
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

RELIABLE AND DIVERSE EVALUATION OF LLM MEDI-
CAL KNOWLEDGE MASTERY

Anonymous authors
Paper under double-blind review

ABSTRACT

Mastering medical knowledge is crucial for medical-specific LLMs. However, de-
spite the existence of medical benchmarks like MedQA, a unified framework that
fully leverages existing knowledge bases to evaluate LLMs’ mastery of medical
knowledge is still lacking. In the study, we propose a novel framework PretexEval
that dynamically generates reliable and diverse test samples to evaluate LLMs for
any given medical knowledge base. We notice that test samples produced directly
from knowledge bases by templates or LLMs may introduce factual errors and also
lack diversity. To address these issues, we introduce a novel schema into our pro-
posed evaluation framework that employs predicate equivalence transformations
to produce a series of variants for any given medical knowledge point. Finally,
these produced predicate variants are converted into textual language, resulting in
a series of reliable and diverse test samples to evaluate whether LLMs fully master
the given medical factual knowledge point. Here, we use our proposed framework
to systematically investigate the mastery of medical factual knowledge of 12 well-
known LLMs, based on two knowledge bases that are crucial for clinical diagno-
sis and treatment. The evaluation results illustrate that current LLMs still exhibit
significant deficiencies in fully mastering medical knowledge, despite achieving
considerable success on some famous public benchmarks. These new findings
provide valuable insights for developing medical-specific LLMs, highlighting that
current LLMs urgently need to strengthen their comprehensive and in-depth mas-
tery of medical knowledge before being applied to real-world medical scenarios.

1 INTRODUCTION

Recent years have witnessed the rapid advancement of large language models (LLMs), which have
exhibited potential across various domains (Brown et al., 2020; Ouyang et al., 2022; Touvron et al.,
2023; OpenAI, 2023; Madani et al., 2023; Boiko et al., 2023), including medicine. Solving med-
ical problems requires LLMs to master medical factual knowledge comprehensively and in-depth.
Recent studies (Singhal et al., 2023; Nori et al., 2023; Pal & Sankarasubbu, 2024) showed that
some LLMs (e.g., GPT-4) encode medical factual knowledge, achieving outstanding performance
across multiple medical benchmarks (Jin et al., 2019; 2021; Pal et al., 2022; Singhal et al., 2023;
Sung et al., 2021; Meng et al., 2022), such as MedQA. Constructed through expert annotation, these
benchmarks have long been effective tools for evaluating LLMs’ medical capabilities. However,
they may face challenges such as becoming outdated or being possibly leaked to LLMs, which
could lead to evaluations that lack reliability. Meanwhile, medical databases like UMLS (Bodenrei-
der, 2004) are regularly updated and contain extensive medical knowledge, but there is currently no
unified framework that fully leverages these knowledge bases to evaluate LLMs’ mastery of medical
knowledge. Therefore, we aim to bridge this gap in this study by proposing an evaluation framework
that investigates LLMs’ medical knowledge mastery based on any given medical knowledge base.

Evaluating LLMs using medical knowledge bases requires generating textual test samples from
structured knowledge. A straightforward method is to prompt LLMs to directly generate test samples
based on specific knowledge points. However, this method has two drawbacks as illustrated in Figure
1: (1) insufficient factuality: factual errors (e.g., incorrect relations) may be introduced during LLM
generation process, affecting the reliability of evaluation; and (2) low structure diversity: samples
generated from the same knowledge point primarily differ in wording (e.g., synonym replacement)
rather than in expression structure, compromising the diversity of evaluation.
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Figure 1: Drawbacks of test samples produced di-
rectly by LLMs: (1) LLMs may introduce factual
errors into generated samples; (2) Samples directly
generated by LLMs exhibit low diversity.

Figure 2: Schema of the proposed Predicate-
to-text evaluation method (Top) compared
with directly generating test variants by LLMs
(Bottom).

The purpose of this study is to develop a unified evaluation framework that dynamically generates
reliable and diverse test samples from medical knowledge bases to probe LLMs’ mastery of medical
factual knowledge. Given that medical factual knowledge primarily involves relationships between
medical entities, it can be effectively expressed through predicates. Inspired by this, we propose
a Predicate-to-text Evaluation method (PretexEval) that dynamically generates reliable and struc-
turally diverse test samples based on the medical knowledge points from knowledge bases. Figure
2 presents the schema of our method. Specifically, we first express each knowledge point using a
predicate expression. Then, we derive a series of predicate variants from this predicate expression
through predicate equivalent/implication transformation1. Such predicate transformation process
enhances the structural diversity of generated test samples and also effectively prevents the intro-
duction of factual errors. Finally, we use a prototype-based method to convert these variants back
into the textual space to create the test samples. This method first transforms the predicate variants
into prototype samples using templates to ensure reliability, and then rephrases these prototypes
with LLMs to enhance the readability and lexical diversity of the generated samples. It is worth
noting that the proposed evaluation method is highly versatile and can be applied to any medical
knowledge base with minimal adjustments to evaluate LLMs’ mastery of the knowledge it contains.

In our study, we employ the proposed evaluation framework to systematically investigate the mas-
tery of medical knowledge among 12 well-known LLMs, using two medical knowledge bases that
contain essential information for clinical diagnosis and treatment. Experimental results indicate that
the performance of current LLMs on test samples generated by our method is significantly lower
than on samples directly generated by handcrafted templates or by prompting an LLM. Further-
more, these evaluated LLMs exhibit notable inconsistency in handling test samples derived from the
same knowledge point. These findings indicate that, despite their impressive performance on sev-
eral medical benchmarks, current LLMs have not fully mastered the medical knowledge essential
for real-world clinical tasks. Therefore, they may require additional training before being applied in
real-world medical scenarios to further enhance their comprehensive and in-depth mastery of medi-
cal knowledge. The codes and datasets will be released to facilitate future study. Our contributions
are summarized as follows:

• We introduce PretexEval, a predicate-to-text method that dynamically generates reliable
and structurally diverse test samples based on any given medical knowledge base.

• Using the proposed method, we systematically investigate the medical factual knowledge
mastery of 12 well-known LLMs based on two knowledge bases closely related to clinical
diagnosis and treatment.

• Our findings reveal that current LLMs have not yet comprehensively and deeply mastered
medical knowledge, underscoring the urgent need to improve their medical knowledge mas-
tery before applying them to real-world medical tasks.

1For the sake of convenience, we refer to both equivalent and implication transformations collectively as
predicate equivalent transformations in the following sections, without making a distinction between them.
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2 RELATED WORK

LLM Medical Evaluation Current medical evaluation benchmarks for LLMs can be divided into
two categories: (1) QA datasets that evaluate LLMs’ comprehensive medical capabilities with ques-
tions collected from medical literature (Jin et al., 2019), exams (Jin et al., 2021; Pal et al., 2022),
or online websites (Singhal et al., 2023); (2) datasets for probing LLM medical knowledge mas-
tery (Sung et al., 2021; Meng et al., 2022). These static benchmarks are meticulously created by
medical experts and possess high reliability. However, they may face problems such as becoming
outdated or leaked to LLMs, affecting the comprehensiveness of evaluation. While constructing new
benchmarks can alleviate these problems, they will also become obsolete over time.

Dynamic Evaluation Schema Several studies have proposed dynamic evaluation methods that
automatically generate new test samples, effectively addressing the issue of unreliable evaluation
caused by LLMs memorizing test samples (benchmark leakage). Some works leverage algorithms
to dynamically generate test samples for specific tasks, such as mathematics (Zhu et al., 2024a)
and SQL execution (Lei et al., 2023). Others (Zhu et al., 2023; 2024b) generate test samples by
paraphrasing existing benchmarks. However, there is currently no related work utilizing dynamic
evaluation methods to evaluate LLMs based on knowledge bases. By dynamically generating test
samples from regularly updated medical knowledge bases, our framework can effectively address
issues associated with static evaluation benchmarks (becoming outdated, being leaked to LLMs).

3 METHOD

3.1 EVALUATION SCHEMA

In this section, we introduce the schema of our PretexEval method, which generates structural di-
verse and reliable test samples for LLM factual knowledge evaluation. Given a knowledge point P,
a straightforward idea is to directly generate a test sample using an LLM:

S = GLLM(P) (1)

Here, GLLM denotes the LLM generation process, and S refers to the generated test sample. As
introduced above, GLLM may create samples that lack diversity and reliability. In contrast, our
method first expresses the knowledge point using a predicate expression and then derives a series of
variants via predicate equivalent transformation:

q = Ttext2pre(P) (2)
[v1, v2, · · · , vm] = TEq(q) (3)

Here, Ttext2pre denotes a mapping that projects the original knowledge point P into the predicate
expression q. TEq refers to the predicate equivalent transformation, and {vi}mi=1 are the variants
derived from the original expression q. The property of predicate equivalent transformation ensures
the reliability of these variants, provided that the original expression q is true:

(q = True) ⇒ (vi = True), 1 ≤ i ≤ m (4)

Finally, we convert each predicate variant back to a textual test sample for evaluation:

Si = Tpre2text(vi), 1 ≤ i ≤ m (5)

Here, Tpre2text maps each predicate variant vi into a corresponding test sample (textual variant).
Since these samples are derived from predicate variants with diverse structures, the predicate-text
duality ensures they exhibit substantial diversity while maintaining reliability.

3.2 EVALUATION FRAMEWORK

Building on the proposed evaluation schema, we develop a novel evaluation framework to evaluate
LLMs’ mastery of medical factual knowledge comprehensively. Figure 3 presents an overview of
this framework.
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Figure 3: An overview of the proposed PretexEval framework, which dynamically generates test
samples from any medical knowledge base for evaluating LLMs’ medical knowledge mastery.

3.2.1 PREDICATE VARIANT GENERATION

A single knowledge point (i.e., knowledge triplet in knowledge bases) can be denoted as P =
(h, r, t), where h, r, and t refer to the head entity, the relation, and the tail entity, respectively.
In predicate logic, such a relation can be effectively presented by:

q = R(h, t) (6)

Here, R(x, y) is a predicate derived from the relation r, representing the statement ”x has the relation
r with y”, where q represents its value at the point (h, t). Next, the framework employs three types
of equivalent transformations that are widely employed in practical medical applications, including:

• Inversion (R−1(t,h))): The inverse expression presents the original expression from an-
other direction. For example, if the statement “Drug A may treat disease B” holds, then
“Disease B’s prescribed drug includes drug A” also holds.

• Instantiation (P(h, x) ⇒ Q(x, t)): This type of transformation applies a general knowl-
edge point to a specific case. For example, the statement “Drug A may treat disease B” can
be instantiated as “If a patient has disease B, drug A may cure them.” Such transformation
is commonly used in disease diagnosis and treatment.

• Double Negation (¬(¬R(h, t))): The double negation rule is widely utilized to obtain log-
ically equivalent expressions. In our framework, this rule is applied to construct negative
expressions. For example, if “Drug A may treat disease B” holds, then “Drug A cannot
treat disease B” must be false.

It is noteworthy that these three types of transformation can be further combined to produce ad-
ditional expressions based on the transitive property of predicate equivalent transformation. As a
result, a total of m variants are generated in this process:

vi = Ti
Eq(R(h, t)), 1 ≤ i ≤ m (7)

where Ti
Eq denotes the ith predicate equivalent transformation.

3.2.2 TEXTUAL SAMPLE GENERATION

Finally, the predicate variants are converted back into textual samples for LLM evaluation. A
straightforward method is template rephrasing; however, the generated samples may lack fluency,
which may affect LLM’s understanding. Another approach is to prompt LLMs to generate test sam-
ples directly from predicates. However, considering that LLMs may not fully understand predicate
forms, this method can also introduce factual errors. To address this issue, we designed a prototype-
based sample generation method. Specifically, for each predicate variant Ti

Eq(R(h, t)), we initially
retrieve the corresponding prototype from a pre-constructed prototype pool based on the predicate
Ti

Eq ·R. For example, considering the predicate variant MT−1(y, x) in Figure 3, we retrieve the
corresponding prototype “y may be treated by x”. For predicate variants obtained through double
negation, we retrieve prototypes based on their negated form (i.e., single negation form) to generate
negated samples for LLM evaluation. Subsequently, the prototype is instantiated by the arguments
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(h, t). The instantiated prototype precisely conveys the predicate variant in the textual space. Fi-
nally, the prototype is further rephrased by an LLM to obtain the final test sample Si. Since current
LLMs possess strong language capabilities and seldom make mistakes in sentence rephrasing, the
proposed sample generation method can ensure the reliability and diversity of the generated samples.

3.2.3 EVALUATION METRICS

In our framework, we mainly evaluate LLMs using statement verification tasks, asking them to
determine whether a given statement is true or false:

Score(M,Si) = 1(M(Si) = li), 1 ≤ i ≤ m (8)

Here, M is the evaluated LLM, Si is the textual variant (statement) generated by our framework, and
M(Si) ∈ {T,F} denotes LLM’s prediction for Si. li ∈ {T,F} is the label of Si, and the function
1(·) is a characteristic function that equals 1 when the enclosed expression is true, and 0 otherwise.
Additionally, we also adopt 4-option multiple-choice questions to further validate the scalability of
PretexEval on various evaluation tasks.

For a dataset with n knowledge points {Pj}nj=1, we initially use the metric average accuracy to
compute the accuracy across all test samples:

aavg =
1

n

1

m

n∑
j=1

m∑
i=1

Score(M,Sji ) (9)

Here, Sji denotes the ith test sample derived from the jth knowledge point Pj . While this metric
is widely applied in various benchmarks, it cannot evaluate the consistency of LLMs in predicting
all test samples derived from the same knowledge point, which is crucial for high-risk applications
in the medical domain. Therefore, we also utilize another metric, joint accuracy, which considers a
knowledge point as mastered if all the related samples are predicted correctly:

ajoint =
1

n

n∑
j=1

m∏
i=1

Score(M,Sji ) (10)

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Datasets Introduction To validate the effectiveness of our proposed framework PretexEval, we
conduct a systematic evaluation on LLMs’ medical knowledge mastery with PretexEval using two
knowledge bases: a biomedical knowledge base MedLAMA (Meng et al., 2022) and a clinical
knowledge base DiseK (Zhou et al., 2024). MedLAMA is a large-scale biomedical knowledge
base consisting of 39,053 knowledge triplets that encompass 19 relations among medical entities
such as diseases, genes, cells, and tissues, all meticulously selected from the UMLS Metathesaurus
(Bodenreider, 2004) to ensure high quality. DiseK is a clinical knowledge base that contains 24,413
triplets, covering 1,000 high-frequency diseases across four key relations related to disease diagnosis
and treatment. Mastering the knowledge contained within these databases is essential for LLMs to
be effectively applied in real medical scenarios. It is important to highlight that our framework can
also be applied to other medical knowledge bases with minimal adjustments to evaluate medical
knowledge of other types (e.g., drug-related knowledge); we consider this as future work.

Considering computational costs and dataset size, we select a subset from each dataset for evalua-
tion. Specifically, we randomly select a single entity from the corresponding tail entities for each
pair of a head entity and a relation. This approach aims to reduce the evaluation scale while max-
imizing the diversity of the evaluated knowledge. We also excluded two relations in MedLAMA,
which are the inversion of the other two relations in MedLAMA. Furthermore, for each head-relation
pair (h, r), we randomly sample a negative entity c that satisfies ¬R(h, c) to create a negative triplet
(h, r, c). Test samples generated from this negative triplet possess a similar structure to those gen-
erated from the positive triplet but with opposite labels. By introducing negative triplets, we can
further evaluate the ability of LLMs to discern non-knowledge, which is also essential for practical
application. Appendix A provides detailed statistics of knowledge bases and relation types within.
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Model MedLAMA DiseK
Direct LLMEval PretexEval Direct LLMEval PretexEval

Llama2-7B +6.4 +8.3↑29.7% +3.1↓52.3% +11.7 +2.7↓76.6% +2.8↓76.3%
Vicuna-7B +26.4 +18.0↓31.7% +7.5↓71.5% +9.9 +10.9↑9.7% +3.9↓60.5%
Vicuna-13B +27.0 +19.3↓28.5% +10.7↓60.5% +12.5 +7.4↓40.2% +5.7↓53.9%
Gemma-7B +23.3 +11.1↓52.3% +9.4↓59.5% +9.0 +4.8↓46.5% +5.0↓45.0%
Llama3-8B +28.5 +19.1↓33.1% +16.6↓41.8% +17.9 +15.3↓14.3% +9.3↓48.3%
Llama2-70B +32.0 +19.2↓39.9% +13.8↓56.9% +20.5 +17.3↓15.7% +9.0↓56.0%
ClinicalCamel-70B +34.8 +23.7↓31.9% +21.9↓37.2% +24.5 +20.6↓15.7% +16.1↓34.4%
Meditron-70B +29.4 +20.0↓32.1% +14.7↓49.8% +21.1 +12.8↓39.4% +10.2↓51.5%
Med42-70B +31.8 +19.3↓39.3% +20.0↓37.1% +23.3 +19.1↓18.1% +14.8↓36.6%
Llama3-70B +36.6 +26.9↓26.5% +26.9↓26.6% +29.7 +28.2↓5.1% +20.9↓29.7%
GPT-3.5-turbo +32.1 +26.7↓16.9% +16.2↓49.7% +23.5 +17.6↓25.4% +10.3↓56.4%
GPT-4o∗ +35.8 +34.0↓4.9% +31.7↓11.5% +31.3 +29.9↓4.3% +26.7↓14.5%

Table 1: Performance (average accuracy) of LLMs evaluated on datasets directly generated by
template paraphrasing (Direct), datasets directly generated by LLM (LLMEval), and datasets gen-
erated by our framework (PretexEval). We report the gain relative to random guessing (50%) and
the relative performance degradation compared to the Direct results. Bold: Best performance under
the same evaluation method; Underline: LLM achieved the lowest performance on this evaluation
method. ∗GPT-4 is evaluated on sampled subsets for cost considerations.

Method Setting To ensure the diversity of evaluation, we combined the three types of predicate
transformation and generated m = 8 expressions (variants) for each knowledge point, including
the original expression. We crafted a prototype for each combination of relation and predicate
transformation type to generate test samples. Moreover, we utilize Llama3-70B-Instruct (AI@Meta,
2024) to rephrase the instantiated prototypes because of its strong performance. We have also tried
other rephrasing LLMs and obtained similar evaluation results (see Appendix B). More details of
the predicate transformation, prototypes, and the prompt format are provided in Appendix C.

For LLM evaluation, we employ the popular 5-shot in-context learning setting (Brown et al., 2020),
where five examples are presented before the test sample, guiding LLMs to produce answers in con-
sistent format with the provided examples. We calculate the average and joint accuracies (introduced
in Sec 3.2.3) for each LLM. Appendix D provides more details, including the prompt format.

Baselines We initially compare our method with the method that directly generates test samples
by paraphrasing the knowledge with templates (denoted as Direct). We also implemented a dynamic
evaluation baseline (named as LLMEval) that directly generates test samples from triplets using
an LLM. Specifically, we prompt Llama3-70B-Instruct2 to generate m = 8 statements, presenting
the given triplet in different ways. We carefully crafted the prompt to ensure maximum diversity in
generated samples. Appendix E provides more details of these two baselines.

Evaluated LLMs In our study, we evaluate 12 well-known LLMs: (1) general LLMs: Gemma-7B
(Team et al., 2024), Llama2 (7B,70B) (Touvron et al., 2023), Llama3 (8B,70B) (AI@Meta, 2024),
Vicuna (7B,13B) (Zheng et al., 2023), GPT-3.5-turbo (Ouyang et al., 2022), and the latest GPT-4o
(OpenAI, 2024); (2) medical-specific LLMs: ClinicalCamel-70B (Toma et al., 2023), Meditron-70B
(Chen et al., 2023) and Med42-70B (Christophe et al., 2023). For cost considerations, we evaluate
GPT-4 on a sampled subset containing 200 knowledge triplets for each dataset.

4.2 RESULTS

4.2.1 COMPARISON STUDY

We first conduct a comparison study across different evaluation methods and LLMs. Table 1 lists
LLMs’ performance (average accuracy) on the MedLAMA and DiseK knowledge bases evaluated
by different methods. We also conduct a fine-grained analysis on LLMs performance across knowl-
edge types, which is provided in Appendix F due to the space limit. The results demonstrate that all

2We choose the same LLM utilized in our framework to make a fair comparison.
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Figure 4: Performance (joint accuracy) of 7 typical LLMs evaluated by increasing the number of
expressions per knowledge point. Top: overall performance trend averaged across LLMs; bottom:
detailed performance for each LLM. To eliminate the impact of sample addition orders, we enumer-
ate all possible orders and averaged the results, where the value at x = i corresponds to the expected
joint accuracy evaluated with any i samples.

evaluated LLMs achieve much lower performance on datasets generated by PretexEval compared to
the original datasets. This suggests that dynamically generating multiple samples for each knowl-
edge point can significantly enhance the comprehensiveness of evaluation. Moreover, compared
to datasets directly generated by an LLM (LLMEval), almost all LLMs achieve lower performance
on datasets created by PretexEval, with some models (e.g., Llama2-7B and Llama2-70B) experienc-
ing over 50% degradation. These findings suggest that PretexEval is capable of generating test
samples that are more diverse than those directly generated by LLMs.

Among all the evaluated LLMs, GPT-4o outperforms the others across almost all datasets and eval-
uation methods, achieving performance gains (relative to random guessing (50%)) of 31.7 and 26.7
evaluated by PretexEval. On open-sourced LLMs, Llama3-70B and Llama3-8B performs best on
PretexEval-generated datasets compared to LLMs with similar parameter scales. It is worth not-
ing that Llama3-8B even slightly surpassing the 10x larger Llama2-70B. These results indicate
that Llama3 model series encodes significantly more medical knowledge than other evaluated
LLMs. Additionally, while some medical-specific LLMs (ClinicalCamel, Med42) perform simi-
larly to their backbone model (Llama2-70B) on original datasets, they notably outperform the latter
by around 7% on PretexEval-generated datasets. This suggests that training on medical corpora
can notably improve the depth of medical knowledge mastery.

We also study the joint accuracies of LLMs evaluated by increasing numbers of expressions per
knowledge point. The results of seven typical LLMs are illustrated in Figure 4, with the full results
provided in Appendix G.1. We observe that the results from LLMEval and PretexEval are quite
close when using a single sample for evaluation. However, as the number of test samples increases,
the difference between the results from the two methods grows notably larger. This phenomenon
indicates that current LLMs generally exhibit significant lower consistency when confronted
with structurally diverse test samples generated by our method compared to samples directly
generated by LLMs. Moreover, as the number of expressions increases, GPT-4o and Llama3-70B

7
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Knowledge Base Method ClinCamel-70B Llama3-70B GPT-4o

MedLAMA
PretexEval (Ours) +21.9 +26.9 +31.7
w/o Predicate Transformation +30.6 +33.0 +36.0
w/o LLM Rephrasing +22.8 +30.4 +33.8

DiseK
PretexEval (Ours) +16.1 +20.9 +26.7
w/o Predicate Transformation +23.1 +27.8 +29.3
w/o LLM Rephrasing +18.0 +24.0 +30.4

Table 2: Ablation results of three typical LLMs for key components of the proposed PretexE-
val framework. Predicate Transformation: the predicate equivalent transformation module; LLM
Rephrasing: the LLM rephrasing module in the prototype-based generation module.

Knowledge Base Transformation Type ClinCamel-70B Llama3-70B GPT-4o

MedLAMA

Direct +30.6 +33.0 +36.0
+Inversion +30.3 +31.8 +34.3
+Inversion+Double Negation +23.2 +28.6 +33.6
+All +14.7 +26.9 +31.7

DiseK

Direct +23.1 +27.8 +29.3
+Inversion +22.4 +27.5 +29.8
+Inversion+Double Negation +17.9 +22.3 +26.8
+All +16.1 +20.9 +26.7

Table 3: Ablation results of three typical LLMs for different predicate transformations in PretexEval.
Each row represents a cumulative experiment, adding one transformation type at a time, with “All”
indicating the combination of instantiation, inversion, and double negation.

exhibits a slower decline in performance compared to other LLMs, indicating a more consistent
understanding of diverse expression structures from the same knowledge points. Nevertheless, there
is still room for improvement in current LLMs’ mastery of medical knowledge.

4.2.2 EFFECTIVENESS ANALYSIS

Effect of framework components First, we conduct an ablation study to analyze the contribution
of each component in our proposed framework. Table 2 presents the ablation results of three typical
LLMs, and the full results are listed in Appendix G.2. Here, we focus on the predicate equivalent
transformation and the LLM rephrasing process in the prototype-based generation module that are
designed to increase the diversity of test samples. We observe that removing these two modules
results in higher evaluation performance, especially when the predicate equivalent transformation
module was removed (around 7% on Llama3-70B). These results indicate that the predicate equiv-
alent transformation contributes most to the evaluation diversity in the proposed framework.

Effect of Predicate Transformation Types We further conduct a fine-grained analysis of the
predicate transformation types applied in our framework, with results presented in Table 3. Exper-
imental results show that LLM performance continually declines as more predicate transformation
types are added, indicating their effectiveness. Furthermore, the inclusion of double negation (+DN)
leads to a more significant performance degradation (around 5%) than other implication types. This
suggests that current LLMs exhibit relatively less proficiency in understanding negated expres-
sions compared to instantiated and inverted statements of medical knowledge.

Reliability & Diversity of Generated Samples We further conduct a human analysis to investi-
gate the reliability and diversity of samples generated by different methods. Specifically, we ran-
domly sample 50 knowledge triplets from MedLAMA and have three experienced doctors to score
the test samples regarding their lexical diversity, structural diversity, and reliability by comparing
with the original knowledge triplet. The analysis results and examples in different grades are illus-
trated in Figure 5, with more details (scoring criteria) of this analysis provided in Appendix H. We
observe that, before the rephrasing process, the prototype samples generated by PretexEval exhibit
high structural diversity and reliability but have lower lexical diversity compared to other methods.
Although the samples generated by LLMEval achieve relatively high lexical diversity, they signifi-
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Figure 5: Left: Results of the human analysis on the reliability and diversity (lexical, structural) of
samples generated by different methods; Right: Text examples in different grades of diversity.

cantly lack structural diversity and are also less reliable than the prototype samples. After rephras-
ing, the PretexEval-generated samples maintain high structural diversity and reliability, while also
achieving much higher lexical diversity. Our findings indicate that the proposed PretexEval method
is capable of generating reliable and diverse test samples based on knowledge bases.

Figure 6: A case of evaluating LLMs using PretexEval compared with the LLMEval method.

4.2.3 CASE STUDY

We also conduct a case study on our evaluation. Figure 6 illustrates the text samples generated by
PretexEval in comparison with those generated by the LLMEval method, along with the LLMs’
responses. The case shows that the proposed PretexEval framework generates test samples that are
much diverse than those directly generated by LLMs, enabling a more comprehensive evaluation.

4.2.4 GENERALIZABILITY STUDY

Scalability Across Evaluation Tasks To validate the scalability of PretexEval for different types
of evaluation tasks, we also generated multiple-choice questions (which is widely adopted in cur-
rent benchmarks) using PretexEval for evaluation. The experimental results (Figure 7) show trends
similar to those observed in the statement verification evaluation, demonstrating that PretexEval can
integrate with various task types to accurately evaluate LLMs’ medical knowledge mastery.

Applicability for Model Training Finally, we conducted a preliminary study to explore the po-
tential of improving LLMs’ medical knowledge mastery through training on PretexEval-generated
samples. Here, we mainly focus on two research questions: RQ1: Can training on PretexEval-
generated samples improve LLMs’ understanding of knowledge outside the training set? RQ2: Can
training on a few types of PretexEval-generated samples improve LLMs’ understanding of other
unseen expressions? For RQ1, we selected 200 knowledge triples as the training set and another
200 triples as the test set. We finetuned Llama3-8B using all PretexEval-generated samples derived
from the training set, and apply PretexEval for evaluation on the test set. Experimental results in
Figure 8a show that training on PretexEval-generated samples could significantly improve models’
performance (∼20%) on all types of expressions derived from knowledge outside the training set.
For RQ2, we randomly selected 4 out of 8 types of PretexEval-generated expressions for training,
and apply the rest 4 types for evaluation. Figure 8b demonstrates that training on a few types of
PretexEval-generated samples could largely improve LLMs’ performance (∼30%) on all of the un-
seen expressions. These results suggest that training with PretexEval-generated samples may help

9
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Figure 7: Performance (joint accuracy) of 7 typical LLMs evaluated using 4-option multiple-
choice questions. Left: averaged performance trend; Right: detailed performance for each LLM.

Figure 8: Comparison of LLMs before/after trained on PretexEval-generated samples. Left: perfor-
mance on knowledge outside the training set; Right: performance on unseen expressions.

to enhance LLMs’ consistency in mastering medical knowledge. More details of this study are
provided in Appendix I.

5 CONCLUSION AND DISCUSSION

In this paper, we propose PretexEval, a novel evaluation framework that dynamically generates
reliable and diverse test samples based on medical knowledge bases to probe LLMs’ mastery of
medical factual knowledge. The proposed framework is highly generalizable and can be applied to
any medical knowledge base with minor adjustments. We validated the effectiveness of PretexEval
by conducted a systematic evaluation based on two medical knowledge bases. The experimental
results show that the performance of current LLMs evaluated by the proposed framework is much
worse than their performance on public medical benchmarks. Furthermore, these LLMs exhibit in-
consistency in understanding diverse expressions derived from the same medical knowledge point.
These findings suggest that current LLMs have not fully mastered medical knowledge, which may
be one of the potential reasons for their insufficient performance on real-world medical scenarios.
We further explored the scalability of PretexEval across various evaluation tasks and its potential
use for model training. Although PretexEval could facilitate research on medical LLMs, it also has
the following limitations: (1) while PretexEval can be incorporated with different tasks to evaluate
LLMs’ medical capabilities, it may not well-suited to integrate with some particularly complex med-
ical tasks, such as clinical diagnosis; (2) while the LLM rephrasing module in PretexEval effectively
improves the readability of generated samples, it may also potentially introduce some uncertainty.
We plan to further expand our evaluation framework in the future to address these limitations.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan, Jyoti Aneja, Ahmed Awadallah, Hany
Awadalla, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harkirat Behl, et al. Phi-3 technical re-
port: A highly capable language model locally on your phone. arXiv preprint arXiv:2404.14219,
2024.

AI@Meta. Llama 3 model card. 2024. URL https://github.com/meta-llama/
llama3/blob/main/MODEL_CARD.md.

Olivier Bodenreider. The unified medical language system (umls): integrating biomedical terminol-
ogy. Nucleic acids research, 32(suppl 1):D267–D270, 2004.

Daniil A Boiko, Robert MacKnight, Ben Kline, and Gabe Gomes. Autonomous chemical research
with large language models. Nature, 624(7992):570–578, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Zeming Chen, Alejandro Hernández Cano, Angelika Romanou, Antoine Bonnet, Kyle Matoba,
Francesco Salvi, Matteo Pagliardini, Simin Fan, Andreas Köpf, Amirkeivan Mohtashami,
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A DETAILS OF DATASETS

We validate the proposed framework on two datasets: a biomedical evaluation benchmark, Med-
LAMA, and a disease-centric clinical knowledge base, DiseK. Given the large scale of these datasets,
we sample a subset of knowledge points from each by selecting a single tail entity for each 1-to-N
relation. Additionally, we sample negative triplets to increase the evaluation difficulty. Table 4 and
5 list the relation types involved in the sampled datasets. The sampled MedLAMA dataset includes
1,000 positive triplets and 1,000 negative triplets for each relation, while the detailed statistics for
DiseK are presented in Table 6.

Relation Type Description

associated morphology of A particular morphology (structural feature or form) is associ-
ated with another concept, often a disease.

disease has abnormal cell A disease is characterized by the presence of abnormal cells.
disease has associated
anatomic site A disease occurs or has an impact at an anatomic site.

disease has normal cell ori-
gin A disease originates from a type of normal cell.

disease has normal tissue
origin A disease originates from a type of normal tissue.

disease mapped to gene A gene is associated with a specific disease.
disease may have associated
disease A disease may be associated with another disease.

disease may have finding A possible clinical finding or symptom is observed in a disease.
disease may have molecular
abnormality A potential molecular abnormalities may be present in a disease.

gene encodes gene product A particular gene encodes a specific gene product, such as pro-
tein.

gene product has associated
anatomy A gene product is associated to an anatomical structure.

gene product has biochemi-
cal function A gene product is associated to a biochemical function.

gene product plays role in
biological process A gene product plays a role in a biological process.

has physiologic effect A substance or process has a physiological effect on the body.
may prevent A substance may prevent a disease.
may treat A substance may treat a disease.
occurs after A event or condition occurs after another.

Table 4: Relation types in the MedLAMA dataset that involve in our study.

Relation Type Description
Symptoms Physical or mental feature that indicates the presence of the disease.
Affected sites Specific parts of the body that are impacted or harmed by the disease.

Therapeutic Drugs Pharmaceutical substances prescribed to manage, alleviate, or cure the
symptoms and effects of the disease.

Surgical Procedures Medical procedures that treat the disease, involving the cutting, repair-
ing, or removal of body parts.

Table 5: Relation types involved in the DiseK dataset.
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Relation Type # Positive # Negative
#Symptoms 987 987
#Affected Sites 745 745
#Therapeutic Drugs 836 836
#Surgical Procedures 599 599

Table 6: Statistics of the sampled DiseK dataset. # Positive: the number of positive triplets extracted
from DiseK. # Negative: the number of negative triplets sampled from DiseK.

Dataset MedLAMA DiseK
Type Biomedical Clinical
# Rel Types 17 4
# Triplets 34,000 6,348

Table 7: Statistics of the sampled datasets.

B EFFECT OF REPHRASING LLM SELECTION

We have also leveraged Phi-3-medium-4k-instruct (Abdin et al., 2024) as the rephrasing model in
our prototype-based sample generation module to study the effect of rephrasing LLM selection on
the evaluation results. The evaluation results in Table 8 show that LLMs generally achieve similar
performance on datasets generated based on different rephrasing LLMs, indicating that the effect of
rephrasing LLM selection is minimal to the final evaluation results.

Model MedLAMA DiseK
Llama-3 Reph Phi-3 Reph Llama-3 Reph Phi-3 Reph

Llama2-7B +3.1 +2.9 +2.8 +2.3
Vicuna-7B +7.5 +6.3 +3.9 +3.5
Vicuna-13B +10.7 +9.8 +5.7 +5.3
Gemma-7B +9.4 +9.1 +5.0 +5.3
Llama3-8B +16.6 +16.4 +9.3 +9.3
Llama2-70B +13.8 +13.3 +9.0 +7.0
Clinicalcamel-70B +21.9 +22.4 +16.1 +14.6
Meditron-70B +14,7 +15.8 +10.2 +8.2
Med42-70B +20.0 +20.4 +14.8 +13.9
Llama3-70B +26.9 +27.4 +20.9 +19.3
GPT-3.5-turbo +16.2 +17.9 +10.3 +8.2
GPT-4 +31.7 +32.3 +26.7 +26.1

Table 8: Performance of LLMs on datasets generated by PretexEval using different rephrasing
LLMs.

C DETAILS OF METHOD SETTING

Details of Predicate Equivalent Transformation An example of the predicate equivalent trans-
formation procedure applied in this study is illustrated in Figure 9. First, the inversion operation is
applied to the original expression to create a new expression. Subsequently, these two expressions
are instantiated into two additional expressions. Finally, double negation is used to generate four
more expressions.

Details of Prototypes-based Generation As introduced before, we designed a prototype-based
sample generation strategy to ensure the reliability of the generated samples and crafted a proto-
type for each combination of relation type and predicate transformation type by discussing with
clinicians. We list all the crafted prototypes in Table 9, 10, and 11 for reproducing our experiments.

For LLM rephrasing, we prompt the Llama3-70B-Instruct model with the following instruction:
“Please paraphrase the following statement to present the same concept in a different way. DO NOT
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Figure 9: An example of the predicate equivalent transformation procedure implemented in this
study.

change the basic sentence structure. Directly output the paraphrased statement without other text.
Statement: [prototype]”. In our experiments, we found that statements rephrased using this method
effectively preserve the original meaning of the prototypes.

D DETAILS OF EVALUATION SETTING

In our implementation, for the statement verification task, we form test samples based on the follow-
ing format: “[Statement], is the statement above true or false? Please answer True or False.” For
4-option multiple-choice questions, we first mask the tail entity in the statement to create a masked
version and then generate questions in the following format, requiring the LLM to select the correct
tail entity from four options to fill in the blank:“ [Masked statement]. Which of the following options
is most likely to fill in the blank above? Options: [Options].” Negative options are generated by ran-
domly sampling negative entities of the same type as the tail entity from the medical knowledge
base. For double-negation-type statements, we modify the prompt to require the LLM to select the
least likely option.

Figure 10: An example of the five-shot in-context learning process applied in our evaluation.

Regarding the five-shot setting, we randomly select five question-answer pairs for each combina-
tion of relation and predicate transformation type to create demonstrative examples, as depicted in
Figure 10. Complex prompting strategies such as chain-of-thought are not applied in our study, as
the evaluation statements are crafted to be straightforward and easily understandable, allowing for
verification without the need for complex logical reasoning. In the inference process, we use greedy
search for most of LLMs. However, commercial LLMs like GPT-3.5-turbo do not support greedy
search, and we use their default generation setting to make a relative fair comparison across LLMs.
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We extract the prediction from models’ response based on keywords since the words/phrases used
to express True and False are limited. We listed all of the keywords applied to recognize answers in
Table 12.

E DETAILS OF BASELINES

The “Direct” baseline directly generates a statement for a knowledge triplet using pre-constructed
template. For example, for for the relation type “may prevent”, the “Direct” baseline first manually
creates a template based on this relation type:

may prevent → [head] may be able to prevent [tail].

Next, for a specific knowledge triplet (Oprelvekin, may prevent, Thrombocytopenia), “Direct” base-
line replaces the head and tail entities in the template with those from the triplet to generate the
textual expression of the knowledge point:

[head] may be able to prevent [tail] → Oprelvekin may be able to prevent Thrombocytopenia.

This template-based paraphrasing approach ensures the reliability of the generated knowledge rep-
resentations. However, since each generation uses a fixed template, the diversity of the gener-
ated knowledge expressions is limited, making it difficult to achieve a comprehensive evaluation
of LLMs’ medical knowledge mastery.

For LLMEval baseline, we implement this method by directly generating diverse statements using
Llama3-70B-Instruct. Specifically, we prompt the LLM with the following instruction: “Based on
the given knowledge triplet, generate 8 statement to express the underlying knowledge in different
ways. Output one statement per line. Directly output the statements without other text. Knowledge
triplet: [triplet].” To ensure the quality of generated samples, we use the greedy search for the
decoding process. We find that Llama3-70B-Instruct can follow the instruction, generating samples
in separated lines. Compared to the “Direct” baseline, LLMEval generates test samples with much
higher lexical diversity, while it may potentially introduce factual errors into the generated samples.

F PERFORMANCE OF LLMS ACROSS KNOWLEDGE TYPES

We also analysis the fine-grained performance of LLMs across different types of clinical knowledge
stored in DiseK. The analysis results are presented in Table 13. Based on this analysis, we can
draw the following conclusions: (1) GPT-4o outperforms the rest of LLMs on 3 out of 4 types
of clinical knowledge, exhibiting more comprehensive mastery of medical knowledge than other
LLMs; (2) With the same model parameter scale, Llama3-70B achieved the best performance across
all four relation types, possibly due to its significantly large training data volume (7.5 times that of
Llama2-70B); (3) The three medical-specific 70B models (ClinicalCamel, Meditron, Med42) are all
developed based on Llama2-70B through finetuning on medical corpora, and they show a notable
improvement in medical knowledge mastery compared to Llama2-70B. In particular, ClinicalCamel-
70B enhanced accuracy on “Affected Sites” from 72.2 with Llama2-70B to 84.1, while Med42-70B
improved performance on “Surgical Procedures,” raising it from 62.6 with Llama2-70B to 71.7.

G FULL EXPERIMENTAL RESULTS

G.1 JOINT ACCURACY

We illustrate the joint accuracy of all LLMs evaluated by PretexEval and LLMEval in Figure 11 and
12, respectively. The experimental results support our conclusions: the evaluated LLMs generally
perform worse on datasets generated by PretexEval. Moreover, LLMs’ performance decline faster
when evaluated by PretexEval compared with evaluated by LLMEval, indicating that current LLMs
lack consistency in understanding medical knowledge presented in various structures.

G.2 ABLATION STUDY

We present the ablation results of all evaluated LLMs regarding key components and predicate trans-
formation types in Table 14 and 15, respectively. We also conducted an ablation on DiseK regarding
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Figure 11: Performance (joint accuracy) of all LLMs evaluated by the proposed PretexEval frame-
work.

Figure 12: Performance (joint accuracy) of all LLMs evaluated by the LLMEval method.

different transformation types in Table 16 and found that current LLMs generally struggle to handle
the negated expressions. These results are consistent with our findings in the paper, demonstrating
the effectiveness of our framework.
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Relation Type Predicate Transformation Type
None Inv Ins Inv+Ins

associated
morphology
of

[X] is the
associated
morphology
of [Y] .

[Y] is often accom-
panied by the mor-
phology of [X].

If a patient exhibits a mor-
phological change of [X],
then he/she may suffer from
[Y].

If a patient suffers from
[Y], then he/she is exhibit-
ing a morphological change
of [X].

disease has
abnormal cell

[X] has the
abnormal cell
[Y] .

The abnormal cell
type [Y] is detected
within [X].

If a patient suffers from [X],
then he/she has the abnormal
cell [Y].

If a patient has the abnormal
cell [Y], then he/she may
suffer from [X].

disease has
associated
anatomic site

The disease
[X] can stem
from the
associated
anatomic site
[Y] .

Anatomical site [Y]
is associated with the
development of dis-
ease [X].

If a patient suffers from [X],
then he/she has lesions in
[Y].

If a patient has lesions in
[Y], then he/she may suffer
from [X].

disease has
normal cell
origin

The disease
[X] stems
from the
normal cell
[Y] .

Normal cell [Y] is
associaated with the
development of dis-
ease [X].

If a patient suffers from [X],
then he/she has lesions in
[Y].

If a patient has lesions in
[Y], then he/she may suffer
from [X].

disease has
normal tissue
origin

The disease
[X] stems
from the
normal tissue
[Y] .

Normal tissue [Y] is
associated with the
development of dis-
ease [X].

If a patient suffers from [X],
then he/she has lesions in
[Y].

If a patient has lesions in
[Y], then he/she may suffer
from [X].

disease
mapped to
gene

The disease
[X] is mapped
to gene [Y] .

Gene [Y] is associ-
ated with the disease
[X].

If a patient suffers from [X],
then he/she has lesions in
[Y].

If a patient has lesions in
[Y], then he/she may suffer
from [X].

disease may
have associ-
ated disease

The disease
[X] might
have the asso-
ciated disease
[Y] .

The disease [Y]
might have the asso-
ciated disease [X] .

If a patient suffers from [X],
then the likelihood of he/she
suffering from [Y] is higher.

If a patient suffers from [Y],
then the likelihood of he/she
suffering from [X] is higher.

disease may
have finding

[X] may have
[Y] .

[Y] may be associate
with [X]

If a patient suffers from [X],
then he/she has [Y].

If a patient has [Y], then
he/she may suffer from [X].

disease
may have
molecular
abnormality

The disease
[X] may have
molecular
abnormality
[Y] .

Molecular abnormal-
ity [Y] may be asso-
ciated with the dis-
ease [X].

If a patient suffers from [X],
then he/she may has molec-
ular abnormality [Y].

If a patient has molecular
abnormality [Y], then he/she
may suffer from [X].

gene encodes
gene product

The gene [X]
encodes gene
product [Y] .

The gene product [Y]
is encoded by the
gene [X].

If the expression level of [X]
decreases, it may lead to a
reduction in the production
or activity of [Y].

If the production or activ-
ity of [Y] decreases, it may
caused by the reduction in
the expression level of [X].

gene product
has associated
anatomy

The gene
product
[X] has the
associated
anatomy [Y] .

The anatomy [Y] is
associated with the
gene product [X].

The gene product [X] plays
a role in anatomy [Y].

Anatomy [Y] is where [X]
functions.

gene product
has biochemi-
cal function

[X] has bio-
chemical
function [Y] .

[Y] is a biochemical
function of [X].

If the production of [X] de-
creases, the functionality of
[Y] may decrease.

If the functionality of [Y]
decreases, it may caused by
the reduction in the produc-
tion of [X].

gene product
plays role
in biological
process

The gene
product [X]
plays a role
in biological
process [Y] .

Biological process
[Y] is associated
with the gene prod-
uct [X]

If the production of [X] de-
creases, the process of [Y]
may be influenced.

If [Y] is affected, it may
caused by the reduction in
the production of [X].

has physio-
logic effect

[X] has phys-
iologic effect
of [Y] .

[Y] can be caused by
[X].

If a patient takes [X], he/she
may have physiologic effect
of [Y] .

If a patient has physiologic
effect of [Y], he/she may
have taken [X].

may prevent
[X] may be
able to pre-
vent [Y] .

[Y] may be prevented
by [X]

If a patient takes [X], he/she
can prevent [Y].

If a patient wishes to prevent
[Y], he/she should take [X].

may treat [X] might
treat [Y] .

[Y] may be treated by
[X]

If a patient takes [X], he/she
can treat [Y].

If a patient suffers from [Y],
he/she should take [X].

occurs after [X] occurs af-
ter [Y] .

[Y] may occur before
[X].

If a patient occurs [X],
he/she may occur [Y] be-
fore.

If a patient occurs [Y],
he/she may occur [X] after-
wards.

Table 9: Prototypes crafted for the MedLAMA dataset (1/2). Inv: inversion; Ins: instantiation.
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Relation Type Predicate Transformation Type
DN Inv+DN Ins+DN Inv+Ins+DN

associated mor-
phology of

[X] is not the
associated mor-
phology of [Y].

[Y] is not accompanied
by the morphology of
[X].

A patient that exhibits a mor-
phological change of [X] does
not suffer from [Y].

A patient that suffers from [Y]
does not exhibit a morphologi-
cal change of [X].

disease has ab-
normal cell

[X] does not
has the abnor-
mal cell [Y].

The abnormal cell type
[Y] is not detected
within [X].

A patient that suffers from [X]
does not have the abnormal cell
[Y].

A patient that has the abnormal
cell [Y] does not suffer from
[X].

disease has
associated
anatomic site

The disease
[X] is not stem
from the asso-
ciated anatomic
site [Y].

Anatomical site [Y] is
not associated with the
development of disease
[X].

A patient that suffers from [X]
does not have lesions in [Y].

A patient that has lesions in [Y]
does not suffer from [X].

disease has nor-
mal cell origin

The disease [X]
does not stem
from the nor-
mal cell [Y].

Normal cell [Y] is not
associaated with the de-
velopment of disease
[X].

A patient that suffers from [X]
does not have lesions in [Y].

A patient that has lesions in [Y]
does not suffer from [X].

disease has nor-
mal tissue ori-
gin

The disease
[X] is not stem
from the nor-
mal tissue [Y].

Normal tissue [Y] is
not associated with the
development of disease
[X].

A patient that suffers from [X]
does not have lesions in [Y].

A patient that has lesions in [Y]
does not suffer from [X].

disease mapped
to gene

The disease [X]
is not mapped
to the gene [Y].

Gene [Y] is not asso-
ciated with the disease
[X].

A patient that suffers from [X]
does not have lesions in [Y].

A patient that has lesions in [Y]
does not suffer from [X].

disease may
have associated
disease

The disease [X]
is not associ-
ated with dis-
ease [Y] .

The disease [Y] is not
associated with disease
[X] .

If a patient suffers from [X],
then the likelihood of he/she
suffering from [Y] is not higher.

If a patient suffers from [Y],
then the likelihood of he/she
suffering from [X] is not higher.

disease may
have finding

[X] does not
have [Y] .

[Y] is not associated
with [X]

A patient that suffers from [X]
does not have [Y].

A patient that has [Y] does not
suffer from [X].

disease may
have molecular
abnormality

The disease
[X] does not
have molecular
abnormality
[Y] .

Molecular abnormality
[Y] is not associated
with the disease [X].

A patient that suffers from [X]
does not have molecular abnor-
mality [Y].

A patient that has molecular ab-
normality [Y] does not suffer
from [X].

gene encodes
gene product

The gene
[X] does not
encode gene
product [Y] .

The gene product [Y] is
not encoded by the gene
[X]

A decrease in the expression
level of [X] does not affect the
production and activity of [Y].

A decrease in the production or
activity of [Y] is not caused by
the reduction in the expression
level of [X].

gene product
has associated
anatomy

The gene prod-
uct [X] does not
have the asso-
ciated anatomy
[Y] .

The anatomy [Y] is
not associated with the
gene product [X].

The gene product [X] does not
play a role in anatomy [Y].

Anatomy [Y] is not where [X]
functions.

gene product
has biochemi-
cal function

[X] does not
have biochem-
ical function
[Y] .

[Y] is not a biochemical
function of [X].

A decrease in the production of
[X] does not affect the function-
ality of [Y].

A decrease in the functional-
ity of [Y] is not caused by the
reduction in the production of
[X].

gene product
plays role in
biological pro-
cess

The gene prod-
uct [X] does not
play a role in
biological pro-
cess [Y] .

Biological process [Y]
is not associated with
the gene product [X]

A decrease in the production of
[X] does not affect the process
of [Y].

A change of [Y] is not caused
by the reduction in the produc-
tion of [X].

has physiologic
effect

[X] does not
have physio-
logic effect of
[Y] .

[Y] cannot be caused by
[X].

A patient that takes [X] does not
have physiologic effect of [Y] .

A patient that has physiologic
effect of [Y] has not taken [X].

may prevent [X] is not able
to prevent [Y] .

[Y] cannot be prevented
by [X]

Taking [X] have no effect on
preventing [Y].

A patient wishes to prevent [Y]
has no need to take [X].

may treat [X] is not able
to treat [Y] .

[Y] cannot be treated by
[X]

Taking [X] have no effect on
treating [Y].

A patient that suffers from [Y]
has no need to take [X].

occurs after
[X] does not
occur after [Y]
.

[Y] cannot occur before
[X].

A patient occurs [X] will not
occur [Y] before.

A patient occurs [Y] will not
occur [X] afterwards.

Table 10: Prototypes crafted for the MedLAMA dataset (2/2). Inv: inversion; Ins: instantiation; DN:
double negation.
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Implication Type Relation Type
Symptoms Affected Sites Therapeutic Drugs Surgical Procedures

None [Y] is a common
symptom of [X].

[Y] is the affected
site for [X].

[Y] is a common
medication for [X].

[Y] is a common pro-
cedure for [X].

Inv Common symptoms
of [X] include [Y].

Affected sites for [X]
include [Y].

Common medica-
tions for treating [X]
include [Y].

Common procedures
for treating [X] in-
clude [Y].

Ins

If a patient has [X],
they are very likely
to have symptoms of
[Y].

If a patient has [X],
their [Y] site is very
likely to show le-
sions.

If a patient has [X],
[Y] can be used to
treat their condition.

If a patient has [X],
[Y] can be used to
treat their condition.

Inv+Ins

If a patient has symp-
toms of [Y], they are
very likely to have
[X].

If a patient shows le-
sions in their [Y] site,
they are very likely to
have [X].

If [Y] can be used to
treat a patient’s con-
dition, they may have
[X].

If [Y] can be used to
treat a patient’s con-
dition, they may have
[X].

DN [Y] is not a common
symptom of [X].

[Y] is not the affected
site for [X].

[Y] is not a common
medication for [X].

[Y] is not a common
procedure for [X].

Inv+DN
Common symptoms
of [X] do not include
[Y].

Affected sites for [X]
do not include [Y].

Common medica-
tions for treating [X]
do not include [Y].

Common procedures
for treating [X] do
not include [Y].

Ins+DN
Patients with [X]
are unlikely to have
symptoms of [Y].

Patients with [X] are
unlikely to show le-
sions in their [Y] site.

Patients with [X] do
not commonly use
[Y] for treatment.

Patients with [X] do
not commonly use
[Y] for treatment.

Inv+DN
Patients with symp-
toms of [Y] are un-
likely to have [X].

Patients showing le-
sions in their [Y] site
are unlikely to have
[X].

Patients who can be
treated with [Y] are
unlikely to have [X].

Patients who can be
treated with [Y] are
unlikely to have [X].

Table 11: Prototypes crafted for the DiseK dataset. Inv: inversion; Ins: instantiation; DN: double
negation.

Categories Keywords
True True, Entailed, Correct, Yes
False False, Contradicted, Wrong, No

Table 12: The keywords we utilize to extract answers from LLMs’ responses.

Model Symptoms Affected Sites Therapeutic Drugs Surgical Procedures
Llama2-7B +1.9 +10.7 +-0.4 +-1.1
Vicuna-7B +0.2 +8.1 +1.3 +8.6
Vicuna-13B +3.3 +14.2 +1.1 +5.9
Gemma-7B +3.2 +11.2 +0.7 +6.1
Llama3-8B +6.2 +17.4 +3.8 +11.8
Llama2-70B +4.6 +22.2 +0.1 +12.6
ClinicalCamel-70B +9.5 +34.1 +5.1 +19.6
Meditron-70B +6.9 +18.3 +3.0 +15.9
Med42-70B +7.2 +29.9 +5.4 +21.7
Llama3-70B +15.1 +37.7 +11.6 +22.4
GPT-3.5-turbo +5.5 +19.4 +5.6 +13.1
GPT-4o +23.4 +41.5 +20.9 +19.0
Average +7.1 +21.2 +4.8 +12.4

Table 13: Performance of LLMs on the four types of disease-related knowledge contained in the
DiseK knowledge base.
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Model MedLAMA DiseK
PretexEval w/o PreEqTrans w/o LLM Rephrasing PretexEval w/o PreEqTrans w/o LLM Rephrasing

Llama2-7B +3.1 +7.4↑143.9% +1.9↓36.6% +2.8 +7.5↑169.5% +2.6↓7.4%
Vicuna-7B +7.5 +22.1↑193.0% +5.7↓24.2% +3.9 +9.5↑142.5% +2.5↓35.1%
Vicuna-13B +10.7 +20.3↑89.8% +11.0↑3.3% +5.7 +9.2↑60.4% +5.9↑2.7%
Gemma-7B +9.4 +16.2↑72.0% +12.8↑35.6% +5.0 +7.2↑44.6% +6.9↑39.9%
Llama3-8B +16.6 +24.1↑45.5% +18.5↑11.9% +9.3 +18.9↑104.3% +10.2↑9.7%
Llama2-70B +13.8 +28.2↑104.7% +14.6↑5.8% +9.0 +18.4↑103.5% +7.8↓14.1%
ClinicalCamel-70B +21.9 +30.6↑40.2% +22.8↑4.5% +16.1 +23.1↑44.0% +18.0↑12.0%
Meditron-70B +14.7 +25.7↑74.6% +15.8↑7.1% +10.2 +18.1↑77.0% +11.5↑12.7%
Med42-70B +20.0 +28.2↑40.7% +20.4↑1.9% +14.8 +20.4↑38.3% +17.9↑21.0%
GPT-3.5-turbo +16.7 +29.4↑76.0% +17.9↑7.3% +10.3 +17.1↑66.5% +11.8↑15.6%
Llama3-70B +26.9 +33.0↑22.8% +30.4↑13.3% +20.9 +27.8↑33.3% +24.0↑15.1%
GPT-4o +31.7 +36.0↑13.7% +33.8↑6.7% +26.7 +29.2↑9.5% +30.4↑13.8%

Table 14: Ablation results of all evaluated LLMs for key components of the proposed PretexEval
framework. PreEqTrans: Predicate Equivalence Transformation; LLM Rephrasing: Prototype-based
Sample Generation.

Model MedLAMA DiseK
None +Inv +DN+Inv +All Origin +Inv +DN+Inv +All

Llama2-7B +7.4 +7.1↓5.0% +3.6↓51.8% +3.1↓59.0% +7.5 +7.9↑4.8% +3.9↓48.5% +2.8↓62.9%
Vicuna-7B +22.1 +21.8↓1.0% +8.2↓62.9% +7.5↓65.9% +9.5 +11.4↑20.3% +4.7↓50.2% +3.9↓58.8%
Vicuna-13B +20.3 +19.9↓1.9% +11.6↓43.0% +10.7↓47.3% +9.2 +10.0↑9.0% +5.8↓37.3% +5.7↓37.7%
Gemma-7B +16.2 +15.9↓2.1% +10.8↓33.5% +9.4↓41.9% +7.2 +10.4↑44.6% +5.2↓27.6% +5.0↓30.9%
Llama3-8B +24.1 +23.3↓3.2% +18.5↓23.2% +16.6↓31.3% +18.9 +18.6↓1.8% +10.1↓46.7% +9.3↓51.1%
Llama2-70B +28.2 +27.4↓2.9% +15.8↓43.8% +13.8↓51.2% +18.4 +18.8↑2.1% +9.7↓47.1% +9.0↓50.9%
ClinicalCamel-70B +30.6 +30.3↓1.1% +23.2↓24.2% +21.9↓28.7% +23.1 +22.4↓3.1% +17.9↓22.5% +16.1↓30.5%
Meditron-70B +25.7 +25.4↓1.2% +15.8↓38.6% +14.7↓42.7% +18.1 +19.5↑7.8% +11.1↓38.9% +10.2↓43.5%
Med42-70B +28.2 +27.9↓1.1% +21.9↓22.3% +20.0↓28.9% +20.4 +20.2↓1.1% +15.7↓23.1% +14.8↓27.7%
GPT-3.5-turbo +29.4 +27.6↓6.3% +18.2↓38.0% +16.7↓43.2% +17.1 +18.1↑6.1% +9.6↓43.8% +10.3↓39.9%
Llama3-70B +33.0 +31.8↓3.6% +28.6↓13.2% +26.9↓18.6% +27.8 +27.5↓1.4% +22.3↓19.8% +20.9↓25.0%
GPT-4o +36.0 +34.2↓4.9% +33.6↓6.8% +31.7↓12.1% +29.2 +29.8↑1.7% +26.8↓8.3% +26.7↓8.7%

Table 15: Ablation results of all evaluated LLMs for types of predicate transformation in the pro-
posed framework.

Model Direct +Double Negation +Inversion +Instantiation
Llama2-7B +7.5 +4.3 +7.9 +6.2
Vicuna-7B +9.5 +4.0 +11.4 +10.3
Vicuna-13B +9.2 +3.8 +10.0 +10.2
Gemma-7B +7.2 +3.6 +10.4 +7.8
Llama3-8B +18.9 +10.9 +18.6 +18.8
Llama2-70B +18.4 +11.0 +18.8 +19.6
ClinicalCamel-70B +23.1 +18.9 +22.4 +23.8
Meditron-70B +18.1 +10.2 +19.5 +17.9
Med42-70B +20.4 +14.1 +20.2 +22.0
Llama3-70B +27.8 +22.3 +27.5 +29.4
GPT-3.5-turbo +17.1 +9.0 +18.1 +19.6
GPT-4o +29.3 +25.8 +29.8 +30.8

Table 16: Ablation results of different types of transformation on the evaluated LLMs.
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H DETAILS OF HUMAN ANALYSIS ON GENERATED SAMPLE QUALITY

We conduct a human analysis on the quality of generated samples, regarding the reliability, lexical
diversity, and structural diversity. As mentioned above, we randomly sampled 50 knowledge triplets
from MedLAMA and collect the corresponding test samples generated by LLMEval and PretexEval
before/after rephrasing. We then engaged three experienced doctors (all holding medical licenses,
with two having 3–6 years of experience and one senior doctor with 8 years of experience) to grade
the test samples based on the following criteria:

1. Reliability:
• 0 (Poor): Many inaccuracies are present, leading to significant misunderstandings or

misinterpretations of the knowledge presented.
• 3 (Good): Most information is correct, but minor inaccuracies or ambiguities are

present that do not affect the overall meaning.
• 5 (Excellent): All information presented is factually correct, with clear and precise

explanations. No errors or ambiguities are detected.
2. Lexical Diversity:

• 0 (Poor): The text shows very limited vocabulary diversity compared to the original
knowledge triplet.

• 3 (Good): There is a moderate variety of vocabulary compared to the original in the
non-medical lexicon, while the medical terms remaining unchanged.

• 5 (Excellent): The text uses diverse vocabulary compared to the original knowledge
triplet, including both medical terms and non-medical lexicon.

3. Structural Diversity:
• 0 (Poor): The sentence structure remains unchanged, fully replicating the original

order of the knowledge triplet.
• 3 (Good): The sentence structure has been slightly adjusted, such as by changing word

order or modifying certain phrase combinations, while the main grammatical structure
remains unchanged.

• 5 (Excellent): The sentence structure has been thoroughly reconstructed, significantly
altering the way information is presented, while conveying the same content with a
completely new syntax and grammatical logic.

For each test sample, the doctors are presented with the original knowledge triplet for reference
(see Figure 13). We hide the source of each text sample to ensure the fairness of the evaluation.
Finally, we average the scores of samples generated by the same method to derive the final scores.
We also measured the inter-annotator agreement coefficient across the three doctors on the three

Figure 13: A grading sample presented to human doctors.

evaluation dimensions. Specifically, we leverage the Intraclass Correlation Coefficient (ICC) as
the consistency metric, where an ICC ¿ 0.9 indicates excellent agreement). The measurement results
in Table 17 show that the three doctors achieved excellent consistency scores across all evaluation
dimensions, indicating that our manual validation process is highly robust.
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Dimensions Inter-annotator Agreement Coefficient (ICC2k) Confidence Interval (95%)
Reliability 0.912 [0.88, 0.93]
Lexical Diversity 0.938 [0.92,0.95]
Structural Diversity 0.956 [0.94,0.97]

Table 17: Inter-annotator agreement metrics (ICC2k) of the human validation conducted in this
study.

I APPLICABILITY OF PRETEXEVAL FOR MODEL TRAINING

In out study, we have conducted a preliminary study to explore the potential of training with
PretexEval-generated samples. For this study, we selected LLaMA3-8B as the backbone model,
applying LoRA finetuning (Hu et al., 2022) as the training method. We apply a grid search on the
learning rate {1e-4, 5e-5, 2e-5} and batch size {4, 8, 16} to find the best hyperparameters. We train
each model for 10 epochs. This study aims to investigate two research questions:

• RQ1: Can training on PretexEval-generated samples improve LLMs’ understanding of
knowledge outside the training set?

• RQ2: Can training on a few types of PretexEval-generated samples improve LLMs’ under-
standing of other unseen expressions?

For RQ1, we selected 200 knowledge triples as the training set and an additional 200 triples as the
training set. We use all the 8 types of expressions generated by PretexEval for training. We apply
PretexEval on the test set for evaluation. For RQ2, we select four types (Direct, Double Negation
(DN), Inversion (Inv), Instantiation (Inst)) for training and utilize the remaining four types of ex-
pressions for evaluation. We use triplets from the test set of RQ1 for this study. Our experiments
demonstrate that training on PretexEval-generated samples could potentially improve LLMs’ un-
derstanding of knowledge outside the training set and their understanding of unseen expressions as
well. This suggests the potential of leveraging PretexEval-generated samples as effective resources
for training.

While the results of this preliminary study show promise in enhancing LLMs’ medical knowledge
consistency, future work is needed to make this approach practical. We leave this for future work.
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