
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

OUT-OF-DISTRIBUTION GRAPH MODELS MERGING

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper studies a novel problem of out-of-distribution graph models merg-
ing, which aims to construct a generalized model from multiple graph mod-
els pre-trained on different domains with distribution discrepancy. This prob-
lem is challenging because of the difficulty in learning domain-invariant knowl-
edge implicitly in model parameters and consolidating expertise from potentially
heterogeneous GNN backbones. In this work, we propose a graph generation
strategy that instantiates the mixture distribution of multiple domains. Then,
we merge and fine-tune the pre-trained graph models via a MoE module and a
masking mechanism for generalized adaptation. Our framework is architecture-
agnostic and can operate without any source/target domain data. Both theoret-
ical analysis and experimental results demonstrate the effectiveness of our ap-
proach in addressing the model generalization problem. The code is available at
https://anonymous.4open.science/r/OGMM-Anonymous.

1 INTRODUCTION

As the scale and complexity of observed graph data continue to increase, graph models have become
essential tools for extracting insights from real-world scenarios (Zhu et al., 2022; Li et al., 2022;
Zhang et al., 2024; Wu et al., 2024a). Recently, Graph Model Generalization (GMG) aims to
transcend the limitations of multi-domain datasets with distribution shifts by identifying invariant
features (Arjovsky et al., 2019; Chang et al., 2020; Ahuja et al., 2021), causal relationships (Gui et al.,
2024; Chen et al., 2024a), or risk extrapolation (Xu et al., 2020; Ziyin et al., 2020; Ye et al., 2021; Li
et al., 2024c) underlying the graph data distributions. The objective is to maintain robust performance
on unseen, out-of-distribution graphs.

Current research focuses on training a generalized model from scratch using graph data from multiple
domains with distribution discrepancy. However, a less explored yet practical scenario emerges
when graph models have already been trained individually on these different domains–referred to
Out-of-Distribution Graph Models. For instance, in social networks, models trained on user data
from different groups or with varying architectures capture diverse behavior patterns. Achieving
a unified and generalized model on these datasets usually need to training from scratch, which is
complex and wasteful of their learned knowledge.

As presented in Figure 1, these models are designed for similar tasks but on different datasets, each
preserves specialized knowledge. Figure 2 illustrates the performance of GNN models pre-trained on
one domain and tested on both their own and other domains with distribution shifts (detailed setting
is in Sec. 4.1). While models perform well in their own domain, their performance degrades in others,
and different GNN architectures may excel in different domains. These suggest that by merging
these models’ intrinsic invariability and complementary expertise, it is possible to address challenges
arising from distribution shifts and achieve generalization on all domains, even without retraining
from scratch on the original training datasets or labels.

Therefore, this paper investigates a novel and practical problem, named Out-of-Distribution Graph
Models Merging: How to consolidate the knowledge of multiple pre-trained GNNs into a unified
model that generalizes under distribution shifts? Achieving this goal is non-trivial due to the follow-
ing challenges: (1) Unlike conventional domain generalization approaches, learning the domain-
invariant knowledge from the domain data explicitly, learning from the model parameters in our
setting is inherently complicated. (2) Furthermore, the pre-trained models may differ in their architec-
tures and hyperparameters, making it difficult to consolidate the expertise of these diverse models
into a unified representation.

1

https://anonymous.4open.science/r/OGMM-Anonymous

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Merge

TestPre-train

𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 𝑮𝑮𝑮𝑮𝑮𝑮
𝒉𝒉{𝜽𝜽𝟏𝟏,𝜽𝜽𝟐𝟐,𝜽𝜽𝟑𝟑,𝚽𝚽}𝒇𝒇𝜽𝜽𝟐𝟐 𝒇𝒇𝜽𝜽𝟑𝟑

𝑮𝑮𝑮𝑮𝑮𝑮
𝒇𝒇𝜽𝜽𝟏𝟏

𝑮𝑮𝑮𝑮𝑮𝑮 𝑮𝑮𝑮𝑮𝑮𝑮

Domain Generalization

…
…

…

…

Domain 1 Domain 2 Domain 3 New Domains

Distribution Shifts

Fine-tune

Figure 1: Illustration of Out-of-Distribution
Graph Models Merging.

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Out-of-distribution Graph Models Merging

Anonymous Authors1

Abstract

xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx

1. Introduction
As the scale and complexity of observed graph data con-
tinue to increase, generalizable graph models have become
essential tools for extracting insights from real-world sce-
narios (Zhu et al., 2022; Li et al., 2022; Zhang et al., 2024;
Wu et al., 2024). Graph Domain Generalization (GDG)
aims to transcend the limitations of multi-source datasets
with distribution shifts by identifying invariant features (Ar-
jovsky et al., 2019; Chang et al., 2020; Ahuja et al., 2021)
or causal relationships (Gui et al., 2024; Chen et al., 2024)
underlying the graph data distributions. By doing so, they
strive to maintain stable performance even on previously
unseen graphs. However, these approaches assume train-
ing from scratch on data from diverse distributions. In
contrast, this paper explores a novel scenario where graph
models are already pre-trained on these datasets individu-
ally. For instance, platforms like Huggingface Model Hubs
often host Pre-Trained Models (PTMs) designed for similar
tasks but trained on various datasets, each preserves spe-

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

Merge

Reuse

TestPre-train

House Tree Ladder Line CycleNet

…

𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 𝑮𝑮𝑮𝑮𝑮𝑮
𝒉𝒉{𝜽𝜽𝟏𝟏,𝜽𝜽𝟐𝟐,𝜽𝜽𝟑𝟑,𝚽𝚽}𝒇𝒇𝜽𝜽𝟐𝟐 𝒇𝒇𝜽𝜽𝟑𝟑

𝑮𝑮𝑮𝑮𝑮𝑮
𝒇𝒇𝜽𝜽𝟏𝟏

𝑮𝑮𝑮𝑮𝑮𝑮 𝑮𝑮𝑮𝑮𝑮𝑮

Distribution Shifts

Figure 1. Illustration of Source-Free Graph Model Generalization,
highlighting the core challenges of reusing and merging graph
models while addressing out-of-distribution (OOD) generalization.

A B C
Training Domain

A
B

CTe
st

in
g

Do
m

ai
n

70.53 58.86 50.00

58.07 63.68 51.55

42.72 48.60 60.34

(a) GCN

A B C
Training Domain

A
B

CTe
st

in
g

Do
m

ai
n

75.96 60.18 49.14

56.58 70.70 51.64

45.18 50.44 60.69

(b) GAT

A B C
Training Domain

A
B

CTe
st

in
g

Do
m

ai
n

73.68 57.72 49.22

53.68 65.09 52.16

47.72 51.75 61.03

(c) GIN

Figure 2. Ablation studies regarding the number of domains.

cialized knowledge. Reusing these models to merge their
expertise offers an alternative to data-driven training when
well-trained models can provide valuable insights, speed
up training, or improve predictive accuracy (Zheng et al.,
2023a).

Therefore, in this paper, we seek to answer a novel and prac-
tical problem, namely Source-Free Graph Model Generaliza-
tion: How to merge multiple pre-trained GNNs, to achieve
robust generalization on new domains under distribution
shifts, all without access to source data? As shown in Fig-
ure.1, the challenge lies in two key aspects: (1) Merging.
The architectures of graph models vary significantly, like
GCN (Kipf & Welling, 2016) and GAT (Veličković et al.,
2017), making direct parameter merging difficult; (2) Gen-
eralization. Ensuring that the merged GNN possesses cross-
domain learning capabilities, rather than merely scaling the
parameter dimensions, is crucial for achieving meaningful
generalization.

1

Figure 2: Comparison of different GNN models’ gener-
alization performance on PTC between in-distribution
and OOD scenarios, with three domains represented as
A / B / C. Values indicate Acc (%). The results within
the red dashed box represent best performance.

To address these challenges, we propose a novel Out-of-distribution Graph Models Merging (OGMM)
framework for domain generalization, which is depicted in Figure 3. Specifically, we explore the
theory of multi-domain generalization defining generalization risk in functional space and deriving a
two-stage objective function. The first stage is a domain knowledge generation process. We “invert”
each pre-trained GNN (expert), to generate a small set of label-conditional graphs starting from
random noise. These generative graphs are then aggregated as the training data for the second stage.
The second stage involves experts fine-tuning and merging. To effectively retain the source domain
knowledge learned by models with different parameters and architectures, we employ a Mixture-
of-Experts (MoE) module for merging. Meanwhile, based on the mixture distribution assumption,
we prove that the fine-tuned MoE with masks serves as an approximation of the generalization
risk function. The lightweight sparse gating weights and the masked experts are trained with the
generative graphs, enabling the allocation logic of “sample-expert” pattern. The main contributions
of OGMM are summarized as follows:

• We propose a novel framework named out-of-distribution graph models merging, which aims to
learn a generalized model from multiple graph models pre-trained under domain shifts.

• We propose a graph generator for concentrating the model knowledge effectively, and develop an
innovative model merging function utilizing fine-tuned MoE to address adaptive integration of
multiple pre-trained models, thereby enhancing generalizability to unseen graphs.

• We validate OGMM on various tasks, demonstrating substantial improvements on out-of-
distribution data compared to both individual model and traditional model merging methods.

2 PROBLEM FORMULATION

Graph Neural Networks (GNNs). A graph is represented as G = {A,X}, where A ∈ Rn×n is the
adjacency matrix and X ∈ Rn×d denotes the node features, with n being the number of nodes in G.
We consider a basic GNN consisting of two parts: {Ψ,Φ}, i.e., f(Θ) = θΨ ◦ θΦ → Y , where θΨ is
parameters in the graph encoder, θΦ corresponds to the classifier parameters, and Y is the graph-level
(or node-level) label space in the downstream tasks. Specifically, Ψ represents a multi-layer message
aggregation function, where the update mechanism in the L-th layer can be written as follows:

hL+1
i = σ(AGGR(hL

i , {hL
v |v ∈ N (i)}), (1)

where h0
i = xi, and hL

i is the output representation for node i. σ is an activation function. AGGR(·)
defines the aggregation of nodes and their neighbors N . The classifier Φ will be trained to assign a
label for each graph (or node) from the label space Y = {Y1, Y2, . . . , Yc} with c classes.

Out-of-distribution Generalization on Graphs. The objective of Out-of-distribution Generalization
(also known as multi-domain generalization) is to leverage joint data samples from multiple source
domains to capture cross-domain invariant knowledge (Crammer et al., 2008; Mansour et al., 2008).
Here, we present its formulation in the context of graph domains. Suppose we are given M sets of
source data, denoted as {Gi}i∈M , where Gi = {G1, G2, . . . , GNi

} represents the i-th source dataset.
Each Gi maps to the label space Y . Additionally, we are provided with a target dataset consisting
of Nt graphs (Nt = 1 for node-level tasks), GT = {G1, G2, . . . , GNt

}, which shares the same label
space Y as the source data but follows different distributions. The goal is optimizing a GNN model

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺

Stage 2: Models Merging

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼

𝓡𝓡𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

Pretrained GNNs

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

𝐷𝐷𝐷𝐷𝐷𝐷 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

∑ 𝑆𝑆𝑆𝑆𝑆𝑆

𝒇𝒇𝜽𝜽𝟐𝟐

𝒇𝒇𝜽𝜽𝟑𝟑
𝑮𝑮𝑮𝑮𝑮𝑮
𝒇𝒇𝜽𝜽𝟏𝟏

𝑮𝑮𝑮𝑮𝑮𝑮
𝑮𝑮𝑮𝑮𝑮𝑮

𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 𝑮𝑮𝑮𝑮𝑮𝑮
𝒉𝒉{𝜽𝜽𝟏𝟏,𝜽𝜽𝟐𝟐,𝜽𝜽𝟑𝟑,𝚽𝚽}

𝑀𝑀

Generative Graphs

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

𝓡𝓡𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈

𝓛𝓛𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎

𝑀𝑀 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

＋

∑

𝑀𝑀

𝜖𝜖

𝑁𝑁(0, 1) Generator𝐺𝐺𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(0, 1)

𝑋𝑋𝑖𝑖 𝐴𝐴𝑖𝑖

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝐺𝐺𝑖𝑖: �𝑦𝑦𝑖𝑖

Stage 1: Graph Generation

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

Masked Expert

Gating Layer

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿

… … …
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝐷𝐷𝐷𝐷𝐷𝐷(𝜃𝜃Φ𝑖𝑖 ,𝜃𝜃Φ𝑖𝑖 𝜔𝜔𝑖𝑖)

𝜃𝜃Φ𝑖𝑖 𝜃𝜃Φ𝑖𝑖

�𝑦𝑦

⋅ 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃⋅

𝜔𝜔𝑖𝑖

𝒊𝒊

Figure 3: Architecture overview. The architecture of OGMM consists of two primary stages: (1)
Graph generation. Each pre-trained GNN serves as a supervisor to train its corresponding generator,
which reconstructs label-conditional graphs from random noise. (2) Model merging. The generative
graphs are aggregated to train a merged GNN using a MoE module. It comprises a gating layer and
a set of fine-tuned masked experts. Gradient updates are guided by mask and gating regularization
terms alongside classification loss.

f(·) with parameter Θ from scratch to minimize the generalization error under the unseen shifts as:

f(Θ∗) = argmin
Θ

EGT ,Y
[
ℓ(f(Θ, {G1,G2, ...,GM}),GT ,Y)

]
. (2)

Out-of-distribution Graph Models Merging. Different from the conventional conditions of Out-
of-distribution Generalization, Out-of-distribution Models Merging assumes that the task-specific
GNNs {f(Θi)}i∈M have already been trained on different datasets {Gi}i∈M and aims to learn a
unified model utilizing the parameters of multiple pre-trained models. The objective is to optimize a
multi-model merging function to obtain a model with higher generalization capabilities. Under the
proposed Graph Models Merging setting, we define an objective function as follows:

Γ∗ = argmin
α

EGT ,Y
[
ℓ(Γ(α, {Θ1,Θ2, . . . ,ΘM}),GT ,Y)

]
, (3)

where Γ∗ is the expected model merging function, α is the combining weights, and ℓ(·) is the loss
function that measures the prediction error.

3 METHODOLOGY

In this section, we present a framework for out-of-distribution graph model merging that constructs a
unified model from multiple pre-trained GNNs without access to original data. Building on multi-
domain generalization theory, we develop a two-stage approach that addresses the fundamental
challenge of extracting and consolidating domain-invariant knowledge from model parameters.

3.1 OVERALL FRAMEWORK

Here we justify Eq. 3 based on multi-domain out-of-distribution generalization theory, enabling
out-of-distribution models merging. To begin, we establish a mixture distribution assumption for this
problem, stating that the target distribution is a mixture of distributions from multiple sources.
Assumption 3.1 (Mixture Distribution). The input to the problem is the set of M source distributions,
denoted as {G1,G2, . . . ,GM}. The distribution of the target domain, GT is assumed to be a linear
combination of the M source distributions: GT =

∑M
i αiGi.

This assumption is widely accepted in multi-domain generalization problems (Crammer et al.,
2008; Mansour et al., 2008), and leads to the rule of linear combination of functions, expressed as

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Γ =
∑M

i αif(Θi). Next we provide the definition of H∆H-divergence to define the symmetric
difference in hypothesis space H.

Definition 3.2. [H∆H-divergence]. Let H be a hypothesis class. f(Θi), f(Θj) ∈ H are the
functions trained on distributions Gi and Gj , respectively. We define the divergence between Gi and
Gj in the function space:

dH∆H(Gi,Gj) = 2 sup
∣∣EG∼Gi

[|f(Θi, G)− f(Θj , G)|]− EG∼Gj
[|f(Θi, G)− f(Θj , G)|]

∣∣. (4)

By the linear assumption and the definition of divergence, we prove the generalization error bound of
Γ on the target distribution GT in the following theorem.

Theorem 3.3. If each f(Θi) is an optimal learner trained on the marginal distribution Gi, the
upper bound of the generalization error for Γ(·) on the target domain is given by the sum of the
cross-validation errors of these sub-learners across different distributions.

The proof is shown in Appendix A.1 due to the page limit. To enhance the generalization capability
of the Γ, we can introduce fine-tuning weights ωi for f(Θi) to decrease the cross-validation error.
The overall objective for merging function can be formulated as:

argmin
Γ

M∑
i

[
CG∼Gi(f(Θi, G),Γ(α, ω,G))

]
+

M∑
i

ϵi(f(Θi)) +

M∑
i,j

ϵj(f(Θi, ω
i)) + λ, (5)

where ϵi(·) denotes the empirical error on Gi. C(·) is a loss function like cross-entropy. The λ
represents the minimum sum of errors achievable by the optimal hypothesis h across all domains
within our hypothesis class H. This value is determined by the design of H itself (like neural network
architecture) and is independent of our optimization over Γ.

Then, we consider the expansion of ϵi(f(Θi)) as a starting point for knowledge extraction from
f(Θi). Consequently, Optimization 5 can be reformulated as a two-stage objective function:

arg min
α,ω,G∗

N∑
i

CGi∼G∗(ŷi,

M∑
j

αjf(Θj , ω
j , Gi)) [Sec. 3.3]

s.t. G∗
i = argmin

Gi

Ni∑
j

CGj∼Gi
(ŷj , f(Θi, Gj)) [Sec. 3.2],

(6)

where ŷi is the conditional labels sampled from the label space for samples on Gi. G∗ =
∑M

i αiG∗
i is

the mixture distribution generated from pre-trained GNNs, which will be introduced in Sec. 3.2. The
Ni represents the number of samples drawn from Gi. We use these generative samples to fine-tune
α and ω in merging function Γ, which will be introduced in Sec. 3.3. The analysis details are
provided in Appendix A.3. This theorem shows that under the mixture distribution assumption, the
generalization ability of the merged GNN depends on three factors: the pre-training error of the each
model, the fine-tuning error of the models on the new domains, and the training error of the merged
model on the generated samples. Next, we will provide the detailed implementations of OGMM.

3.2 LABEL-CONDITIONAL GRAPH GENERATION

In the first stage, we use pre-trained graph models to generate synthetic graphs for subsequent
fine-tuning and merging. Instead of using the original graphs, we opt for generated graphs because:
the original datasets may not always be accessible for every model, generating a smaller set of graphs
is more efficient than using the entire dataset, and the generated graphs may sometimes distill and
refine knowledge more effectively, making them more representative than the original data. Still, our
method is capable of utilizing the original data, and a comparison is provided in Table 2.

As defined by Optimization 6, the goal is to fix all parameters of the pre-trained GNN while
optimizing the inputs to minimize the label-conditional posterior error. For graph data, a unique
challenge arises due to the inputs’ composition of both node features X and graph structure A, with
A often represented as a discrete variable. This discreteness hinders the direct application of inversion
technique (Zagoruyko & Komodakis, 2016; Yin et al., 2020). To address this, Deng & Zhang (2021)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

employs a discrete gradient approximation method tailored for optimizing A. Zhuang et al. (2022)
parameterizes X alone while constructing A from the inner product space of X , thus preserving
feature similarity. Better methods like (Liu et al., 2022; Gao et al., 2024; Jin et al., 2021) use edge
encoder to retain inherent relationships between node features and edges. Here, we propose a discrete
edge encoder to handle graph structures.

Graph Generator. Specifically, for each pre-trained GNN f(Θi), we construct a generator Pi to
produce label-conditional graphs that maximize f(Θi)’s agreement. Pi samples feature Xi ∈ Rni×d

from a standard normal distribution, representing ni generative nodes, as the initial input for every
graph Gi. For each Xi, Pi samples a label ŷi from a uniform distribution, serving as the conditionally
posterior ground-truth. To generate Ai from Xi, we introduce an edge encoder defined as follows:

Ai
jk = σ(MLPθ([X

i
j ;X

i
k])), (7)

where MLPθ is a three-layer fully-connected neural network, σ is an activation function, and [·; ·]
denotes the concatenation operator. To enforce discrete edge weights, we assume edges follow a
Bernoulli distribution and employ the Gumbel-Softmax to approximate values in [0, 1]:

Ai
jk = softmax

(
log(Ai

jk) + µ

τ

)
, (8)

where µ = − log(− log(e)) and e ∼ Uniform(0, 1). Here, τ denotes the temperature hyperparameter,
with τ → 0 leading Ai

jk toward binary value. By feeding batches of generated samples (Xi, Ai, ŷi)

into the generator Pi, we can use the label-conditional posterior loss C(ŷi, f(Θi, X
i, Ai)) to fit the

source domain distribution, obtaining G∗
i .

Regularizers for Generation. In addition to the label-conditional posterior loss, we leverage priors
stored in the batch normalization (BN) layers of the pre-trained models. Following (Deng & Zhang,
2021), we enforce the mean and variance values of the generative graph embeddings to match those
recorded in the BN layers of the GNNs. Common GNN models perform well with relatively few
layers, correspondingly having a limited number of BN layers (a 2-layer GCN or GAT model typically
has only one BN layer while GIN has two). We utilize all BN layers from GNN models to calculate
this regularization term:

Rbn =
∑
L

{∥∥µL(X̂
i)− E

[
µL(X

i) | X i
]∥∥

2
+
∥∥σ2

L(X̂
i)− E

[
σ2
L(X

i) | X i
]∥∥

2

}
, (9)

where X̂i denotes the intermediate representations of a graph in the BN layers, while X i is the data
memorized during training BN layers. µL, σ

2
L are represented as the feature means and variances,

respectively, obtained from the L-th BN layer.

Another regularization term is the model’s confidence in classifying the generative graphs, which
ensures that graphs are well-calibrated rather than remaining in an ambiguous state. We define the
confidence regularization as follows:

Rconf = EGi∼G∗
j

− Nj∑
i

f(Θj , Gi) log f(Θj , Gi)

 , (10)

where G∗
j is the data generated by the j-th generator and Nj is the number of samples. Consequently,

the overall loss function for each generator is formulated as follows:

Lgen =
∑

Gi∈G∗
j

C(ŷi, f(Θj , Gi)) +Rbn +Rconf. (11)

With the parameterized X and θ learned from the above loss, we can synthesize samples (graphs in
graph-level tasks or nodes in node-level tasks) that well-represent the corresponding task data. This
process ensures that each generative graph retains structural and feature integrity, without introducing
the complexity of gradient approximation methods. Finally, we merge all generated samples to
construct the dataset G∗ = {G∗

1 ,G∗
2 , ...,G∗

M} for training the model merging function.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.3 MODELS FINE-TUNING AND MERGING

In the second stage, we need to find a solution for reusing and integrating heterogeneous GNN
backbones. This solution should both fine-tune each pre-trained GNN (expert) to adapt to knowledge
from multiple domains and be universally applicable to arbitrary model architectures. The objective
function for this stage is rewritten according to Optimization 6:

argmin
ω,α

N∑
i

CGi∈G∗
j
(ŷi,

M∑
j

αjf(Θj , ω
j , Gi)), (12)

where N and M denote the number for samples and models. ŷi is the generated label of the i-th
sample, and αj is the fusion weights, combining different models for different samples, respectively.
Indeed, Optimization 12 is an innovative fine-tuned MoE architecture with Gate Layer (α) and added
masks (ω). The module’s capability is to fine-tune, filter and combine pre-trained experts on a mixture
distribution to reach a wider generalization plane overall.

Masked Experts. Inspired by mask tuning techniques (Ghanbarzadeh et al., 2023; Li et al., 2024a),
we aim to identify and re-weight the pre-trained parameters required by new tasks. Given parameters
θi∗ = (θi1, . . . , θ

i
l)

T ∈ Θi of a trained GNN (l is the size of subset in module (∗)), the mask matrix
ωi can be optimized as a downstream-related neural pathway:

θ̂i∗ = θi∗ ⊙ ωi, (13)

where ⊙ denotes Hadamard product, and θ̂i∗ replaces θi∗ in each Masked Expert. According to
Optimization 5, Γ represents a distribution-sensitive function, while the role of ωi is to fine-tune
f(Θi) to minimize ϵj(f(Θi, ω

i)). In shallow networks such as 2-layer GNNs, the position where the
mask is added becomes particularly critical. We hypothesize that the weights in the classification
head are closely related to downstream tasks, making it highly susceptible to learning domain-
specific knowledge from high-dimensional representations. Thus, fine-tuning the parameters of the
classification head is a reasonable and effective strategy, which is further validated by the experimental
results provided in Sec. 4.2 and Appendix C.2.

Sparse Gate in MoE. Note that we can directly replace α in Optimization 12 with a regular MoE
Gate layer, which can be written as follows:

Ĥi = σ(

M∑
j=1

(Gate(Xi)jHi,j)), (14)

where σ is an activation function, M denotes the number of models (or experts), and Gate(·) is
employed to distribute samples to different models. Ĥi and Hi,j are the outputs of MoE and the j-th
pre-trained model, respectively, with respect to sample Xi. For all the masked pre-trained GNNs, the
sparse gating strategy is as follows:

Gate(Gi) = softmax(TopK(Q(Gi), k)), (15)

Q(Gi) = GiWg + ϵ · softplus(GiWn), (16)
where Gi ∈ G∗ is generated from pre-trained GNNs. TopK(·, k) is a selector to find the largest
(smallest) first k members in the sequence. Wg and Wn in Eq. 16 are the learnable weights.
Wg ∈ Rd×M processes clean sample features to get expert selection scores, while Wn ∈ Rd×M adds
controlled Gaussian noise ϵ ∈ N (0, 1) to prevent experts from collapsing and ensure load balancing.

Summarizing the above, the loss of Optimization 12 can be re-written as follows:

L =
∑

Gi∈G∗

C(ŷi,Γω,Wg,Wn
(Gi)), (17)

where Γω,Wg,Wn
(Gi) =

∑M
j=1 Gate(Gi)jf(Θj , ω

j , Gi) is our proposed model merging function.

Regularizers for Fine-Tuned MoE. Here we introduce two regularizers to constrain the optimization
direction of gates and masks. Following the strategy in (Wang et al., 2024), we utilize an importance
loss to prevent single-selection collapse:

Rgate = CV (
∑

Gi∈G∗

(Gate(Gi)))
2, (18)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

where CV (·) represents the coefficient of variation. This regularizer measures the degree of weight
disparity in “sample-expert” pairings, encouraging uniform weight distribution and enforcing all
experts to be “load-balanced”. For masks added to the pre-trained GNNs, it is necessary to mini-
mize changes to the freezing parameters while learning new knowledge to prevent “forgetting” old
knowledge. So we design the other regularizer as follows:

Rmask =
∑
i,j

CGi∈G∗(ŷi, f(Θj , ω
j , Gi)) +

∑
j

((
1T · ωj

|ωj | − γv) + (

∑
k:|ωj,k−1|<γv

1

|ωj | − γp)) (19)

where γv, γp ∈ [0, 1] are two thresholds to control the effects of the masks in terms of their mean
values and variances, respectively. |ωj | means the size of ωj . The first part in Eq. 19 is for learning
new knowledge from G∗ and the second part for controlling the process of fine-tuning. The overall
loss function for merging is formulated as follows:

Lmerge =
∑

Gi∈G∗

C(ŷi,ΓΦ(Gi)) + λgateRgate + λmaskRmask, (20)

where Φ = {ω,Wg,Wn}, and λgate and λmask are balanced hyper-parameters. Recall the question
Eq. 3, ΓΦ can achieve better generalization due to the wider plane of the mixed distribution going
over the unseen graphs.

4 EXPERIMENTS

In this section, we mainly focus on the graph classification tasks on the widely-used real-world
datasets which encompass both observed (training) and unobserved (testing) data. Supplementary
experiments (on the large-scale datasets / the node-level tasks) are provided in the Appendix C.4.
Following common practice, we use the Accuracy (Acc) and Precision (Pre) on the OOD target
dataset for measuring the generalization performance.

4.1 EXPERIMENT SETUP

Datasets. We evaluate our method on four datasets: MUTAG, PTC, REDDIT-B, and NCI1, following
the same configurations as in (Xu et al., 2018). To simulate realistic domain shift scenarios, we
partition each dataset based on the edge-to-node ratio, following established domain partitioning
methods (Luo et al., 2024a; Zeng et al., 2024; Luo et al., 2024b; Wen et al., 2025; Wang et al., 2025).
This strategy creates meaningful distributional differences between domains while maintaining the
intrinsic properties of each dataset. Summary statistics of these datasets and detailed specifications of
partitioning are provided in Appendix B.1. In this paper, we distinguish between domains using the
notation “A / B / T”. Specifically, “A” represents dataset slices with lower edge density, “B” refers to
slices with intermediate edge density values, and “T” denotes the test set with higher edge density.

Baselines. First we pre-train models on each observable domain, resulting in multiple pre-trained
models. Then, we perform graph models merging and evaluate the generalization performance on the
unseen testing domain. We use three widely-adopted GNN architectures—GCN (Kipf & Welling,
2016), GAT (Veličković et al., 2017), and GIN (Xu et al., 2018)—as off-the-shell models to be
merged. Additionally, we use the form of (architecture-A/B) to distinguish GNNs trained on different
source domains. For example, GCN-A refers to a GCN trained on source domain A. For ease of
comparison, all GNNs used in our experiments are 2-layer networks with 32 feature dimensions.
Since no known methods exist for merging GNN models with diverse architectures, we design two
baseline approaches for reference: Inverse-X and Multi-GFKD. We compare our method with seven
source-free graph domain generalization methods, which can be divided into three groups:

• Ensemble learning methods, include averaging the performance of the models (Avg-PTMs),
averaging the output probabilities of the models (Ens-Prob), and selecting the prediction from the
most confident model, defined as the one with the lowest entropy (Ens-HighConf).

• Model merging methods, include computing the element-wise mean of all models (Uni-Soup)
(Choshen et al., 2022) and the selective merging approach (Greedy-Soup) (Wortsman et al., 2022).

• Generative methods include Inverse-X and Multi-GFKD. Inverse-X is a baseline variant of OGMM
that uses random graph structures instead of our parameterized edge encoder. Multi-GFKD is an
extension of GFKD (Deng & Zhang, 2021) to multi-teacher distillation.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Data performance comparison across four datasets. The form (Architecture-A / B) indicates
that this architecture is pre-trained on domain A/B. Highlighted are the top first, second results.

Methods
REDDIT-B PTC MUTAG NCI1

Acc/%↑ Pre/%↑ Acc/%↑ Pre/%↑ Acc/%↑ Pre/%↑ Acc/%↑ Pre/%↑
GCN-A 25.03±6.67 35.55±32.38 48.97±3.59 50.38±4.31 31.25±8.00 37.47±31.87 49.62±6.53 57.85±3.97
GAT-A 24.21±10.20 27.05±34.91 48.10±3.67 53.30±8.56 26.88±0.94 16.22±18.79 49.91±3.66 58.06±1.17
GIN-A 22.46±8.28 18.47±20.35 47.93±4.42 50.98±7.43 28.91±6.02 27.81±31.88 52.58±1.98 60.46±1.52

GCN-B 66.10±3.59 60.64±4.96 49.90±2.85 49.77±10.69 32.03±9.79 33.86±33.23 61.61±3.22 62.42±2.53
GAT-B 61.78±26.86 55.36±26.77 49.38±4.16 49.84±10.85 27.81±2.86 19.94±26.10 60.75±1.89 63.14±1.43
GIN-B 58.80±18.56 56.74±7.01 50.12±5.59 55.86±8.87 42.03±12.49 49.24±26.51 65.02±1.66 66.79±1.11

Avg-PTM 52.47±5.46 51.66±8.29 50.20±1.95 51.73±3.43 31.48±2.88 32.42±12.33 56.58±2.12 61.45±1.13
Ens-Prob 33.65±25.66 36.12±39.06 50.17±2.58 56.64±6.99 29.84±5.65 35.86±35.35 58.05±4.36 62.65±1.51
Ens-HighConf 44.46±29.00 45.86±35.70 48.19±1.87 50.83±3.98 32.34±7.94 47.99±33.41 56.44±6.77 61.73±3.07
Uni-Soup 43.26±14.09 31.65±17.22 50.20±2.48 47.38±6.09 37.40±12.03 17.97±12.17 48.73±8.83 47.25±11.09
Greedy-Soup 47.35±8.89 50.70±9.62 50.17±2.50 42.75±9.43 31.46±6.23 13.91±8.51 38.64±10.43 28.67±11.81
Inverse-X 56.21±27.12 48.86±30.58 50.43±3.50 51.92±3.40 38.75±17.91 40.14±31.57 62.39±9.68 56.35±7.32
Multi-GFKD 54.35±11.40 37.96±11.40 50.77±1.3 44.43±4.39 44.36±8.42 29.74±10.37 47.57±4.84 36.75±7.42

OGMM 76.98±5.19 63.36±0.81 51.21±3.74 57.39±6.71 45.62±18.67 56.28±26.70 66.84±0.45 72.90±4.89

Table 2: Ablation study about different modules. Highlighted are the top first, second results.

Variants
REDDIT-B PTC MUTAG NCI1

Acc/% Pre/% Acc/% Pre/% Acc/% Pre/% Acc/% Pre/%

Given
Source

w/o Mask 43.95±26.06 72.34±23.14 49.31±2.77 54.47±6.97 28.12±2.10 33.52±33.46 48.36±3.30 61.78±2.46
OGMM 80.98±11.30 78.33±2.91 54.31±2.70 59.16±5.04 57.81±7.30 68.79±3.13 68.04±2.13 71.90±1.16

Source
Free

w/o MoE 50.39±5.21 45.01±1.71 50.56±0.74 51.01±2.69 39.53±1.70 23.29±0.81 60.62±0.22 66.68±2.72
w/o Mask 31.98±18.77 35.99±38.87 50.95±2.90 55.36±6.15 28.28±1.47 49.39±34.98 51.11±1.06 59.70±0.98
w/o Lgen 41.15±26.95 39.75±36.20 48.88±5.23 48.61±5.63 45.31±22.96 25.81±22.96 52.69±11.61 55.82±3.46
OGMM 76.98±5.19 63.36±0.81 51.21±3.74 57.39±6.71 45.62±18.67 56.28±26.70 66.84±0.45 72.90±4.89

4.2 EXPERIMENTAL RESULTS

Main Results. The comparisons of different models under the split-dataset scenarios are shown in
Table 1. OGMM consistently outperforms individual pre-trained models across all datasets, demon-
strating the MoE module’s effectiveness in capturing distribution shifts and accurately allocating
“sample-expert” pairs. Ensemble methods like Avg-PTMs, Ens-Prob, and Ens-HighConf show simi-
lar precision, suggesting that leveraging multiple models can improve generalization. In contrast,
parameter merging methods (Uni-Soup, Greedy-Soup) perform poorly, highlighting that integrating
model outputs is more effective for OOD problems. Compared to other source-free methods, OGMM
sets a new state-of-the-art, achieving superior performance across datasets, especially on larger
datasets like REDDIT-B and NCI1. While data generation-based methods (Inverse-X, Multi-GFKD)
outperform fusion approaches, OGMM surpasses both, offering significant improvements. Unlike
Inverse-X, which only learns node features, OGMM simultaneously learns node features and graph
structures, enabling better recovery of domain-specific knowledge. Additionally, OGMM preserves
more source-domain knowledge, maintaining the diversity of observable distributions.

Analysis for Masks. We apply masks to two parameter groups, MaskCL and MaskNN, across three
GNN architectures to analyze mask placement impact. MaskCL applies masks to classifier parameters
(θΦ) while freezing others; MaskNN applies masks to encoder parameters (θΨ). As shown in Figure
4, models fine-tuned exclusively on classifier parameters achieve competitive performance across
datasets. The mask size accounts for only 20% of total parameters in a 2-layer GNN on average. This
suggests domain-specific knowledge is concentrated in classifier parameters, making classifier fine-
tuning more efficient. See Appendix C.1 for more results on other datasets. Additionally, we analyze
parameter changes after continuous fine-tuning across multiple domains. Results demonstrate that
classifier parameters exhibit stabilizing characteristics after multiple fine-tuning rounds, providing
evidence for our mask mechanism’s effectiveness. The comprehensive parameter evolution analysis
and associated visualizations are detailed in Appendix C.2.

Ablation Studies. To evaluate the efficacy of OGMM’s components, we conduct an ablation study
comparing five variant configurations, with comprehensive details provided in Appendix B.3 and
quantitative results presented in Table 2. The variant “OGMM (under Given Source condition)”,
which leverages access to source domain data and incorporates additional trainable parameters,
demonstrates superior performance as expected. The variant “w/o Mask (under Given Source

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

GCN GIN GAT0

20

40

60

80

AC
C

No Mask MaskCL MaskNN MaskALL

(a) A → T on RED.
GCN GIN GAT0

20

40

60

80

100

AC
C

No Mask MaskCL MaskNN MaskALL

(b) B → T on RED.
GCN GIN GAT0

20

40

60

80

AC
C

No Mask MaskCL MaskNN MaskALL

(c) A → T on MUT.
GCN GIN GAT0

20

40

60

80

AC
C

No Mask MaskCL MaskNN MaskALL

(d) B → T on MUT.

Figure 4: Impact of Mask Position on REDDIT-B (RED.) and MUTAG (MUT.). The form (A → T)
means that a GNN pre-trained on domain A and fine-tuned on the Target domain. The bar chart shows
the model performance on the target domain, and the dashed line represents the average performance
of masked models with different mask positions on this dataset.

1 2 3 4 5 6
k

0

20

40

60

80

Acc Pre

(a) REDDIT-B

1 2 3 4 5 6
k

0

20

40

60

Acc Pre

(b) PTC

1 2 3 4 5 6
k

0

10

20

30

40

50

60

Acc Pre

(c) MUTAG

1 2 3 4 5 6
k

0

20

40

60

80
Acc Pre

(d) NCI1

Figure 5: The Effects of k in TopK Expert Selection on four datasets.

condition)” only optimizes merging weights with fixed pre-trained parameters, performing similarly
to Ens-Prob / Ens-HighConf from Table 1. Notably, our proposed OGMM achieves optimal results
in the source-free setting, approaching the best performance despite the absence of source domain
data, thus validating its capability for effective cross-domain knowledge transfer. Removing the
MoE module, generator, or masks under the source-free constraint leads to performance declines,
underscoring the critical contributions of these components.

Impact of TopK Expert Selection. To investigate the effects of the hyper-parameter k in the TopK
selector, we evaluate results across four datasets shown in Figure 5. The performance changes reveal
that selecting k between 2 and 4 generally yields optimal results across all datasets. Most datasets
exhibit similar trends, with accuracy improving as k increases initially and then stabilizing at higher
values. Notably, OGMM consistently outperforms the pre-trained baseline across most settings,
confirming the effectiveness of our MoE module. In addition, these results show that the optimal
choice requires dataset-specific tuning to accommodate varying dataset characteristics.

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

0.05 0.15 0.25 0.5 0.75 1.0
Synthetic Ratio

20

30

40

50

60

70

80

Pe
rf

or
m

an
ce

 (
%

)

Accuracy
Precision

(a) REDDIT-B

0.05 0.15 0.25 0.5 0.75 1.0
Synthetic Ratio

55

60

65

70

75

Pe
rf

or
m

an
ce

 (
%

)

Accuracy
Precision

(b) NCI1

Figure 15: Ablation studies regarding the number of domains. The horizontal axis indicates the
number of source domains.

influences of {k, λgate} are more pronounced due to the larger variations in pre-trained models
caused by limited data. In this case, the fusion process has a more significant effect on the results. On
larger datasets such as REDDIT-B and NCI1, λmask plays a more crucial role, with the fine-tuning
process ultimately determining the performance ceiling of the merged model.

Discussion about the Number of Domains. According to Eq.12, OGMM can integrate multiple
pre-trained models from different domains, with generalization improving as domain diversity
grows. However, constructing datasets divided into infinite domains is impractical. Consequently,
experiments rely on datasets with limited samples, where increasing the number of manually defined
domains reduces the sample size per domain, impacting pre-trained model quality. This explains
the trend in Figure 15, where OGMM’s performance declines, and error rates rise as the number of
domains increases.

C.6 VISUALIZATION

We visualize the real and generative graphs obtained from MUTAG and NCI1, as shown in Figures
16 - 17. The visual comparison reveals some similarities between the graphs learned by OGMM and
the real graphs, highlighting the model’s ability to capture meaningful domain knowledge.

Nodes: 27, Edges: 33, Label: 0 Nodes: 28, Edges: 33, Label: 0 Nodes: 21, Edges: 22, Label: 0

Nodes: 21, Edges: 24, Label: 0 Nodes: 21, Edges: 24, Label: 0 Nodes: 22, Edges: 25, Label: 0

(a)

Nodes: 16, Edges: 17, Label: 1 Nodes: 18, Edges: 20, Label: 0 Nodes: 19, Edges: 22, Label: 0

Nodes: 16, Edges: 17, Label: 1 Nodes: 20, Edges: 22, Label: 0 Nodes: 17, Edges: 18, Label: 0
(b)

Nodes: 22, Edges: 25, Label: 0 Nodes: 23, Edges: 27, Label: 0 Nodes: 22, Edges: 24, Label: 1

Nodes: 22, Edges: 25, Label: 0 Nodes: 28, Edges: 33, Label: 0 Nodes: 23, Edges: 27, Label: 0

(c)

Nodes: 19, Edges: 21, Label: 0 Nodes: 20, Edges: 22, Label: 0 Nodes: 19, Edges: 22, Label: 0

Nodes: 16, Edges: 17, Label: 0 Nodes: 16, Edges: 17, Label: 0 Nodes: 16, Edges: 17, Label: 1
(d)

Real Graphs
Nodes: 20, Edges: 22, Label: 0 Nodes: 11, Edges: 11, Label: 0 Nodes: 13, Edges: 9, Label: 0

Nodes: 11, Edges: 11, Label: 0 Nodes: 10, Edges: 6, Label: 1 Nodes: 11, Edges: 7, Label: 0
(e)

Nodes: 25, Edges: 41, Label: 1 Nodes: 25, Edges: 43, Label: 1 Nodes: 12, Edges: 10, Label: 0

Nodes: 14, Edges: 13, Label: 1 Nodes: 16, Edges: 14, Label: 0 Nodes: 14, Edges: 12, Label: 0

(f)

Nodes: 12, Edges: 10, Label: 1 Nodes: 14, Edges: 9, Label: 1 Nodes: 17, Edges: 20, Label: 0

Nodes: 20, Edges: 24, Label: 0 Nodes: 21, Edges: 28, Label: 1 Nodes: 17, Edges: 24, Label: 1
(g)

Nodes: 20, Edges: 28, Label: 0 Nodes: 11, Edges: 9, Label: 0 Nodes: 13, Edges: 11, Label: 0

Nodes: 11, Edges: 8, Label: 0 Nodes: 10, Edges: 10, Label: 1 Nodes: 11, Edges: 8, Label: 0
(h)

Generative Graphs

Figure 16: Graph visuallization on MUTAG. Note that there is no correspondence between the graphs
in the two rows.

23

Figure 6: Impact of the number of generative
graphs. The horizontal axis is the ratio of gen-
erative samples to total source domain data.

Impact of the Number of Synthetic Samples.
Theoretically, OGMM can generate unlimited
synthetic graphs for training, but their quality
and diversity are limited by the pre-trained mod-
els, as noted by (Deng & Zhang, 2021). Figure
6 shows the relationship between OGMM’s per-
formance and the number of generated graphs
on REDDIT-B and NCI1. OGMM achieves high
performance even with a small fraction of syn-
thetic graphs, as these effectively capture high-
order domain knowledge, resulting in a concen-
trated and informative distribution.

Manifold Visualization for Synthetic Graphs. To further validate the effectiveness and diversity
of the synthesized graphs, we visualize these data using t-SNE in Figure 7. The results presents the
class-wise distribution of real and synthetic data specifically on Domain A in NCI1. The visualization
reveals that synthetic data aligns with the distribution of real data, indicating that our method
successfully extracts domain-specific knowledge embedded in the pre-trained models.

Analysis of Gates Distribution in OGMM. To validate the rationality of our MoE-based merging
design, we analyze the gating mechanism’s behavior on both synthetic training data and real target
domain data across four datasets, as shown in Figure 8. We compute the total weight assigned to each
expert by aggregating gate assignments across all samples.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Real_data: Label 0
Real_data: Label 1
Syn_data: Label 0
Syn_data: Label 1

(a) Synthesis by GCN-A/B

Real_data: Label 0
Real_data: Label 1
Syn_data: Label 0
Syn_data: Label 1

(b) Synthesis by GAT-A/B

Real_data: Label 0
Real_data: Label 1
Syn_data: Label 0
Syn_data: Label 1

(c) Synthesis by GIN-A/B

Figure 7: t-SNE Visualization of Real and Synthetic Samples with Label Distribution on Domain A.

During the training phase with synthetic data (gray bars), the load distribution across experts remains
relatively balanced, indicating that each expert receives approximately equal amounts of fine-tuning
data. This balanced training ensures all experts are adequately optimized without bias toward any
particular source domain. In contrast, during inference on real target domain data (purple bars),
the gate distribution becomes significantly more discriminative. The gating mechanism effectively
captures the distinguishable patterns learned by different experts and adaptively routes test samples
to the most suitable expert based on distributional similarity. This shift in distribution reflects the
varying relevance of different source domains to the target domain.

0 1 2 3 4 5
Expert Index

0

10

20

30

40

50

60

W
ei

gh
ts

 (
%

)

13.9

21.6

14.1

21.7

14.6 14.1

33.4

2.8
0.0

4.6

59.1

0.0

Synthetic Training Data Real Target Data

(a) REDDIT-B

0 1 2 3 4 5
Expert Index

0

10

20

30

40

50

W
ei

gh
ts

 (
%

)

16.1 17.0 17.1
18.7

16.0 15.214.1

4.3
1.6 0.5

56.9

22.6

Synthetic Training Data Real Target Data

(b) PTC

0 1 2 3 4 5
Expert Index

0

20

40

60

80

100

W
ei

gh
ts

 (
%

)

15.2 17.8 18.7
15.0

18.6
14.8

1.7 0.1 0.8 1.2 0.0

96.2

Synthetic Training Data Real Target Data

(c) MUTAG

0 1 2 3 4 5
Expert Index

0

10

20

30

40

50

W
ei

gh
ts

 (
%

)

17.5 17.5 17.4 17.5
14.4 15.7

0.3 0.0 1.2

52.5

3.2

42.9

Synthetic Training Data Real Target Data

(d) NCI1

Figure 8: Gates distribution on training data and real target data on four datasets.

5 CONCLUSION

This paper investigates the problem of Out-of-Distribution Graph Models Merging. The primary
challenge lies in extracting knowledge from pre-trained GNNs and guiding their reuse to address
the issue of model generalization. To tackle this challenge, we propose a novel out-of-distribution
graph models merging framework. Our approach leverages graph generation and a fine-tuned MoE
to adaptively optimize the model fusion process, enabling effective generalization under graph
OOD scenarios. Extensive experiments on several real-world benchmarks confirm that the proposed
approach outperforms state-of-the-art baselines.

REFERENCES

Kartik Ahuja, Ethan Caballero, Dinghuai Zhang, Jean-Christophe Gagnon-Audet, Yoshua Bengio,
Ioannis Mitliagkas, and Irina Rish. Invariance principle meets information bottleneck for out-of-
distribution generalization. Advances in Neural Information Processing Systems, 34:3438–3450,
2021.

Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization.
arXiv preprint arXiv:1907.02893, 2019.

Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jennifer Wortman
Vaughan. A theory of learning from different domains. Machine learning, 79:151–175, 2010.

Shiyu Chang, Yang Zhang, Mo Yu, and Tommi Jaakkola. Invariant rationalization. In International
Conference on Machine Learning, pp. 1448–1458. PMLR, 2020.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yongqiang Chen, Yatao Bian, Kaiwen Zhou, Binghui Xie, Bo Han, and James Cheng. Does invariant
graph learning via environment augmentation learn invariance? Advances in Neural Information
Processing Systems, 36, 2024a.

Zhengyu Chen, Teng Xiao, Kun Kuang, Zheqi Lv, Min Zhang, Jinluan Yang, Chengqiang Lu,
Hongxia Yang, and Fei Wu. Learning to reweight for generalizable graph neural network. In
Proceedings of the AAAI conference on artificial intelligence, volume 38, pp. 8320–8328, 2024b.

Leshem Choshen, Elad Venezian, Noam Slonim, and Yoav Katz. Fusing finetuned models for better
pretraining. arXiv preprint arXiv:2204.03044, 2022.

Koby Crammer, Michael Kearns, and Jennifer Wortman. Learning from multiple sources. Journal of
machine learning research, 9(8), 2008.

Róbert Csordás, Sjoerd van Steenkiste, and Jürgen Schmidhuber. Are neural nets modular? inspecting
functional modularity through differentiable weight masks. arXiv preprint arXiv:2010.02066,
2020.

Xiang Deng and Zhongfei Zhang. Graph-free knowledge distillation for graph neural networks. arXiv
preprint arXiv:2105.07519, 2021.

Jiahua Dong, Zhen Fang, Anjin Liu, Gan Sun, and Tongliang Liu. Confident anchor-induced multi-
source free domain adaptation. Advances in neural information processing systems, 34:2848–2860,
2021.

Shaohua Fan, Xiao Wang, Chuan Shi, Peng Cui, and Bai Wang. Generalizing graph neural networks
on out-of-distribution graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2023.

Dongqi Fu, Liri Fang, Zihao Li, Hanghang Tong, Vetle I Torvik, and Jingrui He. What do llms
need to understand graphs: A survey of parametric representation of graphs. arXiv preprint
arXiv:2410.12126, 2024a.

Dongqi Fu, Liri Fang, Zihao Li, Hanghang Tong, Vetle I Torvik, and Jingrui He. Parametric
graph representations in the era of foundation models: A survey and position. arXiv preprint
arXiv:2410.12126, 2024b.

Xinyi Gao, Tong Chen, Yilong Zang, Wentao Zhang, Quoc Viet Hung Nguyen, Kai Zheng, and
Hongzhi Yin. Graph condensation for inductive node representation learning. In 2024 IEEE 40th
International Conference on Data Engineering (ICDE), pp. 3056–3069. IEEE, 2024.

Somayeh Ghanbarzadeh, Hamid Palangi, Yan Huang, Radames Cruz Moreno, and Hamed Khanpour.
Improving pre-trained language models’ generalization. arXiv preprint arXiv:2307.10457, 2023.

Shurui Gui, Meng Liu, Xiner Li, Youzhi Luo, and Shuiwang Ji. Joint learning of label and environment
causal independence for graph out-of-distribution generalization. Advances in Neural Information
Processing Systems, 36, 2024.

Xu Owen He. Mixture of a million experts. arXiv preprint arXiv:2407.04153, 2024.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances in
neural information processing systems, 33:22118–22133, 2020.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt,
Hannaneh Hajishirzi, and Ali Farhadi. Editing models with task arithmetic. arXiv preprint
arXiv:2212.04089, 2022.

Tianrui Jia, Haoyang Li, Cheng Yang, Tao Tao, and Chuan Shi. Graph invariant learning with
subgraph co-mixup for out-of-distribution generalization. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 38, pp. 8562–8570, 2024.

Wei Jin, Lingxiao Zhao, Shichang Zhang, Yozen Liu, Jiliang Tang, and Neil Shah. Graph condensation
for graph neural networks. arXiv preprint arXiv:2110.07580, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

Haoling Li, Xin Zhang, Xiao Liu, Yeyun Gong, Yifan Wang, Yujiu Yang, Qi Chen, and Peng
Cheng. Gradient-mask tuning elevates the upper limits of llm performance. arXiv preprint
arXiv:2406.15330, 2024a.

Haoyang Li, Xin Wang, Ziwei Zhang, and Wenwu Zhu. Out-of-distribution generalization on graphs:
A survey. arXiv preprint arXiv:2202.07987, 2022.

Xiner Li, Shurui Gui, Youzhi Luo, and Shuiwang Ji. Graph structure and feature extrapolation for
out-of-distribution generalization. arXiv preprint arXiv:2306.08076, 2023.

Xinyao Li, Jingjing Li, Fengling Li, Lei Zhu, and Ke Lu. Agile multi-source-free domain adaptation.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 13673–13681,
2024b.

Yijiang Li, Sucheng Ren, DENG Weipeng, Yuzhi Xu, Edith CH Ngai, Ying Gao, and Haohan Wang.
Beyond finite data: Towards data-free out-of-distribution generalization via extrapolation. 2024c.

Tao Lin, Sebastian U Stich, Luis Barba, Daniil Dmitriev, and Martin Jaggi. Dynamic model pruning
with feedback. arXiv preprint arXiv:2006.07253, 2020.

Jingzhe Liu, Haitao Mao, Zhikai Chen, Wenqi Fan, Mingxuan Ju, Tong Zhao, Neil Shah, and Jiliang
Tang. One model for one graph: A new perspective for pretraining with cross-domain graphs.
arXiv preprint arXiv:2412.00315, 2024.

Lei Liu, Xingyu Xia, Qianqian Xie, Ben Liu, Wenjie Xu, and Min Peng. Enhanced expert merging
for mixture-of-experts in graph foundation models. In The Thirty-ninth Annual Conference on
Neural Information Processing Systems.

Mengyang Liu, Shanchuan Li, Xinshi Chen, and Le Song. Graph condensation via receptive field
distribution matching. arXiv preprint arXiv:2206.13697, 2022.

Zheyuan Liu, Chunhui Zhang, Yijun Tian, Erchi Zhang, Chao Huang, Yanfang Ye, and Chuxu Zhang.
Fair graph representation learning via diverse mixture-of-experts. In Proceedings of the ACM Web
Conference 2023, pp. 28–38, 2023.

Bin Lu, Ze Zhao, Xiaoying Gan, Shiyu Liang, Luoyi Fu, Xinbing Wang, and Chenghu Zhou. Graph
out-of-distribution generalization with controllable data augmentation. IEEE Transactions on
Knowledge and Data Engineering, 2024.

Junyu Luo, Yiyang Gu, Xiao Luo, Wei Ju, Zhiping Xiao, Yusheng Zhao, Jingyang Yuan, and
Ming Zhang. GALA: Graph Diffusion-Based Alignment With Jigsaw for Source-Free Domain
Adaptation . IEEE Transactions on Pattern Analysis & Machine Intelligence, 46(12):9038–9051,
December 2024a. ISSN 1939-3539. doi: 10.1109/TPAMI.2024.3416372.

Junyu Luo, Zhiping Xiao, Yifan Wang, Xiao Luo, Jingyang Yuan, Wei Ju, Langechuan Liu, and Ming
Zhang. Rank and align: Towards effective source-free graph domain adaptation. arXiv preprint
arXiv:2408.12185, 2024b.

Li Ma, Haoyu Han, Juanhui Li, Harry Shomer, Hui Liu, Xiaofeng Gao, and Jiliang Tang. Mixture of
link predictors on graphs. Advances in Neural Information Processing Systems, 37:16043–16070,
2024.

Yishay Mansour, Mehryar Mohri, and Afshin Rostamizadeh. Domain adaptation with multiple
sources. Advances in neural information processing systems, 21, 2008.

Michael Matena and Colin Raffel. Merging models with fisher-weighted averaging, 2021. arXiv
preprint arXiv:2111.09832.

Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura, Hiroki Kanezashi,
Tim Kaler, Tao Schardl, and Charles Leiserson. Evolvegcn: Evolving graph convolutional networks
for dynamic graphs. In Proceedings of the AAAI conference on artificial intelligence, volume 34,
pp. 5363–5370, 2020.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Ziyue Qiao, Xiao Luo, Meng Xiao, Hao Dong, Yuanchun Zhou, and Hui Xiong. Semi-supervised
domain adaptation in graph transfer learning. In Proceedings of the Thirty-Second International
Joint Conference on Artificial Intelligence, pp. 2279–2287, 2023.

Ziyue Qiao, Junren Xiao, Qingqiang Sun, Meng Xiao, Xiao Luo, and Hui Xiong. Towards continuous
reuse of graph models via holistic memory diversification. In The Thirteenth International
Conference on Learning Representations, 2025.

Evani Radiya-Dixit and Xin Wang. How fine can fine-tuning be? learning efficient language models.
In International Conference on Artificial Intelligence and Statistics, pp. 2435–2443. PMLR, 2020.

Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding. Journal
of Complex Networks, 9(2):cnab014, 2021.

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost.
In International Conference on Machine Learning, pp. 4596–4604. PMLR, 2018.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. arXiv
preprint arXiv:1701.06538, 2017.

Maohao Shen, Yuheng Bu, and Gregory W Wornell. On balancing bias and variance in unsupervised
multi-source-free domain adaptation. In International conference on machine learning, pp. 30976–
30991. PMLR, 2023.

George Stoica, Daniel Bolya, Jakob Bjorner, Pratik Ramesh, Taylor Hearn, and Judy Hoffman. Zipit!
merging models from different tasks without training. arXiv preprint arXiv:2305.03053, 2023.

Yongduo Sui, Xiang Wang, Jiancan Wu, Min Lin, Xiangnan He, and Tat-Seng Chua. Causal attention
for interpretable and generalizable graph classification. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pp. 1696–1705, 2022.

Xin Sun, Liang Wang, Qiang Liu, Shu Wu, Zilei Wang, and Liang Wang. Dive: subgraph disagreement
for graph out-of-distribution generalization. In Proceedings of the 30th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, pp. 2794–2805, 2024.

Amanda L Traud, Peter J Mucha, and Mason A Porter. Social structure of facebook networks. Physica
A: Statistical Mechanics and its Applications, 391(16):4165–4180, 2012.

Joachim Utans. Weight averaging for neural networks and local resampling schemes. In Proc.
AAAI-96 Workshop on Integrating Multiple Learned Models. AAAI Press, pp. 133–138. Citeseer,
1996.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Haotao Wang, Ziyu Jiang, Yuning You, Yan Han, Gaowen Liu, Jayanth Srinivasa, Ramana Kompella,
Zhangyang Wang, et al. Graph mixture of experts: Learning on large-scale graphs with explicit
diversity modeling. Advances in Neural Information Processing Systems, 36, 2024.

Qiu-Feng Wang, Xin Geng, Shu-Xia Lin, Shi-Yu Xia, Lei Qi, and Ning Xu. Learngene: From
open-world to your learning task. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 36, pp. 8557–8565, 2022.

Yingxu Wang, Mengzhu Wang, Zhichao Huang, Suyu Liu, and Nan Yin. Nested graph pseudo-label
refinement for noisy label domain adaptation learning. arXiv preprint arXiv:2508.00716, 2025.

Tao Wen, Elynn Chen, Yuzhou Chen, and Qi Lei. Bridging domain adaptation and graph neural net-
works: A tensor-based framework for effective label propagation. arXiv preprint arXiv:2502.08505,
2025.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model
soups: averaging weights of multiple fine-tuned models improves accuracy without increasing
inference time. In International conference on machine learning, pp. 23965–23998. PMLR, 2022.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Man Wu, Xin Zheng, Qin Zhang, Xiao Shen, Xiong Luo, Xingquan Zhu, and Shirui Pan. Graph learn-
ing under distribution shifts: A comprehensive survey on domain adaptation, out-of-distribution,
and continual learning. arXiv preprint arXiv:2402.16374, 2024a.

Shirley Wu, Kaidi Cao, Bruno Ribeiro, James Zou, and Jure Leskovec. Graphmetro: Mitigating
complex graph distribution shifts via mixture of aligned experts. Advances in Neural Information
Processing Systems, 37:9358–9387, 2024b.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

Keyulu Xu, Mozhi Zhang, Jingling Li, Simon S Du, Ken-ichi Kawarabayashi, and Stefanie Jegelka.
How neural networks extrapolate: From feedforward to graph neural networks. arXiv preprint
arXiv:2009.11848, 2020.

Prateek Yadav, Colin Raffel, Mohammed Muqeeth, Lucas Caccia, Haokun Liu, Tianlong Chen, Mohit
Bansal, Leshem Choshen, and Alessandro Sordoni. A survey on model moerging: Recycling and
routing among specialized experts for collaborative learning. arXiv preprint arXiv:2408.07057,
2024.

Enneng Yang, Zhenyi Wang, Li Shen, Shiwei Liu, Guibing Guo, Xingwei Wang, and Dacheng Tao.
Adamerging: Adaptive model merging for multi-task learning. arXiv preprint arXiv:2310.02575,
2023.

Haotian Ye, Chuanlong Xie, Tianle Cai, Ruichen Li, Zhenguo Li, and Liwei Wang. Towards a
theoretical framework of out-of-distribution generalization. Advances in Neural Information
Processing Systems, 34:23519–23531, 2021.

Hongxu Yin, Pavlo Molchanov, Jose M Alvarez, Zhizhong Li, Arun Mallya, Derek Hoiem, Niraj K
Jha, and Jan Kautz. Dreaming to distill: Data-free knowledge transfer via deepinversion. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 8715–
8724, 2020.

Haonan Yuan, Qingyun Sun, Xingcheng Fu, Ziwei Zhang, Cheng Ji, Hao Peng, and Jianxin Li.
Environment-aware dynamic graph learning for out-of-distribution generalization. Advances in
Neural Information Processing Systems, 36, 2024.

Sergey Zagoruyko and Nikos Komodakis. Paying more attention to attention: Improving the perfor-
mance of convolutional neural networks via attention transfer. arXiv preprint arXiv:1612.03928,
2016.

Hanqing Zeng, Hanjia Lyu, Diyi Hu, Yinglong Xia, and Jiebo Luo. Mixture of weak & strong experts
on graphs. arXiv preprint arXiv:2311.05185, 2023.

Zhuo Zeng, Jianyu Xie, Zhijie Yang, Tengfei Ma, and Duanbing Chen. To-ugda: target-oriented
unsupervised graph domain adaptation. Scientific Reports, 14(1):9165, 2024.

Kexin Zhang, Shuhan Liu, Song Wang, Weili Shi, Chen Chen, Pan Li, Sheng Li, Jundong Li,
and Kaize Ding. A survey of deep graph learning under distribution shifts: from graph out-of-
distribution generalization to adaptation. arXiv preprint arXiv:2410.19265, 2024.

Mengjie Zhao, Tao Lin, Fei Mi, Martin Jaggi, and Hinrich Schütze. Masking as an efficient alternative
to finetuning for pretrained language models. arXiv preprint arXiv:2004.12406, 2020.

Hongling Zheng, Li Shen, Anke Tang, Yong Luo, Han Hu, Bo Du, and Dacheng Tao. Learn from
model beyond fine-tuning: A survey. arXiv preprint arXiv:2310.08184, 2023a.

Kecheng Zheng, Wei Wu, Ruili Feng, Kai Zhu, Jiawei Liu, Deli Zhao, Zheng-Jun Zha, Wei Chen,
and Yujun Shen. Regularized mask tuning: Uncovering hidden knowledge in pre-trained vision-
language models. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pp. 11663–11673, 2023b.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Yanqiao Zhu, Yuanqi Du, Yinkai Wang, Yichen Xu, Jieyu Zhang, Qiang Liu, and Shu Wu. A survey
on deep graph generation: Methods and applications. In Learning on Graphs Conference, pp. 47–1.
PMLR, 2022.

Yuanxin Zhuang, Lingjuan Lyu, Chuan Shi, Carl Yang, and Lichao Sun. Data-free adversarial
knowledge distillation for graph neural networks. arXiv preprint arXiv:2205.03811, 2022.

Liu Ziyin, Tilman Hartwig, and Masahito Ueda. Neural networks fail to learn periodic functions and
how to fix it. Advances in Neural Information Processing Systems, 33:1583–1594, 2020.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

This appendix contains details about mathematical proofs, experimental implementation, supplemen-
tary experiments, related works, limitations, and future works.

A PROOF

A.1 PROOF OF THEOREM 3.3

Proof. Given a domain Gi with two trained classifiers f(Θi) and f(Θj). These classifiers may
have been trained on different source domains or under different conditions, leading to potentially
divergent prediction behaviors. Based on (Ben-David et al., 2010), we can define the probability
according to the distribution Gi that f(Θi) disagrees with f(Θj):

Ei(f(Θi), f(Θj)) = EG∼Gi [|f(Θi, G)− f(Θj , G)|]. (21)

If the classifier f(Θi) is a good learner trained on Gi, meaning it has achieved low training error and
captures the underlying patterns of domain Gi effectively. We will find the generalization error of
f(Θj) over Gi:

Ei(f(Θi), f(Θj)) = EG∼Gi
[|Y − f(Θj , G)|], s.t.f(Θi, G) = Y. (22)

Following Eq. 21, Definition 3.2 can be formalized as follows:

dH∆H(Gi,Gj) = 2 sup
f(Θi),f(Θj)∈H

|Ei(f(Θi), f(Θj))− Ej(f(Θi), f(Θj))|. (23)

Substituting Eq. 22 into Eq. 23 yields:

dH∆H(Gi,Gj) = 2 sup
f(Θi),f(Θj)∈H

|Ei(ŷi, f(Θj))− Ej(f(Θi), ŷj)|

∝ sup
f(Θi),f(Θj)∈H

| log p(ŷi|Gi, f(Θj))− log p(ŷj |Gj , f(Θi))|

s.t. f(Θi,Gi) = ŷi, f(Θj ,Gj) = ŷj ,

(24)

which implies that the H∆H-Divergence of Gi and Gj depends on the cross-validation results of the
respective optimized classifiers. Note that the disparity difference function represented by Eq. 24
is symmetric and obeys the triangle inequality. So we can build a cross-domain objective function
based on a set of pre-trained models:

argmin
ω,G

M∑
i,j

dH∆H(Gi,Gj)

∝ argmin
ω,G

M∑
i,j

| log p(ŷi|Gi, f(Θj), ω
j)− log p(ŷj |Gj , f(Θi), ω

i)|

s.t. Gi = argmax
G

log p(ŷi|G, f(Θi)), ∀Gi ∈ G,

(25)

where ωi is a learnable parameters for f(Θi). Optimization 25 achieves two purposes: (1) sufficient
extraction of knowledge from the models to compose a more generalized mixture of distributions
of the data G, and (2) optimization of the added parameters to fine-tune the individual model on the
mixture of distributions. Details on solving the question Optimization 25 can be found in A.2.

Due to the rule of linear combination, Γ =
∑M

i αif(Θi), we have Γ ∈ H. Thus, the optimization
objective of Optimization 25 is to identify an appropriate discriminative function Γ that minimizes
the generalization error across arbitrary marginal distributions. Therefore, the upper bound of the
generalization error for Γ on the target domain (the mixture distribution according to Assumption
3.1) depends on the sum of the cross-validation errors of sub-learners.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A.2 DETAILS ON SOLVING OPTIMIZATION 25

Optimization 25 is a non-convex problem, which is hard to solve. We relax it via triangle inequality.
At the same time, we replace the log-likelihood function with regular cross-entropy loss, and finally
get a two-stage target function:

arg min
ω,G∗

M∑
i,j

CG∈G∗
i
(ŷi, f(Θj , ω

j , G)) [Sec. 3.3]

s.t.G∗
i = argmin

G
CG∈G(ŷi, f(Θi, G)),∀G∗

i ∈ G∗ [Sec. 3.2],

(26)

where CG∈G(·) denotes the cross-entropy loss function on distribution G. G∗
i ∈ G∗ is a batch of

generated samples. The ideal is for any fine-tuned model to have a small a posterior error on any
sampled data belonging to G∗, which is very difficult to achieve. In practice, we simply approximate
it using a finite number of samples. Meanwhile, we substitute Γ =

∑M
i αif(Θi) into Optimization

26:

argmin
ω,α

N∑
i

CGi∈G∗(ŷi,

M∑
j

αj · f(Θj , ω
j , Gi)), (27)

where N and M denote the number for samples and models. ŷi is the label of Gi, and αi is the fusion
weights, combining different models for different samples.

According to Theorem 4 in (Ben-David et al., 2010), for any δ ∈ (0, 1), with probability at least
(1− δ), the error bound of the merged function Γ on the target domain GT can be defined as follows:

ϵT (Γ) ≤ ϵT (h
∗
T) +

M∑
j=1

αj (2λj + dH∆H(Gj ,GT))

+ 4

√√√√√
 M∑

j=1

α2
j

βj

(2d log(2(N + 1)) + log
(
4
δ

)
N

)
,

(28)

where H is a hypothesis space of VC dimension d. h∗
T = minh∈H ϵT (h) is the target error minimizer.

N represents the sum of the number of all samples in all source domains, and βj =
Nj

N is the ratio
of the samples from the j-th domain. α is a fixed weight vector. λj = minh∈H{ϵT (h) + ϵj(h)}
means the optimal cross-domain generalization error (defined in H), and this term corresponds to our
expectations for the fine-tuned pre-trained models.

A.3 PROOF OF THE EXPANSION OF ϵi(f(Θi))

Proof. First we provide the definition of H-Divergence between Gi and Gj :
dH(Gi,Gj) = 2 sup

f(Θi),f(Θj)∈H
|PrG∼Gi

f(Θi, G)− PrG∼Gj
f(Θj , G)|, (29)

where PrG∼Gif(Θi, G) means the prediction of f(·) on Gi. Suppose that G∗ is the mixed distribution
of the set {Gi}Mi=1, and G∗ can be defined as follows:

G∗ =

M∑
i=1

αiGi, (30)

where αi is the mixing coefficient. Note that when no training data is available but model parameters
are known, we can optimize the inputs by minimizing the empirical error ϵi(f(Θi)) on Gi (i.e.,
argmaxG∗

i
log p(ŷi|G∗

i , f(Θi))) to generate data (Deng & Zhang, 2021). This process can be seen
as narrowing the H-Divergence between G∗

i and G∗
j according to Eq. 29. When PrG∼Gi

f(Θi, G) is
close enough to ŷi (f(Θi) fits well enough on Gi), we can assume that G∗

i samples from G∗, which
still has the H∆H-Divergence:

dH∆H(G∗
i ,G∗

j) = 2 sup
hi,hj∈H

|Ei(ŷi, hj)− Ej(hi, ŷj)|

∝ sup
hi,hj∈H

| log p(ŷi|G∗
i , hj)− log p(ŷj |G∗

j , hi)|

s.t. G∗
i = argmax

G
log p(ŷi|G, f(Θi)), ∀G∗

i ∈ G∗,

(31)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

where (hi, hj) is a set of functions used to define the lower bound of dH∆H(G∗
i ,G∗

j). We can use the
fine-tunable model f(Θi) and f(Θj) to approximate hi and hj with added parameters ω.

B IMPLEMENTATION DETAILS

B.1 DATASETS DETAILS

Table 3 shows the summary statistics of used datasets in Sec. 4.2.

Table 3: Summary of datasets.

MUTAG PTC REDDIT-B NCI1

#Graphs 188 344 2,000 4,110
#Classes 2 2 2 2
#Feature Dim 7 19 37 1
#Nodes 3,371 8,792 859,254 122,747
#Edges 7,442 17,862 1,991,016 265,506
Avg #Nodes 17.93 14.29 429.62 29.87
Avg #Edges 39.59 51.92 995.51 64.60

To simulate realistic out-of-distribution scenarios, we partition each graph-level dataset into multiple
domains based on graph edge density, following established domain adaptation methods (Luo et al.,
2024a; Zeng et al., 2024; Luo et al., 2024b; Wen et al., 2025; Wang et al., 2025). Edge density serves
as a fundamental structural characteristic that creates meaningful distributional shifts across graph
domains (Fu et al., 2024a). For each graph-level dataset, we calculate the edge density ρ = 2|E|

|V |(|V |−1)

for every graph and partition the data into domains based on density value, ensuring that each
domain contains graphs with similar structural complexity while maintaining sufficient distributional
differences between domains. The complete partitioning implementation is available in our code
repository. This partitioning strategy reflects real-world scenarios where models encounter graph
structural variations, such as in molecular datasets like MUTAG, where density variations correspond
to distinct chemical families: dense graphs typically represent highly conjugated aromatic systems
with extensive double bond networks, while sparse graphs correspond to simpler aliphatic structures
that exhibit different toxicity mechanisms and create natural domain boundaries.

Similar density-driven domain shifts appear across various graph learning applications, from social
networks where active users generate dense interaction patterns while inactive users create sparse
connectivity, to spatiotemporal trajectory analysis where dense urban movement patterns differ
significantly from sparse rural trajectories. These distribution shifts lead to models performance
degradation, which is precisely the generalization challenge our method aims to address.

B.2 PARAMETERS SETTING

In our experimental setup, the number of generated samples N and the number of source domains M
are predetermined prior information, not tunable hyperparameters. For the fake graphs generation
stage, the number of epochs is set to 200. τ = 0.2 in Eq. 8 controls stable sampling. For the model
merging stage, the number of epochs is set to 20. The AdamW optimizer (Shazeer & Stern, 2018)
is used for gradient descent. γv = γu = 0.9 in Eq. 19 control parameter changes from pretrained
models to preserve knowledge. The hyper-parameters λgate and λmask in the merging function, i.e.,
Eq. 20, are chosen from {10−2, 10−1, 1, 10, 100}, and the value of k for the TopKSelector, i.e., Eq.
15, is chosen from {1, 2, 3, 4, 5}. We report the mean results and standard deviations of ten runs.

B.3 ABLATION VARIANTS

We evaluate five variant configurations to analyze the contribution of each component:

Given Source variants: (1) Variant “OGMM” represents our full method with access to source
domain data, serving as an upper bound for performance. (2) Variant “w/o Mask” removes the
parameter masks from pre-trained model classifiers while maintaining access to source data.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Source Free variants: (3) Variant “w/o MoE” eliminates the MoE module and uses simple averaging
of masked GNN predictions. (4) Variant “w/o Mask” removes the masks added to the classifiers
of each pre-trained model in the source-free setting. (5) Variant “w/o Lgen” removes the graph
generation objective (Eq. 11), training the model merging stage with randomly generated noise
graphs instead of our synthesized graphs.

B.4 ALGORITHM ANALYSIS

We analyze the computational complexity of our model to show its efficiency. Let |V | denote the total
number of generated nodes, |E| represent the number of generated edges, din and dmid indicate the
dimensions of the initial and intermediate layer features, respectively. The computational complexity
of the model during the fake graphs generation stage is given by: O(|V |3(din · dmid + d2mid)+ (|E| ·
dmid+|V |·d2mid)). Generally speaking, din and dmid are significantly smaller than |V | or |E|. So the
time complexity of the first stage of OGMM is O(|V |3 + |E|+ |V |). The computational complexity
of the second stage is O(dmid ·m+m(|E| ·dmid+ |W | · |V | ·d2mid)), where m denotes the number of
pre-trained models and |W | represents the scale of masks. Therefore, the time complexity of OGMM
is O(|V |3 + |E|+ |V |+m(|E|+ |W | · |V |)). Although our model demonstrates effectiveness, it
has comparable complexity with the existing baselines.

The algorithm is shown in Algorithm 1. During the experiments, we use one NVIDIA GeForce RTX
4090D GPU to train and inference.

Algorithm 1 Procedure of OGMM

Input: pre-trained graph models {f(Θi)}Mi=1.
Output: The predicting labels on the target samples.

// First stage: Graphs Generation
for i = 1 to M do

Initialize the domain-specific graph features {Xi|Xi ∼ N (0, I)}Mi=1 and arbitrary labels;
while not converged do

Generate graph structures {Ai}Mi=1 by generators {Pi}Mi=1 (Eq. 8);
Update {Pi}Mi=1 and {Ai}Mi=1 by minimizing the generation loss Lgen (Eq. 11);

end while
end for
// Second stage: Graph Models Merging
Concatenate the generative datasets into G∗;
Initialize the fine-tuning masks ω in Eq. 13 and the gating layer in Eq. 15;
while not converged do

Update {ω,Wg,Wn} by minimizing the merging loss Lmerge (Eq. 20).
end while

Besides, we further provide the running time comparison between OGMM and SOTA baselines in
generating, training and testing phases in Tables 4–6 to verify effectiveness of the proposed method.

Table 4: Generating Time (seconds) Comparison.

Methods/Datasets REDDIT-B PTC MUTAG NCI1
Inverse-X 2030.95 88.07 63.17 452.02
Multi-GFKD 4052.60 1640.38 743.02 2043.15

OGMM 3448.28 134.17 126.69 827.76

For generation time, OGMM is significantly faster than Multi-GFKD (2-15× speedup across datasets).
Compared to Inverse-X, which is a simplified version of OGMM without graph structure optimization,
OGMM requires additional time but delivers better performance. In the training phase, OGMM
achieves the best efficiency, being 2-4× faster than traditional GNN methods and outperforming
Multi-GFKD. Regarding testing time, OGMM is slightly slower than baselines but still operates at
millisecond to second scale, which is acceptable for practical applications. Overall, OGMM shows
good computational efficiency, especially in the training phase.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 5: Training runtime (in seconds) comparison on four datasets, the results are recorded at the
time of running 100 epochs for fairness.

Methods/Datasets REDDIT-B PTC MUTAG NCI1

GCN 97.55 17.50 9.31 116.89
GIN 112.42 19.09 9.47 175.76
GAT 144.30 14.01 25.26 206.27
Multi-GFKD 51.66 49.02 30.54 51.06
OGMM 41.28 8.25 8.92 45.99

Table 6: Testing runtime (in seconds) comparison on four datasets.

Methods/Datasets REDDIT-B PTC MUTAG NCI1

GCN 0.04 0.01 0.01 0.07
GIN 0.04 0.01 0.01 0.09
GAT 0.06 0.01 0.01 0.08
Uni-Soup 0.05 0.03 0.03 0.09
Greedy-Soup 0.07 0.03 0.02 0.11
Multi-GFKD 0.09 0.02 0.01 0.16
OGMM 0.10 0.07 0.05 0.25

C SUPPLEMENTARY EXPERIMENTS

C.1 POSITION OF MASKS

We conducted additional experiments on PTC and NCI1 to analyze the impact of mask placement.
As shown in Figure 9, the results on these datasets further validate the conclusion: incorporating
masks into the classifier (MaskCL) achieves performance comparable to the average of the three
mask-tuning methods.

GCN GIN GAT0

10

20

30

40

50

60

70

AC
C

No Mask MaskCL MaskNN MaskALL

(a) (A → T) on PTC
GCN GIN GAT0

10

20

30

40

50

60

70

AC
C

No Mask MaskCL MaskNN MaskALL

(b) (B → T) on PTC
GCN GIN GAT0

10
20
30
40
50
60
70

AC
C

No Mask MaskCL MaskNN MaskALL

(c) (A → T) on NCI1
GCN GIN GAT0

10
20
30
40
50
60
70

AC
C

No Mask MaskCL MaskNN MaskALL

(d) (B → T) on NCI1

Figure 9: Impact of Mask Position on PTC and NCI1. The form (A → T) means that a GNN
pre-trained on domain A and fine-tuned on the Target domain. The bar chart shows the model
performance on the target domain, and the dashed line represents the average performance of masked
models with different mask positions on this dataset.

C.2 GRADIENT TRENDS

Following the criteria outlined in (Wang et al., 2022), we calculate the proportion of large gradients
for each model layer, as illustrated in Figures 10 - 12. The selected criterion is the number of
parameters with a variation magnitude exceeding 0.001. Specifically, we partition the dataset into
more subsets (10 / 20) based on edge density, and sequentially use these subsets to continuously train
the selected GNNs. Then we use the selected criterion to analyze the degree of parameter variation
within each module. Notably, the classifier weights exhibit a more pronounced decreasing trend in
parameter changes compared to other layers. This further indicates that fine-tuning the classifier
parameters facilitates the model’s ability to learn invariant representations, thereby enhancing the
generalization capability of individual sub-learners. The results confirm the insight provided in Sec.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Lay
er0

_w
eig

ht

Lay
er0

_bi
as

Norm
0_w

eig
ht

Norm
0_b

ias

Clas
sifi

er_
weig

ht

Clas
sifi

er_
bia

s

1

2

3

4

5

6

7

8

9

Do
m

ai
n

id

0.0

0.2

0.4

0.6

0.8

1.0

(a) NCI1 (10 Domains)

Lay
er0

_w
eig

ht

Lay
er0

_bi
as

Norm
0_w

eig
ht

Norm
0_b

ias

Clas
sifi

er_
weig

ht

Clas
sifi

er_
bia

s

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Do
m

ai
n

id

0.0

0.2

0.4

0.6

0.8

1.0

(b) NCI1 (20 Domains)

Lay
er0

_w
eig

ht

Lay
er0

_bi
as

Norm
0_w

eig
ht

Norm
0_b

ias

Clas
sifi

er_
weig

ht

Clas
sifi

er_
bia

s

1

2

3

4

5

6

7

8

9

Do
m

ai
n

id

0.0

0.2

0.4

0.6

0.8

1.0

(c) RED. (10 Domains)

Lay
er0

_w
eig

ht

Lay
er0

_bi
as

Norm
0_w

eig
ht

Norm
0_b

ias

Clas
sifi

er_
weig

ht

Clas
sifi

er_
bia

s

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Do
m

ai
n

id

0.0

0.2

0.4

0.6

0.8

1.0

(d) RED. (20 Domains)

Figure 10: Gradient trends in 2-layer GCN on NCI1 and REDDIT-B. (RED). It illustrates the
evolution of parameters at each layer of GCN as the model is trained with an increasing number of
domain data, based on a specified criterion.

Lay
er0

_w
eig

ht

Lay
er0

_bi
as

Lay
er1

_w
eig

ht

Lay
er1

_bi
as

Norm
0_w

eig
ht

Norm
0_b

ias

Norm
1_w

eig
ht

Norm
1_b

ias

Clas
sifi

er_
weig

ht

Clas
sifi

er_
bia

s

1

2

3

4

5

6

7

8

9

Do
m

ai
n

id

0.0

0.2

0.4

0.6

0.8

1.0

(a) NCI1 (10 Domains)

Lay
er0

_w
eig

ht

Lay
er0

_bi
as

Lay
er1

_w
eig

ht

Lay
er1

_bi
as

Norm
0_w

eig
ht

Norm
0_b

ias

Norm
1_w

eig
ht

Norm
1_b

ias

Clas
sifi

er_
weig

ht

Clas
sifi

er_
bia

s

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Do
m

ai
n

id

0.0

0.2

0.4

0.6

0.8

1.0

(b) NCI1 (20 Domains)

Lay
er0

_w
eig

ht

Lay
er0

_bi
as

Lay
er1

_w
eig

ht

Lay
er1

_bi
as

Norm
0_w

eig
ht

Norm
0_b

ias

Norm
1_w

eig
ht

Norm
1_b

ias

Clas
sifi

er_
weig

ht

Clas
sifi

er_
bia

s

1

2

3

4

5

6

7

8

9

Do
m

ai
n

id

0.0

0.2

0.4

0.6

0.8

1.0

(c) RED. (10 Domains)

Lay
er0

_w
eig

ht

Lay
er0

_bi
as

Lay
er1

_w
eig

ht

Lay
er1

_bi
as

Norm
0_w

eig
ht

Norm
0_b

ias

Norm
1_w

eig
ht

Norm
1_b

ias

Clas
sifi

er_
weig

ht

Clas
sifi

er_
bia

s

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Do
m

ai
n

id

0.0

0.2

0.4

0.6

0.8

1.0

(d) RED. (20 Domains)

Figure 11: Gradient trends in 2-layer GIN on NCI1 and REDDIT-B (RED.). It illustrates the evolution
of parameters at each layer of the GIN as the model is trained with an increasing number of domain
data, based on a specified criterion.

4.2: the classifier weights gradually stabilize after training on multiple domains, indicating that these
parameters capture cross-domain invariant knowledge.

C.3 PERFORMANCE OF HOMOGENEOUS BACKBONES MERGING

Leveraging the MoE architecture, OGMM imposes no explicit constraints on the underlying model
architectures. To further assess the generalizability of OGMM within homogeneous GNN backbones,
we reduce the number of pre-trained models and employ only the widely adopted GCN for fusion.
As presented in Table 7, even with the integration of just two basic GCNs, OGMM outperforms
existing fusion methods, setting a new state-of-the-art across all four datasets. Notably, compared to

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Lay
er0

_at
tl

Lay
er0

_at
tr

Lay
er0

_bi
as

Lay
er0

_fc
weig

ht

Norm
0_w

eig
ht

Norm
0_b

ias

Clas
sifi

er_
weig

ht

Clas
sifi

er_
bia

s

1

2

3

4

5

6

7

8

9

Do
m

ai
n

id

0.0

0.2

0.4

0.6

0.8

1.0

(a) NCI1 (10 Domains)

Lay
er0

_at
tl

Lay
er0

_at
tr

Lay
er0

_bi
as

Lay
er0

_fc
weig

ht

Norm
0_w

eig
ht

Norm
0_b

ias

Clas
sifi

er_
weig

ht

Clas
sifi

er_
bia

s

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Do
m

ai
n

id

0.0

0.2

0.4

0.6

0.8

1.0

(b) NCI1 (20 Domains)

Lay
er0

_at
tl

Lay
er0

_at
tr

Lay
er0

_bi
as

Lay
er0

_fc
weig

ht

Norm
0_w

eig
ht

Norm
0_b

ias

Clas
sifi

er_
weig

ht

Clas
sifi

er_
bia

s

1

2

3

4

5

6

7

8

9

Do
m

ai
n

id

0.0

0.2

0.4

0.6

0.8

1.0

(c) RED. (10 Domains)

Lay
er0

_at
tl

Lay
er0

_at
tr

Lay
er0

_bi
as

Lay
er0

_fc
weig

ht

Norm
0_w

eig
ht

Norm
0_b

ias

Clas
sifi

er_
weig

ht

Clas
sifi

er_
bia

s

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Do
m

ai
n

id

0.0

0.2

0.4

0.6

0.8

1.0

(d) RED. (20 Domains)

Figure 12: Gradient trends in 2-layer GAT on NCI1 and REDDIT-B (RED.). It illustrates the evolution
of parameters at each layer of the GAT as the model is trained with an increasing number of domain
data, based on a specified criterion.

the results in Table 1, most performance metrics for OGMM improve upon reducing the number of
pre-trained models. This suggests that, while the total knowledge volume remains constant, increased
diversity among experts leads to the introduction of additional errors.

Table 7: Data performance comparison across four datasets. The experimental setup was identical to
Table 1, except that the base models used only two GCNs trained from different domains. Highlighted
are the top first, second results.

Methods REDDIT-B PTC MUTAG NCI1

ACC/%↑ Pre/%↑ ACC/%↑ Pre/%↑ ACC/%↑ Pre/%↑ ACC/%↑ Pre/%↑
Avg-PTM 53.85±3.74 59.79±15.42 50.43±2.28 51.08±5.14 31.64±8.26 35.67±26.85 55.62±4.52 60.14±3.13
Ens-Prob 42.25±24.82 48.29±36.58 51.72±2.94 55.27±3.90 28.12±2.42 34.08±33.79 55.09±6.26 60.62±2.61
Ens-HighConf 50.16±27.47 54.6±34.05 52.76±4.25 56.87±5.44 29.84±7.86 28.38±32.63 54.87±6.86 60.15±3.65
Uni-Soup 44.46±28.49 43.62±33.01 49.83±4.25 44.27±15.4 35.62±18.14 16.37±18.62 50.88±12.11 56.72±7.42
Greedy-Soup 50.06±29.28 57.41±28.04 48.71±2.99 39.76±14.58 36.56±15.66 22.94±24.54 49.12±15.37 54.57±17.81
Inverse-X 64.49±23.37 70.15±12.31 53.53±1.47 51.16±3.27 37.5±12.58 40.41±29.02 65.65±0.67 54.00±8.31
Multi-GFKD 64.10±36.88 64.03±36.75 54.17±22.91 38.87±17.39 46.56±12.53 34.94±27.74 38.02±15.49 54.88±21.28

OGMM 80.64±1.71 76.81±9.16 55.34±0.34 59.87±2.60 50.78±20.40 43.58±25.35 66.38±0.04 63.12±2.76

C.4 PERFORMANCE ON LARGE-SCALE DATASETS

Table 8: Additional experiments on five large-scale datasets. The experimental setup was identical to
Table 1. Highlighted are the top first, second results.

Task Graph Classification Node Classification

Dataset ogbg-Molhiv ogbn-Arxiv Twitch Facebook-100 Elliptic

Acc/%↑ Acc/%↑ Acc/%↑ Acc/%↑ Acc/%↑
Avg-PTM 93.40±0.14 48.03±0.34 45.43±1.32 51.45±0.47 60.31±1.45
Ens-Prob 95.46±0.18 46.12±0.32 48.41±2.29 46.82±0.07 77.81±0.98
Ens-HighConf 96.52±0.09 44.61±1.38 47.89±2.48 46.66±0.09 81.70±5.54
Uni-Soup 94.69±0.03 25.63±2.90 55.80±3.38 55.04±3.75 82.39±0.42
Greedy-Soup 78.61±38.16 32.63±3.75 53.29±3.36 55.51±1.46 82.08±1.30
Inverse-X 56.06±11.5 38.70±18.42 52.73±1.46 53.47±4.78 82.79±0.16
Multi-GFKD 70.43±36.68 15.00±0.54 51.33±1.99 54.23±1.52 82.65±0.21

OGMM 96.72±0.91 53.38±0.01 59.45±0.85 56.89±0.05 82.89±0.09

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

We extend our method to larger datasets for validation. We conduct graph-level classification tasks on
ogbg-Molhiv (Hu et al., 2020), which contains 41,127 molecular graphs where each graph represents
a chemical compound. Similar to our approach in Sec. 4.2, we use edge density as the criterion for
domain partitioning, maintaining consistency with the partitioning method and pre-trained models
described previously. For node-level classification tasks, we evaluate our approach on ogbn-Arxiv
(Hu et al., 2020), Twitch (Rozemberczki et al., 2021), Facebook-100 (Traud et al., 2012) and Elliptic
(Pareja et al., 2020) datasets. The ogbn-Arxiv dataset contains 169,343 nodes representing papers
from 40 subject areas. We follow the domain partitioning method (Qiao et al., 2025) based on the
temporal shifts and partition the pre-2017 data into two domains (1971-2013 and 2014-2017) for
pre-training GNNs, and use the 2018-2020 data to test our model. The Twitch dataset contains 36,890
nodes representing users across seven regional networks. We pre-train GNNs using two groups
of regions: (DE, ENGB, ES) and (FR, PTBR, RU), and evaluate OGMM on the TW region. The
Facebook-100 consists of multiple social networks from different regions. The Elliptic is a Bitcoin
transactions network dataset, includes graphs from different time steps.

As shown in Table 8, OGMM consistently establishes new state-of-the-art results across all bench-
marks, significantly outperforming existing fusion methods. While traditional generative methods
(e.g., Inverse-X and Multi-GFKD) struggle on large-scale datasets such as ogbg-Molhiv and ogbn-
Arxiv often underperforming even simple ensemble baselines, OGMM maintains a clear advantage.
This can be attributed to its generator design, which enables more stable and expressive expert
modeling. In particular, compared with Inverse-X, OGMM yields substantial improvements across all
datasets, highlighting its robustness to scale and task variation. The consistent superiority of OGMM
underscores its effectiveness in integrating diverse knowledge sources while mitigating the instability
typically introduced by generative fusion under large data regimes.

C.5 PARAMETERS ANALYSIS

0.01 0.1 1 10 100
gate

0.
01

0.
1

1
10

10
0

m
as

k

42.03 45.62 42.03 40.16 39.69

37.03 42.66 42.03 40.16 39.69

32.03 32.97 42.34 39.84 39.53

32.19 32.03 32.19 37.97 37.81

32.34 32.03 32.34 28.59 36.56 30

32

34

36

38

40

42

44

Ac
cu

ra
cy

(%
)

k = 2
(a) k = 2

0.01 0.1 1 10 100
gate

0.
01

0.
1

1
10

10
0

m
as

k

28.75 29.06 28.75 33.28 27.97

28.28 27.81 28.75 33.28 27.97

28.59 27.50 28.59 33.28 27.97

28.75 28.59 27.19 33.59 27.97

28.75 28.59 27.19 30.78 27.97 28

29

30

31

32

33

Ac
cu

ra
cy

(%
)

k = 2
(b) k = 3

0.01 0.1 1 10 100
gate

0.
01

0.
1

1
10

10
0

m
as

k

28.44 28.12 28.28 29.38 28.28

28.44 27.97 28.28 29.22 28.28

26.72 26.72 28.75 29.22 28.28

26.72 26.72 26.72 28.91 28.28

26.72 26.72 26.72 26.72 27.97 27.0

27.5

28.0

28.5

29.0

Ac
cu

ra
cy

(%
)

k = 2
(c) k = 4

Figure 13: Hyper-parameter sensitivity for OGMM on MUTAG.

0.01 0.1 1 10 100
gate

0.
01

0.
1

1
10

10
0

m
as

k

46.64 47.59 47.59 48.19 49.40

46.55 46.98 47.41 48.10 49.40

47.50 47.67 47.67 48.19 49.40

47.50 47.67 47.93 46.64 48.79

47.50 47.67 47.93 46.98 47.50
47.0

47.5

48.0

48.5

49.0

Ac
cu

ra
cy

(%
)

k = 2
(a) k = 2

0.01 0.1 1 10 100
gate

0.
01

0.
1

1
10

10
0

m
as

k

46.64 47.84 48.10 47.24 51.21

47.41 47.59 48.45 47.24 51.21

47.76 48.10 48.53 47.33 51.12

47.84 48.10 47.76 47.50 51.03

47.84 48.10 47.76 48.02 50.52 47

48

49

50

51

Ac
cu

ra
cy

(%
)

k = 2
(b) k = 3

0.01 0.1 1 10 100
gate

0.
01

0.
1

1
10

10
0

m
as

k

47.50 47.41 48.62 49.74 50.00

47.33 47.24 48.45 49.66 50.00

47.50 47.50 48.02 49.40 50.09

47.41 47.41 47.33 50.00 50.00

47.41 47.41 47.33 48.62 50.26 47.5

48.0

48.5

49.0

49.5

50.0

Ac
cu

ra
cy

(%
)

k = 2
(c) k = 4

Figure 14: Hyper-parameter sensitivity for OGMM on PTC.

Discussion about the Hyper-parameters. We conducted extensive experiments on four datasets
mentioned in Sec. 4.2 to analyze the impact of hyper-parameters {k, λgate, λmask} on model
performance, as shown in Figures 13 - 16 . Notably, on small datasets like MUTAG and PTC, the
influences of {k, λgate} are more pronounced due to the larger variations in pre-trained models
caused by limited data. In this case, the fusion process has a more significant effect on the results. On

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

0.01 0.1 1 10 100
gate

0.
01

0.
1

1
10

10
0

m
as

k

28.40 29.40 34.84 50.00 43.37

20.67 30.10 34.88 50.00 43.37

42.71 20.72 35.45 50.00 43.38

68.73 67.01 71.23 55.87 43.37

69.10 67.02 67.46 55.87 43.70
30

40

50

60

70

Ac
cu

ra
cy

(%
)

k = 2
(a) k = 2

0.01 0.1 1 10 100
gate

0.
01

0.
1

1
10

10
0

m
as

k

33.41 44.46 63.04 72.11 44.13

28.58 45.16 63.35 72.11 44.13

53.11 24.60 65.24 72.16 44.13

55.90 55.87 39.57 72.17 44.13

56.00 55.96 55.61 27.16 50.00 30

40

50

60

70

Ac
cu

ra
cy

(%
)

k = 2
(b) k = 3

0.01 0.1 1 10 100
gate

0.
01

0.
1

1
10

10
0

m
as

k

42.72 62.80 66.59 76.95 37.34

40.66 65.70 66.81 76.96 37.34

58.92 38.89 68.35 76.98 37.34

52.77 52.84 42.17 76.96 37.41

52.90 52.87 52.93 21.44 37.71
30

40

50

60

70

Ac
cu

ra
cy

(%
)

k = 2
(c) k = 4

Figure 15: Hyper-parameter sensitivity for OGMM on REDDIT-B.

0.01 0.1 1 10 100
gate

0.
01

0.
1

1
10

10
0

m
as

k

66.82 66.72 66.67 66.84 57.16

66.81 66.72 66.67 66.84 57.16

66.80 66.74 66.67 64.26 62.16

66.75 66.66 66.64 65.58 62.21

66.74 66.66 66.64 66.69 61.97 58

60

62

64

66

Ac
cu

ra
cy

(%
)

k = 2
(a) k = 2

0.01 0.1 1 10 100
gate

0.
01

0.
1

1
10

10
0

m
as

k

66.58 66.51 66.53 66.58 59.07

66.58 66.52 66.53 66.58 59.07

66.59 66.51 66.51 66.12 66.21

66.55 66.50 66.47 66.36 66.12

66.55 66.50 66.47 66.66 65.09 60

61

62

63

64

65

66

Ac
cu

ra
cy

(%
)

k = 2
(b) k = 3

0.01 0.1 1 10 100
gate

0.
01

0.
1

1
10

10
0

m
as

k

66.53 66.54 66.57 66.00 56.21

66.53 66.54 66.57 66.00 56.21

66.55 66.55 66.57 66.53 66.70

66.55 66.55 66.55 66.55 66.68

66.55 66.55 66.55 66.57 66.12
58

60

62

64

66

Ac
cu

ra
cy

(%
)

k = 2
(c) k = 4

Figure 16: Hyper-parameter sensitivity for OGMM on NCI1.

larger datasets such as REDDIT-B and NCI1, λmask plays a more crucial role, with the fine-tuning
process ultimately determining the performance ceiling of the merged model.

Discussion about the Number of Domains. According to Optimization 12, OGMM can integrate
multiple pre-trained models from different domains, with generalization improving as domain diver-
sity grows. However, constructing datasets divided into infinite domains is impractical. Consequently,
experiments rely on datasets with limited samples, where increasing the number of manually defined
domains reduces the sample size per domain, impacting pre-trained model quality. This explains
the trend in Figure 17, where OGMM’s performance declines, and error rates rise as the number of
domains increases.

C.6 VISUALIZATION

We visualize the real and generative graphs obtained from MUTAG and NCI1, as shown in Figures
18 - 19. The visual comparison reveals some similarities between the graphs learned by OGMM and
the real graphs, highlighting the model’s ability to capture meaningful domain knowledge.

D RELATED WORKS

D.1 GRAPH DOMAIN GENERALIZATION

A growing body of research on Graph Domain Generalization has garnered increasing attention
in recent years. Approaches such as (Qiao et al., 2023; Sun et al., 2024; Chen et al., 2024b; Yuan
et al., 2024) concentrate on learning representations that remain stable and invariant across diverse
environments. In parallel, methods like (Sui et al., 2022; Chen et al., 2024a; Gui et al., 2024;
Fan et al., 2023) employ causal inference framework to uncover relationship between data and
labels that are robust to distribution shifts. Other techniques, including (Lu et al., 2024; Li et al.,
2023; Jia et al., 2024), focus on improving model generalization by employing data augmentation
strategies. Regardless of architectural differences, the effectiveness of these learning strategies is
largely contingent on the precise acquisition, partitioning, and labeling of training data. Notably,
the majority of existing approaches necessitate access to datasets with clearly delineated data from

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

3 4 6 8 10 12 16
Number of Domains

40

50

60

70

80

Pe
rf

or
m

an
ce

 (
%

)

Precision
Accuracy

(a) REDDIT-B

3 4 6 8 10 12 16
Number of Domains

52.5

55.0

57.5

60.0

62.5

65.0

67.5

70.0

72.5

Pe
rf

or
m

an
ce

 (
%

)

Accuracy
Precision

(b) NCI1

Figure 17: Ablation studies regarding the number of domains. The horizontal axis indicates the
number of source domains.

Nodes: 27, Edges: 33, Label: 0 Nodes: 28, Edges: 33, Label: 0 Nodes: 21, Edges: 22, Label: 0

Nodes: 21, Edges: 24, Label: 0 Nodes: 21, Edges: 24, Label: 0 Nodes: 22, Edges: 25, Label: 0

(a)

Nodes: 16, Edges: 17, Label: 1 Nodes: 18, Edges: 20, Label: 0 Nodes: 19, Edges: 22, Label: 0

Nodes: 16, Edges: 17, Label: 1 Nodes: 20, Edges: 22, Label: 0 Nodes: 17, Edges: 18, Label: 0
(b)

Nodes: 22, Edges: 25, Label: 0 Nodes: 23, Edges: 27, Label: 0 Nodes: 22, Edges: 24, Label: 1

Nodes: 22, Edges: 25, Label: 0 Nodes: 28, Edges: 33, Label: 0 Nodes: 23, Edges: 27, Label: 0

(c)

Nodes: 19, Edges: 21, Label: 0 Nodes: 20, Edges: 22, Label: 0 Nodes: 19, Edges: 22, Label: 0

Nodes: 16, Edges: 17, Label: 0 Nodes: 16, Edges: 17, Label: 0 Nodes: 16, Edges: 17, Label: 1
(d)

Real Graphs
Nodes: 20, Edges: 22, Label: 0 Nodes: 11, Edges: 11, Label: 0 Nodes: 13, Edges: 9, Label: 0

Nodes: 11, Edges: 11, Label: 0 Nodes: 10, Edges: 6, Label: 1 Nodes: 11, Edges: 7, Label: 0
(e)

Nodes: 25, Edges: 41, Label: 1 Nodes: 25, Edges: 43, Label: 1 Nodes: 12, Edges: 10, Label: 0

Nodes: 14, Edges: 13, Label: 1 Nodes: 16, Edges: 14, Label: 0 Nodes: 14, Edges: 12, Label: 0

(f)

Nodes: 12, Edges: 10, Label: 1 Nodes: 14, Edges: 9, Label: 1 Nodes: 17, Edges: 20, Label: 0

Nodes: 20, Edges: 24, Label: 0 Nodes: 21, Edges: 28, Label: 1 Nodes: 17, Edges: 24, Label: 1
(g)

Nodes: 20, Edges: 28, Label: 0 Nodes: 11, Edges: 9, Label: 0 Nodes: 13, Edges: 11, Label: 0

Nodes: 11, Edges: 8, Label: 0 Nodes: 10, Edges: 10, Label: 1 Nodes: 11, Edges: 8, Label: 0
(h)

Generative Graphs

Figure 18: Graph visuallization on MUTAG. Note that there is no correspondence between the graphs
in the two rows.

multiple environments, a condition that is often impractical for real-world graph data. Additionally,
some multi-source-free domain adaptation methods can be easily applied to graphs (Dong et al.,
2021; Li et al., 2024b; Shen et al., 2023); however, these methods require the use of target data in the
model training process. In contrast, the source-free graph model generalization method proposed in
this work presents a more viable solution with broader practical implications.

D.2 MODEL MERGING AND MOE

Model merging and MoE are two techniques for reusing pre-trained models to construct aggregation
systems with enhanced performance or generalization capabilities (Yadav et al., 2024). Model
merging (Zheng et al., 2023a) typically involves the fusion of model’s parameters, such as linear
averaging (Utans, 1996; Wortsman et al., 2022), task arithmetic merging (Ilharco et al., 2022),
or integration based on hidden representations (Yang et al., 2023; Matena & Raffel; Stoica et al.,
2023). These methods are primarily applied to vision and language models, which share consistent
architectures that allow parameter space operations. However, such approaches are rarely applied to
graph models due to their unique structures. Consequently, the MoE framework (Shazeer et al., 2017)
has gained more attention in the graph learning field. In general, MoE facilitates fine-grained fusion
of expert outputs, such as (Liu et al., 2023; Wang et al., 2024; Zeng et al., 2023; Liu et al., 2024;

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Nodes: 41, Edges: 46, Label: 1 Nodes: 60, Edges: 63, Label: 0 Nodes: 40, Edges: 41, Label: 1

Nodes: 36, Edges: 38, Label: 0 Nodes: 77, Edges: 82, Label: 1 Nodes: 37, Edges: 39, Label: 0
(a)

Nodes: 28, Edges: 31, Label: 0 Nodes: 25, Edges: 28, Label: 1 Nodes: 26, Edges: 29, Label: 0

Nodes: 27, Edges: 30, Label: 0 Nodes: 25, Edges: 28, Label: 0 Nodes: 30, Edges: 34, Label: 0

(b)

Nodes: 33, Edges: 35, Label: 1 Nodes: 38, Edges: 42, Label: 0 Nodes: 54, Edges: 60, Label: 1

Nodes: 38, Edges: 42, Label: 1 Nodes: 58, Edges: 60, Label: 1 Nodes: 50, Edges: 55, Label: 1
(c)

Nodes: 28, Edges: 31, Label: 0 Nodes: 28, Edges: 32, Label: 0 Nodes: 28, Edges: 30, Label: 0

Nodes: 32, Edges: 35, Label: 0 Nodes: 23, Edges: 25, Label: 1 Nodes: 24, Edges: 26, Label: 1
(d)

Real Graphs
Nodes: 24, Edges: 31, Label: 1 Nodes: 29, Edges: 49, Label: 1 Nodes: 35, Edges: 63, Label: 1

Nodes: 32, Edges: 57, Label: 0 Nodes: 21, Edges: 31, Label: 0 Nodes: 34, Edges: 72, Label: 0
(e)

Nodes: 20, Edges: 20, Label: 0 Nodes: 35, Edges: 54, Label: 1 Nodes: 38, Edges: 59, Label: 0

Nodes: 22, Edges: 22, Label: 0 Nodes: 38, Edges: 68, Label: 1 Nodes: 24, Edges: 24, Label: 0
(f)

Nodes: 29, Edges: 32, Label: 1 Nodes: 27, Edges: 30, Label: 1 Nodes: 34, Edges: 58, Label: 0

Nodes: 36, Edges: 45, Label: 1 Nodes: 32, Edges: 43, Label: 1 Nodes: 24, Edges: 22, Label: 1

(g)

Nodes: 32, Edges: 40, Label: 1 Nodes: 31, Edges: 30, Label: 1 Nodes: 37, Edges: 47, Label: 0

Nodes: 30, Edges: 39, Label: 1 Nodes: 37, Edges: 55, Label: 1 Nodes: 28, Edges: 29, Label: 0
(h)

Generative Graphs

Figure 19: Graph visuallization on NCI1. Note that there is no correspondence between the graphs in
the two rows.

Ma et al., 2024; Wu et al., 2024b; Liu et al.). However, these works do not address the source-free
out-of-distribution model merging problem we tackle. In this paper, we leverage the MoE framework
as a mechanism to select and reuse graph models effectively to achieve cross-domain knowledge
fusion.

D.3 MASK TUNING

Mask tuning is a simple yet effective fine-tuning strategy (Zhao et al., 2020; Radiya-Dixit & Wang,
2020), where a mask matrix is learned for specific modules of a pre-trained model to cover parameters,
thereby avoiding redundant computations during the fine-tuning process. This approach originates
from model pruning, which uses binary masks to identify important and sparse parameters (Lin et al.,
2020; Csordás et al., 2020). In multi-task problems, RMT (Zheng et al., 2023b) applies this strategy
to facilitate transfer learning in vision-language models under the zero-shot setting. Similarly, GMT
(Li et al., 2024a) leverages gradient information to identify key network parts for sparse updates.
Regarding efficient utilization of parameter gradients, (Wang et al., 2022) introduces a judgment
criterion to measure the trends of parameters across modules during continual learning, which inspired
our research on mask locations. However, there has been limited exploration of mask tuning in graph
models. Unlike vision or language models, graph models typically have fewer layers, and the impact
of masks on pre-trained GNNs requires further investigation.

E LIMITATIONS AND FUTURE WORK

Generalization on More Diverse Graph Data: Our work is based on the assumption of a mixture
distribution, which has been extensively applied in multi-domain generalization problems. For graph
data, we have verified this assumption both theoretically and experimentally within the context of
graph-level classification tasks. However, the discrepancy among graph domains can be complex,
and significant biases can exist across different tasks, graph parametric representations, and scenarios.
This variability poses a challenge to the development of graph foundation models (Fu et al., 2024b).
For the same reason, our approach may not be generalized enough to unknown scenarios, like those
with new classes. In future work, we aim to further explore how to extend the multi-task learning
capabilities of our model and adapt it to more diverse graph data.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Towards Scaling Law: Additionally, the generalization performance of the proposed method is
contingent on multiple factors, including the in-distribution performance of pre-trained models, the
impact of fine-tuning methods, and the inherent randomness in generative graphs. While the overall
computational complexity is relatively low, finding the optimal fitting function remains a challenging
task. As the models collection grows, integrating a larger number of more diverse and heterogeneous
experts may become a significant hurdle for MoE-based techniques (He, 2024). Consequently,
future efforts will focus on investigating the scaling laws at the model-centric level to address these
challenges.

Future Directions: In this work, we not only address the novel challenge of model generalization for
graphs but also highlight several promising directions for future research: (1) Extension to Cross-Task
Transfer Learning: Expanding our approach to cross-task transfer learning by integrating and select-
ing graph models trained on different objectives. This will enable broader applicability of domain
generalization across various graph-related tasks. (2) Model Reuse for Feature / Structural Hetero-
geneity: Investigating solutions for model reuse that can effectively handle feature and structural
heterogeneity across different graphs. This would enhance the adaptability of pre-trained models to
diverse graph characteristics. (3) Building High-Quality Graph Model Pools: Researching methods
for constructing high-quality graph model pools along with effective ranking and selection strategies.
This will facilitate efficient adaptation of graph foundation models to new datasets and domains,
similar to the successful adaptation in other areas of machine learning.

27

	Introduction
	Problem Formulation
	Methodology
	Overall Framework
	Label-Conditional Graph Generation
	Models Fine-tuning and Merging

	Experiments
	Experiment Setup
	Experimental Results

	Conclusion
	Proof
	Proof of Theorem 3.3
	Details on Solving Optimization 25
	Proof of the expansion of i(f(i))

	Implementation Details
	Datasets details
	Parameters Setting
	Ablation Variants
	Algorithm Analysis

	Supplementary Experiments
	Position of Masks
	Gradient Trends
	Performance of Homogeneous Backbones Merging
	Performance on Large-scale Datasets
	Parameters Analysis
	Visualization

	Related Works
	Graph Domain Generalization
	Model Merging and MoE
	Mask Tuning

	Limitations and Future Work

