
UNION: Unsupervised 3D Object Detection
using Object Appearance-based Pseudo-Classes

Ted Lentsch Holger Caesar Dariu M. Gavrila
Department of Cognitive Robotics

Delft University of Technology

Abstract

Unsupervised 3D object detection methods have emerged to leverage vast amounts
of data without requiring manual labels for training. Recent approaches rely on
dynamic objects for learning to detect mobile objects but penalize the detections of
static instances during training. Multiple rounds of (self) training are used to add
detected static instances to the set of training targets; this procedure to improve
performance is computationally expensive. To address this, we propose the method
UNION. We use spatial clustering and self-supervised scene flow to obtain a set of
static and dynamic object proposals from LiDAR. Subsequently, object proposals’
visual appearances are encoded to distinguish static objects in the foreground
and background by selecting static instances that are visually similar to dynamic
objects. As a result, static and dynamic mobile objects are obtained together, and
existing detectors can be trained with a single training. In addition, we extend
3D object discovery to detection by using object appearance-based cluster labels
as pseudo-class labels for training object classification. We conduct extensive
experiments on the nuScenes dataset and increase the state-of-the-art performance
for unsupervised 3D object discovery, i.e. UNION more than doubles the average
precision to 38.4. The code is available at github.com/TedLentsch/UNION.

Object Proposals

Embedding
Module

DINOv2

2D Image 𝑎3 𝑎4𝑎2𝑎1

𝑣1: Static 𝑣2: Dynamic 𝑣3: Dynamic 𝑣4: Static

1 LiDAR: Object Proposals 𝑜𝑛

𝑜1 [car] 𝑜2 [pedestrian] 𝑜3 [car] 𝑜4 [tree]3D Point Cloud

Static
Dynamic

Trees

Pedestrians

Cars

Cyclists

Appearance Embedding Feature Space
Only Static Instances

2 Temporal: Motion Estimates 𝑣𝑛

3 Camera: Visual Appearances 𝑎𝑛

4 Fusion: 𝐾1 Appearance Clusters with Motion Statistics

Train Standard 3D
Object DetectorPseudo-Bounding Boxes of

Mobile Appearance Clusters

5 Cluster Classification 6 Train Object Detector

Mobile Mobile Mobile Non-Mobile

Appearance Cluster is Mobile Cluster if it
contains at least 𝑋 % Dynamic Instances

Figure 1: UNION discovers mobile objects (e.g. cars, pedestrians, cyclists) in an unsupervised
manner by exploiting LiDAR, camera, and temporal information jointly. The key observation is
that mobile objects can be distinguished from background objects (e.g. buildings, trees, poles) by
grouping object proposals with similar visual appearance, i.e. clustering their appearance embeddings,
and selecting appearance clusters that contain at least X % dynamic instances.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

http://github.com/TedLentsch/UNION

1 Introduction

Object detection is one of the core tasks of computer vision, and it is integrated into the pipeline
of many applications such as autonomous driving [11], person re-identification [30], and robotic
manipulation [35]. During the past decade, the computer vision community has made tremendous
progress detecting objects, especially learning-based methods. These supervised methods rely on
manual annotations, i.e. each object instance is indicated by a bounding box and a class label.
However, a massive amount of labeled training data is usually required for training those models,
while labeling is expensive and laborious. This raises the question of how object detection models
can be trained without direct supervision from manual labels.

Unsupervised object detection is a relatively unexplored research field compared to its supervised
counterpart. For camera images, recent work [4, 21] shows that the emergent behavior of models
trained with self-supervised representation learning can be used for object discovery, i.e. object
localization without determining a class label. The behavior implies that the learned features of those
models contain information about the semantic segmentation of an image, and thus, they can be used
to distinguish foreground from background. Consequently, the extracted coarse object masks are
used to train 2D object detectors [22, 26]. Although these methods perform well for images depicting
a few instances with a clear background, they fail to achieve high performance for images with many
instances, such as autonomous driving scenes [27]. In these scenes, instances are close to each other
and, as a result, are not directly separable using off-the-shelf features.

On the other hand, spatial clustering is the main force that drives 3D object discovery [27, 32]. In
contrast to images, separating objects spatially is relatively easy in 3D space, but differentiating
between clusters based on shape is challenging because of the density of the data (e.g. sparse LiDAR
point clouds). Hence, temporal information is often exploited to identify dynamic points that most
likely belong to mobile objects such as cars and pedestrians. In this context, we define mobile objects
as objects that have the potential to move. Consequently, objects such as buildings and trees are
considered non-mobile classes. The discovery of static foreground instances (e.g. parked cars and
standing pedestrians) is usually achieved by performing self-training. Self-training is based on the
assumption that a detector trained on dynamic objects has difficulty discriminating between the static
and dynamic versions of the same object type. As a result, when such a detector is used for inference,
it will also detect many static instances. The predicted objects are then used for retraining the detector,
i.e. self-training, which is repeated multiple times until performance converges. Figure 2a gives a
schematic overview of LiDAR-only methods for unsupervised 3D object discovery.

A significant drawback of iterative self-training is that training takes significantly longer due to the
many rounds, e.g. sequentially training 5-10 times [2, 32], and there may be a confirmation bias, i.e.
incorrect predictions early on can be reinforced. Moreover, we hypothesize that training with only

LiDAR-based Self-Training

Pseudo-Bounding Boxes

LiDAR-based Bounding
Box Generation

Training LiDAR-based
Class-Agnostic Object Detector

(a) LiDAR 3D object discovery
with LiDAR-based self-training

Multi-Modal Self-Training

Pseudo-Bounding Boxes

LiDAR-based Bounding
Box Generation

Training LiDAR-based
Class-Agnostic Object Detector

(b) LiDAR 3D object discovery
with multi-modal self-training

Pseudo-Bounding Boxes

 and Class Labels

Multi-Modal-based Bounding
Box and Class Label Generation

Training LiDAR-based
Multi-Class Object Detector

No Self-Training Needed

(c) UNION: multi-modal multi-
class 3D object discovery (ours)

Figure 2: Comparison of the various designs for unsupervised 3D object discovery. (a) Most
object discovery methods exploit LiDAR to generate pseudo-bounding boxes and use these to
train a detector in a class-agnostic setting followed by self-training. (b) Wang et al. [27] generate
pseudo-bounding boxes similar to (a) but alternate between training a LiDAR-based detector and a
camera-based detector for self-training. (c) We use multi-modal data for generating pseudo-bounding
boxes and pseudo-class labels, and train a multi-class detector without requiring self-training.

2

dynamic objects degrades the final detection performance because (1) there is inconsistency during
training and (2) the data distribution of static and dynamic objects differs. The training inconsistency
entails that the detection of static objects is penalized during training, i.e. they are considered false
positives, while the objective of object discovery methods is to detect both static and dynamic objects.
Besides, static and dynamic objects are sensed differently as they typically occur at different positions
with respect to the sensors, and as a result, their data distribution differs (e.g. point distribution).

We argue that multi-modal data should be used jointly for unsupervised 3D object discovery as each
modality has its own strengths, e.g. cameras capture rich semantic information and LiDAR provides
accurate spatial information. Existing work [27] does use multi-modal data for unsupervised object
discovery but not jointly. As shown in Figure 2b, the training procedure consists of two parts: (1)
training with LiDAR-based pseudo-bounding belonging to dynamic instances and (2) multi-modal
self-training to learn to detect static and dynamic objects. However, Wang et al. [27] ignore the fact
that both modalities can be used at the same time for creating pseudo-bounding boxes.

Therefore, we propose our method, UNION (unsupervised multi-modal 3D object detection), that
exploits the strengths of camera and LiDAR jointly, i.e. as a union. We extract object proposals by
spatially clustering the non-ground points from LiDAR and leverage camera to encode the visual
appearance of each object proposal into an appearance embedding. Subsequently, we exploit the
appearance similarity between static and dynamic foreground objects for discriminating between
static foreground and background instances (see Figure 1). Finally, the identified objects and their
appearance embeddings are used to generate pseudo-bounding boxes and pseudo-class labels, which
can be used to train existing 3D object detectors in an unsupervised manner using their original
training protocol. Figure 2c shows the high-level concept of our method with the novelties underlined.

Our contributions are twofold. 1. We propose UNION, the first method that exploits camera, LiDAR,
and temporal information jointly for training existing 3D object detectors in an unsupervised manner.
We reduce training complexity and time by avoiding iterative training protocols. We evaluate our
method under various settings and set a new state-of-the-art (SOTA) for object discovery on the
nuScenes [3] dataset. 2. Rather than training a detector to only distinguish between foreground
and background, we extend 3D object discovery to multi-class 3D object detection. We utilize the
appearance embeddings from UNION to create pseudo-class labels and train a multi-class detector.

2 Related work

Here, we review the work most related to unsupervised multi-modal 3D object detection.

Unsupervised 2D object discovery methods learn to detect objects in images without manual
annotations and usually only use camera information. In general, heuristics are utilized to distinguish
foreground from background. Some methods [10, 12, 13, 23] perform co-segmentation, which is the
problem of simultaneously dividing multiple images into segments corresponding to different object
classes. These methods rely on strong assumptions about the frequency of the common objects and
the required computation scales quadratically with the dataset size.

Table 1: Overview of existing methods for unsupervised 3D object discovery. In the modality
column, L and C are abbreviations for LiDAR and camera, respectively. Kickstart indicates what
object types are used for the first round of training, i.e. the training before the self-training, and S and
D are abbreviations for static and dynamic objects, respectively. †These methods rely on repeated
traversals of the same location for extracting dynamic objects from the scene.

Method Year Modality Kickstart Key Novelty Code

MODEST [32] 2022 L D† LiDAR-based self-training ✓
Najibi et al. [20] 2022 L D Spatio-temporal clustering ✗
OYSTER [33] 2023 L S+D Near-long range generalization ✗
DRIFT [17] 2023 L D† Heuristic-based reward function ✓
CPD [29] 2024 L S+D Prototype-based box refinement ✓
LISO [2] 2024 L D Trajectory optimization ✓

LSMOL [27] 2022 L+C D Multi-modal self-training ✗
UNION (ours) 2024 L+C S+D Appearance-based pseudo-classes ✓

3

In contrast, recent advances in representation learning [4, 21] show that the features of models trained
with self-supervised learning contain implicit information about the semantic segmentation of a
camera image. As a result, several works [16, 22, 25, 26, 28] exploit these models to get pseudo-
bounding boxes and segmentation masks for training unsupervised detection models. LOST [22]
leverages the features of the self-supervised method DINO [4] to extract foreground instances, and the
clustered foreground instances are used to train a multi-class object detector. TokenCut [28] revisits
LOST and proposes to build a graph of connected image regions to segment the image. CutLER [25]
extends TokenCut for detecting multiple objects in a single image.

We also exploit a model trained with self-supervised learning [21]. However, we use the features
to embed the appearance of 3D spatial clusters instead of differentiating between background and
foreground in a 2D camera image. LOST extends unsupervised 2D object discovery to detection by
creating pseudo-class labels using the CLS token of DINO for each object. Analogously, we extend
the 3D case from discovery to detection, but our semantic embedding strategy differs from LOST.
We extract camera-based features for a spatial cluster using its LiDAR points and aggregate these
features to obtain the appearance embedding for a cluster.

Unsupervised 3D object discovery methods often only use LiDAR data to detect objects in 3D space.
Table 1 provides an overview of the related work and is further explained below. MODEST [32]
exploits repeated traversals of the same location for extracting dynamic objects from a LiDAR point
cloud and uses self-training to also learn to detect static objects. DRIFT [17] also relies on repeated
traversals for discovering dynamic objects but has a different self-training protocol. It uses a heuristic-
based reward function to rank the predicted bounding boxes, and the highest-ranked bounding boxes
are used to retrain the detector. The need for repeated traversals imposes a strong requirement on the
data collection and limits the amount of data that can be used from existing datasets. Similarly to
DRIFT, CPD [29] uses multi-class bounding box templates based on size information from Wikipedia
to obtain a set of bounding boxes used for bounding box refinement, i.e. re-size and re-location.

Najibi et al. [20] and LISO [2] use self-supervised scene flow estimation in combination with tracking
to detect dynamic objects, and train a detector using these objects. On the other hand, OYSTER [33]
extracts object clusters close to the LiDAR sensor and uses the translation equivariance of a CNN in
combination with data augmentation to learn near-range to long-range generalization for discovering
objects. As a result, OYSTER can detect both static and dynamic objects. However, OYSTER cannot
distinguish foreground objects from the background, and consequently, the performance suffers from
the number of detected false positives. In contrast, LSMOL uses camera data to learn to detect static
objects in its multi-modal self-training. It uses self-supervised scene flow estimation to identify
dynamic objects. After that, it exploits the similarity of visual appearance between static and dynamic
objects to learn to detect both during self-training.

Similarly to [2, 20, 27], we use self-supervised scene flow [15] for detecting dynamic objects instead
of relying on repeated traversals of the same location such as MODEST and DRIFT. In contrast to
existing methods, we use the camera-based appearance of dynamic objects to distinguish between
background and static foreground objects before training the detector. As a result, we can directly
discover static and dynamic objects without needing self-training. [17, 29] use multi-class bounding
box templates to score and refine pseudo-bounding boxes. However, there is a fundamental difference
between these methods and our method in how the pseudo-classes are used to supervise the detector.
[17, 29] provide class-agnostic pseudo-bounding boxes for training detectors. In contrast, we use the
appearance embeddings from UNION to create pseudo-class labels and train object classification. By
doing this, we are the first to extend 3D object discovery to 3D object detection. Lastly, we do not
assume any class-specific geometric prior (e.g. bounding box template) during training and inference.

Self-supervised feature clusters have been utilized for tasks related to unsupervised object detection.
Drive&Segment [24] uses LiDAR segments in combination with self-supervised camera features to
compute pixel-wise pseudo-labels for 2D unsupervised semantic segmentation (USS). The method
constructs LiDAR-based 3D segments and computes an appearance embedding for each segment
using DINO [4]. After that, pseudo-labels (i.e. cluster IDs) are obtained by clustering all appearance
embeddings. CAUSE [14] also uses self-supervised features to obtain class prototypes for 2D USS.

Similarly to Drive&Segment, we compute an object appearance embedding for segments. However,
we exploit appearance to distinguish foreground from background instances instead of assigning each
camera pixel to one of the pseudo-classes. More specifically, we are the first to select and discard
segments based on the fraction of dynamic instances belonging to their appearance clusters.

4

3 Method

This section introduces our method UNION for unsupervised 3D object detection of static and
dynamic mobile class instances. Our work leverages recent advances in self-supervised learning to
overcome the difficulty of distinguishing between static foreground and background instances in
sparse 3D point clouds. First, we explain the task of unsupervised 3D object detection. After that, we
describe the workings of UNION for learning to detect mobile objects without using manual labels.

3.1 Unsupervised 3D Object Detection

The task of 3D object detection is to detect, i.e. localize and classify, objects in 3D space. We
consider upright 3D bounding boxes. Hence, it is assumed that roll and pitch are equal to zero. Each
bounding box b = (x, y, z, l, w, h, θ) consists of the center position (x, y, z), the length, width, and
height (l, w, h), and the heading θ. In general, C unique semantic classes ck of interest are defined
for a detection setting, and each object instance is assigned to one of the classes.

In the case of supervised learning, all objects are labeled, and thus, they can be used as targets
for training a learnable detector. However, for the unsupervised case, only raw data is available,
which means that heuristics should be used to create pseudo-labels that replace manual labels. These
pseudo-labels are an approximation of the real labels that would be obtained by carefully manually
annotating the scenes. As a result, the performance of supervised training is the upper bound for the
performance that can be achieved by using the same amount of data for training.

We aim to develop a framework for training existing 3D object detectors without relying on manual
labels. Assume we have a mobile robot equipped with calibrated and time-synchronized sensors,
including LiDAR, camera, GPS/GNSS, and IMU. Also, assume that LiDAR and the camera have an
overlap in their field of view (FoV), i.e. parts of the environment are sensed by both sensors.

Input. The input of the framework consists of the multi-modal data collected during one or multiple
traversals by the robot described above. Since this is raw data and no manual annotations are involved,
such a dataset is easy to acquire. A traversal is a sequence of T time steps, and for each time step t, a
single LiDAR point cloud and Q multi-view camera images are available. Let Pt ∈ RL×3 denote the
L-point 3D LiDAR point cloud, and let Iq,t ∈ RH×W×3 denote RGB image q captured by camera q,
q ∈ Q. H and W denote image height and width, respectively. The projection matrix is available for
projecting 3D points on the 2D image plane for each camera. In addition, extrinsic transformations
and ego-motion compensation can be used to transform data across sensor frames and time.

Output. The framework’s output consists of a set of pseudo-bounding boxes and pseudo-class labels
for each time step of all traversals. These pseudo-labels can be used to train existing 3D object
detectors using their original protocol, where the only difference is that the targets used during
training are pseudo-labels instead of manual labels. Let Bt and Ct denote the sets of pseudo-bounding
boxes and pseudo-class labels for time step t, respectively. Both sets consist of N pseudo-instances
where each pseudo-instance is defined by a pseudo-bounding box bn,t = (x, y, z, l, w, h, θ) and
pseudo-class label cn,t. Assume that there are K pseudo-classes, i.e. cn,t ∈ {1, ...,K}. There is only
one pseudo-class for class-agnostic object detection, and thus cn,t = 1 for all object instances.

3.2 Overview of UNION

The pipeline of UNION consists of two stages: (1) object proposal generation and (2) mobile object
discovery. In Figure 1, these stages are represented by steps 1-3 and 4-5, respectively. The objective
of the first stage is to generate a set of 3D object-like clusters and gather information about each
cluster, i.e. the visual appearance and motion. This information is then used in the second stage to
identify groups of mobile class instances and generate pseudo-labels. These labels are utilized to
train existing object detectors (step 6 in Figure 1). The trained detector is used identically to the
fully supervised case during inference. In Section 3.3, we explain the process of object proposal
generation. After that, we describe the discovery of mobile objects in Section 3.4.

3.3 Object proposal generation

Here, we discuss the four components used for generating object proposals (steps 1-3 in Figure 1).

5

Ground Removal. The first step for generating object proposals is to extract the non-ground (ng)
points Png,t from all LiDAR point clouds Pt as the non-ground points may belong to mobile objects.
We assume that the ground is flat, and we fit a linear plane for each point cloud using RANSAC [9].
We use an inlier threshold of 5 cm for fitting the plane and consider all points that are more than
30 cm above the fitted ground plane as the non-ground points.

Spatial Clustering. The non-ground points are spatially clustered to get object proposals, i.e. 3D
segments. To deal with the sparsity of the point clouds, we aggregate for each non-ground point cloud
Png,t the past and next M non-ground point clouds. We set M equal to 7 to obtain an aggregated
point cloud that is based on 15 scans. After aggregating the points clouds, HDBSCAN [19] is used to
extract N object proposals on. These object proposals can be part of the foreground as well as the
background. We set the minimum cluster size and cluster selection epsilon to 16 points and 0.50m,
respectively. Step 1 in Figure 1 illustrates the generation of these class-agnostic 3D object proposals.

Motion estimation. We estimate the motion status of the object proposals to determine whether each
proposal is static or dynamic. The object proposals contain temporal information as the non-ground
points from multiple time steps have been aggregated before the spatial clustering. In other words,
the motion can be observed when the 3D points of an object proposal are split into different sets
based on their time step, i.e. undoing the aggregation. This is shown by step 2 in Figure 1.

We estimate the motion of each proposal using a modified version of the SOTA self-supervised
scene flow estimation method ICP-Flow [15]. We assume that mobile objects only move relative to
the ground plane, so we limit scene flow estimation to 2D translation plus yaw rotation. A motion
estimate vn is obtained for each object proposal by calculating the velocity magnitude of the estimated
motion. We consider all object proposals with at least 0.50m/s to be dynamic objects. As a result,
we obtain the sets of static and dynamic object proposals OS

t and OD
t for time step t, respectively.

Visual appearance encoding. We observe that objects from the same semantic class look visually
similar. Therefore, we aim to compute a camera-based encoding that can be used to search for
visually similar-looking static objects using a reference dynamic object. We leverage the off-the-shelf
vision foundation model DINOv2 [21] for encoding the camera images. This vision foundation model
is part of a family of self-supervised learning algorithms that leverage the concept of knowledge
distillation to train neural networks without requiring any labeled data.

We compute a feature map Fq,t ∈ RHF×WF×CF for each camera image Iq,t. Here, HF , WF , and CF

indicate the feature map’s height, width, and number of feature channels, respectively. Subsequently,
we use our embedding module to compute a visual appearance embedding an ∈ RCF for each
object proposal on. In the module, the LiDAR points of an object proposal on,t are projected to the
image plane, and we assign to each point p ∈ R3 a camera-based feature vector fp ∈ RCF using
the computed feature map Fq,t. After that, a single object proposal’s feature vectors are averaged to
obtain the visual appearance embedding an. This process is illustrated by step 3 in Figure 1.

3.4 Mobile object discovery

Current methods for 3D object discovery start the training of the detector with dynamic objects
only, which means that static mobile objects such as parked cars serve as negatives. This causes an
inconsistent supervision signal during neural network optimization as the shape of those static mobile
objects can be very similar to dynamic mobile objects of the same class. As a result, the detector
may learn to exploit the small differences in data distribution between static and dynamic mobile
objects to be able to reduce the amount of false positives, i.e. static objects that are detected. The
common strategy to improve detection performance is to perform expensive self-training in which
static objects are added to the training targets. However, this also adds background instances, which
lowers the detector’s precision.

We aim to create pseudo-labels for both static and dynamic foreground instances because (1) this
gives a more consistent supervision signal during training, (2) it enlarges the set of targets for training,
i.e. more samples, and (3) this removes the need for computationally expensive self-training. We are
confident that the set with dynamic proposals consists of mobile objects but the set of static object
proposals contains both background objects (e.g. houses, poles, and bridges) and static foreground
objects (e.g. parked cars and standing pedestrians). On the other hand, static and dynamic mobile
objects from the same class have a similar visual appearance, which is different from background

6

objects. Therefore, we exploit the visual appearance embeddings to search for static mobile objects
in the set of static object proposals.

We cluster the appearance embeddings using the K-Means algorithm [18] to group visually similar-
looking object proposals (see step 4 in Figure 1). The number of clusters K1 is set to 20. The
clustering is done for all proposals together to ensure that there are enough dynamic objects to be
able to differentiate between mobile and non-mobile clusters. As the obtained clusters differ in size,
we calculate the fraction of dynamic instances X for each cluster to classify the clusters. We consider
appearance clusters with at least 5% dynamic object proposals as mobile clusters, while the other
clusters are non-mobile clusters. This is illustrated by step 5 in Figure 1. Classifying the appearance
clusters means that both the set of static object proposals and the set of dynamic object proposals are
split into mobile and non-mobile object instances. As a result, we can discover static mobile objects
without requiring self-training, and we are robust against objects falsely labeled as dynamic.

We discard all non-mobile objects to obtain the set of mobile objects Omobile and compute a pseudo-
bounding box bi = (x, y, z, l, w, h, θ) for each mobile object oi using the 3D bounding box fitting
algorithm of MODEST [32]. These pseudo-bounding boxes can be used to train existing detectors (see
step 6 in Figure 1). In contrast to existing methods that only do class-agnostic detection, we extend
3D object discovery to 3D object detection by clustering our mobile objects into K2 appearance-based
pseudo-classes using K-Means. As a result, we obtain a pseudo-class label ci ∈ {1, ...,K2} for each
object that can be used for training a multi-class detector, i.e. predicting bounding boxes and classes.

Optional for experiment 2 (multi-class detection). During inference, the appearances are exploited
to match the pseudo-classes to R real classes. First, appearance prototypes are determined for
the classes. The K2 appearance cluster centers from K-Means are used as appearance prototypes
ak ∈ RCF , k ∈ {1, ...,K2} for the pseudo-classes, and for each real class, we use a single example
image to compute real class appearance prototypes ar ∈ RCF . Subsequently, the cosine similarity
is calculated between the prototypes of pseudo-classes and real classes, and each pseudo-class is
assigned to the real class with the highest similarity with its appearance prototype. Note that this
matching step requires negligible supervision as we do one-shot association during inference.

4 Experiments

This section describes the experimental setup, the used baselines, and the conducted experiments.

4.1 Experimental setup

Dataset. We evaluate our method on the challenging nuScenes [3] dataset. This is a large-scale
autonomous driving dataset for 3D perception captured in diverse weather and lighting conditions
across Boston and Singapore. It consists of 700, 150, and 150 scenes for training, validation, and
testing, respectively. A scene is a sequence of 20 s, and is annotated with 2Hz. Each frame contains
one LiDAR point cloud and six multi-view camera images.

Mobile object classes. The nuScenes dataset has 10 detection classes. Eight of these relate to mobile
objects, and we only use these for evaluation. Note that the labels of these mobile object classes

(a) HDBSCAN (b) Scene Flow (c) UNION (d) Ground Truth

Figure 3: Qualitative results for the UNION pipeline compared to the ground truth annotations.
(a) HDBSCAN (step 1 in Figure 1): object proposals (spatial clusters) in black. (b) Scene flow (step
2 in Figure 1): static and dynamic object proposals in black and red, respectively. (c) UNION: static
and dynamic mobile objects in green and red, respectively. (d) Ground truth: mobile objects in blue.

7

Table 2: Class-agnostic object detection on the nuScenes validation set. Results are obtained by
training CenterPoint [31] with the generated pseudo-bounding boxes. L and C are abbreviations for
LiDAR and camera, respectively. Best performance in bold, and second-best is underlined. ST stands
for self-training, which increases the computational cost of training. †Results taken from [2].

Method Labels ST AP ↑ NDS ↑ ATE ↓ ASE ↓ AOE ↓ AVE ↓

Supervised 1% Human ✗ 27.8 26.3 0.456 0.309 1.302 1.307
Supervised 10% Human ✗ 61.2 56.7 0.255 0.221 0.462 0.455
Supervised 100% Human ✗ 76.5 68.7 0.209 0.198 0.241 0.305

HDBSCAN [16] L ✗ 13.8 15.9 0.574 0.522 1.601 1.531
OYSTER [29]† L ✓ 9.1 11.5 0.784 0.521 1.514 -
LISO [1]† L ✓ 10.9 13.9 0.750 0.409 1.062 -
UNION (ours) L+C ✗ 38.4 31.2 0.589 0.497 0.874 0.836

are not used during training as our method UNION is fully unsupervised. For class-agnostic object
detection (Section 4.3), the eight classes are grouped into a single object class for evaluation. On the
other hand, for multi-class object detection (Section 4.4), we create three different classes, namely,
(1) vehicle, (2) pedestrian, and (3) cyclist. The vehicle class combines the bus, car, construction
vehicle, trailer, and truck classes, and the cyclist class combines the bicycle and motorcycle classes.

Detector. We use CenterPoint [31] for all our experiments. CenterPoint is a SOTA LiDAR-based
3D object detector. In contrast to traditional detection methods that generate bounding boxes around
objects, CenterPoint uses a keypoint-based approach, detecting and tracking the centers of objects.

Metrics. The two main metrics that we consider are average precision (AP) [8] and the nuScenes
detection score (NDS) [3], which are computed using the standard nuScenes evaluation protocol. AP
is obtained by integrating the recall versus precision curve for recalls and precisions larger than 0.1,
and averaging over match thresholds of 0.5m, 1.0m, 2.0m, and 4.0m. NDS is a weighted average
of AP and five true positive errors, i.e. translation (ATE), scale (ASE), orientation (AOE), velocity
(AVE), and attribute (AAE). We do all our experiments without attribute estimation similar to [2],
and thus, we set the true positive errors for attribute to 1.0 by default.

Baselines. We compare against three unsupervised baselines for class-agnostic object detection,
namely (1) HDBSCAN [19], (2) OYSTER [33], and (3) LISO [2]. In addition, we also compare to
training CenterPoint using supervised learning with different subsets of the labels, i.e. 1%, 10%,
and 100%. We cannot compare to MODEST [32], Najibi et al. [20], DRIFT [17], CPD [29], and
LSMOL [27]. MODEST and DRIFT need multiple traversals of the same location, which does not
hold for all sequences in the nuScenes dataset. Furthermore, Najibi et al., CPD, and LSMOL did not
release their code (at the time of submission) and did not provide performance on nuScenes.

Existing 3D object discovery methods cannot do multi-class object detection. Therefore, we use
HDBSCAN in combination with class-based information as a baseline. Analogous to the class-
agnostic setting, we also train CenterPoint using supervised learning for multi-class object detection.

4.2 Implementation

We use the framework MMDetection3D [5] for all our experiments and use their implementation of
CenterPoint. More specifically, we use CenterPoint with pillars of 0.2m as voxel encoder, do not use
test time augmentation, and train for 20 epochs with a batch size of 4. All class-agnostic experiments
are done without class-balanced grouping and sampling (CBGS) [34], while we do use CBGS for
multi-class experiments to improve the performance of tail classes. The camera images were encoded
with a large vision transformer (ViT-L/14) [7] trained using DINOv2 [21] with registers [6]. We used
8 NVIDIA V100 32GiB GPUs for conducting the experiments. The hyperparameters of UNION
were tuned visually on ten frames of the nuScenes training split. We made our code publicly available.

4.3 Class-agnostic object detection

We evaluate the performance of UNION for class-agnostic object detection on the nuScenes validation
split. As shown in Table 2, UNION outperforms all unsupervised baselines in terms of AP and NDS.
The best-performing unsupervised baseline is HDBSCAN, and UNION achieves an AP of more than

8

twice the AP of HDBSCAN. Both OYSTER and LISO score significantly lower than UNION despite
using tracking in combination with self-training to improve detection performance.

5 10 15 20
Appearance Cluster ID

0

5

10

15

20

25

30

35

Dy
na

m
ic

Ob
je

ct
 P

ro
po

sa
l F

ra
ct

io
n

(%
)

Threshold = 5%

Figure 4: The dynamic object proposal frac-
tions of the visual appearance clusters. We
use a threshold of 5% for selecting clusters.

When UNION is compared to supervised training, it
can be seen that we outperform training with 1% of
the labels, but we are still behind the performance
of using 10% of the labels. This indicates that the
dataset size and the quality of the targets used for
training significantly impact detection performance.
This is especially true for fine-grained labels such as
the orientation, as the orientation convention depends
on the object type. For example, determining the ori-
entation of a car is relatively easy as the length of the
car is typically much larger than the width, while for
pedestrians, both dimensions are roughly the same.
As a result, unsupervised approaches have difficulty
determining the correct orientation for objects such
as pedestrians.

Figure 3 provides qualitative results of the generated
pseudo-bounding boxes for an example scene that
was used for training the detector. The ground truth
boxes are also shown. The figure shows the second sample from scene-1100 (training dataset). It can
be seen that the scene flow can identify multiple dynamic objects, and the appearance clustering can
discover static mobile objects, including vehicles and pedestrians, using those dynamic instances.

Figure 4 shows the percentage of dynamic object instances in the various appearance clusters, sorted
by increasing percentage. We see a clear uptick at around 5%, which we use in the experiments as a
threshold for distinguishing clusters of non-mobile objects (blue) versus mobile objects (orange).

Table 3: Class-agnostic object detection on the
nuScenes validation set for different configu-
rations of UNION. Results are obtained by train-
ing CenterPoint [31] with the pseudo-bounding
boxes. Best performance in bold.

Method AP ↑ NDS ↑

HDBSCAN 13.8 15.9
+ Motion Estimation 14.1 20.0
+ Appearance Clustering 38.4 31.2

Ablation study I. We now investigate the contri-
bution of the various UNION components. Two
intermediate representations of UNION can be
used for generating pseudo-labels, namely (1) the
output of the spatial clustering (step 1 in Figure 1)
and (2) the output of motion estimation (step 2 in
Figure 1). The output of the spatial clustering is
identical to the HDBSCAN baseline in Table 2.
The motion estimation differs from the spatial
clustering output in that the points of dynamic
object proposals are corrected for the estimated
motion. The results are shown in Table 3 for dif-
ferent component-based pseudo-labels. As can be seen, appearance clustering is the main component
that improves performance. This aligns with our expectation that appearance clustering can select
mobile objects from the sets of static and dynamic proposals while discarding the background objects.

Ablation study II. Table 4 compares UNION’s class-agnostic 3D object detection performance
for different camera encoders, namely DINOv2 [21] and I-JEPA [1]. DINOv2 can process high-
resolution images, such as the camera images from nuScenes. In contrast, I-JEPA can only process
square-shaped images of a maximum of 448 by 448 pixels. As a result, the obtained feature maps
from I-JEPA have a lower resolution than the ones from DINOv2. The table shows that UNION
with DINOv2 outperforms UNION with I-JEPA by 15.6 in AP and 8.4 in NDS. Please note that our
main paper contributions do not depend on specific canonical steps (e.g. image encoding, scene flow
estimation). If better approaches become available, UNION can incorporate them.

Table 4: Image encoder ablation study for UNION. Best performance in bold.

Method AP ↑ NDS ↑ ATE ↓ ASE ↓ AOE ↓ AVE ↓

DINOv2 ViT-L/14 w/ registers [21] 38.4 31.2 0.589 0.497 0.874 0.836
I-JEPA ViT-H/16 [1] 22.8 22.8 0.561 0.486 0.953 0.865

9

4.4 Multi-class object detection

As a second type of experiment, we perform multi-class object detection on nuScenes with 3 different
semantic classes, namely vehicle, pedestrian, and cyclist, see Section 4.1. The mobile objects
discovered by UNION are clustered into K2 pseudo-classes. For evaluation, we have used three
example instances from the nuScenes training dataset to associate each pseudo-class with one of the
3 real classes. This association procedure is described in Section 3.4. We also assign real classes to
the class-agnostic predictions of HDBSCAN and UNION from Section 4.3. We do this by computing
a prototype bounding box for each class, i.e. we select the bounding box with the median 2D area.
Subsequently, we assign each class-agnostic bounding box to the real class of which the prototype
bounding box has the highest intersection over union (IoU). We indicate this associating by size prior.

As shown in Table 5, UNION trained with 5 pseudo-classes performs the best and outperforms both
HDBSCAN and UNION with the size prior in terms of AP and NDS. Differences in pedestrian
detection performance mainly cause this. The vehicle detection performance of UNION-05pc is
slightly worse. We observe that the cyclist performance is equal to zero for all configurations. From
the pseudo-classes of multi-class UNION, there were 1, 1, 3, and 4 pseudo-classes assigned to
the cyclist class for 5, 10, 15, and 20 pseudo-classes, respectively. Thus, it is not the case that
all pseudo-classes are assigned to either the vehicle or pedestrian class. However, the nuScenes
evaluation protocol only integrates the precision-recall curve for precision and recall larger than 0.1.
Therefore, we also evaluated without clipping the precision-recall curve as shown in the last column
of Table 5. The results show that UNION-20pc significantly outperforms the baselines.

Table 5: Multi-class object detection on the nuScenes validation set. Results are obtained by
training CenterPoint [31] with the generated pseudo-bounding boxes. SP stands for size prior and
indicates that class-agnostic predictions from Table 2 are assigned to real classes based on their
size. UNION-Xpc stands for UNION trained with X pseudo-classes. L and C are abbreviations for
LiDAR and camera, respectively. Best performance in bold, and second-best is underlined. †Without
clipping the precision-recall curve, clipping is the default for nuScenes evaluation [3].

Mobile Objects Vehicle Ped. Cyclist Cyclist
Method Labels mAP ↑ NDS ↑ AP ↑ AP ↑ AP ↑ AP† ↑

Supervised 1% Human 24.3 28.3 39.3 31.8 1.8 4.7
Supervised 10% Human 45.9 47.9 65.3 57.6 14.9 22.3
Supervised 100% Human 67.4 62.6 80.7 77.7 43.7 52.5

HDBSCAN [16] + SP L 5.0 13.0 14.6 0.4 0.0 1.3
UNION (ours) + SP L+C 12.7 19.7 34.8 3.4 0.0 1.6
UNION-05pc (ours) L+C 24.0 24.0 30.3 41.6 0.0 0.8
UNION-10pc (ours) L+C 19.9 21.7 27.3 32.5 0.0 0.5
UNION-15pc (ours) L+C 18.5 21.2 25.7 29.9 0.0 0.4
UNION-20pc (ours) L+C 17.9 21.7 23.7 29.9 0.0 4.2

5 Conclusion

We proposed UNION, the first framework that exploits LiDAR, camera, and temporal information
jointly for generating pseudo-bounding boxes to train existing object detectors in an unsupervised
manner. Rather than training an object detector to distinguish foreground and background objects, we
perform multi-class object detection by clustering the visual appearance of objects and using them
as pseudo-class labels. We reduce computational time by avoiding iterative training protocols and
self-training. We evaluated our method under various settings and increase the SOTA performance
for unsupervised 3D object discovery, i.e. UNION more than doubles the average precision to 38.4.

Limitations and future work. A possible limitation of our work is that we make implicit assumptions
about the occurrence frequency of objects by clustering the object proposals in the appearance
embedding feature space. Mobile objects that are rare will likely be grouped with other objects, and
as a result, these objects may be discarded when grouped with static background objects. Future work
entails extending our method to better deal with these rare classes. In addition, the motion estimation
could be based on radar detections as radars offer instant radial velocity estimation.

10

Acknowledgments and Disclosure of Funding

This research has been conducted as part of the EVENTS project, which is funded by the European
Union, under grant agreement No 101069614. Views and opinions expressed are, however, those of
the author(s) only and do not necessarily reflect those of the European Union or European Commission.
Neither the European Union nor the granting authority can be held responsible for them.

References
[1] M. Assran, Q. Duval, I. Misra, P. Bojanowski, P. Vincent, M. Rabbat, Y. LeCun, and N. Ballas. Self-

supervised learning from images with a joint-embedding predictive architecture. In Computer Vision and
Pattern Recognition (CVPR), pages 15619–15629, 2023. 9

[2] S. Baur, F. Moosmann, and A. Geiger. LISO: Lidar-only self-supervised 3D object detection. In European
Conference on Computer Vision (ECCV), 2024. 2, 3, 4, 8

[3] H. Caesar, V. Bankiti, A.H. Lang, S. Vora, V.E. Liong, Q. Xu, A. Krishnan, Y. Pan, G. Baldan, and
O. Beijbom. nuScenes: A multimodal dataset for autonomous driving. In Computer Vision and Pattern
Recognition (CVPR), pages 11621–11631, 2020. 3, 7, 8, 10

[4] M. Caron, H. Touvron, I. Misra, H. Jégou, J. Mairal, P. Bojanowski, and A. Joulin. Emerging properties
in self-supervised vision transformers. In International Conference on Computer Vision (ICCV), pages
9650–9660, 2021. 2, 4

[5] MMDetection3D Contributors. MMDetection3D: OpenMMLab next-generation platform for general 3D
object detection. https://github.com/open-mmlab/mmdetection3d, 2020. 8

[6] T. Darcet, M. Oquab, J. Mairal, and P. Bojanowski. Vision transformers need registers. International
Conference on Learning Representations (ICLR), 2024. 8

[7] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Min-
derer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An image is worth 16x16 words: Transformers
for image recognition at scale. International Conference on Learning Representations (ICLR), 2021. 8

[8] M. Everingham, L. Van Gool, C.K.I. Williams, J. Winn, and A. Zisserman. The pascal visual object classes
(voc) challenge. International Journal of Computer Vision (IJCV), 88:303–338, 2010. 8

[9] M.A. Fischler and R.C. Bolles. Random sample consensus: a paradigm for model fitting with applications
to image analysis and automated cartography. Communications of the ACM, 24(6):381–395, 1981. 6

[10] K. Hsu, Y. Lin, and Y. Chuang. Co-attention CNNs for unsupervised object co-segmentation. In Interna-
tional Joint Conference on Artificial Intelligence (IJCAI), 2018. 3

[11] Y. Hu, J. Yang, L. Chen, K. Li, C. Sima, X. Zhu, S. Chai, S. Du, T. Lin, W. Wang, et al. Planning-oriented
autonomous driving. In Computer Vision and Pattern Recognition (CVPR), pages 17853–17862, 2023. 2

[12] A. Joulin, F. Bach, and J. Ponce. Discriminative clustering for image co-segmentation. In Computer Vision
and Pattern Recognition (CVPR), pages 1943–1950, 2010. 3

[13] A. Joulin, F. Bach, and J. Ponce. Multi-class cosegmentation. In Computer Vision and Pattern Recognition
(CVPR), pages 542–549, 2012. 3

[14] J. Kim, B. Lee, and Y.M. Ro. Causal unsupervised semantic segmentation. arXiv preprint
arXiv:2310.07379, 2023. 4

[15] Y. Lin and H. Caesar. ICP-Flow: LiDAR scene flow estimation with ICP. In Computer Vision and Pattern
Recognition (CVPR), 2024. 4, 6

[16] Z. Lin, Z. Yang, and Y. Wang. Foreground guidance and multi-layer feature fusion for unsupervised object
discovery with transformers. In Winter Conference on Applications of Computer Vision (WACV), pages
4043–4053, 2023. 4

[17] K. Luo, Z. Liu, X. Chen, Y. You, S. Benaim, C.P. Phoo, M. Campbell, W. Sun, B. Hariharan, and K.Q.
Weinberger. Reward finetuning for faster and more accurate unsupervised object discovery. Neural
Information Processing Systems (NeurIPS), 36, 2023. 3, 4, 8

[18] J. MacQueen. Some methods for classification and analysis of multivariate observations. In Berkeley
Symposium on Mathematical Statistics and Probability (BSMSP), volume 1, pages 281–297, 1967. 7

11

https://github.com/open-mmlab/mmdetection3d

[19] L. McInnes, J. Healy, and S. Astels. HDBSCAN: Hierarchical density based clustering. Journal of Open
Source Software (JOSS), 2(11):205, 2017. 6, 8

[20] M. Najibi, J. Ji, Y. Zhou, C.R. Qi, X. Yan, S. Ettinger, and D. Anguelov. Motion inspired unsupervised
perception and prediction in autonomous driving. In European Conference on Computer Vision (ECCV),
pages 424–443, 2022. 3, 4, 8

[21] M. Oquab, T. Darcet, T. Moutakanni, H. Vo, M. Szafraniec, V. Khalidov, P. Fernandez, D. Haziza, F. Massa,
A. El-Nouby, et al. DINOv2: Learning robust visual features without supervision. Transactions on Machine
Learning Research (TMLR), pages 2835–8856, 2024. 2, 4, 6, 8, 9

[22] O. Siméoni, G. Puy, H.V. Vo, S. Roburin, S. Gidaris, A. Bursuc, P. Pérez, R. Marlet, and J. Ponce.
Localizing objects with self-supervised transformers and no labels. In British Machine Vision Conference
(BMVC), 2021. 2, 4

[23] S. Vicente, C. Rother, and V. Kolmogorov. Object cosegmentation. In Computer Vision and Pattern
Recognition (CVPR), pages 2217–2224, 2011. 3

[24] A. Vobecky, D. Hurych, O. Siméoni, S. Gidaris, A. Bursuc, P. Pérez, and J. Sivic. Drive&Segment:
Unsupervised semantic segmentation of urban scenes via cross-modal distillation. In European Conference
on Computer Vision (ECCV), pages 478–495, 2022. 4

[25] X. Wang, R. Girdhar, S.X. Yu, and I. Misra. Cut and learn for unsupervised object detection and instance
segmentation. In Computer Vision and Pattern Recognition (CVPR), pages 3124–3134, 2023. 4

[26] X. Wang, Z. Yu, S. De Mello, J. Kautz, A. Anandkumar, C. Shen, and J.M. Alvarez. FreeSOLO: Learning
to segment objects without annotations. In Computer Vision and Pattern Recognition (CVPR), pages
14176–14186, 2022. 2, 4

[27] Y. Wang, Y. Chen, and Z. Zhang. 4D unsupervised object discovery. In Neural Information Processing
Systems (NeurIPS), pages 35563–35575, 2022. 2, 3, 4, 8

[28] Y. Wang, X. Shen, S.X. Hu, Y. Yuan, J.L. Crowley, and D. Vaufreydaz. Self-supervised transformers for
unsupervised object discovery using normalized cut. In Computer Vision and Pattern Recognition (CVPR),
pages 14543–14553, 2022. 4

[29] H. Wu, S. Zhao, X. Huang, C. Wen, X. Li, and C. Wang. Commonsense prototype for outdoor unsupervised
3D object detection. In Computer Vision and Pattern Recognition (CVPR), pages 14968–14977, 2024. 3,
4, 8

[30] M. Ye, J. Shen, G. Lin, T. Xiang, L. Shao, and S.C.H. Hoi. Deep learning for person re-identification: A
survey and outlook. Transactions on Pattern Analysis and Machine Intelligence (PAMI), 44(6):2872–2893,
2021. 2

[31] T. Yin, X. Zhou, and P. Krahenbuhl. Center-based 3D object detection and tracking. In Computer Vision
and Pattern Recognition (CVPR), pages 11784–11793, 2021. 8, 9, 10

[32] Y. You, K. Luo, C.P. Phoo, W. Chao, W. Sun, B. Hariharan, M. Campbell, and K.Q. Weinberger. Learning
to detect mobile objects from LiDAR scans without labels. In Computer Vision and Pattern Recognition
(CVPR), pages 1130–1140, 2022. 2, 3, 4, 7, 8

[33] L. Zhang, A.J. Yang, Y. Xiong, S. Casas, B. Yang, M. Ren, and R. Urtasun. Towards unsupervised
object detection from LiDAR point clouds. In Computer Vision and Pattern Recognition (CVPR), pages
9317–9328, 2023. 3, 4, 8

[34] B. Zhu, Z. Jiang, X. Zhou, Z. Li, and G. Yu. Class-balanced grouping and sampling for point cloud 3D
object detection. arXiv preprint arXiv:1908.09492, 2019. 8

[35] B. Zitkovich, T. Yu, S. Xu, P. Xu, T. Xiao, F. Xia, J. Wu, P. Wohlhart, S. Welker, A. Wahid, et al. RT-
2: Vision-language-action models transfer web knowledge to robotic control. In Conference on Robot
Learning (CoRL), pages 2165–2183, 2023. 2

12

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: This has been verified by the reviewers.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See the last paragraph of the Conclusion section.

13

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: This is not a theoretical paper.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All details are provided in the paper. In addition, we release the code and data
on GitHub for full reproducibility.

Guidelines:

• The answer NA means that the paper does not include experiments.

14

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We release the code and data on GitHub, so full open access.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

15

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We described the used hyperparameters and framework (MMDetection3D). In
addition, we release the code and data on GitHub.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Cross-validation could not be performed due to computational constraints.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: See the subsection Implementation of the Experiments section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.

16

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Sic.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Work focuses on the immediate method and performance benefits.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: There are no such risks seen.
Guidelines:

• The answer NA means that the paper poses no such risks.

17

https://neurips.cc/public/EthicsGuidelines

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All contributors are mentioned as authors. There is an open license for the
data/software on the web crediting the authors.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: See earlier comment on open access of data and software.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Does not apply.

18

paperswithcode.com/datasets

Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Existing data was used, i.e. the nuScenes dataset.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

19

