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Figure 1: We use a single policy trained in simulation to pickup and grasp objects like hammers, drills, saucepan,
staplers and screwdriver in different positions and orientations. An affordance model based on matching DINOv2
features is used to localize the object and move above the relevant region of the object. A blind reactive policy
then picks up the object and moves it inside the palm to a firm grasp so that post-grasp motions like drilling,
hammering, etc can be executed. Videos at https://dexfunc.github.io/.

Abstract: While there have been significant strides in dexterous manipulation, most
of it is limited to benchmark tasks like in-hand reorientation which are of limited
utility in the real world. The main benefit of dexterous hands over two-fingered
ones is their ability to pickup tools and other objects (including thin ones) and grasp
them firmly in order to apply force. However, this task requires both a complex
understanding of functional affordances as well as precise low-level control. While
prior work obtains affordances from human data this approach doesn’t scale to low-
level control. Similarly, simulation training cannot give the robot an understanding
of real-world semantics. In this paper, we aim to combine the best of both worlds
to accomplish functional grasping for in-the-wild objects. We use a modular
approach. First, affordances are obtained by matching corresponding regions of
different objects and then a low-level policy trained in sim is run to grasp it. We
propose a novel application of eigengrasps to reduce the search space of RL using
a small amount of human data and find that it leads to more stable and physically
realistic motion. We find that eigengrasp action space beats baselines in simulation
and outperforms hardcoded grasping in real and matches or outperforms a trained
human teleoperator. Videos at https://dexfunc.github.io/.
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1 Introduction

The human hand has played a pivotal role in the development of intelligence – dexterity enabled
humans to develop and use tools which in turn necessitated the development of cognitive intelligence.
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[1, 2, 3, 4, 5] Dexterous manipulation is central to the day-to-day activities performed by humans
ranging from tasks like writing, typing, lifting, eating, or tool use to perform end tasks. In contrast,
the majority of robot learning research still relies on using two-fingered grippers (usually parallel
jaws) or suction cups which makes them restricted in terms of the kind of objects that can be grasped
and how they can be grasped. For instance, grasping a hammer using a parallel jaw gripper is not
only challenging but also inherently unstable due to the center of mass of the hammer being close to
the head, which makes it impossible to use it for the hammering function it is intended for. Although
there are lots of recent works in learning control of dexterous hands, they are either limited to simple
grasping or the tasks of in-hand reorientation [6, 7, 8, 9, 10, 11] which ignore the functional aspect of
picking the object for tool use.

This paper investigates the problem of functional grasping of such complex daily life objects using a
low-cost dexterous multi-fingered hand. For instance, consider the sequence of events that take place
when one uses a hammer. First, the hammer must be detected and localized in the environment. Next,
one must position their hand in a suitable pose perpendicular to the handle such that a suitable grasp
pose may be initiated. A hammer may be feasibly grasped from both the hammer or the head and
choosing the correct pose (also known as pre-grasp pose) requires an understanding of how hammers
work. Next, the actual grasping motion is executed which is a high-dimensional closed-loop operation
involving first picking up the hammer from the table and then moving it with respect to the hand
into a firm power grasp. Power grasp is essential to ensure the stability of the hammer during usage.
Once this is done, the arm can then execute the hammering motion while the hand holds it stably
(post-grasp trajectory). Notably, the act of functional grasping, which is almost a muscle memory for
humans, is not just a control problem but lies at the intersection of perception, reasoning, and control.
How to do it seamlessly in a robot is the focus of our work.

Inspired by the above example, we approach the problem of functional grasping in three stages:
predicting pre-grasp, learning low-level control of grasping, post-grasp trajectory. Out of these
stages, visual reasoning is the critical piece of the first and third stage, while the second stage can be
performed blind using proprioception as long as the pre-grasp pose is reasonable. To obtain the pre-
grasp pose, we use a one-shot affordance model that gives pre-grasp keypoints for different objects in
different orientations by finding correspondences across objects. To obtain these correspondences, we
leverage a pretrained DinoV2 model [12] which is trained using self-supervised learning on internet
images. This allows us to generalize across object instances. However, a more challenging problem
is how to learn the low-level control for functional grasping the task itself.

We take a sim2real approach for the grasping motion in our approach. Prior approaches to sim2real
have shown remarkable success for in-hand reorientation [7, 6] and locomotion [13, 14, 15, 16]. How-
ever, we observe that directly applying prior sim2real methods that have shown success in locomotion
or reorientation yields unrealistic finger-gaiting results in simulation that are not transferrable to the
real world. This is because grasping tools typically involve continuous surface contacts and high
forces while maintaining the grasping pose – challenges which pose a significant sim2real gap and
are nontrivial to engineer reward for. We introduce an action compression scheme to leverage a small
amount of human demo data to reduce the action space of the hand from 16 to 9 and constrain it to
output physically realistic poses. We evaluate our approach across 7 complex tasks in both the real
world and simulation and find that our approach is able to make significant progress towards this
major challenge of dexterous functional grasping as illustrated in Figure 1.

2 Method: Dexterous Functional Grasping

In this paper, we aim to combine the best of both human data and large scale simulation training
to accomplish dexterous functional grasping in the real world. Given an object to grasp we use an
affordance model to predict a plausible functional grasp pose for the hand. Then, we train a blind
pickup policy to pickup the object and then grasp it tightly so that the arm may execute the post-grasp
trajectory. Our method is divided into three phases - the pre-grasp, grasp and post-grasp (see Fig. 2)
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Figure 2: To get the pre-grasp pose we use a one-shot affordance model. After annotating one object we are
able to get affordances for other objects in that category via feature matching. Given a new object, the arm is
moved to that point and oriented perpendicular to the principal component of the object mask. The sim2real
pickup policy is then executed and moves the object into a power grasp. After this, a post grasp trajectory can be
safely executed.

In the pre-grasp phase, an affordance model outputs a region of interest of the object and we use the
local object geometry around that region to compute a reasonable pre-grasp pose. We train a sim2real
policy to execute robust grasps for pickup. However, in contrast to two fingered manipulation or
locomotion where simple reward functions suffice, in the complex high-dimensional dexterous case
it is easy to fall into local minima or execute poses in simulation that are not realizable in the real
world. We therefore use human data to extract a lower-dimensional subspace of the full action space
and run RL inside the restricted action space. Empirically, this leads to physically plausible poses
that can transfer to real and stabler RL training.

2.1 Pre-grasp pose from affordances

An affordance describes a region of interest on the object that is relevant for the purpose of using it.
This usually cannot be inferred from object geometry alone and depends upon the intended proper
use of the object. For instance, by just looking at the geometry or by computing grasp metrics we
could conclude that grabbing a hammer from the head or handle are both equally valid ways of using
it. However, because we have seen other people use it we know that the correct usage is to grab the
handle. This problem has been studied in the literature and one approach is to use human data in the
form of videos, demos to obtain annotations for affordances. However, these are either not scalable
or too noisy to enable zero-shot dexterous grasping.

Another approach is to leverage the fact that affordances across objects usually correspond. For all
hammers, no matter the type the hammering, affordance will always be associated with the handle.
This implies that feature correspondence can be used in a one-shot fashion to obtain affordances. In
particular, we use Hadjivelichkov et al. [17], where for each object category we annotate one image
from the internet with its affordance mask. To obtain the affordance mask for a new object instance
we simply match DINO-ViT features to find the region which matches the specified mask. Since the
mask may bleed across the object boundary we take its intersection with the segment obtained using
DETIC [18]. Taking the center of the resulting mask gives us the keypoint (ximg, yimg) in image space
corresponding to the pre-grasp position. To get the zimg, we project to the points (ximg, yimg) into the
aligned depth image and then transform by camera intrinsics and extrinsics to get the corresponding
point in the coordinate frame of the robot (xrobot, yrobot, zrobot). To get the correct hand orientation q
we use the object mask obtained from DETIC and take the angle perpendicular to its largest principal
component. Since there are three cameras, one each along x, y, z axes (Fig. 7) we repeat this process
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for each camera and pick the angle that has the highest affordance matching score (see Fig. ??). This
allows us to grasp objects in any direction, like upright drills and glasses.

Given the pregrasp pose, we first move the hand to a point at fixed offset (xrobot, yrobot, zrobot) + δv
where δv is a fixed offset along the chosen grasp axis. We then move the finger joints to a pre-grasp
pose with the joint positions midway between their joint limits. We found that same pre-grasp pose
to work well across objects since our policy learns to adapt to the inaccuracies in the pre-grasp.

2.2 Sim2real for dexterous grasping

Once the robot is in a plausible pre-grasp pose it must execute the grasp action which involves using
the fingers to grip the object and then moving it into a stable grasp pose. This requires high frequency
closed-loop control. Further, this is typically a locally reactive behavior which can be accomplished
using proprioception alone. Indeed, once we move our hand close to the object we wish to grasp
we can usually pick it up even if we close our eyes. However, the challenge is that learning high
frequency closed loop behavior typically requires a lot of interaction data which is missing from
human videos and infeasible to scale via demos. In the past, sim2real has had remarkable successes
in locomotion and in-hand dexterous manipulation in learning robust and reactive policies and we
propose to use this method here.

Dexterous manipulation however presents a unique challenge because of its high-dimensional nature.
It is easy for the hand to enter physically inconsistent poses or experience self collisions. Further, RL
in high dimensional action spaces is unstable or sample efficient. We propose to leverage a small
amount of human data to restrict the action space to physically realistic poses.

Eigengrasp action space A small number of human demos are often used to guide RL towards
reasonable solutions like offline RL [19], DAPG [20]. However, the main problem with these is that
they fail to learn optimal behavior from highly suboptimal demos. Further, the coverage of the demo
data may be very poor which can artificially restrict the exploration space of the RL algorithm. We
propose a simple alternative to these approaches which works from a few demos and can discover
optimal behaviors even from suboptimal data. Our insight is that we have a very weak constraint on
the behavior of the RL policy. We only care that the individual hand poses are realistic and not so
much about the exact sequence in which they occur. We can therefore restrict the action space such
that only realistic hand poses are possible.

In particular, suppose we are given a mocap dataset D = {τ1, . . . , τn} where τi = (x1, . . . ,xk) and
xi ∈ R16 is a set of joints angles of the 16 dof hand. We perform PCA on the set of all hand poses
to get 9 eigenvectors e1, . . . , em where m = 9. These vectors are called eigengrasps [21] and have
been classically used in grasp synthesis approaches. Here, we instead use it as a compressed action
space for RL. Our policy predicts m-dimensional actions π(ot) = at ∈ Rm. The raw joint angles are
then computed as a linear combination of eigenvectors (at)1e1 + . . .+ (at)kek. This transformation
reduces the action dimension of the RL problem and decreases sample complexity in addition to
enforcing realism. It also exploits the property that the convex combination of any two realistic hand
poses is also likely to be realistic. Thus, doing PCA (as opposed to training a generative model)
allows the policy to output hand poses that were not seen in the dataset. Empirically, we find that this
stabilizes training and minimizes variation between different random seeds.

Rewards We train our policy to lift objects off the ground and them firmly grasp them in their
hand. We find that a simple reward function that is a combination of two terms rthreshold and rhand-obj
is enough. The first, is a binary signal incentivizing the policy to pickup the object rthreshold(t) =
I [(robj(t))z ≥ 0.04cm] and the second is a sum of exponentials and an L2 distance to incentivize the
object to be close to the palm of the hand

rhand-obj(t) =

3∑
i=1

exp

(
−
∥robj − rhand∥

di

)
− 4∥robj − rhand∥
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where d1 = 10cm, d2 = 5cm and d3 = 1cm. The overall reward function is r(t) = rhand-obj(t) +
0.1 · rthreshold(t) + 1. Due to the eigengrasp parameterization we do not need any additional reward
shaping terms.

Policy Architecture We use a recurrent policy as that maps observations ot ∈ R16 to actions
at ∈ R9. A stateful policy is able to adapt to changes in environment dynamics better than a
feedforward one. This allows our robot to adapt to slight errors in the pre-grasp pose from the
affordance model. The policy observes the 7 dimensional target pose (position, quaternion) of the
end-effector and the 16 joint angle positions of the hand.

Training environment We want our policy to be robust to different surface properties and geome-
tries and grasp them firmly. We therefore domain randomize the physical properties of the object,
robot and simulation environment. We procedurally generate a set of hammers in simulation with
randomized physical parameters. The hand is initialized in a rough pre-grasp pose with hand joint
angles zeroed out. This corresponds to a neutral relaxed pose for the hand. The end-effector pose is
initialized to be close to the real world pose obtained from the affordance model. The arm is kept
close to the ground for 1s to allow the grasp to execute and then spun around in a circle. Episodes are
terminated if the hand object distance exceeds 20cm. This spinning motion produces tight grasps
and we see emergent behavior where the hand adjusts its grasp in response to changes in orientation.
We also randomize physical properties of the simulation and add gaussian noise to observations and
actions to simulate actuator noise (see Tab. 4).

2.3 Post-grasp trajectory

Once the object or tool is firmly grasped, since it is mounted on a 6-dof arm it can be moved
arbitrarily in space to accomplish tasks such as screwing, hammering, drilling, etc. During training
and evaluation we use either motion capture trajectories or define a set of keypoints and interpolate
between them, but in principle these could be obtained from other sources such as internet video or
third person imitation.

3 Experimental Setup

We demonstrate the performance of our method on a variety of objects, both similar and very
dissimilar to the training objects like stapler, drill (light and heavy), saucepan, hammer (light and
heavy). In our real world experiments, we aim to understand the reliability and efficiency of our
method relative to an expert teleop oracle (20 hours) and a hardcoded grasping primitive. The former
acts as an upper bound on the performance of the hardware while the latter is designed to show that
large scale sim training yields a more robust policy than a grasping hardcoded.

In simulation, we test the effectiveness of our restricted action space and policy architecture. First,
we compare against an unconstrained baseline that operates in the full 16 dimensional action space.
Second, we compare against a policy that operates in the latent space of a VAE trained on the mocap
dataset. Unlike our method, since a VAE is a generative model it can only output hand poses seen in
the dataset and cannot extrapolate to new ones. Finally, we compare to a feedforward version of our
method where the RNN policy is replaced by a feedforward one. This is designed to test whether
recurrence helps in adaptation to domain randomization.

We experimentally validate the pre-grasp affordance matching [17] part of our pipeline separately.
We compare against CLIPort [22] and CLIPSeg [23], two CLIP-based affordance prediction methods.
CLIPort uses demonstration data to learn the correct affordances in a supervised fashion. CLIPSeg
uses CLIP text and image features to zero-shot segment an object given a text prompt.
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Average Reward Success Rate
Hammer Drill Screwdriver Hammer Drill Screwdriver

Unconstrained 213.40± 169.37 102.12± 36.12 121.28± 96.05 0.60± 0.55 0.09± 0.11 0.46± 0.45
VAE 140.60± 109.24 83.34± 43.32 117.25± 76.26 0.30± 0.44 0.08± 0.18 0.25± 0.41
Feed-forward 232.80± 175.59 104.61± 44.84 153.19± 105.83 0.60± 0.54 0.21± 0.19 0.56± 0.52
Ours 327.40± 11.61 129.03± 22.58 211.13± 11.14 1.00± 0.00 0.23± 0.16 0.95± 0.10

Table 1: We measure the average reward and success rate of the trained policy in simulation. For each method
we train a policy to hold the object close to the palm while arm spins. A success is counted when the arm does
not drop the object at anytime. We see that our method outperforms the baselines and has significantly less
variation between the runs. This is likely because the restricted action space makes the exploration problem
easier and the physically plausible poses help keep the motion smooth. Each policy was trained randomized
hammer but still generalizes to other different objects.

3.1 Hardware

We use the xarm6 with our own custom hand pictured in Fig. 7. The arm has 6 actuated joints, while
the hand has 16 joints, four on each digit (three fingers and one thumb). An overhead calibrated
D435 camera facing downward is used to obtain masks and affordance regions. The hand consists of
Dynamixel servos mounted in a special kinematic structure designed to maximize dexterity [24]. We
use an overhead D435 camera to obtain pre-grasp end-effector poses. Both the arm and the hand run
at 30Hz. To teleoperate the hand and collect human demos for eigengrasps we use a Manus VR glove
with SteamVR lighthouses which gives fingertip and hand positions which are then retargeted to our
hand as in Figure 8.

3.2 Implementation Details

We use IsaacGym [25] as a simulator with IsaacGymEnvs for the environments and rl games as the
reinforcement learning library. The policy contains a layer-normed GRU with 256 as the hidden
state followed by an MLP with hidden states 512, 256, 128. The policy is trained using PPO with
backpropagation through time truncated at 32 timesteps. We run 8192 environments in parallel and
train for 400 epochs.

4 Results and Analysis

4.1 Simulation Results

We train each baseline and our method for 400 epochs over 5 seeds. We find that ours beats all other
methods primarily because it is stable with respect to the seed whereas the other baselines fluctuate
widely in performance across seeds resulting in a high standard deviation and lower average overall
performance. Note that our method also perfectly solves the training task for all seeds. This is likely
due to a combination of two factors (a) the restricted action space nearly halves the action dimension
(from 16 to 9), since the search space scales exponentially with action dimension this cuts down the
space significantly and it is more likely that the algorithm discovers optimal behavior regardless of
seed, and (b) since each hand pose is realistic and doesn’t have self-collisions it leads to smoother
and more predictable dynamics in simulation allowing the policy to learn better.

The RNN policy is also better and more stable than the feedforward variant as reported in Table 1.
This is because (a) an RNN can use the hidden state to adapt to domain randomization (b) since the
hand hardware does not output joint velocities, the feedforward policy has no idea of how fast the
fingers are moving which can hinder performance. The RNN on the other hand is able to implicitly
capture velocity of joints in the hidden state and this helps it to learn better.

4.2 Real World Results

We choose a variety of objects to compare against – hammer (light and heavy), saucepan, drill
(light and heavy), stapler and screwdriver. Of these, hammer and saucepan are quite similar to the
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Hammer (unseen) Spatula (seen) Frying Pan (seen)

Pick success IoU Pick success IoU Pick success IoU

CLIPort 2/10 0.034 6/10 0.15 7/10 0.15
ClipSeg 1/10 0.05 2/10 0.06 1/10 0.014

Ours 9/10 0.33 8/10 0.23 7/10 0.17

Table 3: We compare our affordance matching against CLIPort and CLIPSeg in terms of pick success rate
and IoU between the predicted and ground truth affordance (human-annotated). We use the simulated CLIPort
dataset for both unseen and seen objects. Our method outperforms CLIPort on both seen and unseen categories.
CLIPSeg fails because it does not capture object parts such as the handle of the hammer.

training distribution because of the handle geometry while the drill, stapler and screwdriver have
substantially different geometry. The heavy drill is especially challenging because of its narrow grip
and unbalanced weight distribution. We run 10 trials per object per baseline in the real world (see
Table 2). For all objects except the saucepan we execute a post-grasp trajectory where the object is
picked up and waved around to test the strength of the grasp. For the saucepan we simply pick it up
since waving it around is a safety hazard. During each trial, the orientation is randomized in the range
[−π, π] and position is randomized in the entire workspace 1m× 0.5m, the affordance model is run
and the hand is moved to the pre-grasp pose. Videos at https://dexfunc.github.io/.

Success Rate ↑
Teleop Oracle Hardcoded Ours

Hammer (heavy) 0.5 0.0 0.8
Hammer (light) 0.6 0.3 0.9
Sauce pan 0.9 0.3 0.9
Drill (heavy) 0.9 0.2 0.5
Drill (light) 0.9 0.3 0.8
Stapler 0.9 0.3 1.0
Screwdriver 0.5 0.0 0.7

Table 2: We show functional grasping for a varied set
of objects. We compare to a hardcoded pinch grasp and
a trained teleoperator with a VR glove. The hardcoded
baseline fails since the fingers push the object behind.
Our method is able to beat the teleop oracle on challeng-
ing objects such as screwdriver, stapler and hammer.

We obtain the hardcoded baseline by interpo-
lating between the fully open and fully closed
eigengrasp over 1s. This leads to the hand
quickly snapping shut before the arm rises up.
We find that this baseline performs poorly and
gets zero success rate on many objects, espe-
cially thin ones. This is because in order to
successfully grasp the object the thumb must
retract closer to the palm. However, the timing
of this is crucial, if the thumb retracts too early
then the object flies back away from the hand.
This is the most common failure case of this
baseline that we observe. The hardcoded grasp
succeeds for tall objects like an upright stapler
or if the object happens to be in a favorable pose
at the time of grasping.

The teleop oracle baseline was carried out with a Manus VR glove with the joints mapped one to
one to the robot hand (ignoring the human pinky). This was teleoperated by a trained user ( 20 hours
of experience). This was intended to serve as an upper bound of hardware capability. We find our
method matches or slightly lags behind the oracle for drill (light) and saucepan. Surprisingly, for
stapler, screwdriver and both hammers it even exceeds the oracle baseline. This is because these
objects are heavy and sit close to the ground and require very swift and forceful motion which is also
very precise in order to be successfully picked out. This is very hard to execute reliably for a human
being, whereas our policy is able to do it well. We also find that our method is able to complete the
task in a shorter time for the same reason.

4.3 Affordance Analysis

We experimentally validate the pre-grasp affordance matching part of our pipeline separately. We
compare against CLIPort [22] and CLIPSeg [23] in terms of both pick success rate and IoU between
the predicted and ground truth affordance (human-annotated). We run evaluation on the simulated
CLIPort dataset for both unseen and seen objects (Table. 3). For our method, we annotate one
exemplar from each category. To obtain affordance from CLIPSeg we prompt with the relevant part
of the object such as “hammer handle”. Note that Spatula and Frying Pan are present in the CLIPort
training data while hammer is a new category.
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Our method outperforms CLIPort on both seen and unseen categories. We observe that CLIPSeg fails
to localize objects or is not able to capture the functional part of the object and only has understanding
of the entire object as a whole (Fig. 6). While CLIPort is able to localize objects better but often
predicts bounding boxes that are not functionally correct (such as the pan part of the sauce instead of
the handle in Fig. 6).

5 Related Work

In-hand dexterous manipulation: Dexterity in humans is the ability to manipulate objects within
their hand’s workspace [26, 27, 28]. Accordingly, in-hand reorientation has remained a standard, yet
challenging task in robotics to imitate a human’s dexterity. In recent years, there has been a surge
of interest in this field and sim2real approaches have shown some success at reorienting objects
[7, 29, 9, 30, 8] and also manipulating them [6, 31]. Other works bypass sim and directly learn
in-hand manipulation through trial and error in the real world [11, 10]. Some other works use human
demos to guide RL [20] and others directly use demos to learn policies [32].

Dexterous grasping: While in-hand reorientation is an important task most of the uses of a
dexterous hand involve grasping objects in different poses. Because of the large degrees of freedom,
grasp synthesis is significantly more challenging. The classical approach is to use optimization
[21, 33, 34]. This approach is still used today with the form or force closure objective [35, 36, 37].
Some methods use the contact between the object and the hand as a way to learn proper grasping
[38, 39, 40, 41]. A VAE can be trained on these generated poses to learn a function that maps from
object to grasp pose [36, 42]. Recent works leverage differentiable simulation to synthesize stable
grasp poses [43]. Other works don’t decouple this problem into a grasp synthesis phase and learn it
end-to-end in simulation [44], from demonstrations [45, 46, 32] or teleoperation [47, 48].

Functional Grasping: While simulation can be a powerful tool to optimize grasp metrics, func-
tional affordances are usually human data since there may be more than one physically valid grasp
pose but only one functionally valid one that allows one to use the object properly. Some ap-
proaches rely on clean annotations or motion capture datasets [49, 50, 51, 52] for hand object contact
[53, 54, 55, 56, 57]. Some papers learn affordances from human images or video [58, 59] directly
or through retargeting. These can however be noisy since they rely on hand pose detectors such as
[60, 61] which are often noisy and difficult to learn from directly [45]. Some recent work in this area
begin to target functional grasping using large scale datasets as a prior [62, 63, 64].

6 Limitations and Conclusion

We show that combining semantic information from models trained on internet data with the robust-
ness of low-level control trained in simulation can yield functional grasps for a large range of objects.
We show that using eigengrasps to restrict the action space of RL leads to policies that transfer better
and are physically realistic. This leads to policies that are better to deploy in the real world on robot
hand hardware.

The main failure case of our policy in the real world is due to incorrect pre-grasps from the affordance
model. In particular, if the pre-grasp is such that the knuckle of the thumb joint lies over the object
then the grasp fails since the hand cannot get the thumb around the object. One way to address this
limitation is to equip the robot with local field of view around the wrist such that it can finetune its
grasp even if the affordance model is incorrect.

Our method currently does not leverage joint pose information from the affordance model. While we
found this to not be necessary in the set of objects we have, it might be useful in the case of more
fine-grained manipulation such as picking up very thin objects like coins or credit cards.
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A Grasping along multiple axes

In some cases, an object may be kept upright and a top-down angle of approach does not work. To
deal with these cases, we setup three cameras along each axis (Fig. 7) and run affordance matching
for each one. We finally pick the axis that has the highest score and move the hand along that axis to
the pre-grasp pose. See Fig. 3, 4 for a vizualization. Empirically, we find that the confidence score is
indeed always highest for the correct direction of approach.

Figure 3: Affordance prediction for an upright drill from multiple angles. The best angle of approach is from
the side and that is also the angle with highest affordance score. Our system picks this angle and executes a
grasp.

Figure 4: Affordance prediction for an upright mug from multiple angles. Our system picks the side angle with
highest affordance score and executes a grasp.
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B Training curves in simulation

Figure 5: Training curves for baselines in simulation. Each baseline is run over 5 seeds. We see that ours
outperforms the other baselines and also is more stable with respect to the seed. This is because of the lower
dimensional action space.

C Qualitative results for affordance prediction

Hammer

Saucepan

Spatula

Ground Truth CLIP-Seg CLIPort Ours

Figure 6: Qualitative comparisons of the affordance prediction from our method and CLIP-Seg, CLIPort.
Overall, our method produces predictions that are more functionally aligned. CLIP-Seg is a zero-shot method
and fails to localize the object correctly in many cases. CLIPort is able to localize the object but predicts grasp
points that are not functional, for instance it predicts a bounding box around the head of the saucepan in addition
to the handle.
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D Hardware Setup

Top View

Front ViewSide View

Figure 7: Hardware setup with LEAP hand mounted on xarm6 with one D435 along each axis.

Figure 8: (left) the Manus VR glove we use to teleoperate our hand (right) the hand in the retargeted pose.

E Domain Randomization

For robustness, we domain randomize physics parameters as shown in Tab. 4.

Name Range

object scale [0.8, 1.2]
object mass scaling [0.5, 1.5]
Friction coefficient [0.7, 1.3]

stiffness scaling [0.75, 1.5]
damping scaling [0.3, 3.0]

Table 4: domain randomization in simulation
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