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Abstract

Offline black-box optimization aims to maximize a black-box function using an1

offline dataset of designs and their measured properties. Two main approaches have2

emerged: the forward approach, which learns a mapping from input to its value,3

thereby acting as a proxy to guide optimization, and the inverse approach, which4

learns a mapping from value to input for conditional generation. (a) Although5

proxy-free (classifier-free) diffusion shows promise in robustly modeling the inverse6

mapping, it lacks explicit guidance from proxies, essential for generating high-7

performance samples beyond the training distribution. Therefore, we propose8

proxy-enhanced sampling which utilizes the explicit guidance from a trained proxy9

to bolster proxy-free diffusion with enhanced sampling control. (b) Yet, the trained10

proxy is susceptible to out-of-distribution issues. To address this, we devise the11

module diffusion-based proxy refinement, which seamlessly integrates insights from12

proxy-free diffusion back into the proxy for refinement. To sum up, we propose13

Robust Guided Diffusion for Offline Black-box Optimization (RGD), combining the14

advantages of proxy (explicit guidance) and proxy-free diffusion (robustness) for15

effective conditional generation. RGD achieves state-of-the-art results on various16

design-bench tasks, underscoring its efficacy. Our code is here.17

1 Introduction18

Creating new objects to optimize specific properties is a ubiquitous challenge that spans a multitude19

of fields, including material science, robotic design, and genetic engineering. Traditional methods20

generally require interaction with a black-box function to generate new designs, a process that could21

be financially burdensome and potentially perilous [1, 2]. Addressing this, recent research endeavors22

have pivoted toward a more relevant and practical context, termed offline black-box optimization23

(BBO) [3, 4]. In this context, the goal is to maximize a black-box function exclusively utilizing an24

offline dataset of designs and their measured properties.25

There are two main approaches for this task: the forward approach and the reverse approach. The26

forward approach entails training a deep neural network (DNN), parameterized as Jϕ(·), using the27

offline dataset. Once trained, the DNN acts as a proxy and provides explicit gradient guidance to28

enhance existing designs. However, this technique is susceptible to the out-of-distribution (OOD)29

issue, leading to potential overestimation of unseen designs and resulting in adversarial solutions [5].30

The reverse approach aims to learn a mapping from property value to input. Inputting a high value31

into this mapping directly yields a high-performance design. For example, MINs [6] adopts GAN [7]32

to model this inverse mapping, and demonstrate some success. Recent works [4] have applied33

proxy-free diffusion1 [8], parameterized by θ, to model this mapping, which proves its efficacy over34

1Classifier-free diffusion is for classification and adapted to proxy-free diffusion to generalize to regression.
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other generative models. Proxy-free diffusion employs a score predictor s̃θ(·, ·, ω). This represents a35

linear combination of conditional and unconditional scores, modulated by a strength parameter ω to36

balance condition and diversity in the sampling process. This guidance significantly diverges from37

proxy (classifier) diffusion that interprets scores as classifier gradients and thus generates adversarial38

solutions. Such a distinction grants proxy-free diffusion its inherent robustness in generating samples.39
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Figure 1: Motivation of explicit proxy guidance.

Nevertheless, proxy-free diffusion, initially de-40

signed for in-distribution generation, such as41

synthesizing specific image categories, faces42

limitations in offline BBO. Particularly, it strug-43

gles to generate high-performance samples that44

exceed the training distribution due to the lack45

of explicit guidance2. Consider, for example,46

the optimization of a two-dimensional variable47

(xd1, xd2) to maximize the negative Rosenbrock48

function [9]: y(xd1, xd2) = −(1 − xd1)
2 −49

100(xd2 − x2
d1)

2, as depicted in Figure 1. The50

objective is to steer the initial points (indi-51

cated in pink) towards the high-performance52

region (highlighted in yellow). While proxy-53

free diffusion can nudge the initial points closer to this high-performance region, the generated points54

(depicted in blue) fail to reach the high-performance region due to its lack of explicit proxy guidance.55

To address this challenge, we introduce a proxy-enhanced sampling module as illustrated in Fig-56

ure 2(a). It incorporates the explicit guidance from the proxy Jϕ(x) into proxy-free diffusion to57

enable enhanced control over the sampling process. This module hinges on the strategic optimization58

of the strength parameter ω to achieve a better balance between condition and diversity, per reverse59

diffusion step. This incorporation not only preserves the inherent robustness of proxy-free diffusion60

but also leverages the explicit proxy guidance, thereby enhancing the overall conditional generation61

efficacy. As illustrated in Figure 1, samples (depicted in red) generated via proxy-enhanced sampling62

are more effectively guided towards, and often reach, the high-performance area (in yellow).63
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Figure 2: Overall of RGD.

Yet, the trained proxy is susceptible to out-of-64

distribution (OOD) issues. To address this, we65

devise a module diffusion-based proxy refinement66

as detailed in Figure 2(b). This module seamlessly67

integrates insights from proxy-free diffusion into68

the proxy Jϕ(x) for refinement. Specifically, we69

generate a diffusion distribution pθ(y|x̂) on adver-70

sarial samples x̂, using the associated probability71

flow ODE 3. This distribution is derived indepen-72

dently of a proxy, thereby exhibiting greater ro-73

bustness than the proxy distribution on adversarial74

samples. Subsequently, we calculate the Kullback-75

Leibler divergence between the two distributions76

on adversarial samples, and use this divergence77

minimization as a regularization strategy to fortify78

the proxy’s robustness and reliability.79

To sum up, we propose Robust Guided Diffusion for Offline Black-box Optimization (RGD), a novel80

framework that combines the advantages of proxy (explicit guidance) and proxy-free diffusion (ro-81

bustness) for effective conditional generation. Our contributions are three-fold:82

• We propose a proxy-enhanced sampling module which incorporates proxy guidance into proxy-free83

diffusion to enable enhanced sampling control.84

• We further develop diffusion-based proxy refinement which integrates insights from proxy-free85

diffusion back into the proxy for refinement.86

• RGD delivers state-of-the-art performance on various design-bench tasks, emphasizing its efficacy.87

2Proxy-free diffusion cannot be interpreted as a proxy and thus does not provide explicit guidance [8].
3Ordinary Differential Equation
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2 Preliminaries88

2.1 Offline Black-box Optimization89

Offline black-box optimization (BBO) aims to maximize a black-box function with an offline dataset.90

Imagine a design space as X = Rd, where d is the design dimension. The offline BBO [3] is:91

x∗ = argmax
x∈X

J(x). (1)

In this equation, J(·) is the unknown objective function, and x ∈ X is a possible design. In this92

context, there is an offline dataset, D, that consists of pairs of designs and their measured properties.93

Specifically, each x denotes a particular design, like the size of a robot, while y indicates its related94

metric, such as its speed.95

A common approach gradient ascent fits a proxy distribution pϕ(y|x) = N (Jϕ(x), σϕ(x)) to the96

offline dataset where ϕ denote the proxy parameters:97

argmin
ϕ

E(x,y)∈D[− log pϕ(y|x)].

= argmin
ϕ

E(x,y)∈D log(
√
2πσϕ(x)) +

(y − Jϕ(x))
2

2σ2
ϕ(x)

.
(2)

For the sake of consistency with terminology used in the forthcoming subsection on guided diffusion,98

we will refer to pϕ(·|·) as the proxy distribution and Jϕ(·) as the proxy. Subsequently, this approach99

performs gradient ascent with Jϕ(x), leading to high-performance designs x∗:100

xτ+1 = xτ + η∇xJϕ(x)|x=xτ
, for τ ∈ [0,M− 1], (3)

converging to xM after M steps. However, this method suffers from the out-of-distribution issue101

where the proxy predicts values that are notably higher than the actual values.102

2.2 Diffusion Models103

Diffusion models, a type of latent variable models, progressively introduce Gaussian noise to data in104

the forward process, while the reverse process aims to iteratively remove this noise through a learned105

score estimator. In this work, we utilize continuous time diffusion models governed by a stochastic106

differential equation (SDE), as presented in [10]. The forward SDE is formulated as:107

dx = f(x, t)dt+ g(t)dw. (4)

where f(·, t) : Rd → Rd represents the drift coefficient, g(·) : R → R denotes the diffusion108

coefficient and w is the standard Wiener process. This SDE transforms data distribution into noise109

distribution. The reverse SDE is:110

dx =
[
f(x, t)− g(t)2∇x log p(x)

]
dt+ g(t)dw̄, (5)

with ∇x log p(x) representing the score of the marginal distribution at time t, and w̄ symbolizing the111

reverse Wiener process. The score function ∇x log p(x) is estimated using a time-dependent neural112

network sθ(xt, t), enabling us to transform noise into samples. For simplicity, we will use sθ(xt),113

implicitly including the time dependency t.114

2.3 Guided Diffusion115

Guided diffusion seeks to produce samples with specific desirable attributes, falling into two cate-116

gories: proxy diffusion [11] and proxy-free diffusion [8]. While these were initially termed classifier117

diffusion and classifier-free diffusion in classification tasks, we have renamed them to proxy diffu-118

sion and proxy-free diffusion, respectively, to generalize to our regression context. Proxy diffusion119

combines the model’s score estimate with the gradient from the proxy distribution, providing explicit120

guidance. However, it can be interpreted as a gradient-based adversarial attack.121

Proxy-free guidance, not dependent on proxy gradients, enjoys an inherent robustness of the sampling122

process. Particularly, it models the score as a linear combination of an unconditional and a conditional123

score. A unified neural network sθ(xt, y) parameterizes both score types. The score sθ(xt, y)124
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approximates the gradient of the log probability ∇xt log p(xt|y), i.e., the conditional score, while125

sθ(xt) estimates the gradient of the log probability ∇xt log p(xt), i.e., the unconditional score. The126

score function follows:127

s̃θ(xt, y, ω) = (1 + ω)sθ(xt, y)− ωsθ(xt). (6)

Within this context, the strength parameter ω specifies the generation’s adherence to the condition128

y, which is set to the maximum value ymax in the offline dataset following [4]. Optimization of ω129

balances the condition and diversity. Lower ω values increase sample diversity at the expense of130

conformity to y, and higher values do the opposite.131

3 Method132

In this section, we present our method RGD, melding the strengths of proxy and proxy-free diffu-133

sion for effective conditional generation. Firstly, we describe a newly developed module termed134

proxy-enhanced sampling. It integrates explicit proxy guidance into proxy-free diffusion to enable135

enhanced sampling control, as detailed in Section 3.1. Subsequently, we explore diffusion-based136

proxy refinement which incorporates insights gleaned from proxy-free diffusion back into the proxy,137

further elaborated in Section 3.2. The overall algorithm is shown in Algorithm 1.138

3.1 Proxy-enhanced Sampling139

Algorithm 1 Robust Guided Diffusion for Offline BBO
Input: offline dataset D, # of diffusion steps T .

1: Train proxy distribution pϕ(y|x) on D by Eq. (2).
2: Train proxy-free diffusion model sθ(xt, y) on D.
3: /*Diffusion-based proxy refinement */
4: Identify adversarial samples via grad ascent.
5: Compute diffusion distribution pθ(y|x̂) by Eq. (12).
6: Compute KL divergence loss as per Eq. (13).
7: Refine proxy distribution pϕ(y|x) through Eq. (15).
8: /*Proxy-enhanced sampling */
9: Begin with xT ∼ N (0, I)

10: for t = T − 1 to 0 do
11: Derive the score s̃θ(xt+1, y, ω) from Eq. (6).
12: Update xt+1 to xt(ω) using ω as per Eq. (7).
13: Optimize ω to ω̂ following Eq. (8).
14: Finalize the update of xt with ω̂ via Eq. (9).
15: end for
16: Return x∗ = x0

As discussed in Section 2.3, proxy-140

free diffusion trains an unconditional141

model and conditional models. Although142

proxy-free diffusion can generate samples143

aligned with most conditions, it tradition-144

ally lacks control due to the absence of145

an explicit proxy. This is particularly sig-146

nificant in offline BBO where we aim to147

obtain samples beyond the training dis-148

tribution. Therefore, we require explicit149

proxy guidance to achieve enhanced sam-150

pling control. This module is outlined in151

Algorithm 1, Line 8- Line 16.152

Optimization of ω. Directly updating153

the design xt with proxy gradient suffers154

from the OOD issue and determining a155

proper condition y necessitates the man-156

ual adjustment of multiple hyperparame-157

ters [6]. Thus, we propose to introduce158

proxy guidance by only optimizing the strength parameter ω within s̃θ(xt, y, ω) in Eq. (6). As159

discussed in Section 2.3, the parameter ω balances the condition and diversity, and an optimized ω160

could achieve a better balance in the sampling process, leading to more effective generation.161

Enhanced Sampling. With the score function, the update of a noisy sample xt+1 is computed as:162

xt(ω) = solver(xt+1, s̃θ(xt+1, y, ω)), (7)

where the solver is the second-order Heun solver [12], chosen for its enhanced accuracy through a163

predictor-corrector method. A proxy is then trained to predict the property of noise xt at time step t,164

denoted as Jϕ(xt, t). By maximizing Jϕ(xt(ω), t) with respect to ω, we can incorporate the explicit165

proxy guidance into proxy-free diffusion to enable enhanced sampling control in the balance between166

condition and diversity. This maximization process is:167

ω̂ = ω + η
∂Jϕ(xt(ω), t)

∂ω
. (8)

where η denotes the learning rate. We leverage the automatic differentiation capabilities of Py-168

Torch [13] to efficiently compute the above derivatives within the context of the solver’s operation.169

The optimized ω̂ then updates the noisy sample xt+1 through:170

xt = solver(xt+1, s̃θ(xt+1, y, ω̂)). (9)
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This process iteratively denoises xt, utilizing it in successive steps to progressively approach x0,171

which represents the final high-scoring design x∗.172

Proxy Training. Notably, Jϕ(xt, t) can be directly derived from the proxy Jϕ(x), the mean of the173

proxy distribution pϕ(·|x) in Eq. (2). This distribution is trained exclusively at the initial time step174

t = 0, eliminating the need for training across time steps. To achieve this derivation, we reverse the175

diffusion from xt back to x0 using the formula:176

x0 =
xt + sθ(xt) · σ(t)2

µ(t)
, (10)

where sθ(xt) is the estimated unconditional score at time step t, and σ(t)2 and µ(t) are the variance177

and mean functions of the perturbation kernel at time t, as detailed in equations (32-33) in [10].178

Consequently, we express179

Jϕ(xt, t) = Jϕ

(
xt + sθ(xt) · σ(t)2

µ(t)

)
. (11)

This formulation allows for the optimization of the strength parameter ω via Eq. (8). For simplicity,180

we will refer to Jϕ(·) in subsequent discussions.181

3.2 Diffusion-based Proxy Refinement182

In the proxy-enhanced sampling module, the proxy Jϕ(·) is employed to update the parameter ω183

to enable enhanced control. However, Jϕ(·) may still be prone to the OOD issue, especially on184

adversarial samples [5]. To address this, we refine the proxy by using insights from proxy-free185

diffusion. The procedure of this module is specified in Algorithm 1, Lines 3-7.186

Diffusion Distribution. Adversarial samples are identified by gradient ascent on the proxy as per187

Eq. (3) to form the distribution q(x). Consequently, these samples are vulnerable to the proxy188

distribution. Conversely, the proxy-free diffusion, which functions without depending on a proxy,189

inherently offers greater resilience against these samples, thus producing a more robust distribution.190

For an adversarial sample x̂ ∼ q(x), we compute pθ(x̂), pθ(x̂|y) via the probability flow ODE, and191

p(y) through Gaussian kernel-density estimation. The diffusion distribution regarding y is derived as:192

pθ(y|x̂) =
pθ(x̂|y) · p(y)

pθ(x̂)
, (12)

which demonstrates inherent robustness over the proxy distribution pϕ(y|x̂). Yet, directly applying193

diffusion distribution to design optimization by gradient ascent is computationally intensive and194

potentially unstable due to the demands of reversing ODEs and scoring steps.195

Proxy Refinement. We opt for a more feasible approach: refine the proxy distribution pϕ(y|x̂) =196

N (Jϕ(x̂), σϕ(x̂)) by minimizing its distance to the diffusion distribution pθ(y|x̂). The distance is197

quantified by the Kullback-Leibler (KL) divergence:198

Eq[D(pϕ||pθ)] = Eq(x)

∫
pϕ(y|x̂) log

(
pϕ(y|x̂)
pθ(y|x̂)

)
dy. (13)

We avoid the parameterization trick for minimizing this divergence as it necessitates backpropagation199

through pθ(y|x̂), which is prohibitively expensive. Instead, for the sample x̂, the gradient of the KL200

divergence D(pϕ||pθ) with respect to the proxy parameters ϕ is computed as:201

Epϕ(y|x̂)

[
d log pϕ(y|x̂)

dϕ

(
1 + log

pϕ(y|x̂)
pθ(y|x̂)

)]
. (14)

Complete derivations are in Appendix A. The KL divergence then acts as regularization in our loss L:202

L(ϕ, α) = ED[− log pϕ(y|x)] + αEq(x)[D(pϕ||pθ)], (15)

where D is the training dataset and α is a hyperparameter. We propose to optimize α based on the203

validation loss via bi-level optimization as detailed in Appendix B.204

4 Experiments205

In this section, we conduct comprehensive experiments to evaluate our method’s performance.206
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4.1 Benchmarks207

Tasks. Our experiments encompass a variety of tasks, split into continuous and discrete categories.208

The continuous category includes four tasks: (1) Superconductor (SuperC) 4: The objective here209

is to engineer a superconductor composed of 86 continuous elements. The goal is to enhance the210

critical temperature using 17, 010 design samples. This task is based on the dataset from [1]. (2) Ant211

Morphology (Ant): In this task, the focus is on developing a quadrupedal ant robot, comprising 60212

continuous parts, to augment its crawling velocity. It uses 10, 004 design instances from the dataset213

in [3, 14]. (3) D’Kitty Morphology (D’Kitty): Similar to Ant Morphology, this task involves the214

design of a quadrupedal D’Kitty robot with 56 components, aiming to improve its crawling speed215

with 10, 004 designs, as described in [3, 15]. (4) Rosenbrock (Rosen): The aim of this task is to216

optimize a 60-dimension continuous vector to maximize the Rosenbrock black-box function. It uses217

50000 designs from the low-scoring part [9].218

For the discrete category, we explore three tasks: (1) TF Bind 8 (TF8): The goal is to identify an219

8-unit DNA sequence that maximizes binding activity. This task uses 32, 898 designs and is detailed220

in [16]. (2) TF Bind 10 (TF10): Similar to TF8, but with a 10-unit DNA sequence and a larger pool221

of 50, 000 samples, as described in [16]. (3) Neural Architecture Search (NAS): This task focuses222

on discovering the optimal neural network architecture to improve test accuracy on the CIFAR-10223

dataset, using 1, 771 designs [17].224

Evaluation. In this study, we utilize the oracle evaluation from design-bench [3]. Adhering to this225

established protocol, we analyze the top 128 promising designs from each method. The evaluation226

metric employed is the 100th percentile normalized ground-truth score, calculated using the formula227

yn = y−ymin
ymax−ymin

, where ymin and ymax signify the lowest and highest scores respectively in the228

comprehensive, yet unobserved, dataset. In addition to these scores, we provide an overview of each229

method’s effectiveness through the mean and median rankings across all evaluated tasks. Notably,230

the best design discovered in the offline dataset, designated as D(best), is also included for reference.231

For further details on the 50th percentile (median) scores, please refer to Appendix C.232

4.2 Comparison Methods233

Our approach is evaluated against two primary groups of baseline methods: forward and inverse234

approaches. Forward approaches enhance existing designs through gradient ascent. This includes: (i)235

Grad: utilizes simple gradient ascent on current designs for new creations; (ii) ROMA [18]: imple-236

ments smoothness regularization on proxies; (iii) COMs [5]: applies regularization to assign lower237

scores to adversarial designs; (iv) NEMO [19]: bridges the gap between proxy and actual functions238

using normalized maximum likelihood; (v) BDI [20]: utilizes both forward and inverse mappings to239

transfer knowledge from offline datasets to the designs; (vi) IOM [21]: ensures consistency between240

representations of training datasets and optimized designs.241

Inverse approaches focus on learning a mapping from a design’s property value back to its input.242

High property values are input into this inverse mapping to yield enhanced designs. This includes: (i)243

CbAS [22]: CbAS employs a VAE model to implicitly implement the inverse mapping. It gradually244

tunes its distribution toward higher scores by raising the scoring threshold. This process can be245

interpreted as incrementally increasing the conditional score within the inverse mapping framework.246

(ii) Autofocused CbAS (Auto.CbAS) [23]: adopts importance sampling for retraining a regression247

model based on CbAS. (iii) MIN [6]: maps scores to designs via a GAN model and explore this248

mapping for optimal designs. (iv) BONET [24]: introduces an autoregressive model for sampling249

high-scoring designs. (v) DDOM [4]: utilizes proxy-free diffusion to model the inverse mapping.250

Traditional methods as detailed in [3] are also considered: (i) CMA-ES [25]: modifies the covariance251

matrix to progressively shift the distribution towards optimal designs; (ii) BO-qEI [26]: implements252

Bayesian optimization to maximize the proxy and utilizes the quasi-Expected-Improvement acqui-253

sition function for design suggestion, labeling designs using the proxy; (iii) REINFORCE [27]:254

enhances the input space distribution using the learned proxy model.255

4Previously, the task oracle exhibited inconsistencies, producing varying outputs for identical inputs. This
issue has now been rectified by the development team.
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4.3 Experimental Configuration256

In alignment with the experimental protocols established in [3, 20], we have tailored our training257

methodologies for all approaches, except where specified otherwise. For methods such as BO-qEI,258

CMA-ES, REINFORCE, CbAS, and Auto.CbAS that do not utilize gradient ascent, we base our259

approach on the findings reported in [3]. We adopted T = 1000 diffusion sampling steps, set the260

condition y to ymax, and initial strength ω as 2 in line with [4]. To ensure reliability and consistency in261

our comparative analysis, each experimental setting was replicated across 8 independent runs, unless262

stated otherwise, with the presentation of both mean values and standard errors. These experiments263

were conducted using a NVIDIA GeForce V100 GPU. We’ve detailed the computational overhead of264

our approach in Appendix D to provide a comprehensive view of its practicality.265

Table 1: Results (maximum normalized score) on continuous tasks.

Method Superconductor Ant Morphology D’Kitty Morphology Rosenbrock
D(best) 0.399 0.565 0.884 0.518
BO-qEI 0.402± 0.034 0.819± 0.000 0.896± 0.000 0.772± 0.012

CMA-ES 0.465± 0.024 1.214 ± 0.732 0.724± 0.001 0.470± 0.026
REINFORCE 0.481± 0.013 0.266± 0.032 0.562± 0.196 0.558± 0.013

Grad 0.490± 0.009 0.932± 0.015 0.930± 0.002 0.701± 0.092
COMs 0.504 ± 0.022 0.818± 0.017 0.905± 0.017 0.672± 0.075
ROMA 0.507 ± 0.013 0.898± 0.029 0.928± 0.007 0.663± 0.072
NEMO 0.499± 0.003 0.956± 0.013 0.953 ± 0.010 0.614± 0.000
IOM 0.524 ± 0.022 0.929± 0.037 0.936± 0.008 0.712± 0.068
BDI 0.513 ± 0.000 0.906± 0.000 0.919± 0.000 0.630± 0.000

CbAS 0.503 ± 0.069 0.876± 0.031 0.892± 0.008 0.702± 0.008
Auto.CbAS 0.421± 0.045 0.882± 0.045 0.906± 0.006 0.721± 0.007

MIN 0.499± 0.017 0.445± 0.080 0.892± 0.011 0.702± 0.074
BONET 0.422± 0.019 0.925± 0.010 0.941± 0.001 0.780± 0.009
DDOM 0.495± 0.012 0.940± 0.004 0.935± 0.001 0.789 ± 0.003
RGD 0.515 ± 0.011 0.968 ± 0.006 0.943 ± 0.004 0.797 ± 0.011

Table 2: Results (maximum normalized score) on discrete tasks & ranking on all tasks.

Method TF Bind 8 TF Bind 10 NAS Rank Mean Rank Median
D(best) 0.439 0.467 0.436
BO-qEI 0.798± 0.083 0.652± 0.038 1.079 ± 0.059 9.1/15 11/15

CMA-ES 0.953± 0.022 0.670± 0.023 0.985± 0.079 7.3/15 4/15
REINFORCE 0.948± 0.028 0.663± 0.034 −1.895± 0.000 11.3/15 14/15

Grad 0.872± 0.062 0.646± 0.052 0.624± 0.102 9.0/15 10/15
COMs 0.517± 0.115 0.613± 0.003 0.783± 0.029 10.3/15 10/15
ROMA 0.927± 0.033 0.676± 0.029 0.927± 0.071 6.1/15 6/15
NEMO 0.942± 0.003 0.708 ± 0.022 0.737± 0.010 5.3/15 5/15
IOM 0.823± 0.130 0.650± 0.042 0.559± 0.081 7.4/15 6/15
BDI 0.870± 0.000 0.605± 0.000 0.722± 0.000 9.6/15 9/15

CbAS 0.927± 0.051 0.651± 0.060 0.683± 0.079 8.7/15 8/15
Auto.CbAS 0.910± 0.044 0.630± 0.045 0.506± 0.074 10.3/15 10/15

MIN 0.905± 0.052 0.616± 0.021 0.717± 0.046 10.4/15 10/15
BONET 0.913± 0.008 0.621± 0.030 0.724± 0.008 7.7/15 8/15
DDOM 0.957± 0.006 0.657± 0.006 0.745± 0.070 4.9/15 5/15
RGD 0.974 ± 0.003 0.694 ± 0.018 0.825± 0.063 2.0/15 2/15

4.4 Results and Analysis266

In Tables 1 and 2, we showcase our experimental results for both continuous and discrete tasks.267

To clearly differentiate among the various approaches, distinct lines separate traditional, forward,268

and inverse approaches within the tables For every task, algorithms performing within a standard269

deviation of the highest score are emphasized by bolding following [5].270

We make the following observations. (1) As highlighted in Table 2, RGD not only achieves the top271

rank but also demonstrates the best performance in six out of seven tasks, emphasizing the robustness272

and superiority of our method. (2) RGD outperforms the VAE-based CbAS, the GAN-based MIN273
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and the Transformer-based BONET. This result highlights the superiority of diffusion models in274

modeling inverse mappings compared to other generative approaches. (3) Upon examining TF275

Bind 8, we observe that the average rankings for forward and inverse methods stand at 10.3 and276

6.0, respectively. In contrast, for TF Bind 10, both methods have the same average ranking of 8.7,277

indicating no advantage. This notable advantage of inverse methods in TF Bind 8 implies that the278

relatively smaller design space of TF Bind 8 (48) facilitates easier inverse mapping, as opposed to the279

more complex space in TF Bind 10 (410). (4) RGD’s performance is less impressive on NAS, where280

designs are encoded as 64-length sequences of 5-category one-hot vectors. This may stem from281

the design-bench’s encoding not fully capturing the sequential and hierarchical aspects of network282

architectures, affecting the efficacy of inverse mapping modeling.283

Table 3: Ablation studies on RGD.

Task D RGD w/o proxy-e w/o diffusion-b r direct grad update
SuperC 86 0.515 ± 0.011 0.495± 0.012 0.502± 0.005 0.456± 0.002

Ant 60 0.968 ± 0.006 0.940± 0.004 0.961± 0.011 −0.006± 0.003
D’Kitty 56 0.943 ± 0.004 0.935± 0.001 0.939± 0.003 0.714± 0.001
Rosen 60 0.797± 0.011 0.789± 0.003 0.813 ± 0.005 0.241± 0.283
TF8 8 0.974 ± 0.003 0.957± 0.007 0.960± 0.006 0.905± 0.000

TF10 10 0.694 ± 0.018 0.657± 0.006 0.667± 0.009 0.672± 0.018
NAS 64 0.825 ± 0.063 0.745± 0.070 0.717± 0.032 0.718± 0.032

4.5 Ablation Studies284

In this section, we present a series of ablation studies to scrutinize the individual contributions of285

distinct components in our methodology. We employ our proposed approach as a benchmark and286

methodically exclude key modules, such as the proxy-enhanced sampling and diffusion-based proxy287

refinement, to assess their influence on performance. These variants are denoted as w/o proxy-e and288

w/o diffusion-b r. Additionally, we explore the strategy of directly performing gradient ascent on289

the diffusion intermediate state, referred to as direct grad update. The results from these ablation290

experiments are detailed in Table 3.291

Our analysis reveals that omitting either module results in a decrease in performance, thereby affirming292

the importance of each component. The w/o diffusion-b r variant generally surpasses w/o proxy-e,293

highlighting the utility of the proxy-enhanced sampling even with a basic proxy setup. Conversely,294

direct grad update tends to produce subpar results across tasks, likely attributable to the proxy’s295

limitations in handling out-of-distribution samples, leading to suboptimal design optimizations.296
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Figure 3: Dynamics of strength ratio ω/ω0.

To further dive into the proxy-enhanced sam-297

pling module, we visualize the strength ra-298

tio ω/ω0—where ω0 represents the initial299

strength—across diffusion steps t. This analysis300

is depicted in Figure 3 for two specific tasks:301

Ant and TF10. We observe a pattern of initial302

decrease followed by an increase in ω across303

both tasks. This pattern can be interpreted as304

follows: The decrease in ω facilitates the genera-305

tion of a more diverse set of samples, enhancing306

exploratory capabilities. Subsequently, the in-307

crease in ω signifies a shift towards integrating308

high-performance features into the sample gen-309

eration. Within this context, conditioning on310

the maximum y is not aimed at achieving the311

dataset’s maximum but at enriching samples with high-scoring attributes. Overall, this adjustment of312

ω effectively balances between generating novel solutions and honing in on high-quality ones.313

In addition, we visualize the proxy distribution alongside the diffusion distribution for a sample x̂314

from the Ant task in Figure 4, to substantiate the efficacy of diffusion-based proxy refinement. The315

proxy distribution significantly overestimates the ground truth, whereas the diffusion distribution316

closely aligns with it, demonstrating the robustness of diffusion distribution. For a more quantitative317
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analysis, we compute the expectation of both distributions and compare them with the ground318

truth. The mean of the diffusion distribution is calculated as Epθ(y|x̂)[y] = Epϕ(y|x̂)

[
pθ(y|x̂)
pϕ(y|x̂)y

]
.319
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Figure 4: Proxy vs. diffusion distribution.

The MSE loss for the proxy distribution is 2.88, while320

for the diffusion distribution, it is 0.13 on the Ant321

task. Additionally, we evaluate this on the TFB10322

task, where the MSE loss for the proxy distribution323

is 323.63 compared to 0.82 for the diffusion distribu-324

tion. These results further corroborate the effective-325

ness of our proposed module.326

Furthermore, we (1) investigate the impact of re-327

placing our trained proxy model with alternative ap-328

proaches, specifically ROMA and COMs, (2) analyze329

the performance with an optimized condition y and330

(3) explore a simple annealing approach of ω. For331

a comprehensive discussion on these, readers are re-332

ferred to Appendix E.333

4.6 Hyperparameter Sensitivity Analysis334

This section investigates the sensitivity of RGD to various hyperparameters. Specifically, we analyze335

the effects of (1) the number of diffusion sampling steps T , (2) the condition y, and (3) the learning336

rate η of the proxy-enhanced sampling. These parameters are evaluated on two tasks: the continuous337

Ant task and the discrete TFB10 task. For a detailed discussion, see Appendix F.338

5 Related Work339

Offline black-box optimization. A recent surge in research has presented two predominant ap-340

proaches for offline BBO. The forward approach deploys a DNN to fit the offline dataset, subsequently341

utilizing gradient ascent to enhance existing designs. Typically, these techniques, including COMs [5],342

ROMA [18], NEMO [19], BDI [20, 28], IOM [29] and Parallel-mentoring [30], are designed to343

embed prior knowledge within the surrogate model to alleviate the OOD issue. The reverse ap-344

proach [6, 31] is dedicated to learning a mapping from property values back to inputs. Feeding a high345

value into this inverse mapping directly produces a design of elevated performance. Additionally,346

methods in [22, 23] progressively tailor a generative model towards the optimized design via a proxy347

function and BONET [24] introduces an autoregressive model trained on fixed-length trajectories to348

sample high-scoring designs. Recent investigations [4] have underscored the superiority of diffusion349

models in delineating the inverse mapping. However, research on specialized guided diffusion for350

offline BBO remains limited. This paper addresses this research gap.351

Guided diffusion. Guided diffusion seeks to produce samples with specific desirable attributes.352

Contemporary research in guided diffusion primarily concentrates on enhancing the efficiency of353

its sampling process. [32] propose a method for distilling a classifier-free guided diffusion model354

into a more efficient single model that necessitates fewer steps in sampling. [33] introduce an355

operator splitting method to expedite classifier guidance by separating the update process into two356

key functions: the diffusion function and the conditioning function. Additionally, [34] presents an357

efficient and universal guidance mechanism that utilizes a readily available proxy to enable diffusion358

guidance across time steps. In this work, we explore the application of guided diffusion in offline359

BBO, with the goal of creating tailored algorithms to efficiently generate high-performance designs.360

6 Conclusion361

In conclusion, we propose Robust Guided Diffusion for Offline Black-box Optimization (RGD). The362

proxy-enhanced sampling module adeptly integrates proxy guidance to enable enhanced sampling363

control, while the diffusion-based proxy refinement module leverages proxy-free diffusion insights364

for proxy improvement. Empirical evaluations on design-bench have showcased RGD’s outstanding365

performance, further validated by ablation studies on the contributions of these novel components.366

We discuss the broader impact and limitation in Appendix G.367
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A Derivation446

This section provides a derivation of the gradient of the KL divergence. Let’s consider the KL447

divergence term, defined as:448

D(pϕ||pθ) =
∫

pϕ(y|x̂) log
(
pϕ(y|x̂)
pθ(y|x̂)

)
dy. (16)

The gradient with respect to the parameters ϕ is computed as follows:449

dD(pϕ||pθ)
dϕ

=

∫
dpϕ(y|x̂)

dϕ

(
1 + log

pϕ(y|x̂)
pθ(y|x̂)

)
dy

=

∫
pϕ(y|x̂)

d log pϕ(y|x̂)
dϕ

(1 + log
pϕ(y|x̂)
pθ(y|x̂)

) dy

= Epϕ(y|x̂)

[
d log pϕ(y|x̂)

dϕ

(
1 + log

pϕ(y|x̂)
pθ(y|x̂)

)]
.

(17)

B Hyperparameter Optimization450

We propose adjusting α based on the validation loss, establishing a bi-level optimization framework:451

α∗ = argmin
α

EDv
[log pϕ∗(α)(yv|xv)], (18)

s.t. ϕ∗(α) = argmin
ϕ

L(ϕ, α). (19)

Within this context, Dv represents the validation dataset sampled from the offline dataset. The inner452

optimization task, which seeks the optimal ϕ∗(α), is efficiently approximated via gradient descent.453

C Evaluation of Median Scores454

While the main text of our paper focuses on the 100th percentile scores, this section provides an455

in-depth analysis of the 50th percentile scores. These median scores, previously explored in [3], serve456

as an additional metric to assess the performance of our RGD method. The outcomes for continuous457

tasks are detailed in Table 5, and those pertaining to discrete tasks, along with their respective ranking458

statistics, are outlined in Table 6. An examination of Table 6 highlights the notable success of the459

RGD approach, as it achieves the top rank in this evaluation. This finding underscores the method’s460

robustness and effectiveness.461

D Computational Overhead462

Table 4: Computational Overhead (in seconds).

Process SuperC Ant D’Kitty NAS
Proxy training 40.8 74.5 24.7 7.8

Diffusion training 405.9 767.9 251.1 56.0
Proxy-e sampling 30.0 29.7 29.6 31.5

Diffusion-b proxy r 3104.6 4036.7 2082.8 3096.2
Overall cost 3581.3 4908.8 2388.2 3191.5

In this section, we analyze the computational overhead of our method. RGD consists of two core463

components: proxy-enhanced sampling (proxy-e sampling) and diffusion-based proxy refinement464

(diffusion-b proxy r). Additionally, RGD employs a trained proxy and a proxy-free diffusion model,465

whose computational demands are denoted as proxy training and diffusion training, respectively.466

Table 4 indicates that experiments can be completed within approximately one hour, demonstrating ef-467

ficiency. The diffusion-based proxy refinement module is the primary contributor to the computational468

overhead, primarily due to the usage of a probability flow ODE for sample likelihood computation.469
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However, as this is a one-time process for refining the proxy, its high computational cost is offset by its470

non-recurring nature. In contexts such as robotics or bio-chemical research, the most time-intensive471

part of the production cycle is usually the evaluation of the unknown objective function. Therefore,472

the time differences between methods for deriving high-performance designs are less critical in473

actual production environments, highlighting RGD’s practicality where optimization performance474

are prioritized over computational speed. This aligns with recent literature (A.3 Computational475

Complexity in [35] and A.7.5. Computational Cost in [28]) indicating that in black-box optimization476

scenarios, computational time is relatively minor compared to the time and resources dedicated to477

experimental validation phases.478

Table 5: Results (median normalized score) on continuous tasks.

Method Superconductor Ant Morphology D’Kitty Morphology Rosenbrock
BO-qEI 0.300± 0.015 0.567± 0.000 0.883 ± 0.000 0.761 ± 0.004

CMA-ES 0.379± 0.003 −0.045± 0.004 0.684± 0.016 0.200± 0.000
REINFORCE 0.463 ± 0.016 0.138± 0.032 0.356± 0.131 0.553± 0.008

Grad 0.339± 0.013 0.532± 0.014 0.867± 0.006 0.540± 0.025
COMs 0.312± 0.018 0.568± 0.002 0.883 ± 0.000 0.419± 0.286
ROMA 0.364± 0.020 0.467± 0.031 0.850± 0.006 −0.121± 0.242
NEMO 0.319± 0.010 0.592± 0.001 0.882 ± 0.002 0.510± 0.000

IOM 0.343± 0.018 0.513± 0.024 0.873± 0.009 0.126± 0.443
BDI 0.412± 0.000 0.474± 0.000 0.855± 0.000 0.561± 0.000

CbAS 0.111± 0.017 0.384± 0.016 0.753± 0.008 0.676± 0.008
Auto.CbAS 0.131± 0.010 0.364± 0.014 0.736± 0.025 0.695± 0.008

MIN 0.336± 0.016 0.618± 0.040 0.887 ± 0.004 0.634± 0.082
BONET 0.319± 0.014 0.615± 0.004 0.895 ± 0.021 0.630± 0.009
DDOM 0.295± 0.001 0.590± 0.003 0.870± 0.001 0.640± 0.001
RGD 0.308± 0.003 0.684 ± 0.006 0.874 ± 0.001 0.644± 0.002

Table 6: Results (median normalized score) on discrete tasks & ranking on all tasks.

Method TF Bind 8 TF Bind 10 NAS Rank Mean Rank Median
BO-qEI 0.439± 0.000 0.467± 0.000 0.544 ± 0.099 6.4/15 7/15

CMA-ES 0.537± 0.014 0.484± 0.014 0.591 ± 0.102 8.0/15 5/15
REINFORCE 0.462± 0.021 0.475± 0.008 −1.895± 0.000 9.7/15 9/15

Grad 0.546± 0.022 0.526± 0.029 0.443± 0.126 6.6/15 8/15
COMs 0.439± 0.000 0.467± 0.000 0.529 ± 0.003 7.7/15 8/15
ROMA 0.543± 0.017 0.518± 0.024 0.529 ± 0.008 7.6/15 5/15
NEMO 0.436± 0.016 0.453± 0.013 0.563 ± 0.020 8.3/15 8/15
IOM 0.439± 0.000 0.474± 0.014 −0.083± 0.012 9.3/15 8/15
BDI 0.439± 0.000 0.476± 0.000 0.517 ± 0.000 7.3/15 8/15

CbAS 0.428± 0.010 0.463± 0.007 0.292± 0.027 11.3/15 12/15
Auto.CbAS 0.419± 0.007 0.461± 0.007 0.217± 0.005 11.9/15 13/15

MIN 0.421± 0.015 0.468± 0.006 0.433± 0.000 7.0/15 7/15
BONET 0.507± 0.007 0.460± 0.013 0.571 ± 0.095 5.9/15 6/15
DDOM 0.553± 0.002 0.488± 0.001 0.367± 0.021 6.9/15 5/15
RGD 0.557 ± 0.002 0.545 ± 0.006 0.371± 0.019 4.9/15 4/15

E Further Ablation Studies479

In this section, we extend our exploration to include alternative proxy refinement schemes, namely480

ROMA and COMs, to compare against our diffusion-based proxy refinement module. The objective481

is to assess the relative effectiveness of these schemes in the context of the Ant and TFB10 tasks.482

The comparative results are presented in Table 7. Our investigation reveals that proxies refined483

through ROMA and COMs exhibit performance akin to the vanilla proxy and they fall short of484

achieving the enhancements seen with our diffusion-based proxy refinement. We hypothesize that485

the diffusion-based proxy refinement, by aligning closely with the characteristics of the diffusion486
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model, provides a more relevant and impactful signal. This alignment improves the proxy’s ability to487

enhance the sampling process more effectively.488

Table 7: Comparative Results of Proxy Integration with COMs, ROMA, and ours.
Method Ant Morphology TF Bind 10
No proxy 0.940± 0.004 0.657± 0.006
Vanilla proxy 0.961± 0.011 0.667± 0.009
COMs 0.963± 0.004 0.668± 0.003
ROMA 0.953± 0.003 0.667± 0.003
Ours 0.968± 0.006 0.694± 0.018

Additionally, we contrast our approach, which adjusts the strength parameter ω, with the MIN method489

that focuses on identifying an optimal condition y. The MIN strategy entails optimizing a Lagrangian490

objective with respect to y, a process that requires manual tuning of four hyperparameters. We491

adopt their methodology to determine optimal conditions y and incorporate these into the proxy-free492

diffusion for tasks Ant and TF10. The normalized scores for Ant and TF10 are 0.950± 0.017 and493

0.660 ± 0.027, respectively. The outcomes fall short of those achieved by our method as detailed494

in Table 7. This discrepancy likely stems from the complexity involved in optimizing y, whereas495

dynamically adjusting ω proves to be a more efficient strategy for enhancing sampling control.496

Last but not least, we explore simple annealing approaches for ω. Specifically, we test two annealing497

scenarios considering the default ω as 2.0: (1) a decrease from 4.0 to 0.0, and (2) an increase from498

0.0 to 4.0, both modulated by a cosine function over the time step (t). We apply these strategies to499

the Ant Morphology and TF Bind 10 tasks, and the results are as follows:

Table 8: Results of Annealing Approaches.
Method Ant Morphology TF Bind 10
RGD 0.968 0.694
ω = 2.0 0.940 0.657
Increase 0.948 0.654
Decrease 0.924 0.647

500

The empirical results across both strategies illustrate their inferior performance compared to our501

approach, thereby demonstrating the efficacy of our proposed method.502

F Hyperparameter Sensitivity Analysis503

RGD’s performance is assessed under different settings of T , y, and η. We experiment with T values504

of 500, 750, 1000, 1250, and 1500, with the default being T = 1000. For the condition ratio y/ymax,505

we test values of 0.5, 1.0, 1.5, 2.0, and 2.5, considering 1.0 as the default. Similarly, for the learning506

rate η, we explore values of 2.5e−3, 5.0e−3, 0.01, 0.02, and 0.04, with the default set to η = 0.01.507

Results are normalized by comparing them with the performance obtained at default values.508

As depicted in Figures 5, 6, and 7, RGD demonstrates considerable resilience to hyperparameter509

variations. The Ant task, in particular, exhibits a more marked sensitivity, with a gradual enhancement510

in performance as these hyperparameters are varied. The underlying reasons for this trend include:511

(1) An increase in the number of diffusion steps (T ) enhances the overall quality of the generated512

samples. This improvement, in conjunction with more effective guidance from the trained proxy,513

leads to better results. (2) Elevating the condition (y) enables the diffusion model to extend its reach514

beyond the existing dataset, paving the way for superior design solutions. However, selecting an515

optimal y can be challenging and may, as observed in the TFB10 task, sometimes lead to suboptimal516

results. (3) A higher learning rate (η) integrates an enhanced guidance signal from the trained proxy,517

contributing to improved performances.518

In contrast, the discrete nature of the TFB10 task seems to endow it with a certain robustness519

to variations in these hyperparameters, highlighting a distinct behavioral pattern in response to520

hyperparameter adjustments.521
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G Broader Impact and Limitation522

Broader impact. Our research has the potential to significantly accelerate advancements in fields such523

as new material development, biomedical innovation, and robotics technology. These advancements524

could lead to breakthroughs with substantial positive societal impacts. However, we recognize that,525

like any powerful tool, there are inherent risks associated with the misuse of this technology. One526

concerning possibility is the exploitation of our optimization techniques to design objects or entities527

for malicious purposes, including the creation of more efficient weaponry or harmful biological agents.528

Given these potential risks, it is imperative to enforce strict safeguards and regulatory measures,529

especially in areas where the misuse of technology could lead to significant ethical and societal harm.530

The responsible application and governance of such technologies are crucial to ensuring that they531

serve to benefit society as a whole.532

Limitation. We recognize that the benchmarks utilized in our study may not fully capture the533

complexities of more advanced applications, such as protein drug design, primarily due to our current534

limitations in accessing wet-lab experimental setups. Moving forward, we aim to mitigate this535

limitation by fostering partnerships with domain experts, which will enable us to apply our method536

to more challenging and diverse problems. This direction not only promises to validate the efficacy537

of our approach in more complex scenarios but also aligns with our commitment to pushing the538

boundaries of what our technology can achieve.539
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Question: Do the main claims made in the abstract and introduction accurately reflect the542
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Answer: [Yes]544

Justification: The abstract and introduction accurately reflect the paper’s contributions and545

scope.546

Guidelines:547

• The answer NA means that the abstract and introduction do not include the claims548

made in the paper.549

• The abstract and/or introduction should clearly state the claims made, including the550

contributions made in the paper and important assumptions and limitations. A No or551

NA answer to this question will not be perceived well by the reviewers.552

• The claims made should match theoretical and experimental results, and reflect how553

much the results can be expected to generalize to other settings.554

• It is fine to include aspirational goals as motivation as long as it is clear that these goals555

are not attained by the paper.556

2. Limitations557

Question: Does the paper discuss the limitations of the work performed by the authors?558

Answer: [Yes]559

Justification: We discuss the limitations in Appendix G.560

Guidelines:561

• The answer NA means that the paper has no limitation while the answer No means that562

the paper has limitations, but those are not discussed in the paper.563

• The authors are encouraged to create a separate "Limitations" section in their paper.564

• The paper should point out any strong assumptions and how robust the results are to565

violations of these assumptions (e.g., independence assumptions, noiseless settings,566

model well-specification, asymptotic approximations only holding locally). The authors567

should reflect on how these assumptions might be violated in practice and what the568

implications would be.569

• The authors should reflect on the scope of the claims made, e.g., if the approach was570

only tested on a few datasets or with a few runs. In general, empirical results often571

depend on implicit assumptions, which should be articulated.572

• The authors should reflect on the factors that influence the performance of the approach.573

For example, a facial recognition algorithm may perform poorly when image resolution574

is low or images are taken in low lighting. Or a speech-to-text system might not be575

used reliably to provide closed captions for online lectures because it fails to handle576

technical jargon.577

• The authors should discuss the computational efficiency of the proposed algorithms578

and how they scale with dataset size.579

• If applicable, the authors should discuss possible limitations of their approach to580

address problems of privacy and fairness.581

• While the authors might fear that complete honesty about limitations might be used by582

reviewers as grounds for rejection, a worse outcome might be that reviewers discover583

limitations that aren’t acknowledged in the paper. The authors should use their best584

judgment and recognize that individual actions in favor of transparency play an impor-585

tant role in developing norms that preserve the integrity of the community. Reviewers586

will be specifically instructed to not penalize honesty concerning limitations.587

3. Theory Assumptions and Proofs588

Question: For each theoretical result, does the paper provide the full set of assumptions and589

a complete (and correct) proof?590

Answer: [NA]591

16



Justification: The paper does not include theoretical results.592

Guidelines:593

• The answer NA means that the paper does not include theoretical results.594

• All the theorems, formulas, and proofs in the paper should be numbered and cross-595

referenced.596

• All assumptions should be clearly stated or referenced in the statement of any theorems.597

• The proofs can either appear in the main paper or the supplemental material, but if598

they appear in the supplemental material, the authors are encouraged to provide a short599

proof sketch to provide intuition.600

• Inversely, any informal proof provided in the core of the paper should be complemented601

by formal proofs provided in appendix or supplemental material.602

• Theorems and Lemmas that the proof relies upon should be properly referenced.603

4. Experimental Result Reproducibility604

Question: Does the paper fully disclose all the information needed to reproduce the main ex-605

perimental results of the paper to the extent that it affects the main claims and/or conclusions606

of the paper (regardless of whether the code and data are provided or not)?607

Answer: [Yes]608

Justification: We provide our code link in the abstract and detail our settings in Section 4.3.609

Guidelines:610

• The answer NA means that the paper does not include experiments.611

• If the paper includes experiments, a No answer to this question will not be perceived612

well by the reviewers: Making the paper reproducible is important, regardless of613

whether the code and data are provided or not.614

• If the contribution is a dataset and/or model, the authors should describe the steps taken615

to make their results reproducible or verifiable.616

• Depending on the contribution, reproducibility can be accomplished in various ways.617

For example, if the contribution is a novel architecture, describing the architecture fully618

might suffice, or if the contribution is a specific model and empirical evaluation, it may619

be necessary to either make it possible for others to replicate the model with the same620

dataset, or provide access to the model. In general. releasing code and data is often621

one good way to accomplish this, but reproducibility can also be provided via detailed622

instructions for how to replicate the results, access to a hosted model (e.g., in the case623

of a large language model), releasing of a model checkpoint, or other means that are624

appropriate to the research performed.625

• While NeurIPS does not require releasing code, the conference does require all submis-626

sions to provide some reasonable avenue for reproducibility, which may depend on the627

nature of the contribution. For example628

(a) If the contribution is primarily a new algorithm, the paper should make it clear how629

to reproduce that algorithm.630

(b) If the contribution is primarily a new model architecture, the paper should describe631

the architecture clearly and fully.632

(c) If the contribution is a new model (e.g., a large language model), then there should633

either be a way to access this model for reproducing the results or a way to reproduce634

the model (e.g., with an open-source dataset or instructions for how to construct635

the dataset).636

(d) We recognize that reproducibility may be tricky in some cases, in which case637

authors are welcome to describe the particular way they provide for reproducibility.638

In the case of closed-source models, it may be that access to the model is limited in639

some way (e.g., to registered users), but it should be possible for other researchers640

to have some path to reproducing or verifying the results.641

5. Open access to data and code642

Question: Does the paper provide open access to the data and code, with sufficient instruc-643

tions to faithfully reproduce the main experimental results, as described in supplemental644

material?645
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Answer: [Yes]646

Justification: We provide a link to our source code in the abstract and thoroughly describe647

our experimental settings in Section 4.3.648

Guidelines:649

• The answer NA means that paper does not include experiments requiring code.650

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/651

public/guides/CodeSubmissionPolicy) for more details.652

• While we encourage the release of code and data, we understand that this might not be653

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not654

including code, unless this is central to the contribution (e.g., for a new open-source655

benchmark).656

• The instructions should contain the exact command and environment needed to run to657

reproduce the results. See the NeurIPS code and data submission guidelines (https:658

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.659

• The authors should provide instructions on data access and preparation, including how660

to access the raw data, preprocessed data, intermediate data, and generated data, etc.661

• The authors should provide scripts to reproduce all experimental results for the new662

proposed method and baselines. If only a subset of experiments are reproducible, they663

should state which ones are omitted from the script and why.664

• At submission time, to preserve anonymity, the authors should release anonymized665

versions (if applicable).666

• Providing as much information as possible in supplemental material (appended to the667

paper) is recommended, but including URLs to data and code is permitted.668

6. Experimental Setting/Details669

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-670

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the671

results?672

Answer: [Yes]673

Justification: We detail our setting in Section 4.3 and also discuss hyperparameter sensitivity674

in Appendix F.675
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• The answer NA means that the paper does not include experiments.677

• The experimental setting should be presented in the core of the paper to a level of detail678

that is necessary to appreciate the results and make sense of them.679

• The full details can be provided either with the code, in appendix, or as supplemental680

material.681

7. Experiment Statistical Significance682

Question: Does the paper report error bars suitably and correctly defined or other appropriate683

information about the statistical significance of the experiments?684

Answer: [Yes]685

Justification: To ensure reliability and consistency in our comparative analysis, each experi-686

mental setting was replicated across 8 independent runs, unless stated otherwise, with the687

presentation of both mean values and standard errors.688
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• The answer NA means that the paper does not include experiments.690

• The authors should answer "Yes" if the results are accompanied by error bars, confi-691

dence intervals, or statistical significance tests, at least for the experiments that support692

the main claims of the paper.693

• The factors of variability that the error bars are capturing should be clearly stated (for694

example, train/test split, initialization, random drawing of some parameter, or overall695

run with given experimental conditions).696
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• The method for calculating the error bars should be explained (closed form formula,697

call to a library function, bootstrap, etc.)698

• The assumptions made should be given (e.g., Normally distributed errors).699

• It should be clear whether the error bar is the standard deviation or the standard error700

of the mean.701

• It is OK to report 1-sigma error bars, but one should state it. The authors should702

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis703

of Normality of errors is not verified.704

• For asymmetric distributions, the authors should be careful not to show in tables or705

figures symmetric error bars that would yield results that are out of range (e.g. negative706

error rates).707

• If error bars are reported in tables or plots, The authors should explain in the text how708

they were calculated and reference the corresponding figures or tables in the text.709

8. Experiments Compute Resources710

Question: For each experiment, does the paper provide sufficient information on the com-711

puter resources (type of compute workers, memory, time of execution) needed to reproduce712

the experiments?713

Answer: [Yes]714

Justification: We have discussed these in Section 4.3.715

Guidelines:716

• The answer NA means that the paper does not include experiments.717

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,718

or cloud provider, including relevant memory and storage.719

• The paper should provide the amount of compute required for each of the individual720

experimental runs as well as estimate the total compute.721

• The paper should disclose whether the full research project required more compute722

than the experiments reported in the paper (e.g., preliminary or failed experiments that723

didn’t make it into the paper).724

9. Code Of Ethics725

Question: Does the research conducted in the paper conform, in every respect, with the726

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?727

Answer: [Yes]728

Justification: We preserve anonymity and conform with the NeurIPS Code of Ethics.729

Guidelines:730

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.731

• If the authors answer No, they should explain the special circumstances that require a732

deviation from the Code of Ethics.733

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-734

eration due to laws or regulations in their jurisdiction).735

10. Broader Impacts736

Question: Does the paper discuss both potential positive societal impacts and negative737

societal impacts of the work performed?738

Answer: [Yes]739

Justification: We discuss both potential positive and negative impacts in Appendix G.740

Guidelines:741

• The answer NA means that there is no societal impact of the work performed.742

• If the authors answer NA or No, they should explain why their work has no societal743

impact or why the paper does not address societal impact.744

• Examples of negative societal impacts include potential malicious or unintended uses745

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations746

(e.g., deployment of technologies that could make decisions that unfairly impact specific747

groups), privacy considerations, and security considerations.748
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• The conference expects that many papers will be foundational research and not tied749

to particular applications, let alone deployments. However, if there is a direct path to750

any negative applications, the authors should point it out. For example, it is legitimate751

to point out that an improvement in the quality of generative models could be used to752

generate deepfakes for disinformation. On the other hand, it is not needed to point out753

that a generic algorithm for optimizing neural networks could enable people to train754

models that generate Deepfakes faster.755

• The authors should consider possible harms that could arise when the technology is756

being used as intended and functioning correctly, harms that could arise when the757

technology is being used as intended but gives incorrect results, and harms following758

from (intentional or unintentional) misuse of the technology.759

• If there are negative societal impacts, the authors could also discuss possible mitigation760

strategies (e.g., gated release of models, providing defenses in addition to attacks,761

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from762

feedback over time, improving the efficiency and accessibility of ML).763

11. Safeguards764

Question: Does the paper describe safeguards that have been put in place for responsible765

release of data or models that have a high risk for misuse (e.g., pretrained language models,766

image generators, or scraped datasets)?767

Answer: [NA]768

Justification: We do not release any datasets nor pre-trained models.769

Guidelines:770

• The answer NA means that the paper poses no such risks.771

• Released models that have a high risk for misuse or dual-use should be released with772

necessary safeguards to allow for controlled use of the model, for example by requiring773

that users adhere to usage guidelines or restrictions to access the model or implementing774

safety filters.775

• Datasets that have been scraped from the Internet could pose safety risks. The authors776

should describe how they avoided releasing unsafe images.777

• We recognize that providing effective safeguards is challenging, and many papers do778

not require this, but we encourage authors to take this into account and make a best779

faith effort.780

12. Licenses for existing assets781

Question: Are the creators or original owners of assets (e.g., code, data, models), used in782

the paper, properly credited and are the license and terms of use explicitly mentioned and783

properly respected?784

Answer: [Yes]785

Justification: We have duly credited all utilized assets and adhered to their respective licenses786

and terms of use.787

Guidelines:788

• The answer NA means that the paper does not use existing assets.789

• The authors should cite the original paper that produced the code package or dataset.790

• The authors should state which version of the asset is used and, if possible, include a791

URL.792

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.793

• For scraped data from a particular source (e.g., website), the copyright and terms of794

service of that source should be provided.795

• If assets are released, the license, copyright information, and terms of use in the796

package should be provided. For popular datasets, paperswithcode.com/datasets797

has curated licenses for some datasets. Their licensing guide can help determine the798

license of a dataset.799

• For existing datasets that are re-packaged, both the original license and the license of800

the derived asset (if it has changed) should be provided.801
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• If this information is not available online, the authors are encouraged to reach out to802

the asset’s creators.803

13. New Assets804

Question: Are new assets introduced in the paper well documented and is the documentation805

provided alongside the assets?806

Answer: [Yes]807

Justification: We plan to open-source our code and have ensured thorough documentation of808

the code.809

Guidelines:810

• The answer NA means that the paper does not release new assets.811

• Researchers should communicate the details of the dataset/code/model as part of their812

submissions via structured templates. This includes details about training, license,813

limitations, etc.814

• The paper should discuss whether and how consent was obtained from people whose815

asset is used.816

• At submission time, remember to anonymize your assets (if applicable). You can either817

create an anonymized URL or include an anonymized zip file.818

14. Crowdsourcing and Research with Human Subjects819

Question: For crowdsourcing experiments and research with human subjects, does the paper820

include the full text of instructions given to participants and screenshots, if applicable, as821

well as details about compensation (if any)?822

Answer: [NA]823

Justification: This paper does not engage in crowdsourcing or involve studies with human824

participants.825

Guidelines:826

• The answer NA means that the paper does not involve crowdsourcing nor research with827

human subjects.828

• Including this information in the supplemental material is fine, but if the main contribu-829

tion of the paper involves human subjects, then as much detail as possible should be830

included in the main paper.831

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,832

or other labor should be paid at least the minimum wage in the country of the data833

collector.834

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human835

Subjects836

Question: Does the paper describe potential risks incurred by study participants, whether837

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)838

approvals (or an equivalent approval/review based on the requirements of your country or839

institution) were obtained?840

Answer: [NA]841

Justification: This paper does not engage in crowdsourcing or research involving human842

subjects.843

Guidelines:844

• The answer NA means that the paper does not involve crowdsourcing nor research with845

human subjects.846

• Depending on the country in which research is conducted, IRB approval (or equivalent)847

may be required for any human subjects research. If you obtained IRB approval, you848

should clearly state this in the paper.849

• We recognize that the procedures for this may vary significantly between institutions850

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the851

guidelines for their institution.852

• For initial submissions, do not include any information that would break anonymity (if853

applicable), such as the institution conducting the review.854
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