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ABSTRACT

This paper studies a novel problem of out-of-distribution graph models merg-
ing, which aims to construct a generalized model from multiple graph mod-
els pre-trained on different domains with distribution discrepancy. This prob-
lem is challenging because of the difficulty in learning domain-invariant knowl-
edge implicitly in model parameters and consolidating expertise from potentially
heterogeneous GNN backbones. In this work, we propose a graph generation
strategy that instantiates the mixture distribution of multiple domains. Then,
we merge and fine-tune the pre-trained graph models via a MoE module and a
masking mechanism for generalized adaptation. Our framework is architecture-
agnostic and can operate without any source/target domain data. Both theoret-
ical analysis and experimental results demonstrate the effectiveness of our ap-
proach in addressing the model generalization problem. The code is available at
https://anonymous.4open.science/r/OGMM-Anonymous.

1 INTRODUCTION

As the scale and complexity of observed graph data continue to increase, graph models have become
essential tools for extracting insights from real-world scenarios (Zhu et al., 2022; Li et al., 2022;
Zhang et al., 2024; Wu et al., 2024a). Recently, Graph Model Generalization (GMG) aims to
transcend the limitations of multi-domain datasets with distribution shifts by identifying invariant
features (Arjovsky et al., 2019; Chang et al., 2020; Ahuja et al., 2021), causal relationships (Gui et al.,
2024; Chen et al., 2024a), or risk extrapolation (Xu et al., 2020; Ziyin et al., 2020; Ye et al., 2021; Li
et al., 2024c) underlying the graph data distributions. The objective is to maintain robust performance
on unseen, out-of-distribution graphs.

Current research focuses on training a generalized model from scratch using graph data from multiple
domains with distribution discrepancy. However, a less explored yet practical scenario emerges
when graph models have already been trained individually on these different domains–referred to
Out-of-Distribution Graph Models. For instance, in social networks, models trained on user data
from different groups or with varying architectures capture diverse behavior patterns. Achieving
a unified and generalized model on these datasets usually need to training from scratch, which is
complex and wasteful of their learned knowledge.

As presented in Figure 1, these models are designed for similar tasks but on different datasets, each
preserves specialized knowledge. Figure 2 illustrates the performance of GNN models pre-trained on
one domain and tested on both their own and other domains with distribution shifts (detailed setting
is in Sec. 4.1). While models perform well in their own domain, their performance degrades in others,
and different GNN architectures may excel in different domains. These suggest that by merging
these models’ intrinsic invariability and complementary expertise, it is possible to address challenges
arising from distribution shifts and achieve generalization on all domains, even without retraining
from scratch on the original training datasets or labels.

Therefore, this paper investigates a novel and practical problem, named Out-of-Distribution Graph
Models Merging: How to consolidate the knowledge of multiple pre-trained GNNs into a unified
model that generalizes under distribution shifts? Achieving this goal is non-trivial due to the follow-
ing challenges: (1) Unlike conventional domain generalization approaches, learning the domain-
invariant knowledge from the domain data explicitly, learning from the model parameters in our
setting is inherently complicated. (2) Furthermore, the pre-trained models may differ in their architec-
tures and hyperparameters, making it difficult to consolidate the expertise of these diverse models
into a unified representation.
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Figure 1: Illustration of Out-of-Distribution
Graph Models Merging.
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1. Introduction
As the scale and complexity of observed graph data con-
tinue to increase, generalizable graph models have become
essential tools for extracting insights from real-world sce-
narios (Zhu et al., 2022; Li et al., 2022; Zhang et al., 2024;
Wu et al., 2024). Graph Domain Generalization (GDG)
aims to transcend the limitations of multi-source datasets
with distribution shifts by identifying invariant features (Ar-
jovsky et al., 2019; Chang et al., 2020; Ahuja et al., 2021)
or causal relationships (Gui et al., 2024; Chen et al., 2024)
underlying the graph data distributions. By doing so, they
strive to maintain stable performance even on previously
unseen graphs. However, these approaches assume train-
ing from scratch on data from diverse distributions. In
contrast, this paper explores a novel scenario where graph
models are already pre-trained on these datasets individu-
ally. For instance, platforms like Huggingface Model Hubs
often host Pre-Trained Models (PTMs) designed for similar
tasks but trained on various datasets, each preserves spe-
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Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.
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Figure 1. Illustration of Source-Free Graph Model Generalization,
highlighting the core challenges of reusing and merging graph
models while addressing out-of-distribution (OOD) generalization.
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Figure 2. Ablation studies regarding the number of domains.

cialized knowledge. Reusing these models to merge their
expertise offers an alternative to data-driven training when
well-trained models can provide valuable insights, speed
up training, or improve predictive accuracy (Zheng et al.,
2023a).

Therefore, in this paper, we seek to answer a novel and prac-
tical problem, namely Source-Free Graph Model Generaliza-
tion: How to merge multiple pre-trained GNNs, to achieve
robust generalization on new domains under distribution
shifts, all without access to source data? As shown in Fig-
ure.1, the challenge lies in two key aspects: (1) Merging.
The architectures of graph models vary significantly, like
GCN (Kipf & Welling, 2016) and GAT (Veličković et al.,
2017), making direct parameter merging difficult; (2) Gen-
eralization. Ensuring that the merged GNN possesses cross-
domain learning capabilities, rather than merely scaling the
parameter dimensions, is crucial for achieving meaningful
generalization.

1

Figure 2: Comparison of different GNN models’ gener-
alization performance on PTC between in-distribution
and OOD scenarios, with three domains represented as
A / B / C. Values indicate Acc (%). The results within
the red dashed box represent best performance.

To address these challenges, we propose a novel Out-of-distribution Graph Models Merging (OGMM)
framework for domain generalization, which is depicted in Figure 3. Specifically, we explore the
theory of multi-domain generalization defining generalization risk in functional space and deriving a
two-stage objective function. The first stage is a domain knowledge generation process. We “invert”
each pre-trained GNN (expert), to generate a small set of label-conditional graphs starting from
random noise. These generative graphs are then aggregated as the training data for the second stage.
The second stage involves experts fine-tuning and merging. To effectively retain the source domain
knowledge learned by models with different parameters and architectures, we employ a Mixture-
of-Experts (MoE) module for merging. Meanwhile, based on the mixture distribution assumption,
we prove that the fine-tuned MoE with masks serves as an approximation of the generalization
risk function. The lightweight sparse gating weights and the masked experts are trained with the
generative graphs, enabling the allocation logic of “sample-expert” pattern. The main contributions
of OGMM are summarized as follows:

• We propose a novel framework named out-of-distribution graph models merging, which aims to
learn a generalized model from multiple graph models pre-trained under domain shifts.

• We propose a graph generator for concentrating the model knowledge effectively, and develop an
innovative model merging function utilizing fine-tuned MoE to address adaptive integration of
multiple pre-trained models, thereby enhancing generalizability to unseen graphs.

• We validate OGMM on various tasks, demonstrating substantial improvements on out-of-
distribution data compared to both individual model and traditional model merging methods.

2 PROBLEM FORMULATION

Graph Neural Networks (GNNs). A graph is represented as G = {A,X}, where A ∈ Rn×n is the
adjacency matrix and X ∈ Rn×d denotes the node features, with n being the number of nodes in G.
We consider a basic GNN consisting of two parts: {Ψ,Φ}, i.e., f(Θ) = θΨ ◦ θΦ → Y , where θΨ is
parameters in the graph encoder, θΦ corresponds to the classifier parameters, and Y is the graph-level
(or node-level) label space in the downstream tasks. Specifically, Ψ represents a multi-layer message
aggregation function, where the update mechanism in the L-th layer can be written as follows:

hL+1
i = σ(AGGR(hL

i , {hL
v |v ∈ N (i)}), (1)

where h0
i = xi, and hL

i is the output representation for node i. σ is an activation function. AGGR(·)
defines the aggregation of nodes and their neighbors N . The classifier Φ will be trained to assign a
label for each graph (or node) from the label space Y = {Y1, Y2, . . . , Yc} with c classes.

Out-of-distribution Generalization on Graphs. The objective of Out-of-distribution Generalization
(also known as multi-domain generalization) is to leverage joint data samples from multiple source
domains to capture cross-domain invariant knowledge (Crammer et al., 2008; Mansour et al., 2008).
Here, we present its formulation in the context of graph domains. Suppose we are given M sets of
source data, denoted as {Gi}i∈M , where Gi = {G1, G2, . . . , GNi

} represents the i-th source dataset.
Each Gi maps to the label space Y . Additionally, we are provided with a target dataset consisting
of Nt graphs (Nt = 1 for node-level tasks), GT = {G1, G2, . . . , GNt

}, which shares the same label
space Y as the source data but follows different distributions. The goal is optimizing a GNN model

2
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Figure 3: Architecture overview. The architecture of OGMM consists of two primary stages: (1)
Graph generation. Each pre-trained GNN serves as a supervisor to train its corresponding generator,
which reconstructs label-conditional graphs from random noise. (2) Model merging. The generative
graphs are aggregated to train a merged GNN using a MoE module. It comprises a gating layer and
a set of fine-tuned masked experts. Gradient updates are guided by mask and gating regularization
terms alongside classification loss.

f(·) with parameter Θ from scratch to minimize the generalization error under the unseen shifts as:

f(Θ∗) = argmin
Θ

EGT ,Y
[
ℓ(f(Θ, {G1,G2, ...,GM}),GT ,Y)

]
. (2)

Out-of-distribution Graph Models Merging. Different from the conventional conditions of Out-
of-distribution Generalization, Out-of-distribution Models Merging assumes that the task-specific
GNNs {f(Θi)}i∈M have already been trained on different datasets {Gi}i∈M and aims to learn a
unified model utilizing the parameters of multiple pre-trained models. The objective is to optimize a
multi-model merging function to obtain a model with higher generalization capabilities. Under the
proposed Graph Models Merging setting, we define an objective function as follows:

Γ∗ = argmin
α

EGT ,Y
[
ℓ(Γ(α, {Θ1,Θ2, . . . ,ΘM}),GT ,Y)

]
, (3)

where Γ∗ is the expected model merging function, α is the combining weights, and ℓ(·) is the loss
function that measures the prediction error.

3 METHODOLOGY

In this section, we present a framework for out-of-distribution graph model merging that constructs a
unified model from multiple pre-trained GNNs without access to original data. Building on multi-
domain generalization theory, we develop a two-stage approach that addresses the fundamental
challenge of extracting and consolidating domain-invariant knowledge from model parameters.

3.1 OVERALL FRAMEWORK

Here we justify Eq. 3 based on multi-domain out-of-distribution generalization theory, enabling
out-of-distribution models merging. To begin, we establish a mixture distribution assumption for this
problem, stating that the target distribution is a mixture of distributions from multiple sources.
Assumption 3.1 (Mixture Distribution). The input to the problem is the set of M source distributions,
denoted as {G1,G2, . . . ,GM}. The distribution of the target domain, GT is assumed to be a linear
combination of the M source distributions: GT =

∑M
i αiGi.

This assumption is widely accepted in multi-domain generalization problems (Crammer et al.,
2008; Mansour et al., 2008), and leads to the rule of linear combination of functions, expressed as

3
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Γ =
∑M

i αif(Θi). Next we provide the definition of H∆H-divergence to define the symmetric
difference in hypothesis space H.

Definition 3.2. [H∆H-divergence]. Let H be a hypothesis class. f(Θi), f(Θj) ∈ H are the
functions trained on distributions Gi and Gj , respectively. We define the divergence between Gi and
Gj in the function space:

dH∆H(Gi,Gj) = 2 sup
∣∣EG∼Gi

[|f(Θi, G)− f(Θj , G)|]− EG∼Gj
[|f(Θi, G)− f(Θj , G)|]

∣∣. (4)

By the linear assumption and the definition of divergence, we prove the generalization error bound of
Γ on the target distribution GT in the following theorem.

Theorem 3.3. If each f(Θi) is an optimal learner trained on the marginal distribution Gi, the
upper bound of the generalization error for Γ(·) on the target domain is given by the sum of the
cross-validation errors of these sub-learners across different distributions.

The proof is shown in Appendix A.1 due to the page limit. To enhance the generalization capability
of the Γ, we can introduce fine-tuning weights ωi for f(Θi) to decrease the cross-validation error.
The overall objective for merging function can be formulated as:

argmin
Γ

M∑
i

[
CG∼Gi(f(Θi, G),Γ(α, ω,G))

]
+

M∑
i

ϵi(f(Θi)) +

M∑
i,j

ϵj(f(Θi, ω
i)) + λ, (5)

where ϵi(·) denotes the empirical error on Gi. C(·) is a loss function like cross-entropy. The λ
represents the minimum sum of errors achievable by the optimal hypothesis h across all domains
within our hypothesis class H. This value is determined by the design of H itself (like neural network
architecture) and is independent of our optimization over Γ.

Then, we consider the expansion of ϵi(f(Θi)) as a starting point for knowledge extraction from
f(Θi). Consequently, Optimization 5 can be reformulated as a two-stage objective function:

arg min
α,ω,G∗

N∑
i

CGi∼G∗(ŷi,

M∑
j

αjf(Θj , ω
j , Gi)) [Sec. 3.3]

s.t. G∗
i = argmin

Gi

Ni∑
j

CGj∼Gi
(ŷj , f(Θi, Gj)) [Sec. 3.2],

(6)

where ŷi is the conditional labels sampled from the label space for samples on Gi. G∗ =
∑M

i αiG∗
i is

the mixture distribution generated from pre-trained GNNs, which will be introduced in Sec. 3.2. The
Ni represents the number of samples drawn from Gi. We use these generative samples to fine-tune
α and ω in merging function Γ, which will be introduced in Sec. 3.3. The analysis details are
provided in Appendix A.3. This theorem shows that under the mixture distribution assumption, the
generalization ability of the merged GNN depends on three factors: the pre-training error of the each
model, the fine-tuning error of the models on the new domains, and the training error of the merged
model on the generated samples. Next, we will provide the detailed implementations of OGMM.

3.2 LABEL-CONDITIONAL GRAPH GENERATION

In the first stage, we use pre-trained graph models to generate synthetic graphs for subsequent
fine-tuning and merging. Instead of using the original graphs, we opt for generated graphs because:
the original datasets may not always be accessible for every model, generating a smaller set of graphs
is more efficient than using the entire dataset, and the generated graphs may sometimes distill and
refine knowledge more effectively, making them more representative than the original data. Still, our
method is capable of utilizing the original data, and a comparison is provided in Table 2.

As defined by Optimization 6, the goal is to fix all parameters of the pre-trained GNN while
optimizing the inputs to minimize the label-conditional posterior error. For graph data, a unique
challenge arises due to the inputs’ composition of both node features X and graph structure A, with
A often represented as a discrete variable. This discreteness hinders the direct application of inversion
technique (Zagoruyko & Komodakis, 2016; Yin et al., 2020). To address this, Deng & Zhang (2021)

4
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employs a discrete gradient approximation method tailored for optimizing A. Zhuang et al. (2022)
parameterizes X alone while constructing A from the inner product space of X , thus preserving
feature similarity. Better methods like (Liu et al., 2022; Gao et al., 2024; Jin et al., 2021) use edge
encoder to retain inherent relationships between node features and edges. Here, we propose a discrete
edge encoder to handle graph structures.

Graph Generator. Specifically, for each pre-trained GNN f(Θi), we construct a generator Pi to
produce label-conditional graphs that maximize f(Θi)’s agreement. Pi samples feature Xi ∈ Rni×d

from a standard normal distribution, representing ni generative nodes, as the initial input for every
graph Gi. For each Xi, Pi samples a label ŷi from a uniform distribution, serving as the conditionally
posterior ground-truth. To generate Ai from Xi, we introduce an edge encoder defined as follows:

Ai
jk = σ(MLPθ([X

i
j ;X

i
k])), (7)

where MLPθ is a three-layer fully-connected neural network, σ is an activation function, and [·; ·]
denotes the concatenation operator. To enforce discrete edge weights, we assume edges follow a
Bernoulli distribution and employ the Gumbel-Softmax to approximate values in [0, 1]:

Ai
jk = softmax

(
log(Ai

jk) + µ

τ

)
, (8)

where µ = − log(− log(e)) and e ∼ Uniform(0, 1). Here, τ denotes the temperature hyperparameter,
with τ → 0 leading Ai

jk toward binary value. By feeding batches of generated samples (Xi, Ai, ŷi)

into the generator Pi, we can use the label-conditional posterior loss C(ŷi, f(Θi, X
i, Ai)) to fit the

source domain distribution, obtaining G∗
i .

Regularizers for Generation. In addition to the label-conditional posterior loss, we leverage priors
stored in the batch normalization (BN) layers of the pre-trained models. Following (Deng & Zhang,
2021), we enforce the mean and variance values of the generative graph embeddings to match those
recorded in the BN layers of the GNNs. Common GNN models perform well with relatively few
layers, correspondingly having a limited number of BN layers (a 2-layer GCN or GAT model typically
has only one BN layer while GIN has two). We utilize all BN layers from GNN models to calculate
this regularization term:

Rbn =
∑
L

{∥∥µL(X̂
i)− E

[
µL(X

i) | X i
]∥∥

2
+
∥∥σ2

L(X̂
i)− E

[
σ2
L(X

i) | X i
]∥∥

2

}
, (9)

where X̂i denotes the intermediate representations of a graph in the BN layers, while X i is the data
memorized during training BN layers. µL, σ

2
L are represented as the feature means and variances,

respectively, obtained from the L-th BN layer.

Another regularization term is the model’s confidence in classifying the generative graphs, which
ensures that graphs are well-calibrated rather than remaining in an ambiguous state. We define the
confidence regularization as follows:

Rconf = EGi∼G∗
j

− Nj∑
i

f(Θj , Gi) log f(Θj , Gi)

 , (10)

where G∗
j is the data generated by the j-th generator and Nj is the number of samples. Consequently,

the overall loss function for each generator is formulated as follows:

Lgen =
∑

Gi∈G∗
j

C(ŷi, f(Θj , Gi)) +Rbn +Rconf. (11)

With the parameterized X and θ learned from the above loss, we can synthesize samples (graphs in
graph-level tasks or nodes in node-level tasks) that well-represent the corresponding task data. This
process ensures that each generative graph retains structural and feature integrity, without introducing
the complexity of gradient approximation methods. Finally, we merge all generated samples to
construct the dataset G∗ = {G∗

1 ,G∗
2 , ...,G∗

M} for training the model merging function.
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3.3 MODELS FINE-TUNING AND MERGING

In the second stage, we need to find a solution for reusing and integrating heterogeneous GNN
backbones. This solution should both fine-tune each pre-trained GNN (expert) to adapt to knowledge
from multiple domains and be universally applicable to arbitrary model architectures. The objective
function for this stage is rewritten according to Optimization 6:

argmin
ω,α

N∑
i

CGi∈G∗
j
(ŷi,

M∑
j

αjf(Θj , ω
j , Gi)), (12)

where N and M denote the number for samples and models. ŷi is the generated label of the i-th
sample, and αj is the fusion weights, combining different models for different samples, respectively.
Indeed, Optimization 12 is an innovative fine-tuned MoE architecture with Gate Layer (α) and added
masks (ω). The module’s capability is to fine-tune, filter and combine pre-trained experts on a mixture
distribution to reach a wider generalization plane overall.

Masked Experts. Inspired by mask tuning techniques (Ghanbarzadeh et al., 2023; Li et al., 2024a),
we aim to identify and re-weight the pre-trained parameters required by new tasks. Given parameters
θi∗ = (θi1, . . . , θ

i
l)

T ∈ Θi of a trained GNN (l is the size of subset in module (∗)), the mask matrix
ωi can be optimized as a downstream-related neural pathway:

θ̂i∗ = θi∗ ⊙ ωi, (13)

where ⊙ denotes Hadamard product, and θ̂i∗ replaces θi∗ in each Masked Expert. According to
Optimization 5, Γ represents a distribution-sensitive function, while the role of ωi is to fine-tune
f(Θi) to minimize ϵj(f(Θi, ω

i)). In shallow networks such as 2-layer GNNs, the position where the
mask is added becomes particularly critical. We hypothesize that the weights in the classification
head are closely related to downstream tasks, making it highly susceptible to learning domain-
specific knowledge from high-dimensional representations. Thus, fine-tuning the parameters of the
classification head is a reasonable and effective strategy, which is further validated by the experimental
results provided in Sec. 4.2 and Appendix C.2.

Sparse Gate in MoE. Note that we can directly replace α in Optimization 12 with a regular MoE
Gate layer, which can be written as follows:

Ĥi = σ(

M∑
j=1

(Gate(Xi)jHi,j)), (14)

where σ is an activation function, M denotes the number of models (or experts), and Gate(·) is
employed to distribute samples to different models. Ĥi and Hi,j are the outputs of MoE and the j-th
pre-trained model, respectively, with respect to sample Xi. For all the masked pre-trained GNNs, the
sparse gating strategy is as follows:

Gate(Gi) = softmax(TopK(Q(Gi), k)), (15)

Q(Gi) = GiWg + ϵ · softplus(GiWn), (16)
where Gi ∈ G∗ is generated from pre-trained GNNs. TopK(·, k) is a selector to find the largest
(smallest) first k members in the sequence. Wg and Wn in Eq. 16 are the learnable weights.
Wg ∈ Rd×M processes clean sample features to get expert selection scores, while Wn ∈ Rd×M adds
controlled Gaussian noise ϵ ∈ N (0, 1) to prevent experts from collapsing and ensure load balancing.

Summarizing the above, the loss of Optimization 12 can be re-written as follows:

L =
∑

Gi∈G∗

C(ŷi,Γω,Wg,Wn
(Gi)), (17)

where Γω,Wg,Wn
(Gi) =

∑M
j=1 Gate(Gi)jf(Θj , ω

j , Gi) is our proposed model merging function.

Regularizers for Fine-Tuned MoE. Here we introduce two regularizers to constrain the optimization
direction of gates and masks. Following the strategy in (Wang et al., 2024), we utilize an importance
loss to prevent single-selection collapse:

Rgate = CV (
∑

Gi∈G∗

(Gate(Gi)))
2, (18)

6
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where CV (·) represents the coefficient of variation. This regularizer measures the degree of weight
disparity in “sample-expert” pairings, encouraging uniform weight distribution and enforcing all
experts to be “load-balanced”. For masks added to the pre-trained GNNs, it is necessary to mini-
mize changes to the freezing parameters while learning new knowledge to prevent “forgetting” old
knowledge. So we design the other regularizer as follows:

Rmask =
∑
i,j

CGi∈G∗(ŷi, f(Θj , ω
j , Gi)) +

∑
j

((
1T · ωj

|ωj | − γv) + (

∑
k:|ωj,k−1|<γv

1

|ωj | − γp)) (19)

where γv, γp ∈ [0, 1] are two thresholds to control the effects of the masks in terms of their mean
values and variances, respectively. |ωj | means the size of ωj . The first part in Eq. 19 is for learning
new knowledge from G∗ and the second part for controlling the process of fine-tuning. The overall
loss function for merging is formulated as follows:

Lmerge =
∑

Gi∈G∗

C(ŷi,ΓΦ(Gi)) + λgateRgate + λmaskRmask, (20)

where Φ = {ω,Wg,Wn}, and λgate and λmask are balanced hyper-parameters. Recall the question
Eq. 3, ΓΦ can achieve better generalization due to the wider plane of the mixed distribution going
over the unseen graphs.

4 EXPERIMENTS

In this section, we mainly focus on the graph classification tasks on the widely-used real-world
datasets which encompass both observed (training) and unobserved (testing) data. Supplementary
experiments (on the large-scale datasets / the node-level tasks) are provided in the Appendix C.4.
Following common practice, we use the Accuracy (Acc) and Precision (Pre) on the OOD target
dataset for measuring the generalization performance.

4.1 EXPERIMENT SETUP

Datasets. We evaluate our method on four datasets: MUTAG, PTC, REDDIT-B, and NCI1, following
the same configurations as in (Xu et al., 2018). To simulate realistic domain shift scenarios, we
partition each dataset based on the edge-to-node ratio, following established domain partitioning
methods (Luo et al., 2024a; Zeng et al., 2024; Luo et al., 2024b; Wen et al., 2025; Wang et al., 2025).
This strategy creates meaningful distributional differences between domains while maintaining the
intrinsic properties of each dataset. Summary statistics of these datasets and detailed specifications of
partitioning are provided in Appendix B.1. In this paper, we distinguish between domains using the
notation “A / B / T”. Specifically, “A” represents dataset slices with lower edge density, “B” refers to
slices with intermediate edge density values, and “T” denotes the test set with higher edge density.

Baselines. First we pre-train models on each observable domain, resulting in multiple pre-trained
models. Then, we perform graph models merging and evaluate the generalization performance on the
unseen testing domain. We use three widely-adopted GNN architectures—GCN (Kipf & Welling,
2016), GAT (Veličković et al., 2017), and GIN (Xu et al., 2018)—as off-the-shell models to be
merged. Additionally, we use the form of (architecture-A/B) to distinguish GNNs trained on different
source domains. For example, GCN-A refers to a GCN trained on source domain A. For ease of
comparison, all GNNs used in our experiments are 2-layer networks with 32 feature dimensions.
Since no known methods exist for merging GNN models with diverse architectures, we design two
baseline approaches for reference: Inverse-X and Multi-GFKD. We compare our method with seven
source-free graph domain generalization methods, which can be divided into three groups:

• Ensemble learning methods, include averaging the performance of the models (Avg-PTMs),
averaging the output probabilities of the models (Ens-Prob), and selecting the prediction from the
most confident model, defined as the one with the lowest entropy (Ens-HighConf).

• Model merging methods, include computing the element-wise mean of all models (Uni-Soup)
(Choshen et al., 2022) and the selective merging approach (Greedy-Soup) (Wortsman et al., 2022).

• Generative methods include Inverse-X and Multi-GFKD. Inverse-X is a baseline variant of OGMM
that uses random graph structures instead of our parameterized edge encoder. Multi-GFKD is an
extension of GFKD (Deng & Zhang, 2021) to multi-teacher distillation.

7
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Table 1: Data performance comparison across four datasets. The form (Architecture-A / B) indicates
that this architecture is pre-trained on domain A/B. Highlighted are the top first, second results.

Methods
REDDIT-B PTC MUTAG NCI1

Acc/%↑ Pre/%↑ Acc/%↑ Pre/%↑ Acc/%↑ Pre/%↑ Acc/%↑ Pre/%↑
GCN-A 25.03±6.67 35.55±32.38 48.97±3.59 50.38±4.31 31.25±8.00 37.47±31.87 49.62±6.53 57.85±3.97
GAT-A 24.21±10.20 27.05±34.91 48.10±3.67 53.30±8.56 26.88±0.94 16.22±18.79 49.91±3.66 58.06±1.17
GIN-A 22.46±8.28 18.47±20.35 47.93±4.42 50.98±7.43 28.91±6.02 27.81±31.88 52.58±1.98 60.46±1.52

GCN-B 66.10±3.59 60.64±4.96 49.90±2.85 49.77±10.69 32.03±9.79 33.86±33.23 61.61±3.22 62.42±2.53
GAT-B 61.78±26.86 55.36±26.77 49.38±4.16 49.84±10.85 27.81±2.86 19.94±26.10 60.75±1.89 63.14±1.43
GIN-B 58.80±18.56 56.74±7.01 50.12±5.59 55.86±8.87 42.03±12.49 49.24±26.51 65.02±1.66 66.79±1.11

Avg-PTM 52.47±5.46 51.66±8.29 50.20±1.95 51.73±3.43 31.48±2.88 32.42±12.33 56.58±2.12 61.45±1.13
Ens-Prob 33.65±25.66 36.12±39.06 50.17±2.58 56.64±6.99 29.84±5.65 35.86±35.35 58.05±4.36 62.65±1.51
Ens-HighConf 44.46±29.00 45.86±35.70 48.19±1.87 50.83±3.98 32.34±7.94 47.99±33.41 56.44±6.77 61.73±3.07
Uni-Soup 43.26±14.09 31.65±17.22 50.20±2.48 47.38±6.09 37.40±12.03 17.97±12.17 48.73±8.83 47.25±11.09
Greedy-Soup 47.35±8.89 50.70±9.62 50.17±2.50 42.75±9.43 31.46±6.23 13.91±8.51 38.64±10.43 28.67±11.81
Inverse-X 56.21±27.12 48.86±30.58 50.43±3.50 51.92±3.40 38.75±17.91 40.14±31.57 62.39±9.68 56.35±7.32
Multi-GFKD 54.35±11.40 37.96±11.40 50.77±1.3 44.43±4.39 44.36±8.42 29.74±10.37 47.57±4.84 36.75±7.42

OGMM 76.98±5.19 63.36±0.81 51.21±3.74 57.39±6.71 45.62±18.67 56.28±26.70 66.84±0.45 72.90±4.89

Table 2: Ablation study about different modules. Highlighted are the top first, second results.

Variants
REDDIT-B PTC MUTAG NCI1

Acc/% Pre/% Acc/% Pre/% Acc/% Pre/% Acc/% Pre/%

Given
Source

w/o Mask 43.95±26.06 72.34±23.14 49.31±2.77 54.47±6.97 28.12±2.10 33.52±33.46 48.36±3.30 61.78±2.46
OGMM 80.98±11.30 78.33±2.91 54.31±2.70 59.16±5.04 57.81±7.30 68.79±3.13 68.04±2.13 71.90±1.16

Source
Free

w/o MoE 50.39±5.21 45.01±1.71 50.56±0.74 51.01±2.69 39.53±1.70 23.29±0.81 60.62±0.22 66.68±2.72
w/o Mask 31.98±18.77 35.99±38.87 50.95±2.90 55.36±6.15 28.28±1.47 49.39±34.98 51.11±1.06 59.70±0.98
w/o Lgen 41.15±26.95 39.75±36.20 48.88±5.23 48.61±5.63 45.31±22.96 25.81±22.96 52.69±11.61 55.82±3.46
OGMM 76.98±5.19 63.36±0.81 51.21±3.74 57.39±6.71 45.62±18.67 56.28±26.70 66.84±0.45 72.90±4.89

4.2 EXPERIMENTAL RESULTS

Main Results. The comparisons of different models under the split-dataset scenarios are shown in
Table 1. OGMM consistently outperforms individual pre-trained models across all datasets, demon-
strating the MoE module’s effectiveness in capturing distribution shifts and accurately allocating
“sample-expert” pairs. Ensemble methods like Avg-PTMs, Ens-Prob, and Ens-HighConf show simi-
lar precision, suggesting that leveraging multiple models can improve generalization. In contrast,
parameter merging methods (Uni-Soup, Greedy-Soup) perform poorly, highlighting that integrating
model outputs is more effective for OOD problems. Compared to other source-free methods, OGMM
sets a new state-of-the-art, achieving superior performance across datasets, especially on larger
datasets like REDDIT-B and NCI1. While data generation-based methods (Inverse-X, Multi-GFKD)
outperform fusion approaches, OGMM surpasses both, offering significant improvements. Unlike
Inverse-X, which only learns node features, OGMM simultaneously learns node features and graph
structures, enabling better recovery of domain-specific knowledge. Additionally, OGMM preserves
more source-domain knowledge, maintaining the diversity of observable distributions.

Analysis for Masks. We apply masks to two parameter groups, MaskCL and MaskNN, across three
GNN architectures to analyze mask placement impact. MaskCL applies masks to classifier parameters
(θΦ) while freezing others; MaskNN applies masks to encoder parameters (θΨ). As shown in Figure
4, models fine-tuned exclusively on classifier parameters achieve competitive performance across
datasets. The mask size accounts for only 20% of total parameters in a 2-layer GNN on average. This
suggests domain-specific knowledge is concentrated in classifier parameters, making classifier fine-
tuning more efficient. See Appendix C.1 for more results on other datasets. Additionally, we analyze
parameter changes after continuous fine-tuning across multiple domains. Results demonstrate that
classifier parameters exhibit stabilizing characteristics after multiple fine-tuning rounds, providing
evidence for our mask mechanism’s effectiveness. The comprehensive parameter evolution analysis
and associated visualizations are detailed in Appendix C.2.

Ablation Studies. To evaluate the efficacy of OGMM’s components, we conduct an ablation study
comparing five variant configurations, with comprehensive details provided in Appendix B.3 and
quantitative results presented in Table 2. The variant “OGMM (under Given Source condition)”,
which leverages access to source domain data and incorporates additional trainable parameters,
demonstrates superior performance as expected. The variant “w/o Mask (under Given Source
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Figure 4: Impact of Mask Position on REDDIT-B (RED.) and MUTAG (MUT.). The form (A → T)
means that a GNN pre-trained on domain A and fine-tuned on the Target domain. The bar chart shows
the model performance on the target domain, and the dashed line represents the average performance
of masked models with different mask positions on this dataset.
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Figure 5: The Effects of k in TopK Expert Selection on four datasets.

condition)” only optimizes merging weights with fixed pre-trained parameters, performing similarly
to Ens-Prob / Ens-HighConf from Table 1. Notably, our proposed OGMM achieves optimal results
in the source-free setting, approaching the best performance despite the absence of source domain
data, thus validating its capability for effective cross-domain knowledge transfer. Removing the
MoE module, generator, or masks under the source-free constraint leads to performance declines,
underscoring the critical contributions of these components.

Impact of TopK Expert Selection. To investigate the effects of the hyper-parameter k in the TopK
selector, we evaluate results across four datasets shown in Figure 5. The performance changes reveal
that selecting k between 2 and 4 generally yields optimal results across all datasets. Most datasets
exhibit similar trends, with accuracy improving as k increases initially and then stabilizing at higher
values. Notably, OGMM consistently outperforms the pre-trained baseline across most settings,
confirming the effectiveness of our MoE module. In addition, these results show that the optimal
choice requires dataset-specific tuning to accommodate varying dataset characteristics.
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Figure 15: Ablation studies regarding the number of domains. The horizontal axis indicates the
number of source domains.

influences of {k, λgate} are more pronounced due to the larger variations in pre-trained models
caused by limited data. In this case, the fusion process has a more significant effect on the results. On
larger datasets such as REDDIT-B and NCI1, λmask plays a more crucial role, with the fine-tuning
process ultimately determining the performance ceiling of the merged model.

Discussion about the Number of Domains. According to Eq.12, OGMM can integrate multiple
pre-trained models from different domains, with generalization improving as domain diversity
grows. However, constructing datasets divided into infinite domains is impractical. Consequently,
experiments rely on datasets with limited samples, where increasing the number of manually defined
domains reduces the sample size per domain, impacting pre-trained model quality. This explains
the trend in Figure 15, where OGMM’s performance declines, and error rates rise as the number of
domains increases.

C.6 VISUALIZATION

We visualize the real and generative graphs obtained from MUTAG and NCI1, as shown in Figures
16 - 17. The visual comparison reveals some similarities between the graphs learned by OGMM and
the real graphs, highlighting the model’s ability to capture meaningful domain knowledge.
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Figure 16: Graph visuallization on MUTAG. Note that there is no correspondence between the graphs
in the two rows.

23

Figure 6: Impact of the number of generative
graphs. The horizontal axis is the ratio of gen-
erative samples to total source domain data.

Impact of the Number of Synthetic Samples.
Theoretically, OGMM can generate unlimited
synthetic graphs for training, but their quality
and diversity are limited by the pre-trained mod-
els, as noted by (Deng & Zhang, 2021). Figure
6 shows the relationship between OGMM’s per-
formance and the number of generated graphs
on REDDIT-B and NCI1. OGMM achieves high
performance even with a small fraction of syn-
thetic graphs, as these effectively capture high-
order domain knowledge, resulting in a concen-
trated and informative distribution.

Manifold Visualization for Synthetic Graphs. To further validate the effectiveness and diversity
of the synthesized graphs, we visualize these data using t-SNE in Figure 7. The results presents the
class-wise distribution of real and synthetic data specifically on Domain A in NCI1. The visualization
reveals that synthetic data aligns with the distribution of real data, indicating that our method
successfully extracts domain-specific knowledge embedded in the pre-trained models.

Analysis of Gates Distribution in OGMM. To validate the rationality of our MoE-based merging
design, we analyze the gating mechanism’s behavior on both synthetic training data and real target
domain data across four datasets, as shown in Figure 8. We compute the total weight assigned to each
expert by aggregating gate assignments across all samples.
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Real_data: Label 0
Real_data: Label 1
Syn_data: Label 0
Syn_data: Label 1

(a) Synthesis by GCN-A/B

Real_data: Label 0
Real_data: Label 1
Syn_data: Label 0
Syn_data: Label 1

(b) Synthesis by GAT-A/B

Real_data: Label 0
Real_data: Label 1
Syn_data: Label 0
Syn_data: Label 1

(c) Synthesis by GIN-A/B

Figure 7: t-SNE Visualization of Real and Synthetic Samples with Label Distribution on Domain A.

During the training phase with synthetic data (gray bars), the load distribution across experts remains
relatively balanced, indicating that each expert receives approximately equal amounts of fine-tuning
data. This balanced training ensures all experts are adequately optimized without bias toward any
particular source domain. In contrast, during inference on real target domain data (purple bars),
the gate distribution becomes significantly more discriminative. The gating mechanism effectively
captures the distinguishable patterns learned by different experts and adaptively routes test samples
to the most suitable expert based on distributional similarity. This shift in distribution reflects the
varying relevance of different source domains to the target domain.
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Figure 8: Gates distribution on training data and real target data on four datasets.

5 CONCLUSION

This paper investigates the problem of Out-of-Distribution Graph Models Merging. The primary
challenge lies in extracting knowledge from pre-trained GNNs and guiding their reuse to address
the issue of model generalization. To tackle this challenge, we propose a novel out-of-distribution
graph models merging framework. Our approach leverages graph generation and a fine-tuned MoE
to adaptively optimize the model fusion process, enabling effective generalization under graph
OOD scenarios. Extensive experiments on several real-world benchmarks confirm that the proposed
approach outperforms state-of-the-art baselines.
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This appendix contains details about mathematical proofs, experimental implementation, supplemen-
tary experiments, related works, limitations, and future works.

A PROOF

A.1 PROOF OF THEOREM 3.3

Proof. Given a domain Gi with two trained classifiers f(Θi) and f(Θj). These classifiers may
have been trained on different source domains or under different conditions, leading to potentially
divergent prediction behaviors. Based on (Ben-David et al., 2010), we can define the probability
according to the distribution Gi that f(Θi) disagrees with f(Θj):

Ei(f(Θi), f(Θj)) = EG∼Gi [|f(Θi, G)− f(Θj , G)|]. (21)

If the classifier f(Θi) is a good learner trained on Gi, meaning it has achieved low training error and
captures the underlying patterns of domain Gi effectively. We will find the generalization error of
f(Θj) over Gi:

Ei(f(Θi), f(Θj)) = EG∼Gi
[|Y − f(Θj , G)|], s.t.f(Θi, G) = Y. (22)

Following Eq. 21, Definition 3.2 can be formalized as follows:

dH∆H(Gi,Gj) = 2 sup
f(Θi),f(Θj)∈H

|Ei(f(Θi), f(Θj))− Ej(f(Θi), f(Θj))|. (23)

Substituting Eq. 22 into Eq. 23 yields:

dH∆H(Gi,Gj) = 2 sup
f(Θi),f(Θj)∈H

|Ei(ŷi, f(Θj))− Ej(f(Θi), ŷj)|

∝ sup
f(Θi),f(Θj)∈H

| log p(ŷi|Gi, f(Θj))− log p(ŷj |Gj , f(Θi))|

s.t. f(Θi,Gi) = ŷi, f(Θj ,Gj) = ŷj ,

(24)

which implies that the H∆H-Divergence of Gi and Gj depends on the cross-validation results of the
respective optimized classifiers. Note that the disparity difference function represented by Eq. 24
is symmetric and obeys the triangle inequality. So we can build a cross-domain objective function
based on a set of pre-trained models:

argmin
ω,G

M∑
i,j

dH∆H(Gi,Gj)

∝ argmin
ω,G

M∑
i,j

| log p(ŷi|Gi, f(Θj), ω
j)− log p(ŷj |Gj , f(Θi), ω

i)|

s.t. Gi = argmax
G

log p(ŷi|G, f(Θi)), ∀Gi ∈ G,

(25)

where ωi is a learnable parameters for f(Θi). Optimization 25 achieves two purposes: (1) sufficient
extraction of knowledge from the models to compose a more generalized mixture of distributions
of the data G, and (2) optimization of the added parameters to fine-tune the individual model on the
mixture of distributions. Details on solving the question Optimization 25 can be found in A.2.

Due to the rule of linear combination, Γ =
∑M

i αif(Θi), we have Γ ∈ H. Thus, the optimization
objective of Optimization 25 is to identify an appropriate discriminative function Γ that minimizes
the generalization error across arbitrary marginal distributions. Therefore, the upper bound of the
generalization error for Γ on the target domain (the mixture distribution according to Assumption
3.1) depends on the sum of the cross-validation errors of sub-learners.
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A.2 DETAILS ON SOLVING OPTIMIZATION 25

Optimization 25 is a non-convex problem, which is hard to solve. We relax it via triangle inequality.
At the same time, we replace the log-likelihood function with regular cross-entropy loss, and finally
get a two-stage target function:

arg min
ω,G∗

M∑
i,j

CG∈G∗
i
(ŷi, f(Θj , ω

j , G)) [Sec. 3.3]

s.t.G∗
i = argmin

G
CG∈G(ŷi, f(Θi, G)),∀G∗

i ∈ G∗ [Sec. 3.2],

(26)

where CG∈G(·) denotes the cross-entropy loss function on distribution G. G∗
i ∈ G∗ is a batch of

generated samples. The ideal is for any fine-tuned model to have a small a posterior error on any
sampled data belonging to G∗, which is very difficult to achieve. In practice, we simply approximate
it using a finite number of samples. Meanwhile, we substitute Γ =

∑M
i αif(Θi) into Optimization

26:

argmin
ω,α

N∑
i

CGi∈G∗(ŷi,

M∑
j

αj · f(Θj , ω
j , Gi)), (27)

where N and M denote the number for samples and models. ŷi is the label of Gi, and αi is the fusion
weights, combining different models for different samples.

According to Theorem 4 in (Ben-David et al., 2010), for any δ ∈ (0, 1), with probability at least
(1− δ), the error bound of the merged function Γ on the target domain GT can be defined as follows:

ϵT (Γ) ≤ ϵT (h
∗
T ) +

M∑
j=1

αj (2λj + dH∆H(Gj ,GT ))

+ 4

√√√√√
 M∑

j=1

α2
j

βj

(2d log(2(N + 1)) + log
(
4
δ

)
N

)
,

(28)

where H is a hypothesis space of VC dimension d. h∗
T = minh∈H ϵT (h) is the target error minimizer.

N represents the sum of the number of all samples in all source domains, and βj =
Nj

N is the ratio
of the samples from the j-th domain. α is a fixed weight vector. λj = minh∈H{ϵT (h) + ϵj(h)}
means the optimal cross-domain generalization error (defined in H), and this term corresponds to our
expectations for the fine-tuned pre-trained models.

A.3 PROOF OF THE EXPANSION OF ϵi(f(Θi))

Proof. First we provide the definition of H-Divergence between Gi and Gj :
dH(Gi,Gj) = 2 sup

f(Θi),f(Θj)∈H
|PrG∼Gi

f(Θi, G)− PrG∼Gj
f(Θj , G)|, (29)

where PrG∼Gif(Θi, G) means the prediction of f(·) on Gi. Suppose that G∗ is the mixed distribution
of the set {Gi}Mi=1, and G∗ can be defined as follows:

G∗ =

M∑
i=1

αiGi, (30)

where αi is the mixing coefficient. Note that when no training data is available but model parameters
are known, we can optimize the inputs by minimizing the empirical error ϵi(f(Θi)) on Gi (i.e.,
argmaxG∗

i
log p(ŷi|G∗

i , f(Θi))) to generate data (Deng & Zhang, 2021). This process can be seen
as narrowing the H-Divergence between G∗

i and G∗
j according to Eq. 29. When PrG∼Gi

f(Θi, G) is
close enough to ŷi (f(Θi) fits well enough on Gi), we can assume that G∗

i samples from G∗, which
still has the H∆H-Divergence:

dH∆H(G∗
i ,G∗

j ) = 2 sup
hi,hj∈H

|Ei(ŷi, hj)− Ej(hi, ŷj)|

∝ sup
hi,hj∈H

| log p(ŷi|G∗
i , hj)− log p(ŷj |G∗

j , hi)|

s.t. G∗
i = argmax

G
log p(ŷi|G, f(Θi)), ∀G∗

i ∈ G∗,

(31)
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where (hi, hj) is a set of functions used to define the lower bound of dH∆H(G∗
i ,G∗

j ). We can use the
fine-tunable model f(Θi) and f(Θj) to approximate hi and hj with added parameters ω.

B IMPLEMENTATION DETAILS

B.1 DATASETS DETAILS

Table 3 shows the summary statistics of used datasets in Sec. 4.2.

Table 3: Summary of datasets.

MUTAG PTC REDDIT-B NCI1

#Graphs 188 344 2,000 4,110
#Classes 2 2 2 2
#Feature Dim 7 19 37 1
#Nodes 3,371 8,792 859,254 122,747
#Edges 7,442 17,862 1,991,016 265,506
Avg #Nodes 17.93 14.29 429.62 29.87
Avg #Edges 39.59 51.92 995.51 64.60

To simulate realistic out-of-distribution scenarios, we partition each graph-level dataset into multiple
domains based on graph edge density, following established domain adaptation methods (Luo et al.,
2024a; Zeng et al., 2024; Luo et al., 2024b; Wen et al., 2025; Wang et al., 2025). Edge density serves
as a fundamental structural characteristic that creates meaningful distributional shifts across graph
domains (Fu et al., 2024a). For each graph-level dataset, we calculate the edge density ρ = 2|E|

|V |(|V |−1)

for every graph and partition the data into domains based on density value, ensuring that each
domain contains graphs with similar structural complexity while maintaining sufficient distributional
differences between domains. The complete partitioning implementation is available in our code
repository. This partitioning strategy reflects real-world scenarios where models encounter graph
structural variations, such as in molecular datasets like MUTAG, where density variations correspond
to distinct chemical families: dense graphs typically represent highly conjugated aromatic systems
with extensive double bond networks, while sparse graphs correspond to simpler aliphatic structures
that exhibit different toxicity mechanisms and create natural domain boundaries.

Similar density-driven domain shifts appear across various graph learning applications, from social
networks where active users generate dense interaction patterns while inactive users create sparse
connectivity, to spatiotemporal trajectory analysis where dense urban movement patterns differ
significantly from sparse rural trajectories. These distribution shifts lead to models performance
degradation, which is precisely the generalization challenge our method aims to address.

B.2 PARAMETERS SETTING

In our experimental setup, the number of generated samples N and the number of source domains M
are predetermined prior information, not tunable hyperparameters. For the fake graphs generation
stage, the number of epochs is set to 200. τ = 0.2 in Eq. 8 controls stable sampling. For the model
merging stage, the number of epochs is set to 20. The AdamW optimizer (Shazeer & Stern, 2018)
is used for gradient descent. γv = γu = 0.9 in Eq. 19 control parameter changes from pretrained
models to preserve knowledge. The hyper-parameters λgate and λmask in the merging function, i.e.,
Eq. 20, are chosen from {10−2, 10−1, 1, 10, 100}, and the value of k for the TopKSelector, i.e., Eq.
15, is chosen from {1, 2, 3, 4, 5}. We report the mean results and standard deviations of ten runs.

B.3 ABLATION VARIANTS

We evaluate five variant configurations to analyze the contribution of each component:

Given Source variants: (1) Variant “OGMM” represents our full method with access to source
domain data, serving as an upper bound for performance. (2) Variant “w/o Mask” removes the
parameter masks from pre-trained model classifiers while maintaining access to source data.
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Source Free variants: (3) Variant “w/o MoE” eliminates the MoE module and uses simple averaging
of masked GNN predictions. (4) Variant “w/o Mask” removes the masks added to the classifiers
of each pre-trained model in the source-free setting. (5) Variant “w/o Lgen” removes the graph
generation objective (Eq. 11), training the model merging stage with randomly generated noise
graphs instead of our synthesized graphs.

B.4 ALGORITHM ANALYSIS

We analyze the computational complexity of our model to show its efficiency. Let |V | denote the total
number of generated nodes, |E| represent the number of generated edges, din and dmid indicate the
dimensions of the initial and intermediate layer features, respectively. The computational complexity
of the model during the fake graphs generation stage is given by: O(|V |3(din · dmid + d2mid)+ (|E| ·
dmid+|V |·d2mid)). Generally speaking, din and dmid are significantly smaller than |V | or |E|. So the
time complexity of the first stage of OGMM is O(|V |3 + |E|+ |V |). The computational complexity
of the second stage is O(dmid ·m+m(|E| ·dmid+ |W | · |V | ·d2mid)), where m denotes the number of
pre-trained models and |W | represents the scale of masks. Therefore, the time complexity of OGMM
is O(|V |3 + |E|+ |V |+m(|E|+ |W | · |V |)). Although our model demonstrates effectiveness, it
has comparable complexity with the existing baselines.

The algorithm is shown in Algorithm 1. During the experiments, we use one NVIDIA GeForce RTX
4090D GPU to train and inference.

Algorithm 1 Procedure of OGMM

Input: pre-trained graph models {f(Θi)}Mi=1.
Output: The predicting labels on the target samples.

// First stage: Graphs Generation
for i = 1 to M do

Initialize the domain-specific graph features {Xi|Xi ∼ N (0, I)}Mi=1 and arbitrary labels;
while not converged do

Generate graph structures {Ai}Mi=1 by generators {Pi}Mi=1 (Eq. 8);
Update {Pi}Mi=1 and {Ai}Mi=1 by minimizing the generation loss Lgen (Eq. 11);

end while
end for
// Second stage: Graph Models Merging
Concatenate the generative datasets into G∗;
Initialize the fine-tuning masks ω in Eq. 13 and the gating layer in Eq. 15;
while not converged do

Update {ω,Wg,Wn} by minimizing the merging loss Lmerge (Eq. 20).
end while

Besides, we further provide the running time comparison between OGMM and SOTA baselines in
generating, training and testing phases in Tables 4–6 to verify effectiveness of the proposed method.

Table 4: Generating Time (seconds) Comparison.

Methods/Datasets REDDIT-B PTC MUTAG NCI1
Inverse-X 2030.95 88.07 63.17 452.02
Multi-GFKD 4052.60 1640.38 743.02 2043.15

OGMM 3448.28 134.17 126.69 827.76

For generation time, OGMM is significantly faster than Multi-GFKD (2-15× speedup across datasets).
Compared to Inverse-X, which is a simplified version of OGMM without graph structure optimization,
OGMM requires additional time but delivers better performance. In the training phase, OGMM
achieves the best efficiency, being 2-4× faster than traditional GNN methods and outperforming
Multi-GFKD. Regarding testing time, OGMM is slightly slower than baselines but still operates at
millisecond to second scale, which is acceptable for practical applications. Overall, OGMM shows
good computational efficiency, especially in the training phase.
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Table 5: Training runtime (in seconds) comparison on four datasets, the results are recorded at the
time of running 100 epochs for fairness.

Methods/Datasets REDDIT-B PTC MUTAG NCI1

GCN 97.55 17.50 9.31 116.89
GIN 112.42 19.09 9.47 175.76
GAT 144.30 14.01 25.26 206.27
Multi-GFKD 51.66 49.02 30.54 51.06
OGMM 41.28 8.25 8.92 45.99

Table 6: Testing runtime (in seconds) comparison on four datasets.

Methods/Datasets REDDIT-B PTC MUTAG NCI1

GCN 0.04 0.01 0.01 0.07
GIN 0.04 0.01 0.01 0.09
GAT 0.06 0.01 0.01 0.08
Uni-Soup 0.05 0.03 0.03 0.09
Greedy-Soup 0.07 0.03 0.02 0.11
Multi-GFKD 0.09 0.02 0.01 0.16
OGMM 0.10 0.07 0.05 0.25

C SUPPLEMENTARY EXPERIMENTS

C.1 POSITION OF MASKS

We conducted additional experiments on PTC and NCI1 to analyze the impact of mask placement.
As shown in Figure 9, the results on these datasets further validate the conclusion: incorporating
masks into the classifier (MaskCL) achieves performance comparable to the average of the three
mask-tuning methods.
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Figure 9: Impact of Mask Position on PTC and NCI1. The form (A → T) means that a GNN
pre-trained on domain A and fine-tuned on the Target domain. The bar chart shows the model
performance on the target domain, and the dashed line represents the average performance of masked
models with different mask positions on this dataset.

C.2 GRADIENT TRENDS

Following the criteria outlined in (Wang et al., 2022), we calculate the proportion of large gradients
for each model layer, as illustrated in Figures 10 - 12. The selected criterion is the number of
parameters with a variation magnitude exceeding 0.001. Specifically, we partition the dataset into
more subsets (10 / 20) based on edge density, and sequentially use these subsets to continuously train
the selected GNNs. Then we use the selected criterion to analyze the degree of parameter variation
within each module. Notably, the classifier weights exhibit a more pronounced decreasing trend in
parameter changes compared to other layers. This further indicates that fine-tuning the classifier
parameters facilitates the model’s ability to learn invariant representations, thereby enhancing the
generalization capability of individual sub-learners. The results confirm the insight provided in Sec.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Lay
er0

_w
eig

ht

Lay
er0

_bi
as

Norm
0_w

eig
ht

Norm
0_b

ias

Clas
sifi

er_
weig

ht

Clas
sifi

er_
bia

s

1

2

3

4

5

6

7

8

9

Do
m

ai
n 

id

0.0

0.2

0.4

0.6

0.8

1.0

(a) NCI1 (10 Domains)

Lay
er0

_w
eig

ht

Lay
er0

_bi
as

Norm
0_w

eig
ht

Norm
0_b

ias

Clas
sifi

er_
weig

ht

Clas
sifi

er_
bia

s

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Do
m

ai
n 

id

0.0

0.2

0.4

0.6

0.8

1.0

(b) NCI1 (20 Domains)
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(c) RED. (10 Domains)
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(d) RED. (20 Domains)

Figure 10: Gradient trends in 2-layer GCN on NCI1 and REDDIT-B. (RED). It illustrates the
evolution of parameters at each layer of GCN as the model is trained with an increasing number of
domain data, based on a specified criterion.
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Figure 11: Gradient trends in 2-layer GIN on NCI1 and REDDIT-B (RED.). It illustrates the evolution
of parameters at each layer of the GIN as the model is trained with an increasing number of domain
data, based on a specified criterion.

4.2: the classifier weights gradually stabilize after training on multiple domains, indicating that these
parameters capture cross-domain invariant knowledge.

C.3 PERFORMANCE OF HOMOGENEOUS BACKBONES MERGING

Leveraging the MoE architecture, OGMM imposes no explicit constraints on the underlying model
architectures. To further assess the generalizability of OGMM within homogeneous GNN backbones,
we reduce the number of pre-trained models and employ only the widely adopted GCN for fusion.
As presented in Table 7, even with the integration of just two basic GCNs, OGMM outperforms
existing fusion methods, setting a new state-of-the-art across all four datasets. Notably, compared to
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Figure 12: Gradient trends in 2-layer GAT on NCI1 and REDDIT-B (RED.). It illustrates the evolution
of parameters at each layer of the GAT as the model is trained with an increasing number of domain
data, based on a specified criterion.

the results in Table 1, most performance metrics for OGMM improve upon reducing the number of
pre-trained models. This suggests that, while the total knowledge volume remains constant, increased
diversity among experts leads to the introduction of additional errors.

Table 7: Data performance comparison across four datasets. The experimental setup was identical to
Table 1, except that the base models used only two GCNs trained from different domains. Highlighted
are the top first, second results.

Methods REDDIT-B PTC MUTAG NCI1

ACC/%↑ Pre/%↑ ACC/%↑ Pre/%↑ ACC/%↑ Pre/%↑ ACC/%↑ Pre/%↑
Avg-PTM 53.85±3.74 59.79±15.42 50.43±2.28 51.08±5.14 31.64±8.26 35.67±26.85 55.62±4.52 60.14±3.13
Ens-Prob 42.25±24.82 48.29±36.58 51.72±2.94 55.27±3.90 28.12±2.42 34.08±33.79 55.09±6.26 60.62±2.61
Ens-HighConf 50.16±27.47 54.6±34.05 52.76±4.25 56.87±5.44 29.84±7.86 28.38±32.63 54.87±6.86 60.15±3.65
Uni-Soup 44.46±28.49 43.62±33.01 49.83±4.25 44.27±15.4 35.62±18.14 16.37±18.62 50.88±12.11 56.72±7.42
Greedy-Soup 50.06±29.28 57.41±28.04 48.71±2.99 39.76±14.58 36.56±15.66 22.94±24.54 49.12±15.37 54.57±17.81
Inverse-X 64.49±23.37 70.15±12.31 53.53±1.47 51.16±3.27 37.5±12.58 40.41±29.02 65.65±0.67 54.00±8.31
Multi-GFKD 64.10±36.88 64.03±36.75 54.17±22.91 38.87±17.39 46.56±12.53 34.94±27.74 38.02±15.49 54.88±21.28

OGMM 80.64±1.71 76.81±9.16 55.34±0.34 59.87±2.60 50.78±20.40 43.58±25.35 66.38±0.04 63.12±2.76

C.4 PERFORMANCE ON LARGE-SCALE DATASETS

Table 8: Additional experiments on five large-scale datasets. The experimental setup was identical to
Table 1. Highlighted are the top first, second results.

Task Graph Classification Node Classification

Dataset ogbg-Molhiv ogbn-Arxiv Twitch Facebook-100 Elliptic

Acc/%↑ Acc/%↑ Acc/%↑ Acc/%↑ Acc/%↑
Avg-PTM 93.40±0.14 48.03±0.34 45.43±1.32 51.45±0.47 60.31±1.45
Ens-Prob 95.46±0.18 46.12±0.32 48.41±2.29 46.82±0.07 77.81±0.98
Ens-HighConf 96.52±0.09 44.61±1.38 47.89±2.48 46.66±0.09 81.70±5.54
Uni-Soup 94.69±0.03 25.63±2.90 55.80±3.38 55.04±3.75 82.39±0.42
Greedy-Soup 78.61±38.16 32.63±3.75 53.29±3.36 55.51±1.46 82.08±1.30
Inverse-X 56.06±11.5 38.70±18.42 52.73±1.46 53.47±4.78 82.79±0.16
Multi-GFKD 70.43±36.68 15.00±0.54 51.33±1.99 54.23±1.52 82.65±0.21

OGMM 96.72±0.91 53.38±0.01 59.45±0.85 56.89±0.05 82.89±0.09
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We extend our method to larger datasets for validation. We conduct graph-level classification tasks on
ogbg-Molhiv (Hu et al., 2020), which contains 41,127 molecular graphs where each graph represents
a chemical compound. Similar to our approach in Sec. 4.2, we use edge density as the criterion for
domain partitioning, maintaining consistency with the partitioning method and pre-trained models
described previously. For node-level classification tasks, we evaluate our approach on ogbn-Arxiv
(Hu et al., 2020), Twitch (Rozemberczki et al., 2021), Facebook-100 (Traud et al., 2012) and Elliptic
(Pareja et al., 2020) datasets. The ogbn-Arxiv dataset contains 169,343 nodes representing papers
from 40 subject areas. We follow the domain partitioning method (Qiao et al., 2025) based on the
temporal shifts and partition the pre-2017 data into two domains (1971-2013 and 2014-2017) for
pre-training GNNs, and use the 2018-2020 data to test our model. The Twitch dataset contains 36,890
nodes representing users across seven regional networks. We pre-train GNNs using two groups
of regions: (DE, ENGB, ES) and (FR, PTBR, RU), and evaluate OGMM on the TW region. The
Facebook-100 consists of multiple social networks from different regions. The Elliptic is a Bitcoin
transactions network dataset, includes graphs from different time steps.

As shown in Table 8, OGMM consistently establishes new state-of-the-art results across all bench-
marks, significantly outperforming existing fusion methods. While traditional generative methods
(e.g., Inverse-X and Multi-GFKD) struggle on large-scale datasets such as ogbg-Molhiv and ogbn-
Arxiv often underperforming even simple ensemble baselines, OGMM maintains a clear advantage.
This can be attributed to its generator design, which enables more stable and expressive expert
modeling. In particular, compared with Inverse-X, OGMM yields substantial improvements across all
datasets, highlighting its robustness to scale and task variation. The consistent superiority of OGMM
underscores its effectiveness in integrating diverse knowledge sources while mitigating the instability
typically introduced by generative fusion under large data regimes.

C.5 PARAMETERS ANALYSIS
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Figure 13: Hyper-parameter sensitivity for OGMM on MUTAG.
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Figure 14: Hyper-parameter sensitivity for OGMM on PTC.

Discussion about the Hyper-parameters. We conducted extensive experiments on four datasets
mentioned in Sec. 4.2 to analyze the impact of hyper-parameters {k, λgate, λmask} on model
performance, as shown in Figures 13 - 16 . Notably, on small datasets like MUTAG and PTC, the
influences of {k, λgate} are more pronounced due to the larger variations in pre-trained models
caused by limited data. In this case, the fusion process has a more significant effect on the results. On
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Figure 15: Hyper-parameter sensitivity for OGMM on REDDIT-B.
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Figure 16: Hyper-parameter sensitivity for OGMM on NCI1.

larger datasets such as REDDIT-B and NCI1, λmask plays a more crucial role, with the fine-tuning
process ultimately determining the performance ceiling of the merged model.

Discussion about the Number of Domains. According to Optimization 12, OGMM can integrate
multiple pre-trained models from different domains, with generalization improving as domain diver-
sity grows. However, constructing datasets divided into infinite domains is impractical. Consequently,
experiments rely on datasets with limited samples, where increasing the number of manually defined
domains reduces the sample size per domain, impacting pre-trained model quality. This explains
the trend in Figure 17, where OGMM’s performance declines, and error rates rise as the number of
domains increases.

C.6 VISUALIZATION

We visualize the real and generative graphs obtained from MUTAG and NCI1, as shown in Figures
18 - 19. The visual comparison reveals some similarities between the graphs learned by OGMM and
the real graphs, highlighting the model’s ability to capture meaningful domain knowledge.

D RELATED WORKS

D.1 GRAPH DOMAIN GENERALIZATION

A growing body of research on Graph Domain Generalization has garnered increasing attention
in recent years. Approaches such as (Qiao et al., 2023; Sun et al., 2024; Chen et al., 2024b; Yuan
et al., 2024) concentrate on learning representations that remain stable and invariant across diverse
environments. In parallel, methods like (Sui et al., 2022; Chen et al., 2024a; Gui et al., 2024;
Fan et al., 2023) employ causal inference framework to uncover relationship between data and
labels that are robust to distribution shifts. Other techniques, including (Lu et al., 2024; Li et al.,
2023; Jia et al., 2024), focus on improving model generalization by employing data augmentation
strategies. Regardless of architectural differences, the effectiveness of these learning strategies is
largely contingent on the precise acquisition, partitioning, and labeling of training data. Notably,
the majority of existing approaches necessitate access to datasets with clearly delineated data from
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Figure 17: Ablation studies regarding the number of domains. The horizontal axis indicates the
number of source domains.

Nodes: 27, Edges: 33, Label: 0 Nodes: 28, Edges: 33, Label: 0 Nodes: 21, Edges: 22, Label: 0

Nodes: 21, Edges: 24, Label: 0 Nodes: 21, Edges: 24, Label: 0 Nodes: 22, Edges: 25, Label: 0

(a)

Nodes: 16, Edges: 17, Label: 1 Nodes: 18, Edges: 20, Label: 0 Nodes: 19, Edges: 22, Label: 0

Nodes: 16, Edges: 17, Label: 1 Nodes: 20, Edges: 22, Label: 0 Nodes: 17, Edges: 18, Label: 0
(b)

Nodes: 22, Edges: 25, Label: 0 Nodes: 23, Edges: 27, Label: 0 Nodes: 22, Edges: 24, Label: 1

Nodes: 22, Edges: 25, Label: 0 Nodes: 28, Edges: 33, Label: 0 Nodes: 23, Edges: 27, Label: 0

(c)

Nodes: 19, Edges: 21, Label: 0 Nodes: 20, Edges: 22, Label: 0 Nodes: 19, Edges: 22, Label: 0

Nodes: 16, Edges: 17, Label: 0 Nodes: 16, Edges: 17, Label: 0 Nodes: 16, Edges: 17, Label: 1
(d)

Real Graphs
Nodes: 20, Edges: 22, Label: 0 Nodes: 11, Edges: 11, Label: 0 Nodes: 13, Edges: 9, Label: 0

Nodes: 11, Edges: 11, Label: 0 Nodes: 10, Edges: 6, Label: 1 Nodes: 11, Edges: 7, Label: 0
(e)

Nodes: 25, Edges: 41, Label: 1 Nodes: 25, Edges: 43, Label: 1 Nodes: 12, Edges: 10, Label: 0

Nodes: 14, Edges: 13, Label: 1 Nodes: 16, Edges: 14, Label: 0 Nodes: 14, Edges: 12, Label: 0

(f)

Nodes: 12, Edges: 10, Label: 1 Nodes: 14, Edges: 9, Label: 1 Nodes: 17, Edges: 20, Label: 0

Nodes: 20, Edges: 24, Label: 0 Nodes: 21, Edges: 28, Label: 1 Nodes: 17, Edges: 24, Label: 1
(g)

Nodes: 20, Edges: 28, Label: 0 Nodes: 11, Edges: 9, Label: 0 Nodes: 13, Edges: 11, Label: 0

Nodes: 11, Edges: 8, Label: 0 Nodes: 10, Edges: 10, Label: 1 Nodes: 11, Edges: 8, Label: 0
(h)

Generative Graphs

Figure 18: Graph visuallization on MUTAG. Note that there is no correspondence between the graphs
in the two rows.

multiple environments, a condition that is often impractical for real-world graph data. Additionally,
some multi-source-free domain adaptation methods can be easily applied to graphs (Dong et al.,
2021; Li et al., 2024b; Shen et al., 2023); however, these methods require the use of target data in the
model training process. In contrast, the source-free graph model generalization method proposed in
this work presents a more viable solution with broader practical implications.

D.2 MODEL MERGING AND MOE

Model merging and MoE are two techniques for reusing pre-trained models to construct aggregation
systems with enhanced performance or generalization capabilities (Yadav et al., 2024). Model
merging (Zheng et al., 2023a) typically involves the fusion of model’s parameters, such as linear
averaging (Utans, 1996; Wortsman et al., 2022), task arithmetic merging (Ilharco et al., 2022),
or integration based on hidden representations (Yang et al., 2023; Matena & Raffel; Stoica et al.,
2023). These methods are primarily applied to vision and language models, which share consistent
architectures that allow parameter space operations. However, such approaches are rarely applied to
graph models due to their unique structures. Consequently, the MoE framework (Shazeer et al., 2017)
has gained more attention in the graph learning field. In general, MoE facilitates fine-grained fusion
of expert outputs, such as (Liu et al., 2023; Wang et al., 2024; Zeng et al., 2023; Liu et al., 2024;
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Figure 19: Graph visuallization on NCI1. Note that there is no correspondence between the graphs in
the two rows.

Ma et al., 2024; Wu et al., 2024b; Liu et al.). However, these works do not address the source-free
out-of-distribution model merging problem we tackle. In this paper, we leverage the MoE framework
as a mechanism to select and reuse graph models effectively to achieve cross-domain knowledge
fusion.

D.3 MASK TUNING

Mask tuning is a simple yet effective fine-tuning strategy (Zhao et al., 2020; Radiya-Dixit & Wang,
2020), where a mask matrix is learned for specific modules of a pre-trained model to cover parameters,
thereby avoiding redundant computations during the fine-tuning process. This approach originates
from model pruning, which uses binary masks to identify important and sparse parameters (Lin et al.,
2020; Csordás et al., 2020). In multi-task problems, RMT (Zheng et al., 2023b) applies this strategy
to facilitate transfer learning in vision-language models under the zero-shot setting. Similarly, GMT
(Li et al., 2024a) leverages gradient information to identify key network parts for sparse updates.
Regarding efficient utilization of parameter gradients, (Wang et al., 2022) introduces a judgment
criterion to measure the trends of parameters across modules during continual learning, which inspired
our research on mask locations. However, there has been limited exploration of mask tuning in graph
models. Unlike vision or language models, graph models typically have fewer layers, and the impact
of masks on pre-trained GNNs requires further investigation.

E LIMITATIONS AND FUTURE WORK

Generalization on More Diverse Graph Data: Our work is based on the assumption of a mixture
distribution, which has been extensively applied in multi-domain generalization problems. For graph
data, we have verified this assumption both theoretically and experimentally within the context of
graph-level classification tasks. However, the discrepancy among graph domains can be complex,
and significant biases can exist across different tasks, graph parametric representations, and scenarios.
This variability poses a challenge to the development of graph foundation models (Fu et al., 2024b).
For the same reason, our approach may not be generalized enough to unknown scenarios, like those
with new classes. In future work, we aim to further explore how to extend the multi-task learning
capabilities of our model and adapt it to more diverse graph data.
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Towards Scaling Law: Additionally, the generalization performance of the proposed method is
contingent on multiple factors, including the in-distribution performance of pre-trained models, the
impact of fine-tuning methods, and the inherent randomness in generative graphs. While the overall
computational complexity is relatively low, finding the optimal fitting function remains a challenging
task. As the models collection grows, integrating a larger number of more diverse and heterogeneous
experts may become a significant hurdle for MoE-based techniques (He, 2024). Consequently,
future efforts will focus on investigating the scaling laws at the model-centric level to address these
challenges.

Future Directions: In this work, we not only address the novel challenge of model generalization for
graphs but also highlight several promising directions for future research: (1) Extension to Cross-Task
Transfer Learning: Expanding our approach to cross-task transfer learning by integrating and select-
ing graph models trained on different objectives. This will enable broader applicability of domain
generalization across various graph-related tasks. (2) Model Reuse for Feature / Structural Hetero-
geneity: Investigating solutions for model reuse that can effectively handle feature and structural
heterogeneity across different graphs. This would enhance the adaptability of pre-trained models to
diverse graph characteristics. (3) Building High-Quality Graph Model Pools: Researching methods
for constructing high-quality graph model pools along with effective ranking and selection strategies.
This will facilitate efficient adaptation of graph foundation models to new datasets and domains,
similar to the successful adaptation in other areas of machine learning.
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