial role, with the fine-tuning
process ultimately determining the performance ceiling of the merged model.

Discussion about the Number of Domains. According to Optimization[12] OGMM can integrate
multiple pre-trained models from different domains, with generalization improving as domain diver-
sity grows. However, constructing datasets divided into infinite domains is impractical. Consequently,
experiments rely on datasets with limited samples, where increasing the number of manually defined
domains reduces the sample size per domain, impacting pre-trained model quality. This explains
the trend in Figure [T3] where OGMM’s performance declines, and error rates rise as the number of
domains increases.

C.6 VISUALIZATION

We visualize the real and generative graphs obtained from MUTAG and NCI1, as shown in Figures
[16]- The visual comparison reveals some similarities between the graphs learned by OGMM and
the real graphs, highlighting the model’s ability to capture meaningful domain knowledge.
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Figure 16: Graph visuallization on MUTAG. Note that there is no correspondence between the graphs
in the two rows.
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Figure 17: Graph visuallization on NCI1. Note that there is no correspondence between the graphs in
the two rows.

D RELATED WORKS

D.1 GRAPH DOMAIN GENERALIZATION

A growing body of research on Graph Domain Generalization has garnered increasing attention
in recent years. Approaches such as (Qiao et al., 2023} [Sun et al.| 2024} [Chen et al., 2024b}, [Yuan
concentrate on learning representations that remain stable and invariant across diverse
environments. In parallel, methods like (Sui et al, 2022} [Chen et al.l 20244d; |Gui et al.| 2024}
employ causal inference framework to uncover relationship between data and
labels that are robust to distribution shifts. Other techniques, including (Lu et al.l 2024} [Li et al.]
[2023}; [Tia et al., 2024)), focus on improving model generalization by employing data augmentation
strategies. Regardless of architectural differences, the effectiveness of these learning strategies is
largely contingent on the precise acquisition, partitioning, and labeling of training data. Notably,
the majority of existing approaches necessitate access to datasets with clearly delineated data from
multiple environments, a condition that is often impractical for real-world graph data. Additionally,
some multi-source-free domain adaptation methods can be easily applied to graphs
[2021} L1 et al.| 20240}, [Shen et al.| [2023); however, these methods require the use of target data in the
model training process. In contrast, the source-free graph model generalization method proposed in
this work presents a more viable solution with broader practical implications.

D.2 MODEL MERGING AND MOE

Model merging and MoE are two techniques for reusing pre-trained models to construct aggregation
systems with enhanced performance or generalization capabilities (Yadav et al} 2024). Model
merging (Zheng et all, typically involves the fusion of model’s parameters, such as linear
averaging (Utans| [1996; [Wortsman et all 2022), task arithmetic merging (ITharco et al., 2022),
or integration based on hidden representations (Yang et al, 2023} [Matena & Raffel; |Stoica et al
[2023). These methods are primarily applied to vision and language models, which share consistent
architectures that allow parameter space operations. However, such approaches are rarely applied to
graph models due to their unique structures. Consequently, the MoE framework (Shazeer et al.}, 2017)
has gained more attention in the graph learning field. In general, MoE facilitates fine-grained fusion
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of expert outputs, such as (Liu et al.; 2023} [Wang et al.l 2024; Zeng et al.| 2023} [Liu et al., [2024]),
among others. In this paper, we employ the MoE to achieve cross-domain knowledge fusion.

D.3 MASK TUNING

Mask tuning is a simple yet effective fine-tuning strategy (Zhao et al.l 2020; |[Radiya-Dixit & Wang|
2020)), where a mask matrix is learned for specific modules of a pre-trained model to cover parameters,
thereby avoiding redundant computations during the fine-tuning process. This approach originates
from model pruning, which uses binary masks to identify important and sparse parameters (Lin et al.,
2020; |Csordas et al.,|2020). In multi-task problems, RMT (Zheng et al.,[2023b) applies this strategy
to facilitate transfer learning in vision-language models under the zero-shot setting. Similarly, GMT
(L1 et al.l [2024a) leverages gradient information to identify key network parts for sparse updates.
Regarding efficient utilization of parameter gradients, (Wang et al., 2022) introduces a judgment
criterion to measure the trends of parameters across modules during continual learning, which inspired
our research on mask locations. However, there has been limited exploration of mask tuning in graph
models. Unlike vision or language models, graph models typically have fewer layers, and the impact
of masks on pre-trained GNNs requires further investigation.

E LIMITATIONS AND FUTURE WORK

Generalization on more diverse graph data: Our work is based on the assumption of a mixture
distribution, which has been extensively applied in multi-domain generalization problems. For graph
data, we have verified this assumption both theoretically and experimentally within the context of
graph-level classification tasks. However, the discrepancy among graph domains can be complex,
and significant biases can exist across different tasks, graph parametric representations, and scenarios.
This variability poses a challenge to the development of graph foundation models (Fu et al., |2024b).
For the same reason, our approach may not be generalized enough to unknown scenarios, like those
with new classes. In future work, we aim to further explore how to extend the multi-task learning
capabilities of our model and adapt it to more diverse graph data.

Towards Scaling Law: Additionally, the generalization performance of the proposed method is
contingent on multiple factors, including the in-distribution performance of pre-trained models, the
impact of fine-tuning methods, and the inherent randomness in generative graphs. While the overall
computational complexity is relatively low, finding the optimal fitting function remains a challenging
task. As the models collection grows, integrating a larger number of more diverse and heterogeneous
experts may become a significant hurdle for MoE-based techniques (He| 2024). Consequently,
future efforts will focus on investigating the scaling laws at the model-centric level to address these
challenges.

Future Directions: In this work, we not only address the novel challenge of model generalization for
graphs but also highlight several promising directions for future research: (1) Extension to Cross-Task
Transfer Learning: Expanding our approach to cross-task transfer learning by integrating and select-
ing graph models trained on different objectives. This will enable broader applicability of domain
generalization across various graph-related tasks. (2) Model Reuse for Feature/Structural Hetero-
geneity: Investigating solutions for model reuse that can effectively handle feature and structural
heterogeneity across different graphs. This would enhance the adaptability of pre-trained models to
diverse graph characteristics. (3) Building High-Quality Graph Model Pools: Researching methods
for constructing high-quality graph model pools along with effective ranking and selection strategies.
This will facilitate efficient adaptation of graph foundation models to new datasets and domains,
similar to the successful adaptation in other areas of machine learning.
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