
Towards An Option Basis To Optimize All Rewards

Towards An Option Basis To Optimize All Rewards

Anonymous authors
Paper under double-blind review

Abstract

The Option Keyboard framework enables efficient behavior generation by composing1
a set of basis options. However, it remains unclear how to construct a global and2
compact basis, from scratch, for solving any given task in an environment. In this3
work, we investigate using the eigenvectors of the graph Laplacian of the environment4
to form such a basis. The behaviors obtained from such eigenvectors are known as5
eigenoptions. We empirically demonstrate that a sufficiently large eigenoption basis,6
combined with Generalized Policy Improvement, can recover near-optimal policies in7
the goal-reaching tasks we considered. Building on this, we introduce the Laplacian8
Keyboard, which matches this performance while requiring a substantially smaller set9
of options. Finally, we briefly outline a method for constructing a universal optimal10
option basis capable of solving any task within a given environment.11

1 Introduction12

Options (Sutton et al., 1999) provide a powerful mechanism for credit assignment, exploration, and13
knowledge transfer. In this work, we focus on the latter—using a set of options to solve new tasks.14
While learning options from scratch for each task is not scalable, naively reusing previously learned15
options often leads to suboptimal performance. A potential solution to this problem involves16
learning a compact set of option bases that can then be combined to create new behaviors for new17
tasks (Barreto et al., 2017; 2019). This eliminates the need to learn options from scratch for each18
task, but raises a fundamental question: What is a global and compact option basis that can be19
effectively combined to solve new tasks?20

Existing methods for acquiring option bases typically define options through linear combinations of21
reward features, creating a basis by learning options for diverse combinations of features. However,22
existing techniques (Alegre et al., 2025; Barreto et al., 2019; Carvalho et al., 2023) exhibit limi-23
tations in achieving a universal option basis. Specifically, methods relying on manually designed24
reward features (Alegre et al., 2025; Barreto et al., 2019) restrict the range of tasks these bases can25
effectively address. Approaches that learn reward features in a transfer reinforcement learning (RL)26
setting are constrained by the choice of training and testing environments (Carvalho et al., 2023).27

In this paper, we investigate an approach to learning a compact, task-agnostic option basis that28
does not rely on extensive reward priors nor environmental rewards. Our idea is motivated by two29
results. (1) The eigenvectors of the graph Laplacian of an environment induced by a uniform policy30
can serve as a global basis, enabling agents to learn and represent any task’s optimal value function31
efficiently (Mahadevan, 2005). Complementing this, (2) eigenoptions (Machado et al., 2017), which32
are options based on these same eigenvectors, can be combined to create diverse behaviors that are33
useful for exploration (Machado et al., 2023).34

We assert that the eigenoptions form a global and compact basis for tackling a broad spectrum35
of tasks. Building on this premise, we first demonstrate that generalized policy evaluation (GPE)36
(Barreto et al., 2020) and generalized policy improvement (GPI) (Barreto et al., 2017), when37
applied over a sufficiently rich set of eigenoptions, can solve goal-reaching tasks in a gridworld. We38

1

Under review for RLC 2025, to be published in RLJ 2025

- e1 + e1 - e2 + e2 - e3 + e3 - e4 + e4 - e5 + e5 - e6 + e6 - e7 + e7

+ e1 (0.000) + e2 (0.076) + e3 (0.082) + e4 (0.118) + e5 (0.267) + e6 (0.297) + e7 (0.303)

Figure 1: Top row: The first seven eigenvectors of the graph Laplacian induced by a random walk
in the Four-Room domain. The brighter the state’s color, the greater the entry of the eigenvector.
The value in parentheses denotes the total graph variation (Mallat, 1999), with lower values indi-
cating smoother eigenvectors. Bottom row: The first seven eigenoptions corresponding to both the
negative and positive eigenvectors. The arrows indicate the optimal action, and the red diamond
indicates the termination points.

then evaluate the performance of the Option Keyboard with an eigenoption basis, a combination we39
refer to as the Laplacian Keyboard (LK). This enables the composition of complex behaviors using40
a significantly smaller eigenoption basis to solve the same goal-reaching tasks mentioned above.41

2 Preliminaries42

Reinforcement Learning: A standard agent-environment interaction in RL is modeled as a43
Markov Decision Process (MDP), defined by the tuple M = (S,A, P,R, γ). Here, S is the set44
of states, A is the set of actions, P (· | s, a) represents the transition distribution over next states45
given the current state, s, and action, a, R : S×A× S → R is the reward function, and γ ∈ [0, 1) is46
the discount factor. The goal of the agent is to learn a policy, π : S → ∆(A), to maximize the total47
sum of discounted rewards,

∑∞
t=0 γ

tR(st, at, st+1), where the actions are sampled based on π. We48
denote the transition matrix as Pπ , where (Pπ)s,s′ =

∑
a∈A π(s, a)P (s′|s, a) is the probability of49

transitioning from state s to state s′ while following policy π.50

In this work, we focus on a reward-free MDP setting (Agarwal et al., 2024), where the reward func-51
tion R is not specified during the initial phase of learning. The objective is to explore and understand52
the environment’s dynamics without being guided by a specific reward, enabling the agent to effi-53
ciently solve downstream tasks once a reward function is later introduced. Related prior works (e.g.,54
Alegre et al. 2025; Barreto et al. 2019) assume access to a set of reward features, ϕ : S → Rn, which55
defines every possible downstream task. Each task’s reward function corresponds to a linear combi-56
nation of these features, where the weights can be interpreted as expressing preferences over them.57

Laplacian Representation: Any MDP can be represented as a directed graph G = (V,E), where58
V represents the set of vertices and E represents the edges. By this formulation, the states become59
the vertices and the edges between the states are characterized by Pπ . The Laplacian of such a60
graph is typically defined as L = I − 1

2 (Pπ + P⊤
π), ensuring that L remains symmetric. The61

eigenvectors of L induced by a random policy have been shown to capture the temporal properties62
of the environment and serve as a global basis to represent any value function of any policy for any63
reward function (Mahadevan, 2005; Mahadevan & Maggioni, 2007). Given an eigenvector e, we64
denote its s-th entry, associated to state s, as e[s] = [e1[s], e2[s], . . . , e|S|[s]] where ei[s] denotes65
the i-th entry of the eigenvector e. In Figure 1, we plot the first seven eigenvectors of the graph66
Laplacian induced by a random policy in the Four-Room domain (Sutton et al., 1999). Observe67
that as the eigenvector index increases, the smoothness of the eigenvector decreases, transitioning68
from the constant valued e1 to eigenvectors with increasingly oscillatory behavior. In fact, the last69
few eigenvectors, corresponding to the highest frequencies, have a chessboard-like pattern.70

2

Towards An Option Basis To Optimize All Rewards

Options: Options provide a mechanism for temporal abstraction, allowing an agent to execute a71
sequence of actions as a single, higher-level decision. Formally, an option ω is defined by a tuple72
w = ⟨Iω, πω, βω⟩. Here, Iω is the initiation set, specifying the states from which the option can be73
invoked. Upon initiation, the agent follows the option’s policy, πω , until a state within its termination74
set, βω , is reached.1 Thus, an option can be viewed as a temporally extended action that initiates in75
specific states, follows its own policy, and terminates according to a defined condition.76

Eigenoptions: Eigenoptions (Machado et al., 2017; 2018; 2023) are options defined using reward77
features based on the eigenvectors of the graph Laplacian. Prior work (Klissarov & Machado, 2023;78
Machado et al., 2023) learn eigenoptions by optimizing reward functions corresponding to individual79
eigenvectors, which could be thought of as one-hot linear combinations. For an MDP with |S| states,80
we can define 2|S| eigenoptions by optimizing over both +ei and −ei. Specifically, in the tabular81
case, for the transition (s, a, s′), the reward used to train the eigenoption corresponding to +ei is82
r+ei = ei[s

′] − ei[s], while for −ei it is r−ei = ei[s] − ei[s
′]. These options inherit the temporal83

structure encoded in the Laplacian: eigenvectors with lower eigenvalues tend to span the entire state84
space, resulting in longer options, whereas those associated with higher eigenvalues produce shorter85
options on average (see Figure 1) (Machado et al., 2023). Notably, the eigenoption derived from86
the first non-constant eigenvector has been widely adopted for exploration (Jinnai et al., 2019; 2020;87
Klissarov & Machado, 2023; Machado et al., 2023).88

General Policy Evaluation: Given a policy, π, and a set of reward functions, R = {Ri}ni=1,89
GPE enables efficient computation of the action-value function for any new reward of the form90
R′ =

∑n
i=1 wiRi, where w ∈ Rn:91

Qπ
R′(s, a) =

n∑
i=1

wiQ
π
Ri
(s, a). (1)

Here, Qπ
Ri

denotes the action-value function of policy π under reward function Ri. Once the set92
{Qπ

Ri
}ni=1 is precomputed, GPE allows rapid evaluation of π for any reward function within the93

linear span of R (Barreto et al., 2020).94

General Policy Improvement: Given a set of policies, GPI allows one to construct a new policy95
that is at least as good as any individual policy in the set (Barreto et al., 2017). Let Π = {πi}ni=1 be96
a set of n policies, and let R′ be a new reward function. The GPI policy, πGPI

R′ , is defined as97

πGPI
R′ (s) ∈ argmax

a∈A
max
πi∈Π

Qπi

R′(s, a), (2)

where Qπi

R′ is i-th policy evaluated on the new reward function. The newly obtained policy is at least98
as good as any other policy πi ∈ Π. Hence, GPI offers a principled method to combine different99
policies to construct an improved policy.100

GPE and GPI, together with a basis of reward functions and their corresponding policies, allow the101
synthesis of improved policies for any reward function within the span of the reward basis. Barreto102
et al. (2017) show that the performance gap between the GPI-derived policy, πGPI

R′ , and the true103
optimal policy can be bounded by how similar the target reward function, R′, is to the existing set104
of tasks R. With a sufficiently diverse and representative set of policies, GPE and GPI can closely105
approximate the optimal policy for a wide range of reward functions.106

Option Keyboard: The Option Keyboard (OK) (Barreto et al., 2019) generalizes GPE and GPI107
by enabling state-dependent combinations of policies or options. In the standard GPI formulation, a108
fixed weight vector w ∈ Rn is used to combine n policies, resulting in a static behavior that applies109
the same policy combination uniformly across all states.110

1In this paper, because we only consider deterministic termination conditions, we abuse the notation of β to call it a
termination set instead of a termination condition.

3

Under review for RLC 2025, to be published in RLJ 2025

In contrast, the OK introduces a meta-policy, πOK : S → Rn,2 that outputs a state-dependent weight111
that dynamically combines the available options. This allows the agent to adapt its behavior based112
on the current state, enabling the synthesis of a broader set of behaviors from a relatively small set113
of base options. Operationally, OK can be viewed as a two-step process. The meta-policy, πOK, first114
generates a weight vector w based on the current state. This weight is then used to combine the base115
options via GPE and GPI, resulting in a new composite option that is executed until termination.116
The meta-policy generates a new weight, and this process repeats until the task is solved.117

In the context of the OK framework, options are typically constructed using a set of reward features118
ϕ ∈ Rd, which define a space of reward functions of the form rw(s, a, s

′) = w⊤ϕ(s, a, s′). Each119
option is optimized for a particular weight vector w in this space. A basis of such options enables120
efficient transfer to new reward functions of a similar form (Alegre et al., 2022).121

3 GPE and GPI with Eigenoptions122

Machado et al. (2023) demonstrated that eigenoptions can be effectively combined using GPE and123
GPI to generate diverse exploratory behavior. In contrast, our focus lies in solving tasks. We begin124
by evaluating how well eigenoptions, when combined with GPE and GPI, can solve goal-reaching125
tasks. Our primary objective is to assess how closely the GPI-derived policy, πGPI

K , approximates the126
optimal policy, π∗

K , for a reward reconstructed from the first K eigenvectors of the graph Laplacian.127
The reward approximation is given by:128

RK ≈
K∑
i=1

wGPI
i ei, where wGPI

i = ⟨ei, R⟩ . (3)

The weights, wGPI = [wGPI
1 , . . . wGPI

K], are reused to linearly combine the corresponding eigenop-129
tions. Applying GPE followed by GPI over these options yields the composed policy πGPI

K .130

Our decision to use eigenoptions stems from the fact that the eigenvectors of the graph Laplacian L131
form a complete basis for functions over the state space. In particular, they can represent any reward132
function of the form R(s, a, s′) = R(s′) (Mahadevan, 2005). These eigenvectors act as reward133
features that define eigenoptions (Machado et al., 2017). To build the basis of eigenoptions, we134
generate two eigenoptions from each eigenvector, resulting in 2×K options for a basis of size K.135

We evaluate our method on goal-reaching tasks in the Four-Room domain. In goal-reaching tasks,136
the reward is zero for all transitions except when reaching the goal state, in which the agent receives137
a +1 reward. The Four-Room environment has 104 states, out of which 1 is the terminal goal state.138

In Figure 2 we plot the reconstructed rewards following Eq. 3 for K ∈ {5, 10, 25, 50, 75, 100, 104}.139
Note that the reconstruction error decreases as K increases. An exact reconstruction is possible140
when all eigenvectors are used, which is infeasible in large MDPs. Therefore, we typically rely on141
a smaller subset of smooth eigenvectors, which still capture essential reward structure (Mahadevan,142
2005). This effectively imposes a prior that rewards vary smoothly over the state space.143

Original Reward K = 5 (0.980) K = 10 (0.968) K = 25 (0.923) K = 50 (0.832) K = 75 (0.629) K = 100 (0.273) K = 104 (0.000)

Figure 2: Reward reconstruction using the first K eigenvectors: The leftmost image shows the
original goal-reaching reward function, R. The subsequent images depict its reconstruction, RK ,
using the top K eigenvectors, as defined in Eq. 3. The value in parentheses indicates the mean
squared reconstruction error between R and RK .

2We slightly abuse notation: unlike a standard policy mapping states to action distributions, πOK maps each state to
unconstrained real-valued weights over options.

4

Towards An Option Basis To Optimize All Rewards

Figure 3: Behavior generated by GPE and GPI over K eigenoptions for various RK in Figure 2.

+e

a. b.

5+e1

T1

T2

0 10 20 30 40 50 60 70 80 90 100

Number of Eigenoptions

0.6

0.7

0.8

0.9

1.0

S
im

ila
ri
ty

 S
co

re

Linear Regression

Figure 4: Understanding the mismatch between πGPI
K and π∗

K . (a) This panel illustrates πGPI
5 ,

where each state’s action is derived from the eigenoption πi (indicated by blue for +e1 and yellow
for +e5) that yielded the maximum value in that specific state (Eq 2). In this case, only e1 and e5
contribute to πGPI

5 , while the other options are considered but do not affect the final policy. The two
terminal states are marked as ⊤1 and ⊤2. (b) Proportion of goal states where πGPI

K matches π∗
K , as

a function of basis size K. The linear trend emphasizes that the optimal performance for GPE and
GPI increases with basis size.

Figure 3 shows the options induced by πGPI
K for the same K components. As K increases, both π∗

K144
and πGPI

K converge toward optimality. Note that for K = {5, 25}, the policies π∗
K and πGPI

K do not145
align perfectly. Figure 4a visualizes πGPI

5 and the GPI step behind it. While π∗
5 exclusively guides146

the agent to terminal state ⊤2 (where the reconstructed reward R5 is maximum), πGPI
5 additionally147

terminates in state ⊤1. This discrepancy arises because none of the first five eigenoptions (in ei-148
ther direction) take the agent from ⊤1 to ⊤2, thus restricting the representational capacity of the149
composed GPI policy. The single downward action near ⊤2 is optimal and originates from the first150
eigenoption, which is an always-terminate policy. All other actions direct the agent from ⊤2 to ⊤1,151
causing a deviation from π∗

5 .152

To quantify this deviation across all possible goals, Figure 4b shows the proportion of goal positions153
where πGPI

K exactly matches π∗
K . As K increases from 1 to |S|, the match rate improves, with an av-154

erage accuracy of 93.14%. The linear trend confirms that a richer basis yields more accurate policies.155
These results suggest that eigenoptions, combined with GPE and GPI, have the potential to provide156
an effective mechanism for solving a wide variety of goal-reaching tasks. However, to make stronger157
claims on the ability of eigenoptions to be a global and compact basis for any environment requires158
further experiments in more diverse environments and complex reward settings. Moreover, the fact159
that πGPI

K does not always match π∗
K indicates that the current eigenoptions do not yet form an opti-160

mal option basis. If they did, GPI would recover the optimal policy for any goal and any value of K.161

5

Under review for RLC 2025, to be published in RLJ 2025

4 Laplacian Keyboard162

We introduce the Laplacian Keyboard (LK), which uses eigenoptions as the basis in the OK frame-163
work, providing a more expressive alternative to GPE and GPI with eigenoptions. While GPE and164
GPI can produce diverse behaviors given a rich set of eigenoptions, LK enables a meta-policy to flex-165
ibly combine a smaller set of options, resulting in a broader and more adaptable range of behaviors.166
This allows the LK to solve tasks that GPE and GPI could not solve using the same bases.167

To understand LK’s effectiveness, we evaluate its performance on similar goal-reaching tasks.168
Eigenoptions are computed using tabular Q-learning (Watkins & Dayan, 1992), while the LK agent169
is trained using TD3 (Fujimoto et al., 2018). The actor and critic networks are both 2-layer feed-170
forward networks with 128 hidden units per layer. The input to the actor is the K-dimensional171
eigenvector of the current state, and the output is a 2 ×K-dimensional weight vector used to com-172
bine the corresponding eigenoptions. Both networks are optimized using Adam (Kingma & Ba,173
2015), with a step size of 0.001 and a batch size of 512. We find that performance improves when174
the actor is updated less frequently—specifically, once every 20 critic updates, rather than the default175
interval of 2 used in standard TD3.176

For evaluation, we select five goal positions and train a separate LK agent for each goal. Each agent177
is trained for 20,000 environment steps across twenty random seeds, with episodes initialized from178
random starting states and capped at 100 timesteps. To assess performance, we measure the average179
number of steps the trained agent takes to reach its target goal from all possible starting positions,180
and then average this metric across all five goal positions. We report the mean and the standard error181
of the average episodic length for varying values of K ∈ {5, 15, 25, 35, 45, 55}, and we compare182
the results for both LK and GPI.183

10 20 30 40 50

K (Number of Eigenoptions)

10

20

30

40

50

60

70

80

90

Av
er

ag
e

Ep
is

od
e

Le
ng

th

LK
GPI

Figure 5: Comparison of performance of LK vs GPI: The green dotted region highlights the per-
formance gap between GPI and LK, where LK achieves lower average episode lengths, indicating
improved efficiency. The blue shaded area represents the standard error of LK’s mean performance,
averaged over all starting positions and five goal positions across 20 random seeds. The inset dis-
plays the five individual goal positions.

Figure 5 shows the average duration the agent takes to reach the goal positions, and it is clear that the184
LK consistently outperforms GPI across different values of K. The green dotted region highlights185
the performance gap, marking the area between the average episode lengths achieved by LK and186
GPI. This visual cue highlights the degree to which the LK outperforms GPI in goal-reaching tasks.187
This suggests that LK is more effective, even with fewer eigenoptions, highlighting its ability to188
learn and solve tasks more efficiently.189

Figure 6 illustrates the dynamic capabilities of LK in comparison to GPE and GPI, particularly190
highlighting its advantage when using a small option basis. 6a shows the GPI policy, πGPI

10 , for the191
reward function R10 (refer to Figure 2). In this case, πGPI

10 coincides exactly with the optimal policy192

6

Towards An Option Basis To Optimize All Rewards

a. b.

 Path taken by
LK Agent (K=10)

LK-Option 1 LK-Option 2
0 5 2 0 1 0 1 0 0 5 3 0 0 4 2 0 0 0 3 00 3 0 1 0 2 0 3 0 3 5 0 0 3 4 0 0 2 4 01 0 2 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 1 0

Figure 6: Understanding the improvement of LK over GPI: (a) This panel shows the policy πGPI
10

for the reward function defined in Figure 2. The agent successfully reaches the goal (yellow square)
only when initialized in one of the green-highlighted states; from all other initial states, it fails to
reach the goal and terminates elsewhere. (b) This panel illustrates the behavior of the LK using
the same set of 20 eigenoptions. When the agent (green circle) is initialized in the top-right state,
LK first outputs a set of weights to combine the 20 eigenoptions to generate LK-Option 1, which
takes the agent to the bottom-right state. At that point, a new set of weights is computed to generate
LK-Option 2, which then guides the agent to the goal. The rightmost plot visualizes this two-step
trajectory: the blue and pink paths show the agent’s progress under LK-Option 1 and LK-Option 2,
respectively. The weights used to generate the LK-Options are rounded to the closest integers and
visualized above each option.

π∗
10. However, the agent can only reach the goal if initialized in one of the three green-highlighted193

states. Otherwise, GPE and GPI yield a static behavior that takes the agent to a non-goal state and194
terminates there, failing to solve the task. In contrast, LK can yield dynamic behaviors by stitching195
different options to solve the same task (see Figure 6b). For example, when initialized in the top-196
right state, LK first generates 20 weights to combine the base eigenoptions to produce LK-Option197
1. Following LK-Option 1, the agent reaches the bottom-right state and terminates. The control198
is passed back to the LK, which then generates a new set of weights to construct LK-Option 2.199
The agent now follows the newly generated option to reach the goal state. This ability to generate200
dynamic behaviors enables LK to outperform naive GPE and GPI when using a small option basis.201

5 Related Work202

Option Keyboard: Prior research on learning option bases within the OK framework has explored203
various methodologies. Barreto et al. (2019) introduces the OK and uses options that were derived204
from manually engineered reward features. In contrast, Carvalho et al. (2023) focused on directly205
learning these reward features. However, working in a transfer RL setting, the learned reward fea-206
tures are limited by the choice of training tasks. More recently, Alegre et al. (2022; 2023; 2025)207
proposed a method for learning an optimal basis for a given MDP, applicable to any specified re-208
ward features. While this method directly addresses a key limitation of our current study—namely,209
how to construct an optimal basis using the eigenvectors of the graph Laplacian as reward features—210
it suffers from exponential complexity with respect to the number of reward features. As a result,211
their experiments are limited to environments with very small observation/reward feature spaces.212

Another common thread across these recent works (Alegre et al., 2022; 2023; 2025; Carvalho et al.,213
2023) is the use of Successor Features (Barreto et al., 2017), which enable efficient evaluation of214
policies under varying reward functions by decoupling environment dynamics from task-specific215
rewards. This decoupling makes it possible to reuse learned dynamics when adapting to new tasks216
defined by different reward combinations. Building on this foundation, Borsa et al. (2019) extends217
the idea further by integrating Successor Features into the Universal Value Function Approximators218
framework (Schaul et al., 2015), thereby achieving broader generalization across the task space.219

7

Under review for RLC 2025, to be published in RLJ 2025

Successor Measure: Unlike the aforementioned methods that rely on pre-defined reward features,220
recent works such as the one by Touati & Ollivier (2021) and Agarwal et al. (2024) aim to learn221
features that represent the successor measure of any given policy. Specifically, Touati & Ollivier222
(2021) learn two distinct representation modules, F and B, guaranteeing near-optimal performance.223
Under certain constraints, the representation B is known to converge to the eigenvectors of the224
graph Laplacian (Blier et al., 2021), which establishes a close connection to our current work.225
While the Option Keyboard framework requires a large number of options to ensure optimality,226
their method overcomes this by using parameterized models that support efficient behavior227
generation. The scalability of this framework has been demonstrated in Tirinzoni et al., where a228
high-dimensional humanoid agent with a 358-dimensional state space was successfully controlled229
to perform zero-shot behaviors.230

6 Discussion231

In this work, we propose using the eigenvectors of an environment’s graph Laplacian as reward232
features for learning an option basis. As a proof of concept, we evaluate the Laplacian Keyboard,233
which leverages eigenoptions as a basis within the Option Keyboard framework. In gridworld ex-234
periments, we show that eigenoptions serve as an effective basis: applying GPE and GPI with these235
eigenoptions can recover the optimal policy for goal-reaching tasks. Furthermore, we demonstrate236
that the Laplacian Keyboard achieves similar performance while relying on a substantially smaller237
set of basis options.238

6.1 Future Work239

Function Approximation: In this study, we computed eigenoptions and evaluated them for dif-240
ferent reward functions using tabular Q-learning. However, this approach does not scale to envi-241
ronments with large or continuous state spaces, where function approximation becomes necessary.242
Future work will address this limitation by leveraging recent methods for approximating the eigen-243
functions of the graph Laplacian using neural networks (Gomez et al., 2023). Additionally, more244
efficient learning and evaluation of eigenoptions can be pursued by techniques used in prior work245
on successor features and option composition (Barreto et al., 2017; Carvalho et al., 2023). Finally,246
building on prior evidence of scalability (Gomez et al., 2023; Klissarov & Machado, 2023), we plan247
to extend our approach to more complex environments.248

Optimal basis of eigenoptions: Our experiments demonstrate that while eigenoptions provide a249
strong basis for behavior composition, they are not optimal. As shown in Section 3, the policies π∗

K250
and πGPI

K do not always align, indicating that the current basis does not fully capture the optimal251
structure. Recent works (Alegre et al., 2022; 2025) have proposed methods for constructing an252
optimal basis given knowledge of the reward features. Here we argued that the eigenvectors of253
the graph Laplacian should be such reward features. Building on these insights, we hypothesize254
that an optimal basis of eigenoptions would include options trained from weighted combinations of255
eigenvectors rather than one-hot / individual eigenvectors. As part of future work, we aim to extend256
our approach by incorporating these ideas to construct a universal and optimal basis of options to257
solve any given task in an environment.258

References259

Siddhant Agarwal, Harshit Sikchi, Peter Stone, and Amy Zhang. Proto Successor Measure:260
Representing the Space of All Possible Solutions of Reinforcement Learning. arXiv preprint261
arXiv:2411.19418, 2024.262

Lucas Nunes Alegre, Ana L. C. Bazzan, and Bruno C. Da Silva. Optimistic Linear Support and Suc-263
cessor Features as a Basis for Optimal Policy Transfer. In International Conference on Machine264
Learning, pp. 394–413, 2022.265

8

Towards An Option Basis To Optimize All Rewards

Lucas Nunes Alegre, Ana L. C. Bazzan, Diederik M. Roijers, Ann Nowé, and Bruno C. da Silva.266
Sample-Efficient Multi-Objective Learning via Generalized Policy Improvement Prioritization. In267
International Conference on Autonomous Agents and Multiagent Systems, pp. 2003–2012, 2023.268

Lucas Nunes Alegre, Ana L. C. Bazzan, André Barreto, and Bruno C. Da Silva. Constructing an269
Optimal Behavior Basis for the Option Keyboard. arXiv preprint arXiv:2505.00787, 2025.270

André Barreto, Will Dabney, Rémi Munos, Jonathan J. Hunt, Tom Schaul, Hado van Hasselt, and271
David Silver. Successor Features for Transfer in Reinforcement Learning. In Neural Information272
Processing Systems, 2017.273

André Barreto, Diana Borsa, Shaobo Hou, Gheorghe Comanici, Eser Aygün, Philippe Hamel, Daniel274
Toyama, Shibl Mourad, David Silver, and Doina Precup. The Option Keyboard: Combining Skills275
in Reinforcement Learning. In Neural Information Processing Systems, 2019.276

André Barreto, Shaobo Hou, Diana Borsa, David Silver, and Doina Precup. Fast Reinforcement277
Learning with Generalized Policy Updates. Proceedings of the National Academy of Sciences,278
117(48):30079–30087, 2020.279

Léonard Blier, Corentin Tallec, and Yann Ollivier. Learning Successor States and Goal-Dependent280
Values: A Mathematical Viewpoint. arXiv preprint arXiv:2101.07123, 2021.281

Diana Borsa, Andre Barreto, John Quan, Daniel J. Mankowitz, Hado van Hasselt, Remi Munos,282
David Silver, and Tom Schaul. Universal Successor Features Approximators. In International283
Conference on Learning Representations, 2019.284

Wilka Carvalho, Andre Saraiva, Angelos Filos, Andrew Lampinen, Loic Matthey, Richard L. Lewis,285
Honglak Lee, Satinder Singh, Danilo Jimenez Rezende, and Daniel Zoran. Combining Behaviors286
with the Successor Features Keyboard. In Neural Information Processing Systems, 2023.287

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing Function Approximation Error in288
Actor-Critic Methods. In International Conference on Machine Learning, pp. 1587–1596, 2018.289

Diego Gomez, Michael Bowling, and Marlos C. Machado. Proper Laplacian Representation Learn-290
ing. In International Conference on Learning Representations, 2023.291

Yuu Jinnai, Jee Won Park, David Abel, and George Konidaris. Discovering Options for Exploration292
by Minimizing Cover Time. In International Conference on Machine Learning, pp. 3130–3139,293
2019.294

Yuu Jinnai, Jee Won Park, Marlos C. Machado, and George Konidaris. Exploration in Reinforcement295
Learning with Deep Covering Options. In International Conference on Learning Representations,296
2020.297

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In International298
Conference on Learning Representations, 2015.299

Martin Klissarov and Marlos C. Machado. Deep Laplacian-Based Options for Temporally-Extended300
Exploration. In International Conference on Machine Learning, pp. 17198–17217, 2023.301

Marlos C. Machado, Marc G. Bellemare, and Michael Bowling. A Laplacian Framework for Option302
Discovery in Reinforcement Learning. In International Conference on Machine Learning, pp.303
2295–2304, 2017.304

Marlos C. Machado, Clemens Rosenbaum, Xiaoxiao Guo, Miao Liu, Gerald Tesauro, and Murray305
Campbell. Eigenoption Discovery through the Deep Successor Representation. In International306
Conference on Learning Representations, 2018.307

9

Under review for RLC 2025, to be published in RLJ 2025

Marlos C. Machado, André Barreto, Doina Precup, and Michael Bowling. Temporal Abstraction308
in Reinforcement Learning with the Successor Representation. Journal of Machine Learning309
Research, 24(80):1–69, 2023.310

Sridhar Mahadevan. Proto-Value Functions: Developmental Reinforcement Learning. In Interna-311
tional Conference on Machine Learning, pp. 553–560, 2005.312

Sridhar Mahadevan and Mauro Maggioni. Proto-Value Functions: A Laplacian Framework for313
Learning Representation and Control in Markov Decision Processes. Journal of Machine Learn-314
ing Research, 8(10), 2007.315

Stéphane Mallat. A Wavelet Tour of Signal Processing. Elsevier, 1999.316

Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal Value Function Approxi-317
mators. In International Conference on Machine Learning, pp. 1312–1320, 2015.318

Richard S. Sutton, Doina Precup, and Satinder Singh. Between MDPs and Semi-MDPs: A Frame-319
work for Temporal Abstraction in Reinforcement Learning. Artificial Intelligence, 112(1-2):181–320
211, 1999.321

Andrea Tirinzoni, Ahmed Touati, Jesse Farebrother, Mateusz Guzek, Anssi Kanervisto, Yingchen322
Xu, Alessandro Lazaric, and Matteo Pirotta. Zero-shot Whole-body Humanoid Control via Be-323
havioral Foundation Models. In International Conference on Learning Representations, 2025.324

Ahmed Touati and Yann Ollivier. Learning One Representation to Optimize All Rewards. In Neural325
Information Processing Systems, pp. 13–23, 2021.326

Christopher J. C. H. Watkins and Peter Dayan. Q-Learning. Machine Learning, 8:279–292, 1992.327

10

