
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

UNDERSTANDING ADAM THROUGH THE LENS OF DU-
ALITY: A UNIFIED THEORY OF NORMALIZED GRADI-
ENT METHODS

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper presents a fresh mathematical perspective on Adam, whose empirical
success is in stark contrast with its analytic intractability. We derive Adam via
duality, showing that many of its design choices such as coordinate-wise normaliza-
tion and exponential moving averages emerge naturally from a unified framework.
Using this framework, we first analyze two normalized gradient descent methods
in the setting of linearly separable data which favor different solutions with dif-
fering geometries: SignGD, which converges to a ℓ∞-max-margin classifier at a
rate of O( 1√

t
), and Normalized GD, which instead converges to a ℓ2-max-margin

classifier at a rate of O( 1t ), vastly improving upon the O( 1
ln t ) rate for gradient

descent. Next, we show that Adam, which replaces the solitary gradients within
SignGD with exponential moving averages, achieves margin maximization at a
rate of O( 1√

t
), whereas prior work requires additional assumptions and has a rate

of O( 1
t1/3

). In the stochastic setting, this duality approach gives the first high prob-
ability convergence guarantee for low test error with standard empirical choices of
the momentum factors 0 < β1 < β2 < 1, improving upon prior work which can
only establish bounds in expectation, and has a slower rate of O( 1

t1/4
).

1 INTRODUCTION

First-order gradient methods are the standard mechanism used in machine learning to fit model
parameters to data. This is primarily due to convenience of implementation thanks to modern auto-
differentiation, and due to statistical problems inherently being resistant to sophisticated high-accuracy
approaches such as Newton methods (Bottou, 2010). The Adam optimization method (Kingma &
Ba, 2015) is the dominant choice for many modern machine learning applications (Groeneveld et al.,
2024; Brown et al., 2020; Touvron et al., 2023; Ramesh et al., 2022; Polu & Sutskever, 2020; Ellis
et al., 2024), and is given by the coordinate-wise recursion

(ws+1)j := (ws)j − ηs

1−β1

1−βs+1
1

∑s
k=0 β

s−k
1 ∇R̂k(wk)j√

1−β2

1−βs+1
2

∑s
k=0 β

s−k
2 ∇R̂k(wk)2j + ϵ

, (1)

where ηs is a step size, ws are parameters of the model, R̂s(ws) is the average loss over the sth

minibatch, β1, β2 ∈ (0, 1) are exponential weighting constants, ϵ is the stability constant. The
goal of this paper is to understand how each component plays a role in the training dynamics and
generalization properties of Adam; the coordinate-wise normalization and ϵ completely determine
the implicit bias of Adam while the momentum factors β1 and β2 reduce stochastic noise.

In many machine learning tasks, the number of the model parameters typically exceed the number of
training examples. As a consequence of overparameterization, the training objective generally has
infinitely many solutions. Therefore, characterizing the set of solutions an optimization algorithm
converges toward, or its implicit bias, sheds valuable insight on the optimization algorithm. In this
vein, a line of work has investigated the implicit bias of Adam and other adaptive algorithms (Xie &
Li, 2024; Wang et al., 2021; Fan et al., 2025; Qian & Qian, 2019). Specifically, (Xie & Li, 2024)
showed that Adam converges to the ℓ∞-max margin solution. Unfortunately, it is unclear from
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(a) GD with per-coordinate normalization (SignGD) or
whole-gradient normalization (Normalized GD).

0 1 2 3 4

0

1

2

3

4

Data
SignGD
Adam, 1 = 2 0
Adam, 1 = 2 1
Adam

(b) SignGD (using full-batch gradients), and Adam
(using stochastic gradients) with various (β1, β2).

Figure 1: Figures 1a and 1b depict trajectories of various first-order methods on simple but illustrative
data. In detail, the data consists of two points in R2, namely (0, 4) and (1, 0) with positive labels,
corresponding to ℓ∞-maximum-margin direction u∞ := (1, 1) and ℓ2-maximum-margin direction
u2 := (4/

√
17, 1/

√
17). GD and Normalized GD are seen to converge to u2 in Figure 1a, albeit

GD is very slow. SignGD exactly follows the diagonal direction u∞ until the norm of the loss
gradient becomes similar in magnitude to the stability constant ϵ, after which ϵ = 10−4 dominates
the denominator, changing SignGD’s implicit bias from maximizing the ℓ∞-margin to maximizing
the ℓ2-margin. Meanwhile Figure 1b shows SignGD and Adam, all ostensibly following u∞, though
with significant differences. The stochastic methods (all labeled “Adam”) use identical orderings of
the examples, and thus the initial updates are all vertical by the same coincidence, but the length of
this initial vertical segment varies.

prior work why Adam exhibits a ℓ∞-max margin bias. To resolve this issue, we develop a duality
framework which explains how this implicit bias arises as well as yielding faster margin maximization
rates and new generalization guarantees.

Contribution. This work provides another approach to deriving Adam, SignGD, and Normalized
GD. First we derive per-coordinate normalized gradient methods directly via a duality approach, with
unified mirror descent analyses. Then the bounds on the moving averages are estimated separately to
form the full analysis of Adam. To handle flexible choices of β1 and β2, some problem-dependence is
necessary. Indeed, (Reddi et al., 2019) showed that for every choice of (β1, β2), there exists an online
convex optimization problem such that Adam can fail to converge. Hence, like (Zhang et al., 2024),
the present work considers binary classification with linear predictors and logistic loss. Moreover, the
analysis operates in the setting of linear separability, meaning it will be possible to pick a single w
with zero classification error (see Section 2 for details). Our main contributions can be summarized
as follows.

• We develop a duality framework that shows exactly why Adam and SignGD are implicitly biased
toward ℓ∞-max margin solutions. Specifically, this arises as a consequence of Adam and SignGD
minimizing a ℓ1-norm objective in the dual.

• We prove margin maximization rates for Adam, SignGD, and Normalized GD; notably, for Adam,
we sharpen margin maximization rates from O(1/t1/3) to O( 1√

t
).

• We show that the test error of stochastic mini-batch Adam is at most O( n√
d
), where n is the number

of samples. We additionally provide a matching lower bound Ω(d) for the sample complexity of
Adam.

We further elaborate and contextualize our contributions below.
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1. Duality Framework (cf. Section 3). In this section, we develop the duality framework. Given
Hölder conjugates p, q, we first show that Adam and other normalized gradient methods are
solving a ℓq-minimization problem in the dual. Then, in Lemma 20, we establish an equivalence
between the dual ℓq-minimization problem and the primal ℓp-margin maximization problem. In
short, Adam is implicitly biased toward ℓ∞-max margin solutions since it solves a ℓ1-minimization
problem in the dual. This duality framework builds off the framework presented in Ji & Telgarsky
(2019b). As technical contributions, we generalize the framework to handle stochastic updates
(see Section 5) via a ghost sample technique and general ℓq-dual objectives.

2. Margin maximization for full-batch normalized methods (cf. Section 4). This section con-
siders the setting of full-batch gradients and linear separability. Here we show various margin
maximization results for three algorithms; SignGD, Normalized GD, and Adam. Concretely, the
margin of a classifer w over a training set {(xi, yi)}i∈[n] is defined as mini

〈
w

∥w∥ , yixi

〉
where

∥·∥ is some norm. In Theorem 2, we show that SignGD and Normalized GD maximize the
ℓ∞- and the ℓ2-margin with rates O( 1√

t
) and O( 1t ) respectively. Next, in Theorem 3, we prove

Adam maximizes the ℓ∞-margin at a rate of O( 1√
t
), improving over the previous O(1/t1/3)

margin maximization rate Xie & Li (2024), when the stability constant ϵ is 0. When the stability
constant ϵ is nonzero, Theorem 3 shows the same ℓ∞-margin maximization rate O( 1√

t
) holds

until the gradient norm
∥∥∥∇R̂(ws)

∥∥∥
1

falls below O(
√
ϵ); such a result cannot be strengthened

to hold for all time as Adam with ϵ > 0 asymptotically converges to the ℓ2-maximum margin
solution (Wang et al., 2021). Indeed, this phenomenon can be observed in Figure 1b where various
instantiations of Adam initially follow the ℓ∞-max-margin direction and then switches to the
ℓ2-max-margin direction. It is also notable that GD, without normalization, maximizes margins at
a rate of O(1/ ln(t)) or O(1/

√
ln(t)), depending on details of the setting (Soudry et al., 2017; Ji

& Telgarsky, 2018).
3. Population loss minimization with high probability with minibatches (cf. Section 5). In this

section, we consider Adam with i.i.d stochastic minibatches. In particular, Theorem 5 analyzes
minibatch Adam (with 0 < β1 ≤ β2 < 1), showing that the test loss is at most O( d√

n
) with high

probability, where n is the number of samples. The dimension factor d in the test error bound is
unavoidable as demonstrated by Theorem 6 which constructs a data distribution where the (ℓ∞)
margin is constant yet Adam still requires Ω(d) samples to achieve low test error. The proof of
Theorem 5 combines the aforementioned duality techniques and a modified perceptron proof
adapted toward dual variables. To the best of our knowledge, this is the first high probability test
error guarantee, under typical β1, β2 values. The closest analysis in the literature has a rate which
translates to O(

√
d/n1/4) in this classification setting, and is proved in expectation (Défossez

et al., 2022).

The rest of this paper is organized as follows. The following section closes this introduction with
brief notation and assumptions,Section 3 develops the duality framework as well as useful mirror
descent guarantees, Section 4 gives the full-batch margin maximization analysis, Section 5 gives the
stochastic Adam analysis, Section 6 provides further related work, and Section 7 closes with open
problems and future directions.

2 PRELIMINARIES

Notation and Assumptions. Norms are disambiguated with a subscript, as ∥ · ∥1, ∥ · ∥2, and ∥ · ∥∞
all appear frequently; in a few places, the analysis applies to arbitrary norms, and simply ∥ · ∥ is
written. Furthermore, ⟨·, ·⟩ denotes inner product.

Data ((xi, yi))
n
i=1 has xi ∈ Rd and yi ∈ {−1, 1}, with ∥xi∥∗ ≤ 1 in the appropriate dual norm.

Inputs and their labels are collected into single vectors zi := yixi, which are then collected as rows
(zT
i )
n
i=1 of a matrix Z ∈ Rn×d. Correspondingly, Zwt is the unnormalized margin on all data points

at time t. The loss, as above, is always the logistic loss ℓ(r) = ln(1 + exp(−r)).

Throughout, standard concepts from convex analysis will be used, e.g., f∗(s) = supx
(
⟨s, x⟩ − f(x)

)
will denote the Fenchel conjugate of a convex function f ; for more on convexity and the key role of
this function, see for instance (Hiriart-Urruty & Lemaréchal, 2001; Borwein & Lewis, 2000).
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The batch methods will use the following notion of batch margin.

Assumption 1. Suppose the data is linearly separable, meaning there exists u ∈ Rd with Zu > 0
(coordinate-wise) and define margins

γ2 := max
∥u∥2≤1

min
i
zT

i u, γ∞ := max
∥u∥∞≤1

min
i
zT

i u,

respectively for Normalized GD, SignGD, and Adam; context will disambiguate, thus simply γ is
often written to declutter. (Linear separability means γ2 > 0 and γ∞ > 0.)

The stochastic case is similar, with some care for measure-theoretic issues.

Assumption 2. Given a distribution D over z = yx, let supp(D) denote its support. Define
corresponding margin notions as

γ2 := sup
∥u∥2≤1

inf
z∈supp(D)

⟨z, u⟩ , γ∞ := sup
∥u∥∞≤1

inf
z∈supp(D)

⟨z, u⟩ .

The assumption is that D is linearly separable, which means γ2 > 0 and γ∞ > 0.

3 DUALITY FRAMEWORK AND MIRROR DESCENT.

Dual analysis. We present the framework for deriving various normalized gradient methods includ-
ing SignGD, ℓ2 normalized GD, Adam. We first develop some additional notation. Define L(v) =
1
n

∑n
i=1 ℓ(vi), whereby L(Zw) = R̂(w), and define the smooth margin ψ(v) = ℓ−1(nL(v)). Note

that for logistic loss, we have the following inequality

ψ(Zw) ≤ min
i∈[n]

⟨w, zi⟩ .

Hence, it suffices to lower bound ψ(Zw) to obtain a unnormalized margin bound for weight w. As ψ
is smooth and concave, we will work entirely with ψ.

We start by considering the margin maximization problem

max
∥w∥≤1

min
i∈[n]

⟨w, yixi⟩ ,

which, by Lemma 20, has the corresponding dual problem

min
q∈∆:ψ∗(q)≤0

∥Z⊺q∥∗ . (2)

Now given an arbitrary sequence {gs}s≤t ⊂ Rd and a learning rate η > 0, consider the generic
update rule for the weights ws,

ws+1 = ws − ηgs.

For the remainder of the paper, assume w0 = 0 for all gradient methods. Let qs := −∇ψ(Zws). In
the case of GD, gs = ∇R̂(ws), and Ji & Telgarsky (2019b) made the crucial observation that the
induced update rule for qs coincided with the following mirror descent update,

∇ (−ψ)∗ (qs+1) = ∇ (−ψ)∗ (qs)−∇qf(qs),

where f(q) := 1
2∥Z

⊺q∥22. In other words, the (dual) variables qs were explicitly solving the dual
problem eq. (2). This connection makes it extremely clear why GD converges to the ℓ2 max margin
solution. Notice how we started with a primal update for ws and then derived the induced update
for qs. We can also do the reverse. Namely, by varying the dual objective f(q), we can derive new
primal algorithms with different implicit biases.

Set f(q) =∥Z⊺q∥1, and let the dual variables qs be updated as follows

∇ (−ψ)∗ (qs+1) = ∇ (−ψ)∗ (qs)−∇qf(qs).

As −ψ is strongly convex, it follows that Zws = ∇(−ψ)∗(qs) and hence the induced primal update
is

Zws+1 = Zws − ηZ sign(Z⊺qs).

4
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Since Z⊺qs is −∇wψ(Zws) , we have that sign(Z⊺qs) is sign(∇R̂(ws)). Therefore, by letting ws+1

be any update satisfying the preceding equation, we have the following iterative update for the primal
variables,

ws+1 = ws − η sign(∇R̂(ws)), (3)
which is exactly SignGD. As the dual objective is f(q) =∥Z⊺q∥1, by Lemma 20, it is immediate
that SignGD is implicitly solving the ℓ∞-margin-maximization problem. In a similar fashion, setting
f(q) =∥Z⊺q∥2 gives rise to Normalized GD,

ws+1 = ws − η
∇R̂(ws)∥∥∥∇R̂(ws)

∥∥∥
2

. (4)

Mirror descent. Next we provide a nonstandard mirror descent guarantee which will be used to
analyze the dual variables qs. Let the Bregman divergence be defined as

Dh(u, us) := h(u)− h(us)− ⟨vs, u− us⟩,
where us = ∇h∗(vs).
Lemma 1. Given initial iterates u0, v0 ∈ Rd, learning schedule {ηs}s<t ⊂ R, and a sequence
{ξs} ⊂ Rd, suppose the iterates vs follow the update rule,

vs+1 = vs − ηsξs.

Let h be any closed, proper, convex function and let h∗ be the convex conjugate of h. Suppose
us = ∇h∗(vs). Then, the sequence {us}s<t can equivalently be generated by mirror descent,

us+1 = argmin
{
ηs ⟨ξs, u⟩+Dh(u, us) : u ∈ Rd

}
.

In addition, if h is λ−1
s strongly convex over the line segment [us, us+1] with respect to∥·∥,

h∗(v0)− h∗(vt) ≥
∑
s<t

ηs ⟨ξs, us⟩ −
η2sλs
2

∥ξs∥2∗ .

Of note, the preceding lemma considers generic updates ξs and hence can be specialized to handle
various normalized gradient methods such as SignGD and Adam. In addition, this lemma will be used
to prove both margin maximization and population loss minimization though with different choices
of mirror potential h. Most importantly, the mirror descent analysis of the dual variables provides a
control on the primal gap h∗(v0)−h∗(vt). We make a slight technical remark on the appearance of the
strong convexity constant as its reciprocal in the bound of Lemma 1 is common in O( 1√

t
)-type mirror

descent analyses (Bubeck, 2015) and comes from lower bounding ⟨ηsξs, us+1 − us⟩+Dh(us+1, us)
via the standard application of strong convexity of h and Fenchel-Young inequality.

4 MARGIN MAXIMIZATION WITH FULL-BATCH METHODS

In this section, we will present margin maximization results for various normalized gradient methods.
Concretely, Theorem 2 show SignGD maximizes the ℓ∞-max-margin at a rate of O( 1√

t
) and Normal-

ized GD maximizes the ℓ2-max-margin at a faster rate of O( 1t ). Finally, Theorem 3 will show Adam
maximizes the ℓ∞-margin at a rate of O( 1√

t
).

Theorem 2. Suppose Assumption 1 holds. Take∥·∥ to be∥·∥∞ and∥·∥2 for SignGD and Normalized
GD respectively. Assume that for all i ∈ [n], the data is bounded,∥xi∥∗ ≤ 1. Suppose the iterates ws
are updated via SignGD, meaning eq. (3), with learning rate η = γ∞

4
√
t
. Then for t ≥ 8n2

γ4
∞

, SignGD
maximizes the ℓ∞-margin:

ψ(Zwt)

∥wt∥∞
≥ γ∞ − 8n

γ∞
√
t
.

If the iterates ws are updated using Normalized GD, meaning eq. (4), with learning rate η = γ2
4 ,

then for t ≥ ln2(4n)
γ2 , Normalized GD maximizes the ℓ2-margin:

ψ(Zwt)

∥wt∥2
≥ γ2 −

16 ln(4n)

γ2t
.

5
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Before sketching the proof, we first make several remarks.

1. Note that Normalized GD enjoys a faster margin maximization rate of O( 1t ) despite the fact that the
corresponding dual objective f(q) =∥Z⊺q∥2 is nonsmooth. This is because an alternative way to
view Normalized GD is that the dual variables are minimizing a smooth objective f(q) = 1

2∥Z
⊺q∥22

with an adaptive learning rate ηs = η
∥Z⊺qs∥ .

2. On the other hand, the same trick fails for SignGD as both∥Z⊺q∥1 and its square∥Z⊺q∥21 are
nonsmooth which results in a slower rate of O( 1√

t
).

We provide a proof sketch of SignGD and defer the remaining details to the appendix. The proof of
ℓ2 is slightly more involved to get both O( ln(n)t ) rate. We first invoke Lemma 1 with the following
instantiation: mirror potential h = (−ψ)∗, primal iterates vs = Zws, dual iterates us = qs, primal
update gs = sign(∇R̂(ws)), dual update ξs = Zgs, and learning rate η = γ∞

4
√
t
.

Hence, by Lemma 1 and since by Lemma 20 the dual objective satisfies∥Z⊺qs∥1 ≥ γ∞,

ψ(Zwt) ≥
∑
s<t

η

[
⟨Zgs, qs⟩ −

η∥Z⊺qs∥1
2γ

∥Zgs∥2∞
]
+ ψ(Zw0)

≥
∑
s<t

η

(
1− 1

8
√
t

)
∥Z⊺qs∥1 + ψ(Zw0)

≥
∑
s<t

η

(
1− 1

8
√
t

)
γ∞ + ψ(Zw0). (5)

As w0 = 0, the initial smoothed margin satisfies ψ(Zw0) = −ℓ−1(n ln(2)) ≥ −n. By the choice of
the learning rate and since t ≥ 8n2

γ4
∞

, the right hand side of eq. (5) is nonnegative.

To finish the proof from here, it suffices to divide∥wt∥∞ across both sides of eq. (5), and upper bound
∥wt∥∞. By a simple application of triangle inequality and noting that each entry of the SignGD
update is bounded by 1, we obtain that∥wt∥∞ ≤

∑
s<t η = ηt.

Putting it altogether,

ψ(Zwt)

∥wt∥∞
≥ 1

∥wt∥∞

∑
s<t

η

(
1− 1

8
√
t

)
γ∞ − n


≥ γ∞ − 8n

γ∞
√
t
.

Adam. In this section, we prove various margin maximization results for Adam with full batch
gradients. As indicated by Figure 1, the stability constant ϵ plays a nontrivial role of determining the
implicit bias of Adam. Indeed, if ϵ > 0, Adam asymptotically becomes GD and converges to the
ℓ2-max-margin classifier which has been shown in Wang et al. (2021). This effect becomes more
apparent as the norm of the gradient

∥∥∥∇R̂(ws)
∥∥∥ shrinks to the same magnitude as ϵ. On the flip side,

if ϵ = 0, Adam is biased toward ℓ∞-max-margin solutions for all time.

Theorem 3. Suppose Assumption 1 holds with γ = γ∞ and∥xi∥1 ≤ 1 for every i ∈ [n]. Let C :=√
1−β1

1−β2
. For any 0 ≤ β1 ≤ β2 < 1 and 0 < ϵ ≤ 1, for constant learning rate η =

(1−
√
β2)

2
γ

24C2
1√
t

where Adam iterates are updated using eq. (1), for all time t such that
∥∥∥∇R̂(wt)

∥∥∥
1
≥ d

√
ϵ, Adam

maximizes the ℓ∞ margin,

ψ(Zwt)

∥wt∥∞
≥ γ

(
1−

√
ϵ
)√1− β2

1− β1
− 24C3

γ
(
1−

√
β2
)2 √

t
. (6)

6
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Several remarks are in order. If ϵ = 0, the theorem holds for all time. Hence, if β1 = β2, Adam
converges to ℓ∞ max margin classifer at a rate O(1/

√
t). As the proof relies on arguing that the Adam

update is approximately SignGD, it inherits the O(1/
√
t) rate from the SignGD proof which is superior

to O(1/t1/3) rate given by Zhang et al. (2024). It should be noted that Zhang et al. (2024) converges

to the true margin γ∞ instead of
√

1−β2

1−β1
γ∞. However, they rely on an additional assumption that

each coordinate of the gradient is bounded away from zero by a positive constant ρ. By making the

same assumption, we can likewise remove the
√

1−β2

1−β1
factor.

In the remainder of the section, we will provide a proof sketch of this theorem. For simplicity,
we only consider the case where ϵ = 0. As with the SignGD proof, we apply Lemma 1 with the
following instantiation: the mirror potential h = (−ψ)∗, primal iterates vs = Zws, dual iterates
us = qs, primal update gs as defined in eq. (1), dual update ξs = Zgs, and learning rate η as given in
Theorem 3. Therefore, Lemma 1 gives

ψ(Zwt)− ψ(Zw0) ≥
t∑

s=0

[
η ⟨Zgs, qs⟩ −

η2

2
∥Zgs∥2∞

]
.

Abbreviating σs := sign(R̂(ws)), we have that the inner product term ⟨Zgs, qs⟩ can be decomposed,

⟨Zgs, qs⟩ = ⟨Zσs, qs⟩ − ⟨Zgs − Zσs, qs⟩ =∥Z⊺qs∥1 − ⟨Zgs − Zσs, qs⟩ .
It suffices to bound the second term as the first term can be handled in the same manner as in the
SignGD proof. The following lemma controls the second term, namely the deviation between Adam
and SignGD updates.
Lemma 4 (Informal version of Lemma 18). Fix ϵ ≥ 0, then∣∣∣∣〈σs − gs,∇R̂(ws)

〉∣∣∣∣ ≤ 12C2(
1−

√
β2
)2 ηĜ(ws),

where Ĝ(w) = − 1
n

∑n
i=1 ℓ

′(⟨w, zi⟩).

As in proof of Lemma A.3 in (Zhang et al., 2024), the proof proceeds by showing the moving average
of the first and second moment of the gradients are close to the current gradient. We make several
refinements to improve the dependency on dimension d and η, the latter being critical for obtaining
a faster margin maximization rate. To be more explicit, we first discuss the improved dependence
on η. The proof of Lemma 4 relies on Lemma 16 which argues that the averaged first moment ms

and the averaged second moment vs of the gradients are close to the current gradient and squared
gradient respectively. The improved dependence on η comes from a better control on the deviation
between

√
vs and

∣∣∣∇R̂(ws)
∣∣∣. The improved dependence on dimension d comes from bounding the

deviation instead of worse case bounding the deviation of each coordinate. With Lemma 4, we can
prove Theorem 3 by applying the same proof strategy used to show Theorem 2.

5 POPULATION LOSS MINIMIZATION WITH STOCHASTIC GRADIENTS

In this section, we consider mini-batch Adam in the online setting; in particular, we use the update in
eq. (1), with a minibatch Ss of size B = |Ss|. For convenience, the update will be written as

ws+1 = ws − ηsgs.

Here, gs collects the various terms of eq. (1):

gsj =

∑
s≤t at,s∇R̂s(ws)j√∑
s≤t bt,s∇R̂s(ws)2j + ϵ

,

where the numerator and denominator weightings and their rescaling are packaged within at,s and
bt,s. Under this setting, Theorem 5 shows that Adam with mini-batch size of O(

√
n) and iteration

count t =
√
n will achieve low test error O( d√

n
). Furthermore, Theorem 6 provides a lower bound

on the sample complexity of Adam, showing that the dimension factor d in the test error bound of
Theorem 5 is unavoidable.
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Theorem 5. Assume the distributional linear separability: Assumption 2 holds with γ = γ2. Further
assume, for z = yx ∼ D, the data satisfies ∥z∥2 ≤ 1 and ∥z∥1 ≤ R almost surely. For any

0 ≤ β1 ≤ β2 < 1 and 0 < ϵ ≤ 1, for constant learning rate η = ϵ2(1−β1)
5/2γ2

4R2 , batch size B =
√
n,

and iteration count t =
√
n, with probability at least 1− 10δ, Adam achieves low test error:

min
s<t

Prz(⟨ws, z⟩ < 0) ≤ 2048R2

(1− β1)
5/2

ϵ2γ32
√
n
. (7)

A more detailed comparison to the literature is as follows. The only other analysis of Adam with
stochastic gradients is (Défossez et al., 2022), which gives a rate of O(1/

√
n), after trading off

various choices in their Theorem 4, in terms of squared gradient norms. In our setting, our proof
is ultimately controlling something on the same order as the unsquared gradient norm (namely, the
derivative of the loss), and thus the apples-to-apples rate is O(1/n1/4). Moreover that rate is in
expectation, which is important as the denominator in Adam makes deviations and high probability
harder to control.

All that said, the bound here has two deficiencies. One is the dimension dependence. Unfortunately,
while the dimension factor d in the test error guarantee is unsavory, it is unavoidable. Indeed,
Theorem 6 provides a data distribution which is separable with a dimension-free margin, yet the
sample complexity of Adam is Ω(d). A second issue is that the rate for Adam is worse in terms of
constants; there are many technical hurdles to overcome to make the rate better, and we leave this
interesting question to future work as well.

The proof superficially invokes a perceptron-style argument, but features a number of innovations;
the first of these is to track progress on a ghost sample. Fix N > 0 and sample another N data
points {xi, yi}i∈[N ] iid from the same population distribution. Note that the algorithm never sees
this dataset and hence we can make N arbitrarily large. Let Z be the matrix such that it’s i-th row is
zT
i := ȳix̄

T
i . Denote

G(w) :=
1

N

∑
i∈[N ]

−ℓ′(⟨w, zi⟩), G(w) := E
[
−ℓ′(⟨w, z⟩)

]
.

The function G is an upper bound on the test zero-one error. Namely,

Prz(⟨w, z⟩ < 0) ≤ 1

ln2(2)
G(w)2.

Hence, to get a good test error it suffices to control G(w). Now let R : RN → R to be the function
such that

R(ξ) =
1

N

∑
i

ℓ(ξi),

and define qs := ∇R(Zws), ps := Zws.

Primal and Dual update. Define h = R∗
. By contrast to Section 4 and prior work (Ji & Telgarsky,

2019b), here the duality is formed with loss directly without any normalization. Then, by convexity,
ps = ∇h(qs). Otherwise, proceeding is in the earlier dual derivation, starting from the Adam update
equation 1 and multiplying Z on both sides grants,

ps+1 = ps − ηsZgs,

which is equivalent to
∇h(qs+1) = ∇h(qs)− ηsZgs,

which is the mirror descent update rule for the dual variables qs.

With this key concept in hand, the proof proceeds via a similar analysis to Lemma 1, but then using
standard perceptron steps to introduce the margin and bound the predictor norm.

The following theorem shows the existence of a data distribution that is separable with constant
margin, yet the sample complexity is Ω(d) for Adam.

8
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Theorem 6. Suppose iterates are updated via eq. (1) where gs can be a stochastic or full batch
update. Let n denote the total number of data samples. There exists a data distribution such that if
{(xi, yi)}ni=1 ∼ D and if n ≤ d

2 , then for all time s ≤ t, the misclassification error is nonvanishing,

Pr(x,y)(y ⟨ws, x⟩ < 0) ≥ 1

2
.

The proof is by construction. In particular, consider the uniform distribution over the standard basis
vectors in Rd with all positive labels. By inspection, one notes that the loss gradients are a linear
combination of the sampled data. Hence, if the number of data points sampled is less than d

2 , for any
iterate ws, there are at least d2 entries that are zero. Consequently, each ws misclassifies at least d2
standard basis vectors.

6 FURTHER RELATED WORK

Stochastic Adaptive Methods. In the convex setting, Duchi et al. (2011) gave a convergence proof
for Adagrad, albeit under the strong assumption that the optimization problem was constrained within
a compact convex set. Under a similar boundedness assumption, Reddi et al. (2019) showed a variant
of Adam, AMSGrad, obtained sublinear regret for online stochastic convex optimization.

In the nonconvex setting, Li & Orabona (2019) was the first to show convergence of AdaGrad.
Later, Ward et al. (2021) obtained O( ln(t)t ) convergence rates for a variant of AdaGrad, AdaGrad-
Norm, which uses a uniform scalar for normalizing the gradients. Shen et al. (2023) extended the
convergence guarantees to the vector case. Défossez et al. (2022); Zou et al. (2019) obtained O( ln(t)t )
convergence rates for Adam. These rates are not easily related to the batch rates here, which on the
one hand are under a more stringent criterion (margin maximization, which translates to exponentially
fast rates for the loss), but on the other hand invoke the additional assumption of linear separability.

Margin Maximization of gradient methods. Margin maximization for linear models was first
shown for coordinate descent Zhang & Yu (2005); Telgarsky (2013), and only much later for gradient
descent (Soudry et al., 2018; Ji & Telgarsky, 2019a). The idea to use the dual view on purely primal
methods such as gradient descent is not new (Molinari et al., 2021; Apidopoulos et al., 2023), and
has been applied to simplify and strengthen the aforementioned margin maximization proofs (Ji &
Telgarsky, 2019b). Prior work does not seem to have applied these tools to normalized methods such
as those considered here.

7 CONCLUDING REMARKS AND OPEN PROBLEMS

Connecting to the dual places a different perspective on gradient normalization; rather than drawing
roots in AROW and AdaGrad to minimize an online bound, it comes from transformations to a batch
dual problem. This perspective allows many further ways to study and improve Adam.

Firstly, the rates here are only O(1/t) for Normalized GD. Is there a way to recover this bound for
(ℓ∞) SignGD? An even more interesting option is that SignGD inherently exhibits nonsmoothness
and its rate is stuck at O(1/

√
t), but under certain favorable conditions, the rate of Adam, owing to

beneficial smoothing effects of the exponentially-weighted averaging, is in fact O( 1t ).

A second natural candidate is to improve the stochastic bounds for Adam; here, the behavior of
Adam is only provided a sanity check, and the exponentially-weighted averages do not provide
benefits. Is there some way, for specific functions, to benefit from the smoothing effects of the
exponentially-weighted averaging scheme?

9
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A ORGANIZATION

The appendix is organized as follows.

1. In Appendix B, we establish various technical lemmas that will be used in the proofs of both
Theorems 29 and 34.

2. In Appendix C, we establish regret guarantees for mirror descent which only require local strong
convexity of the mirror potential.

3. In Appendix D, we prove margin maximization.

4. In Appendix E, we prove high probability convergence guarantees.

Before proceeding, we define additional notation that will be used throughout the appendix. Fix a
coordinate j ∈ [d], and let the msj and vsj denote the averaged first and second moments of gradients
respectively:

msj :=
1− β1

1− βs+1
1

s∑
k=0

βs−k1 ∇R̂k(wk)j

vsj :=
1− β2

1− βs+1
2

s∑
k=0

βs−k2 ∇R̂k(wk)
2
j

B TECHNICAL LEMMAS

The following lemma establishes a ℓ∞ control on the Adam update.

Lemma 7. For any choices of β1 and β2 such that β1 ≤ β2 < 1, the Adam update gs, meaning
eq. (1), satisfies

∥gs∥∞ ≤ C :=

√
1− β1
1− β2

. (8)

Proof. For any coordinate j, by Jensen’s inequality, and since β1 ≤ β2,

∣∣msj

∣∣ =
∣∣∣∣∣∣
∑
k≤s

as,k∇R̂k(wk)j

∣∣∣∣∣∣ ≤
∑
k≤s

as,k

∣∣∣∇R̂k(wk)j

∣∣∣
≤
√∑
k≤s

as,k

(
∇R̂k(wk)j

)2
=

√
1− β1

1− βs+1
1

∑
k≤s

βs−k1

(
∇R̂k(wk)j

)2
≤
√

1− β1

1− βs+1
1

∑
k≤s

βs−k2

(
∇R̂k(wk)j

)2

=

√√√√ 1− β1

1− βs+1
1

1− βs+1
2

1− β2

∑
k≤s

bs,k

(
∇R̂k(wk)j

)2

≤

√
1− β1
1− β2

√∑
k≤s

bs,k

(
∇R̂k(wk)j

)2
=

√
1− β1
1− β2

√
vsj .
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Therefore, for C :=
√

1−β1

1−β2
, applying the preceding inequality,

∣∣gsj∣∣ = ∣∣msj

∣∣
√
vsj + ϵ

≤
∣∣msj

∣∣
√
vsj

≤
C
√
vsj

√
vsj

= C.

Therefore,∥gs∥∞ ≤ C.

Remark 8. It is interesting to consider an ℓ2 variant of Adam, ℓ2-Adam, where the normalization in
the update consists of ℓ2 norms of the gradients. Concretely, suppose the weights ws are updated
using the recurrence, ws+1 = ws − ηgs, where the update gs is defined as

gs :=

∑
k≤s as,k∇R̂k(wk)√∑

k≤s bs,k

∥∥∥∇R̂k(wk)
∥∥∥2 + ϵ

.

Indeed, as most of the proofs regarding Adam uses a per-coordinate analysis, many of the same
proofs can modified with very little work to handle ℓ2-Adam. Like Adam, the type of normalization
induces the implicit bias; it can be shown that ℓ2-Adam maximizes the ℓ2-margin at a rate of O( 1√

t
).

Furthermore, unlike in Adam, the stability constant ϵ does not change its implicit bias.

Now we introduce several technical inequalities used in our proofs.
Lemma 9. Suppose {λk}sk=0, {ak}sk=0, {bs}sk=0 are nonnegative sequences. Then it follows that∣∣∣∣∣∣∣

√√√√ s∑
k=0

λka2k −

√√√√ s∑
k=0

λkb2k

∣∣∣∣∣∣∣ ≤
s∑

k=0

√
λk|ak − bk| .

Proof. By expanding the square, Cauchy-Schwarz, and recalling that {λk}sk=0, {ak}sk=0, {bs}sk=0
are nonnegative sequences,

√√√√ s∑
k=0

λka2k −

√√√√ s∑
k=0

λka2k


2

=

s∑
k=0

λk

(
a2k + b2k

)
− 2

√√√√ s∑
k=0

λka2k

√∑
k

λkb2k

≤
s∑

k=0

λk

(
a2k + b2k

)
− 2

s∑
k=0

λkakbk

≤
s∑

k=0

λk (ak − bk)
2
.

Applying square root on both sides and noting that
√
· is subadditive grants the desired inequality.

Lemma 10. For any x ∈ R,
|ex − 1| ≤ e|x| − 1.

Proof. We consider two cases.

1. If x > 0,
|ex − 1| = ex − 1 = e|x| − 1.

2. Suppose x ≤ 0. For any x ∈ R, it follows that (ex − 1)2 ≥ 0 which implies 2ex − e2x ≤ 1.
Multiplying e−x on both sides and then subtracting 1 on both sides grants,

1− ex ≤ e−x − 1 = e|x| − 1.

To conclude the proof, note that 1− ex = |ex − 1| for x ≤ 0.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Lemma 11. For any a, b ∈ R, ∣∣∣∣ ℓ′(b)ℓ′(a)
− 1

∣∣∣∣ ≤ e|b−a| − 1.

Proof. By Theorem 10,∣∣∣∣ ℓ′(b)ℓ′(a)
− 1

∣∣∣∣ = ∣∣∣∣ea + 1

eb + 1
− 1

∣∣∣∣ =
∣∣∣∣∣ea − eb

eb + 1

∣∣∣∣∣ ≤
∣∣∣∣∣ea − eb

eb

∣∣∣∣∣ = ∣∣∣ea−b − 1
∣∣∣ ≤ e|a−b| − 1.

Corollary 12. Suppose ws are updated using eq. (1) and let C := 1√
1−β2

. Then for any z such that
∥z∥1 ≤ R, and time k ≤ s, ∣∣∣∣ℓ′(⟨wk, z⟩)ℓ′(⟨ws, z⟩)

− 1

∣∣∣∣ ≤ eCR
∑s−1

τ=k ητ − 1.

Proof. By Hölder’s inequality, triangle inequality, and Lemma 7,

∣∣⟨wk − ws, z⟩
∣∣ ≤∥wk − ws∥∞∥z∥1 =

∥∥∥∥∥∥
s−1∑
τ=k

ητgτ

∥∥∥∥∥∥
∞

∥z∥1 ≤ CR

s−1∑
τ=k

ητ .

By the preceding inequality and Theorem 11,∣∣∣∣ℓ′(⟨wk, z⟩)ℓ′(⟨ws, z⟩)
− 1

∣∣∣∣ ≤ e|⟨wk,z⟩−⟨ws,z⟩| − 1 ≤ eCR
∑s−1

τ=k ητ − 1.

Lemma 13. Suppose f : [0,∞) → [0,∞) is a differentiable function and there exists τ ∈ [0,∞)
such that

∀x ≤ τ, f ′(x) ≥ 0 and ∀x ≥ τ, f ′(x) ≤ 0.

Then
∞∑
k=0

f(k) ≤ 2

∫ ∞

k=0

f(k) dk.

Proof. Let N = ⌊τ⌋. Since f is nondecreasing on [0, N ], f is nonincreasing on [N + 1,∞), and
f ≥ 0 on the interval [0,∞),

∞∑
k=0

f(k) =

N∑
k=0

f(k) +

∞∑
k=N+1

f(k)

≤
N∑
k=0

∫ k+1

k

f(x) dx+

∞∑
k=N+1

∫ k

k−1

f(x) dx

=

∫ N+1

0

f(x) dx+

∫ ∞

N

f(x) dx

=

∫ ∞

0

f(x) dx+

∫ N+1

N

f(x) dx

≤ 2

∫ ∞

0

f(x) dx.

Corollary 14. For any β ∈ (0, 1) and ℓ ≥ 1,
∞∑
k=0

βkkℓ ≤ 2

∫ ∞

0

βkkℓ dk.
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Proof. Let f be the function f : [0,∞) → [0,∞) such that f(k) := βkkℓ. By calculation,
f ′(k) = βkkℓ−1

(
ℓ− k · ln( 1β )

)
. Abbreviating τ := ℓ

ln( 1
β )

,{
f ′(k) ≥ 0, k ≤ τ,

f ′(k) ≤ 0, k > τ.

Applying Theorem 13 gives the desired inequality.

Lemma 15. For any α > 0, β ∈ (0, 1), and learning rates ηs ≤ η ≤ 1−β
2α ,

s∑
k=0

βs−k

exp

α s−1∑
τ=k

ητ

− 1

 ≤ 4αη

(1− β)
2 .

Proof. By change of indices and since ηk ≤ η for all k,

s∑
k=0

βs−k

exp

α s−1∑
τ=k

ητ

− 1

 =

s∑
k=0

βk

exp

α k∑
τ=1

ηs−τ

− 1


≤

s∑
k=0

βk
(
exp [αkη]− 1

)
=

s∑
k=0

βk

 ∞∑
ℓ=0

[αkη]
ℓ

ℓ!
− 1


=

s∑
k=0

βk

 ∞∑
ℓ=1

[αkη]
ℓ

ℓ!

 .

Switching the order of the summation, and since
∑∞
k=0 β

kkℓ ≤ 2
∫∞
0
βkkℓ dk by Theorem 13,

s∑
k=0

βs−k

exp

α s−1∑
τ=k

ητ

− 1

 ≤
s∑

k=0

βk

 ∞∑
ℓ=1

[αkη]
ℓ

ℓ!


≤

∞∑
ℓ=1

[αη]
ℓ

ℓ!

∞∑
k=0

βkkℓ

≤ 2

∞∑
ℓ=1

[αη]
ℓ

ℓ!

∫ ∞

0

βkkℓ dk.

Using the fact that
∫∞
0
βkkℓ dk = ℓ!

ln(1/β)ℓ+1 ≤ ℓ!
(1−β)ℓ+1 and αη ≤ 1−β

2 ,

s∑
k=0

βs−k

exp

α s−1∑
τ=k

ητ

− 1

 ≤ 2

1− β

∞∑
ℓ=1

(
[αη]

1− β

)ℓ

=
2

1− β

(
1

1− αη
1−β

− 1

)

=
2

1− β

(
αη

1− β − αη

)
≤ 4αη

(1− β)
2 .
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The following lemma shows that the averaged moments of the gradients is close to the current moment
of the gradients. This lemma is critical in both the proof of margin maximization in the deterministic
setting (Theorem 29) and low test error guarantee in the stochastic setting (Theorem 34).
Lemma 16. Fix β1, β2 ∈ [0, 1) and assume the iterates ws are updated using eq. (1). Fix distribution
D and assume z ∼ D satisfies∥z∥1 ≤ R almost surely. Then for any β ∈ (0, 1) and learning rates

ηs such that ηs ≤ η ≤ 1−β
2CR where C =

√
1−β1

1−β2
, the average loss derivatives satisfy∣∣∣∣∣∣ 1− β

1− βs+1

∑
k≤s

βs−kEzℓ′
(
⟨wk, z⟩

)
− Eℓ′

(
⟨ws, z⟩

)∣∣∣∣∣∣ ≤ 4CR

(1− β)
2 ηEz

[
−ℓ′

(
⟨ws, z⟩

)]
, (9)

and the averaged first moments of the gradients satisfy∥∥∥∥∥∥ 1− β

1− βs+1

∑
k≤s

βs−kE
[
∇ℓ(wk)

]
− E

[
∇ℓ(wk)

]∥∥∥∥∥∥
1

≤ 4CR2

(1− β)2
ηEz

[
−ℓ′

(
⟨ws, z⟩

)]
. (10)

If instead η ≤ 1−
√
β

2CR , then the averaged second moment of the gradients satisfy

∑
j∈[d]

∣∣∣∣∣∣∣
√√√√ 1− β

1− βs+1

s∑
k=0

βs−k
(
Eℓ′(⟨wk, z⟩)zj

)2 −∣∣Eℓ′(⟨ws, z⟩)zj∣∣
∣∣∣∣∣∣∣ ≤

CR2(
1−

√
β
)2 ηEz [−ℓ′ (⟨ws, z⟩)] .

(11)

Proof. Applying Theorem 12 and Lemma 15 with α = CR,∣∣∣∣∣∣ 1− β

1− βs+1

∑
k≤s

βs−kEzℓ′
(
⟨wk, z⟩

)
− Ezℓ′

(
⟨ws, z⟩

)∣∣∣∣∣∣
≤ 1− β

1− βs+1

∑
k≤s

βs−k
∣∣∣∣Ez [ℓ′ (⟨wk, z⟩)− ℓ′

(
⟨ws, z⟩

)]∣∣∣∣
≤ 1− β

1− βs+1

∑
k≤s

βs−kEz

∣∣∣ℓ′ (⟨ws, z⟩)∣∣∣
∣∣∣∣∣ℓ′
(
⟨wk, z⟩

)
ℓ′
(
⟨ws, z⟩

) − 1

∣∣∣∣∣


≤ 1− β

1− βs+1
Ez
∣∣∣ℓ′ (⟨ws, z⟩)∣∣∣∑

k≤s

βs−k

exp

CR s−1∑
τ=k

ητ

− 1


≤ 4CR

(1− β)2
ηEz

∣∣∣ℓ′ (⟨ws, z⟩)∣∣∣ .
Similarly, applying Theorem 12 and Lemma 15 with α = CR,∥∥∥∥∥∥ 1− β

1− βs+1

∑
k≤s

βs−kEz
[
∇ℓ(⟨wk, z⟩)

]
− E

[
∇ℓ(⟨ws, z⟩)

]∥∥∥∥∥∥
1

≤ 1− β

1− βs+1

∑
k≤s

βs−kEz
[∣∣ℓ′(⟨wk, z⟩)− ℓ′(⟨ws, z⟩)

∣∣ ·∥z∥1]

≤ R
1− β

1− βs+1

∑
k≤s

βs−kEz

∣∣∣ℓ′ (⟨ws, z⟩)∣∣∣
∣∣∣∣∣ℓ′
(
⟨wk, z⟩

)
ℓ′
(
⟨ws, z⟩

) − 1

∣∣∣∣∣


≤ 4CR2

(1− β)2
ηEz

[
−ℓ′

(
⟨ws, z⟩

)]
.
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We now prove eq. (11). Fix j ∈ [d] and instantiate λk, ak, bk for k ≤ s as

λk = βs−k, ak =

∣∣∣∣E [ℓ′ (⟨wk, z⟩)] zj∣∣∣∣ , bk =

∣∣∣∣E [ℓ′ (⟨ws, z⟩)] zj∣∣∣∣ .
Applying Theorem 9 with λk, ak, bk defined above, reverse triangle inequality,∣∣∣∣∣∣∣

√√√√ s∑
k=0

βs−k
∣∣∣∣E [ℓ′ (⟨wk, z⟩)] zj∣∣∣∣−

√√√√ s∑
k=0

βs−k
∣∣∣∣E [ℓ′ (⟨ws, z⟩)] zj∣∣∣∣

∣∣∣∣∣∣∣
≤

s∑
k=0

β(s−k)/2
∣∣∣∣E [ℓ′ (⟨wk, z⟩)] zj − E

[
−ℓ′

(
⟨ws, z⟩

)]
zj

∣∣∣∣
≤

s∑
k=0

β(s−k)/2E
[∣∣∣ℓ′ (⟨wk, z⟩)− ℓ′

(
⟨ws, z⟩

)∣∣∣∣∣zj∣∣] .
Summing over j ∈ [d] and pushing summation over j ∈ [d] inside, and recalling∥z∥1 ≤ R almost
surely,

∑
j∈[d]

∣∣∣∣∣∣∣
√√√√ s∑
k=0

βk
(
Eℓ′(⟨wk, z⟩)zj

)2 −
√√√√ s∑
k=0

βk
(
Eℓ′(⟨ws, z⟩)zj

)2∣∣∣∣∣∣∣
≤
∑
j∈[d]

s∑
k=0

β(s−k)/2E
[∣∣∣ℓ′ (⟨wk, z⟩)− ℓ′

(
⟨ws, z⟩

)∣∣∣∣∣zj∣∣]

=

s∑
k=0

β(s−k)/2E
[∣∣∣ℓ′ (⟨wk, z⟩)− ℓ′

(
⟨ws, z⟩

)∣∣∣∥z∥1]

≤R
s∑

k=0

β(s−k)/2E
∣∣∣ℓ′ (⟨wk, z⟩)− ℓ′

(
⟨ws, z⟩

)∣∣∣
=R

s∑
k=0

β(s−k)/2E

∣∣∣ℓ′ (⟨ws, z⟩)∣∣∣
∣∣∣∣∣ℓ′
(
⟨wk, z⟩

)
ℓ′
(
⟨ws, z⟩

) − 1

∣∣∣∣∣
 .

Again applying Theorem 12 and Lemma 15 with α = CR and substituting β with
√
β,

∑
j∈[d]

∣∣∣∣∣∣∣
√√√√ s∑
k=0

βk
(
Eℓ′(⟨wk, z⟩)zj

)2 −
√√√√ s∑
k=0

βk
(
Eℓ′(⟨ws, z⟩)zj

)2∣∣∣∣∣∣∣
≤ 4CR2(

1−
√
β
)2 ηE [−ℓ′ (⟨ws, z⟩)] .

Finally multiplying both sides by
√

1−β
1−βs+1 and noting

√
1−β

1−βs+1 ≤ 1 grants the desired inequality.

Lemma 17. Let B, ϵ > 0 be fixed constants and denote f(x) :=
∑
j∈[d]

x2
j

xj+ϵ
. Let S be the

intersection of the positive orthant and a ℓ1 bounded ball,

S := {u | uj ≥ 0 and ∥u∥1 ≤ B}.

Then x =
(
B
d , . . . ,

B
d

)
is the solution to the following optimization problem,

min
x∈S

f(x) s.t.
∑
j∈[d]

xj = B.
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Proof. First note that S is a convex set and f is a strongly convex function over S. Hence, it follows
that the optimal solution must be unique. By symmetry, it follows that each coordinate of the optimal
solution must be identical. By the constraint condition and feasibility, the optimal solution must be
x =

(
B
d , . . . ,

B
d

)
.

The following lemma establishes that SignGD updates are close to Adam updates.

Lemma 18. For any ϵ ≥ 0 and j ∈ [d], denote σsj :=
∇R(ws)j∣∣∣∇R̂(ws)j

∣∣∣+ϵ and for ϵ = 0, take the convention

that σsj = 0 when ∇R(ws)j = 0. Then, under the same setting as Theorem 3, for all s < t,∣∣∣∣〈σs − gs,∇R̂(ws)
〉∣∣∣∣ ≤ 12C2R2(

1−
√
β2
)2 ηĜ(ws).

Proof. Applying Lemma 16 with D being the uniform distribution over the training data (z1, . . . , zn)
(i.e. the empirical distribution), the following inequalities hold,∥∥∥ms −∇R̂(ws)

∥∥∥
1
≤ 4CR2

(1− β1)
2 ηĜ(ws), (12)

∑
j∈[d]

∣∣∣∣√vsj −∣∣∣∇R̂(ws)j

∣∣∣∣∣∣∣ ≤ 4CR2

1−
√
β2
ηĜ(ws). (13)

Expanding and applying triangle inequality,∣∣∣∣〈σs − gs,∇R̂(ws)
〉∣∣∣∣ ≤

∣∣∣∣∣∣∣
∑
j

 ∇R̂(ws)j∣∣∣∇R̂(ws)j

∣∣∣+ ϵ
− msj√

vsj + ϵ

∇R̂(ws)j

∣∣∣∣∣∣∣
≤
∑
j

∣∣∣∣∇R̂(ws)j
√
vsj −msj

∣∣∣∇R̂(ws)j

∣∣∣+ (∇R̂(ws)j −msj

)
ϵ

∣∣∣∣(∣∣∣∇R̂(ws)j

∣∣∣+ ϵ

)(√
vsj + ϵ

) ∣∣∣∇R̂(ws)j

∣∣∣

≤
∑
j

∣∣∣∣∇R̂(ws)j
√
vsj −msj

∣∣∣∇R̂(ws)j

∣∣∣+ (∇R̂(ws)j −msj

)
ϵ

∣∣∣∣
√
vsj + ϵ

=
∑
j

∣∣∣∣∣(∇R̂(ws)j −msj

)√
vsj +msj

(
√
vsj −

∣∣∣∇R̂(ws)j

∣∣∣)+
(
∇R̂(ws)j −msj

)
ϵ

∣∣∣∣∣
√
vsj + ϵ

≤
∑
j

∣∣∣∇R̂(ws)j −msj

∣∣∣√vsj +msj

∣∣∣∣√vsj −∣∣∣∇R̂(ws)j

∣∣∣∣∣∣∣+∣∣∣∇R̂(ws)j −msj

∣∣∣ ϵ
√
vsj + ϵ

≤
∑
j

∣∣∣∇R̂(ws)j −msj

∣∣∣+ C

∣∣∣∣√vsj −∣∣∣∇R̂(ws)j

∣∣∣∣∣∣∣+∣∣∣∇R̂(ws)j −msj

∣∣∣
=
∑
j

2
∣∣∣∇R̂(ws)j −msj

∣∣∣+ C

∣∣∣∣√vsj −∣∣∣∇R̂(ws)j

∣∣∣∣∣∣∣
= 2
∥∥∥∇R̂(ws)−ms

∥∥∥
1
+ C

∑
j

∣∣∣∣√vsj −∣∣∣∇R̂(ws)j

∣∣∣∣∣∣∣.
By eq. (12) and eq. (13), since β1 ≤ β2 ≤

√
β2, and C ≥ 1,∣∣∣∣〈σs − gs,∇R̂(ws)
〉∣∣∣∣ ≤ 12C2R2(

1−
√
β2
)2 η Ĝ(ws).
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The following lemma is the well known Titu’s lemma. For the sake of completeness, we provide the
proof.

Lemma 19. Let {aj}j∈d, {bj}j∈d be nonnegative sequences of real numbers. Then

∑
j∈[d]

a2j
bj

≥

(∑
j∈[d] aj

)2
∑
j∈[d] bj

.

Proof. By Cauchy-Schwarz,∑
j∈[d]

aj

2

=

∑
j∈[d]

aj√
bj

·
√
bj

2

≤

∑
j∈[d]

bj

 ·
∑
j∈[d]

a2j
bj
.

Dividing both sides by
∑
j∈[d] bj gives the desired claim.

The last lemma of this section gives an equivalency between the primal and dual objectives, providing
the crucial insight on how to obtain margin maximization guarantees.

Lemma 20. For any norm∥·∥ and any matrix Z encoding a linearly separable problem (there exists
v with Zv > 0), then

min
−ψ∗(q)≤0

1

2
∥Z⊺q∥2 = − inf

w∈Rd,r>0
rψ(Z

w

r
) +

1

2
∥w∥2∗ .

Proof. By computation, the convex conjugate of the function f(u) = 1
2∥u∥

2 is f∗(v) = 1
2∥v∥

2
∗. The

rest of the proof proceeds as the duality in Ji & Telgarsky (2019b, Proof of Theorem A.2), except
using f and f∗ in place of∥·∥2 and ι∥·∥(x) which is 0 when∥x∥2 ≤ 1 and ∞ otherwise.

C MIRROR DESCENT ANALYSIS

The following lemma establishes a mirror descent regret guarantee using only local strong convexity
of the mirror potential.

Lemma 21. Given initial iterates u0, v0 ∈ Rd, learning schedule {ηs}s<t ⊂ R, and a sequence
{ξs} ⊂ Rd, suppose the iterates vs follow the update rule,

vs+1 = vs − ηsξs.

Let h be any closed, proper, convex function and let h∗ be the convex conjugate of h. Suppose
us = ∇h∗(vs). Then, the sequence {us}s<t can equivalently be generated by mirror descent,

us+1 = argmin{ηs ⟨ξs, u⟩+Dh(u, us) : u ∈ Rd}.

In addition, if h is λ−1
s strongly convex over the line segment [us, us+1] with respect to∥·∥,

h∗(v0)− h∗(vt) ≥
∑
s<t

ηs ⟨ξs, us⟩ −
η2sλs
2

∥ξs∥2∗ .

Proof. By convexity, since us = ∇h∗(vs), we have vs = ∇h(us) and hence the primal update
vs+1 = vs − ηsξs gives the following induced dual update

∇h(us+1) = ∇h(us)− ηξs,

which is equivalent to the mirror descent update described in Lemma 21.
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Then, by the equality case of Fenchel-Young, local strong convexity of h, and another application of
Fenchel-Young inequality,

h∗(v0)− h∗(vt) =

t−1∑
s=0

h∗(vs)− h∗(vs+1)

=

t−1∑
s=0

h(us+1)− ⟨vs+1, us+1⟩+ h∗(vs)

=

t−1∑
s=0

Dh(us+1, us) + ⟨vs − vs+1, us+1⟩

=

t−1∑
s=0

Dh(us+1, us) + ⟨ηsξs, us+1⟩

≥
t−1∑
s=0

1

λs
∥us+1 − us∥+ ⟨ηsξs, us+1 − us⟩+ ⟨ηsgs, us⟩

≥
t−1∑
s=0

1

2λs
∥us+1 − us∥ −

λs
2
∥ηsξs∥2∗ −

1

2λs
∥us+1 − us∥+ ⟨ηsξs, us⟩

=

t−1∑
s=0

⟨ηsξs, us⟩ −
λs
2
∥ηsξs∥2∗ .

From the mirror descent result, we can develop a regret guarantee with h = R∗
. We first show that

the local strong convexity condition is satisfied.
Lemma 22. Fix β1, β2 ∈ (0, 1) and assume the iterates ws are updated using eq. (1). Suppose

ηs ≤ 1
2C where C =

√
1−β1

1−β2
. Abbreviating λs := 2G(ws), the following statements hold.

1. On the line segment [Zws, Zws+1], the risk R is λs smooth with respect to ℓ∞ norm.

2. On the line segment
[
∇R (Zws) ,∇R (Zws+1)

]
= [q̄s, q̄s+1], the conjugate of the loss R∗

is

λ−1
s strongly convex with respect to the ℓ1 norm.

Proof. For any w, since
∣∣ℓ′′∣∣ ≤ ∣∣ℓ′∣∣,∥∥∥∇G(w)∥∥∥
1
=

∥∥∥∥∥∥ 1

N

∑
i∈[N ]

−ℓ′′(⟨w, zi⟩)zi

∥∥∥∥∥∥
1

≤ G(w)max
i

∥zi∥1 ≤ G(w). (14)

Now let wc := (1− c)ws + cws+1 and let α ∈ [0, 1] be the constant such that

G(wα) = sup
c∈[0,1]

G(wc).

By the mean value theorem, there exists r ∈ (0, α) such that G(wα) − G(ws) =〈
∇G(wr), wα − ws

〉
. By eq. (14) and definition of α, and noting that ∥wα − ws∥∞ =

α∥ws+1 − ws∥∞ ≤ Cηs,

G(wα) = G(ws) +G(wα)−G(ws)

= G(ws) +
〈
∇G(wr), wα − ws

〉
≤ G(ws) +

∥∥∥∇G(wr)∥∥∥
1
∥wα − ws∥∞

≤ G(ws) +G(wr)∥wα − ws∥∞
≤ G(ws) + CηsG(wα).
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Rearranging terms and since ηsC ≤ 1
2 by assumption,

G(wα) =
1

1− Cηs
G(ws) ≤ 2G(ws). (15)

Hence, eq. (15) and eq. (14) implies G is 2G(ws) lipschitz with respect to ℓ∞ on the interval
[ws, ws+1]. Therefore, since G is lipschitz, applying eq. (15), for any w,w′ on the line segment
[ws, ws+1],

∥∥∥∇R(Zw)−∇R(Zw′)
∥∥∥
1
=

∥∥∥∥∥∥ 1

N

∑
i

(
ℓ′(⟨w, zi⟩)− ℓ′(

〈
w′, zi

〉
)
)
zi

∥∥∥∥∥∥
1

≤
∣∣∣G(w)−G(w′)

∣∣∣max
i

∥zi∥1

≤
∣∣∣G(w)−G(w′)

∣∣∣
≤ 2G(ws)

∥∥w − w′∥∥
∞ .

Hence, R is λs smooth with respect to ℓ∞ norm which implies R∗
is λ−1

s is strongly convex with
respect to the ℓ1 norm.

Lemma 23. −ψ is 2
γ ∥Z

⊺qs∥1 smooth with respect to∥·∥∞ along the line segment [ws, ws+1].

Proof. Similar to the proof of Ji & Telgarsky (2019b, Lemma 5.3), to check that −ψ is β smooth
with respect to ℓ∞ norm on a convex set S, we only to ensure for all ξ ∈ S and v ∈ Rn,

n∑
i=1

ℓ′′(ξi)

−ℓ′(ψ(ξ))
v2i ≤ βmax

i
v2i .

Take any ξ ∈ [Zws, Zws+1] and let w ∈ [ws, ws+1] such that ξ = Zw. Then,

n∑
i=1

ℓ′′(ξi)

−ℓ′(ψ(ξ))
v2i ≤ max

i
v2i

n∑
i=1

ℓ′′(ξi)

−ℓ′(ψ(ξ))

≤
n∑
i=1

−ℓ′(ξi)
−ℓ′(ψ(ξ))

= n
G(w)

−ℓ′(ψ(ξ))

≤ n
2G(ws)

−ℓ′(ψ(ξ))

≤ n
2G(ws)

−ℓ′(ψ(Zws))

≤
2∥Z⊺qs∥1

γ
.

The following lemma establishes a regret guarantee for mirror descent where the mirror potential is
h := R∗

.

Lemma 24. Suppose the iterates ws are generated using the update rule eq. (1) where∥gs∥∞ ≤ C
and ηs ≤ η ≤ 1

2C . Then,

R(w0)−R(wt) ≥
∑
s<t

ηs

(〈
Zgs, q̄s

〉
− ηsG(ws)

∥∥∥Zgs∥∥∥2
∞

)
.
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Proof. By Lemma 22, the function h := R∗
is λ−1

s strongly convex on the interval [q̄s, q̄s+1] which
implies

Dh(qs+1, q̄s) ≥
1

2λs
∥qs+1 − q̄s∥21 .

By the preceding inequality and applying Fenchel-Young,

−Dh(q̄s+1, q̄s) +
〈
ηsZgs, q̄s − q̄s+1

〉
≤ − 1

2λs
∥qs+1 − q̄s∥21 +

λs
2

∥∥∥ηsZgs∥∥∥2
∞

+
∥q̄s − qs+1∥21

2λs

≤ λs
2

∥∥∥ηsZgs∥∥∥2
∞
.

Now by the equality case of Fenchel - Young and since q̄s = ∇h∗(p̄s) and by the preceding inequality,

h∗(p0)− h∗(pt) =
∑
s<t

h∗(p̄s)− h∗(ps+1)

=
∑
s<t

⟨p̄s, q̄s⟩ − h(q̄s)− h∗(ps+1)

=
∑
s<t

Dh(q̄s+1, q̄s) +
〈
ηsZgs, q̄s+1

〉
=
∑
s<t

Dh(q̄s+1, q̄s) +
〈
ηsZgs, q̄s+1 − q̄s

〉
+
〈
ηsZgs, q̄s

〉
≥
∑
s<t

〈
ηsZgs, q̄s

〉
− λs

2

∥∥∥ηsZgs∥∥∥2
∞
.

Recalling that λs := 2G(ws) completes the proof.

D MARGIN MAXIMIZATION

In this section, we prove several margin maximization results for different full-batch methods. The
following lemma gives a proof of the SignGD claim in Theorem 2.

Lemma 25. Under the same assumptions as Theorem 2, for t ≥ 8n2

γ2
∞

, SignGD maximizes the
ℓ∞-margin:

ψ(Zwt)

∥wt∥∞
≥ γ∞ − 8n

γ∞
√
t
.

Proof. We first invoke Lemma 1 with the following instantiation: mirror potential h = (−ψ)∗, primal
iterates vs = Zws, dual iterates us = qs, primal update gs = sign(∇R̂(ws)), dual update ξs = Zgs,
and learning rate η = γ∞

4
√
t
.

Hence, by Lemma 1 and since by Lemma 20 the dual objective satisfies∥Z⊺qs∥1 ≥ γ∞,

ψ(Zwt) ≥
∑
s<t

η

[
⟨Zgs, qs⟩ −

η∥Z⊺qs∥1
2γ

∥Zgs∥2∞
]
+ ψ(Zw0)

≥
∑
s<t

η

(
1− 1

8
√
t

)
∥Z⊺qs∥1 + ψ(Zw0)

≥
∑
s<t

η

(
1− 1

8
√
t

)
γ∞ + ψ(Zw0). (16)

As w0 = 0, the inital smoothed margin satisfies ψ(Zw0) = −ℓ−1(n ln(2)) ≥ −n. By the choice of
the learning rate and since t ≥ 8n2

γ2
∞

, the right hand side of eq. (16) is nonnegative.

To finish the proof from here, it suffices to divide∥wt∥∞ across both sides of eq. (16), and upper
bound∥wt∥∞. By a simple application of triangle inequality and noting that each entry of the SignGD
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update is bounded by 1, we obtain that∥wt∥∞ ≤
∑
s<t η = ηt. Putting it altogether,

ψ(Zwt)

∥wt∥∞
≥ 1

∥wt∥∞

∑
s<t

η

(
1− 1

8
√
t

)
γ∞ − n


≥ γ∞ − 8n

γ∞
√
t
.

The following lemma provides a warm start for ℓ2-SignGD.

Lemma 26. Under the same assumptions as Theorem 2, for t ≥ t0 := 4 ln2(8n)
γ2 , the empirical risk

satisfies R̂(wt) <
ℓ(0)
n which implies perfect classification.

Proof. Let τ be the first time (potentially infinite) such that R̂(wτ ) <
ℓ(0)
n . Let u be the unit vector

that has margin γ2 in Assumption 1. Let ū := ln(8n)
γ u. Since the exponential loss upper bounds

logistic loss and by the definition of ū,

R̂(ū) ≤ 1

n

∑
i∈[n]

exp(−⟨ū, zi⟩) ≤
1

n

∑
i∈[n]

1

8n
=

1

8n
<
ℓ(0)

4n
.

Hence, for all time s ≤ τ , the empirical risk is bounded below:

R̂(ū) <
ℓ(0)

4n
≤ R̂(ws)

4
. (17)

In addition, for all time s ≤ τ , by the choice of η = 1
4 ,

η

2

∥∥∥∇R̂(ws)
∥∥∥ ≤ R̂(ws)

8
. (18)

Expanding the square and by convexity and eqs. (17) and (18), for all time s ≤ τ ,

∥ws+1 − ū∥2 −∥ws − ū∥2 = 2η ⟨gs, ū− ws⟩+ η2∥gs∥2

= 2η

〈
∇R̂(ws)∥∥∥∇R̂(ws)

∥∥∥ , ū− ws

〉
+ η2∥gs∥2

≤ 2η
R̂(ū)− R̂(ws)∥∥∥∇R̂(ws)

∥∥∥ + η2

≤ 2η
R̂(ū)− R̂(ws) +

η
2

∥∥∥∇R̂(ws)
∥∥∥∥∥∥∇R̂(ws)

∥∥∥
≤ −η R̂(ws)∥∥∥∇R̂(ws)

∥∥∥ .
Therefore, rearranging terms, summing across time s ≤ τ , and telescoping terms,∑

s<τ

R̂(ws)∥∥∥∇R̂(ws)
∥∥∥ ≤ ∥w0 − ū∥2 −∥wt − ū∥2

η
≤ ∥ū∥2

η
=

4 ln2(8n)

γ2
. (19)

Note that R̂(ws)∥∥∥∇R̂(ws)
∥∥∥ ≥ 1. Hence, eq. (19) simplifies,

τ ≤ 4 ln2(8n)

γ2
.

To conclude the proof, it suffices to note that the loss is monotonically decreasing.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

With the warm start result above, we can prove the ℓ2-SignGD claim in Theorem 2.

Lemma 27. Under the same setting as Theorem 2, for t ≥ ln2(8n)
γ2 , ℓ2-SignGD maximizies the

ℓ2-margin:
ψ(Zwt)

∥wt∥2
≥ γ2 −

32 ln(8n)

γ22t
.

Proof. By Lemma 26, for all time t ≥ t0 := 4 ln2(8n)
γ2 , the classifier wt has perfect classification.

Hence, ψ is 2-smooth by Ji & Telgarsky (2019b, Lemma 5.2).

Now we invoke Lemma 1 with the following instantiation: mirror potential h = (−ψ)∗, primal
iterates vs = Zws, dual iterates us = qs, primal update gs = −∇ψ(Zws), dual update ξs = Zgs,
and learning rate θs = 1

4∥∇ψ(Zws)∥ .

Hence, since ψ(Zwt0) > 0,

ψ(Zwt) ≥ θt

(
1

2
∥Z⊺qt∥2 −

1

2
∥Z⊺q0∥2

)
+

∑
t0≤s<t

θs ⟨Zgs, qs⟩

≥
∑

t0≤s<t

θs∥Z⊺qs∥2 . (20)

To finish the proof, we need an upper bound on∥wt∥. First note that Lemma 26 also gives an upper
bound on∥wt0∥, namely∥wt0∥ ≤∥ū∥+∥wt0 − ū∥ ≤ 8 ln(8n)

γ . Hence, by triangle inequality,

∥wt∥ ≤∥wt0∥+∥wt0 − wt∥ =∥wt0∥+
t∑

s=t0

θs∥Z⊺qs∥ .

Therefore,

ψ(Zwt)

∥wt∥
≥ γ

∑t
s=t0

θs∥Z⊺qs∥∑t
s=t0

θs∥Z⊺qs∥+∥wt0∥

= γ(1− ∥wt0∥
∥wt0∥+

∑t
s=t0

θs∥Z⊺qs∥
)

≥ γ(1− 32 ln(8n)

γ2t
).

Theorem 28. Suppose Assumption 1 holds. Take∥·∥ to be∥·∥∞ and∥·∥2 for SignGD and ℓ2-SignGD
respectively. Assume that for all i ∈ [n], the data is bounded,∥xi∥∗ ≤ 1. Suppose the iterates ws
are updated via SignGD, meaning eq. (3), with learning rate η = γ∞

4
√
t
. Then for t ≥ 8n2

γ2
∞

, SignGD
maximizes the ℓ∞-margin:

ψ(Zwt)

∥wt∥∞
≥ γ∞ − 8n

γ∞
√
t
.

If the iterates ws are updated using ℓ2-SignGD, meaning eq. (4), with learning rate η = γ2
4 , then for

t ≥ ln2(8n)
γ2 , ℓ2-SignGD maximizies the ℓ2-margin:

ψ(Zwt)

∥wt∥2
≥ γ2 −

32 ln(8n)

γ2t
.

Proof. Simply apply Lemma 25 and 27.

The following theorem is the margin maximization result for full-batch Adam, which corresponds to
Theorem 3.
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Theorem 29. Suppose Assumption 1 holds with γ = γ∞ and ∥xi∥1 ≤ 1 for every i ∈ [n]. Let

C :=
√

1−β1

1−β2
. For any 0 ≤ β1 ≤ β2 < 1 and 0 < ϵ ≤ 1, for constant learning rate η = 1√

t
where

Adam iterates are updated using eq. (1), for all time t ≥ 4096C4n2

γ2(1−
√
β2)2

and infs<t

∥∥∥∇R̂(ws)
∥∥∥
1
≥ d

√
ϵ,

Adam maximizes the ℓ∞ margin,

ψ(Zwt)

∥wt∥∞
≥ γ

(
1−

√
ϵ
)√1− β2

1− β1
− 24C2n

(1−
√
β2)2

√
t
. (21)

Proof. Applying Lemma 21 with h = (−ψ)∗, vs = Zws, ξs = Zds, and us = qs := −∇ψ(Zws),
we have the following bound,

ψ(Zwt)− ψ(Zw0) ≥
t∑

s=0

η ⟨Zds, qs⟩ −
η2n

2
∥Zds∥2∞ . (22)

We first prove a few preliminary inequalities to handle the inner product term ⟨Zds, qs⟩. Fix s < t.
Recall that

∥∥∥∇R̂(ws)
∥∥∥ ≥ d

√
ϵ. In addition, note that for any a > 0, the function g(x) = x

x+a is
monotonically increasing on the positive reals. Hence,∥∥∥∇R̂(ws)

∥∥∥
1∥∥∥∇R̂(ws)

∥∥∥
1
+ ϵd

≥ d
√
ϵ

d
√
ϵ+ dϵ

=

√
ϵ√

ϵ+ ϵ
= 1− ϵ

ϵ+
√
ϵ
≥ 1−

√
ϵ.

In addition, by Titu’s lemma and the preceding inequality,

∑
j∈[d]

(∇R̂(ws))
2
j∣∣∣(∇R̂(ws))j

∣∣∣+ ϵ
≥

∥∥∥∇R̂(ws)
∥∥∥2
1∥∥∥∇R̂(ws)

∥∥∥
1
+ dϵ

=
∥∥∥∇R̂(ws)

∥∥∥
1

∥∥∥∇R̂(ws)
∥∥∥
1∥∥∥∇R̂(ws)

∥∥∥
1
+ dϵ

≥
∥∥∥∇R̂(ws)

∥∥∥
1
(1−

√
ϵ). (23)

Let σs be the vector such that σsj :=
(∇R̂(ws))j∣∣∣(∇R̂(ws))j

∣∣∣+ϵ . Then, by the preceding inequality,

⟨Zσs, qs⟩ =
1

−ℓ′(ψ(ps))
∑
j∈[d]

(∇R̂(ws))j∣∣∣(∇R̂(ws))j

∣∣∣+ ϵ

≥

∥∥∥∇R̂(ws)
∥∥∥
1

−ℓ′(ψ(ps))
(1−

√
ϵ)

=∥Z⊺qs∥1 (1−
√
ϵ).

Therefore, by Lemma 18, Assumption 1, and let κ := 12C2

γ(1−
√
β2)

2 ,

⟨Zgs, qs⟩ = ⟨Zσs, qs⟩ − ⟨Zgs − Zσs, qs⟩

≥∥Z⊺qs∥1 (1−
√
ϵ)− 1

ℓ′(ψ(Zws))

12C2(
1−

√
β2
)2 ηĜ(ws)

≥∥Z⊺qs∥1 (1−
√
ϵ)− 1

ℓ′(ψ(Zws))

12C2

γ
(
1−

√
β2
)2 η∥∥∥∇R̂(ws)

∥∥∥
=∥Z⊺qs∥1

(
1− κη −

√
ϵ
)
.
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Plugging the preceding inequality to eq. (22) and since −ψ(Zw0) ≥ −n,

ψ(Zwt) ≥ −n+

t∑
s=0

η
(
1− ηκ−

√
ϵ
)
∥Z⊺qs∥ − η2n∥Zds∥2∞

≥
t∑

s=0

ηγ

(
1− ηκ−

√
ϵ− ηnC2

γ
− n

γηt

)
. (24)

Since η = 1√
t
, time t satisfies t ≥ 4096C4n2

γ2(1−
√
β2)2

, and
√
ϵ ≤ 1

4 , each summand is positive.

Therefore, to get a margin lower bound from here, it suffices to divide both sides of eq. (24) by∥wt∥∞
and upper bound∥wt∥∞. By triangle inequality and since∥gs∥∞ ≤ C by Lemma 7,

∥wt∥∞ ≤
∑
s<t

η∥gs∥∞ ≤ Cηt.

Hence, by the preceding inequality and eq. (24),

ψ(Zwt)

∥wt∥∞
≥ 1

Cηt

∑
s<t

ηγ

(
1− ηκ−

√
ϵ− ηnC2

γ
− n

γηt

)

=
γ

C

(
1− ηκ−

√
ϵ− ηnC2

γ
− n

γηt

)

=
γ

C

(
1−

√
ϵ
)
− η

C

(
γκ+ nC2 +

n

η2t

)
=
γ

C

(
1−

√
ϵ
)
− η

C

(
γκ+ nC2 + n

)
≥ γ

C

(
1−

√
ϵ
)
− 24C2n

(1−
√
β2)2

√
t
.

E STOCHASTIC ADAM

E.1 CONCENTRATION INEQUALITIES

In this section, we collect various concentration inequalities needed for the proof of Theorem 34.
We open with a lemma copied essentially verbatim from Beygelzimer et al. (2011, Theorem 1) that
provides a Freedman type concentration inequality for martingales.

Lemma 30. Let X1, . . . , Xt be a sequence of real-valued random variables such that Xt ≤ R
almost surely for some constant R > 0. Abbreviating Et[X] := E[X | X1, . . . , Xt−1], assume the
conditional mean Et[Xt] ≤ 0. Define the random variables,

S =

T∑
t=1

Xt, V =

T∑
t=1

Et[X2
t ].

Then for any δ > 0, with probability at least 1− δ, and λ ∈ [0, 1
R ], we have

S ≤ (e− 2)λV +
ln(1/δ)

λ
. (25)
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Proof. For any fixed λ ∈ [0, 1
R ], applying the inequality ez ≤ 1 + z + (e− 2)z2 for any z ≤ 1 and

recalling that λXt ≤ 1 almost surely, Et [Xt] ≤ 0,

Et
[
exp (λXt)

]
≤ Et

[
1 + λXt + (e− 2)λ2X2

t

]
≤ 1 + λEt[Xt] + (e− 2)λ2Et

[
X2
t

]
≤ 1 + (e− 2)λ2Et

[
X2
t

]
≤ exp

(
(e− 2)λ2Et

[
X2
t

])
. (26)

Defining the random variables Z0 = 1 and for t ≥ 1,

Zt = Zt−1 · exp
(
λXt − (e− 2)λ2Et

[
X2
t

])
.

By eq. (26),

Et [Zt] = Zt−1 · exp (λXt) · exp
(
−(e− 2)λ2Et

[
X2
t

])
≤ Zt−1,

which implies,
E[Zt] = EEt[Zt] ≤ E[Zt−1],

and hence,
E[ZT ] ≤ E[ZT−1] ≤ · · · ≤ E[Z0] = 1.

Applying Markov’s inequality to ZT and by the preceding inequality,

Pr

(
ZT ≥ 1

δ

)
≤ δ.

Recalling that ZT = exp
(
λS − (e− 2)λ2V )

)
and using the preceding inequality gives the desired

result.

Lemma 31. Under the same assumptions as Theorem 34, with probability at least 1− δ,∥∥∥∥∥∥
N∑
i=1

ℓ′(⟨ws, zi⟩)
N

zi − Ez
[
∇ℓ(⟨ws, z⟩)

]∥∥∥∥∥∥
1

≤ d

√
2 ln( 2tdδ )

N
,

and, with probability at least 1− δ,∣∣∣∣∣∣
N∑
i=1

ℓ′(⟨ws, zi⟩)
N

− Ez
[
ℓ′
(
⟨ws, zi⟩

)]∣∣∣∣∣∣ ≤
√

ln( 2tδ )

2N
.

Proof. Fix j ∈ [d] and time s ≤ t. Let Xi be the random variable such that

Xi := ℓ′(⟨ws, zi⟩)zij .

Since|Xi| ≤ 1, by Hoeffding’s inequality, with probability at least 1− δ,∣∣∣∣∣∣
N∑
i=1

ℓ′(⟨ws, zi⟩)
N

zij − Ez
[
ℓ′(⟨ws, z⟩)zj

]∣∣∣∣∣∣ ≤
√

2 ln(2δ )

N
.

Union bounding over coordinates j ∈ [d] and time s ≤ t, with probability at least 1− δ,∥∥∥∥∥∥
N∑
i=1

ℓ′(⟨ws, zi⟩)
N

zi − Ez
[
∇ℓ(⟨ws, z⟩)

]∥∥∥∥∥∥
1

≤ d

√
2 ln( 2tdδ )

N
.
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Similarly, fix time s < t. For i ∈ [N ], let Yi be the random variable such that

Yi := ℓ′(⟨ws, zi⟩).
Since Xi ∈ (−1, 0), by Hoeffding’s inequality, with probability at least 1− δ,∣∣∣∣∣∣

N∑
i=1

ℓ′(⟨ws, zi⟩)
N

− Ez
[
ℓ′
(
⟨ws, zi⟩

)]∣∣∣∣∣∣ ≤
√

ln( 2δ )

2N
.

Union bounding over time s < t, with probability at least 1− δ,∣∣∣∣∣∣
N∑
i=1

ℓ′(⟨ws, zi⟩)
N

− Ez
[
ℓ′
(
⟨ws, zi⟩

)]∣∣∣∣∣∣ ≤
√

ln( 2tδ )

2N
.

The following lemma controls the squared gradient term.

Lemma 32. Suppose ηs = η ≤ (1−β1)
2

4CR2 where C := 1√
1−β1

and the iterates ws are updated using
eq. (1). Then there exists a time k < t such that

G(wk) ≤
2048 ln(2

√
nd/δ)

γ2
√
n

,

or, with probability at least 1− δ, for all time s < t,∥∥∥Zgs∥∥∥2
∞

≤ γ2

256ϵ2
G(ws)

2. (27)

Proof. Define the set I := {(τ, b) |1 ≤ τ ≤ t and b ∈ [B]}. Let i : N × N → N be the function
i(τ, b) := τB + b. Note that i induces a total order on I . For the remainder of the proof, identify
the integer i(τ, b) with the tuple (τ, b). In particular, for any random variable X(τ,b) abbreviate the
conditional mean as

Ei(τ,b)
[
X(τ,b)

]
:= E

[
X(τ,b) | X(r,c) s.t (r, c) ∈ I , i(r, c) < i(τ, b)

]
.

Fix time s and j ∈ [d]. Further pick time τ ≤ s and data zb ∈ Bτ , and define the random variable,

X(τ,b) := as,τ

(
ℓ′(⟨wτ , zb⟩)− E

[
ℓ′(⟨ws, z⟩)

])
.

Since wτ is independent of data (x, y) ∈ Bτ , elements of Bτ are pairwise independent, and as,τ is
a deterministic constant, the conditional expectation satisfies Ei(τ,b)[X(τ,b)] = 0. Hence X(τ,b) is a
martingale difference sequence.

To obtain an almost sure bound on X(τ,b), note that ℓ′ ∈ (−1, 0), and {as,τ}sτ=0 is a nondecreasing

positive sequence. Hence,
∣∣∣X(τ,b)

∣∣∣ ≤ as,s ≤ 1.

Furthermore, the conditional variance satisfies,

Ei(τ,b)[X2
(τ,b)] = Ez[a2s,τ ℓ′(⟨ws, z⟩)2]− Ez

[
as,τ ℓ

′(⟨ws, z⟩)
]2 ≤ a2s,τEz[ℓ′(⟨ws, z⟩)2].

By definition of Ĝ,G, it follows that∑
k≤s

as,k

(
Ĝk(wk)−G(wk)

)
=
∑
ℓ∈I

Xℓ

B
.

Hence, applying Theorem 30 with λ = γ
64 , and union bounding over s < t, with probability at least

1− δ, for all j ∈ [d] and time s < t,∑
k≤s

as,k

(
Ĝk(wk)−G(wk)

)
≤ 64 ln(2td/δ)

γB
+

γ

64

∑
k≤s

a2s,k
E
[
ℓ′(⟨wk, z⟩)2

]
B

.
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Since
∣∣ℓ′∣∣ ≤ 1 and as,k ≤ 1, by the definition of G and Lemma 16, and since η ≤ (1−β1)

2

4CR2 , the
preceding inequality simplifies,∑

k≤s

as,k

(
Ĝk(wk)−G(wk)

)
≤ 64 ln(2td/δ)

γB
+

γ

64

∑
k≤s

a2s,kG(wk)

≤ 64 ln(2td/δ)

γB
+

γ

64

∑
k≤s

as,kG(wk)

≤ 64 ln(2td/δ)

γB
+

γ

64
(1 +

4CR2

(1− β1)2
η)G(ws)

≤ 64 ln(2td/δ)

γB
+

γ

32
G(ws). (28)

Consider two cases.

1. Suppose there exists time k < t such that

γ

32
G(wk) ≤

64 ln(2td/δ)

γB
.

Since B = t =
√
n,

G(wk) ≤
2048 ln(2

√
nd/δ)

γ2
√
n

.

2. Suppose for all time s < t,
γ

32
G(wk) >

64 ln(2td/δ)

γB
.

Then by eq. (28), ∑
k≤s

as,k

(
Ĝk(wk)−G(wk)

)
≤ γ

16
G(ws).

Therefore, since∥ms∥2 ,∥zs∥2 ≤ 1 and by the preceding inequality and triangle inequality,∥∥∥Zgs∥∥∥2
∞

= max
i∈[N ]

(
z⊺i gs

)2
≤ max
i∈[N ]

∑
j∈[d]

zij
msj√
vsj + ϵ

2

≤ 1

ϵ2
max
i∈[N ]

∥zi∥22∥ms∥22

≤ 1

ϵ2
∥ms∥22

≤ 1

ϵ2

∑
k≤s

as,kĜs(ws)

2

≤ γ2

256ϵ2
G(ws)

2. (29)

We define the averaged first moment of the gradients as Ms :=
∑
k≤s as,kEz∼D

[
∇ℓ ⟨ws, z⟩

]
and

abbreviate the expected gradient at time s as Es := Ez∼D

[
∇ℓ
(
⟨ws, z⟩

)]
. The following lemma

controls the deviation between the estimate of the averaged first moment and the true averaged first
moment of the gradients.
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Lemma 33. Suppose ηs = η ≤ (1−β1)
2

4CR2 where C := 1√
1−β1

and the iterates ws are updated using
eq. (1). Then there exists a time k < t such that

G(wk) ≤
128d ln(2

√
nd/δ)

ϵ2γ2
√
n

,

or, with probability at least 1− δ, for all time s < t,

∣∣∣∣∣∣
〈
ms −Ms√
vs + ϵ

,E
[
∇ℓ(wk)

]〉∣∣∣∣∣∣ ≤ γ

4
G(ws)∥Es∥2 . (30)

Proof. Define the set I := {(τ, b) |1 ≤ τ ≤ t and b ∈ [B]}. Let i : N × N → N be the function
i(τ, b) := τB + b. Note that i induces a total order on I . For the remainder of the proof, identify
the integer i(τ, b) with the tuple (τ, b). In particular, for any random variable X(τ,b) abbreviate the
conditional mean as

Ei(τ,b)
[
X(τ,b)

]
:= E

[
X(τ,b) | X(r,c) s.t (r, c) ∈ I , i(r, c) < i(τ, b)

]
.

Fix time s and j ∈ [d]. Further pick time τ ≤ s and data zb ∈ Bτ , and define the random variable,

X(τ,b) := as,τ

(
ℓ′(⟨wτ , zb⟩)zb,j − E

[
ℓ′(⟨ws, z⟩)zj

])
.

Since wτ is independent of data (x, y) ∈ Bτ , elements of Bτ are pairwise independent, and as,τ is
a deterministic constant, the conditional expectation satisfies Ei(τ,b)[X(τ,b)] = 0. Hence X(τ,b) is a
martingale difference sequence.

To obtain an almost sure bound on X(τ,b), note that
∣∣ℓ′∣∣ ≤ 1,

∣∣zj∣∣ ≤ 1 for any z ∼ D almost surely,

and {as,τ}sτ=0 is a monotonically increasing positive sequence,
∣∣∣X(τ,b)

∣∣∣ ≤ 2as,s.

Furthermore, the conditional variance satisfies,

Ei(τ,b)[X2
(τ,b)] = Ez[a2s,τ ℓ′(⟨ws, z⟩)2z2j ]− Ez

[
as,τ ℓ

′(⟨ws, z⟩)zj
]2 ≤ a2s,τEz[ℓ′(⟨ws, z⟩)2z2j ].

By definition of ms,Ms, it follows that

msj −Msj =
∑
ℓ∈I

Xℓ

B
.

Hence, applying Theorem 30 with λ = γϵ

16
√
d

, and union bounding over j ∈ [d] and s < t, with
probability at least 1− δ, for all j ∈ [d] and time s < t,

∣∣msj −Msj

∣∣ ≤ 16
√
d ln(2td/δ)

ϵγB
+

γϵ

16
√
d

∑
k≤s

a2s,k

E
[
ℓ′(⟨wk, z⟩)2z2j

]
B

. (31)
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By the preceding inequality and since∥·∥1 ≤
√
d∥·∥2,∣∣∣∣∣∣

〈
ms −Ms√
vs + ϵ

, Es

〉∣∣∣∣∣∣ =
∣∣∣∣∣∣
∑
j∈[d]

(
msj −Msj

)
Esj

√
vsj + ϵ

∣∣∣∣∣∣
≤ 1

ϵ

∑
j∈[d]

∣∣msj −Msj

∣∣∣∣Esj∣∣
≤
∑
j∈[d]

16
√
d ln(2td/δ)

ϵ2γB

∣∣Esj∣∣+ γ

16
√
d

∑
k≤s

a2s,k

E
[
ℓ′(⟨wk, z⟩)2z2j

]
B

∣∣Esj∣∣
=

16
√
d ln(2td/δ)

ϵ2γB
∥Es∥1 +

∑
j∈[d]

γ

16
√
d

∑
k≤s

a2s,k

E
[
ℓ′(⟨wk, z⟩)2z2j

]
B

∣∣Esj∣∣
≤ 16d ln(2td/δ)

ϵ2γB
∥Es∥2 +

∑
j∈[d]

γ

16
√
d

∑
k≤s

a2s,k

E
[
ℓ′(⟨wk, z⟩)2z2j

]
B

∣∣Esj∣∣ .
(32)

Pushing the summation over the coordinates j ∈ [d] inside, applying Cauchy-Schwarz, Jensen’s
inequality, and since

∣∣ℓ′∣∣ ≤ 1 and for any∥z∥2 ≤ 1 almost surely, the second term in eq. (32) can be
bounded as follows,∑
j∈[d]

γ

16
√
d

∑
k≤s

a2s,k

E
[
ℓ′(⟨wk, z⟩)2z2j

]
B

∣∣Esj∣∣ = γ

16
√
d

∑
k≤s

a2s,k
∑
j∈[d]

E
[
ℓ′(⟨wk, z⟩)2z2j

]
B

∣∣Esj∣∣
≤ γ

16
√
d

∑
k≤s

a2s,k

√
d

B

∑
j∈[d]

E
[
ℓ′(⟨wk, z⟩)2z2j

]
∥Es∥2

≤ γ

16
√
d

∑
k≤s

a2s,k

√
d

B
E
[
ℓ′(⟨wk, z⟩)2∥z∥22

]
∥Es∥2

≤ γ

16
√
d

∑
k≤s

a2s,k

√
d

B
E
[
−ℓ′(⟨wk, z⟩)

]
∥Es∥2

=
γ

16
∥Es∥2

∑
k≤s

a2s,kG(wk)

≤ γ

16
∥Es∥2

∑
k≤s

as,kG(wk).

Applying Lemma 16 to the preceding inequality and since η ≤ (1−β1)
2

4CR2 ,

∑
j∈[d]

γ

16
√
d

∑
k≤s

a2s,k

E
[
ℓ′(⟨wk, z⟩)2z2j

]
B

∣∣Esj∣∣ ≤ γ

16
∥Es∥2

∑
k≤s

as,kG(wk)

≤ γ

16

(
1 +

4CR2

(1− β1)2
η

)
G(ws)∥Es∥2

≤ γ

8
G(ws)∥Es∥2 . (33)

Applying eq. (33) to eq. (32),∣∣∣∣∣∣
〈
ms −Ms√
vs + ϵ

, Es

〉∣∣∣∣∣∣ ≤
(
16d ln(2td/δ)

ϵ2γB
+
γ

8
G(ws)

)
∥Es∥2 . (34)

Now consider two cases.
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1. Suppose for some time k < t
γ

8
G(wk) ≤

16d ln(2td/δ)

ϵ2γB
.

Since B = t =
√
n, dividing both sides by γ

8 ,

G(wk) ≤
128d ln(2

√
nd/δ)

ϵ2γ2
√
n

.

2. Suppose for all time s < t,
γ

8
G(wk) >

16d ln(2td/δ)

ϵ2γB
.

Then by eq. (34),∣∣∣∣∣∣
〈
ms −Ms√
vs + ϵ

, Es

〉∣∣∣∣∣∣ ≤
(
16d ln(2td/δ)

ϵ2γB
+
γ

8
G(ws)

)
∥Es∥2 ≤ γ

4
G(ws)∥Es∥2 .

E.2 POPULATION LOSS MINIMIZATION

In this section, we prove Theorem 34.
Theorem 34. Assume the distributional linear separability: Assumption 2, with γ = γ2. Further
assume, for z = yx ∼ D,∥z∥2 ≤ 1 and∥z∥1 ≤ R almost surely. For any 0 ≤ β1 ≤ β2 < 1 and

0 < ϵ ≤ 1, with probability at least 1− 10δ, for constant learning rate η = ϵ2(1−β1)
5/2γ2

4R2 , batch size
B =

√
n, and iteration count t =

√
n,

min
s<t

Pr(⟨ws, z⟩ < 0) ≤ 8192R2

(1− β1)
5/2

ϵ2γ32
√
n
. (35)

Proof. By Lemma 24, we have the following regret guarantee,

R(w0)−R(wt) ≥
∑
s<t

η

(〈
gs, Z

⊺
q̄s

〉
− ηG(ws)

∥∥∥Zgs∥∥∥2
∞

)
. (36)

Excluding δ failure probability from invoking Theorem 31 and by Lemma 7, for all time s < t,

〈
gs, Z

⊺
q̄s

〉
=

〈
gs,Ez

[
∇ℓ
(
⟨ws, z⟩

)]〉
+

〈
gs, Z

⊺
q̄s − Ez

[
∇ℓ
(
⟨ws, z⟩

)]〉
≥
〈
gs,Ez

[
∇ℓ
(
⟨ws, z⟩

)]〉
−∥gs∥∞

∥∥∥∥Z⊺
q̄s − Ez

[
∇ℓ
(
⟨ws, z⟩

)]∥∥∥∥
≥
〈
gs,Ez

[
∇ℓ
(
⟨ws, z⟩

)]〉
− Cd

√
2 ln( 2tdδ )

N
. (37)

Similarly, excluding another δ failure probability, by Lemma 7 and Theorem 31, for all time s < t,

G(ws)
∥∥∥Zgs∥∥∥2 ≤ G(ws)

∥∥∥Zgs∥∥∥2
∞

+

√
ln( 2tδ )

2N

∥∥∥Zgs∥∥∥2
∞

≤ G(ws)
∥∥∥Zgs∥∥∥2

∞
+ C2R2

√
ln( 2tδ )

2N
.

(38)

Applying eqs. (37) and (38) to eq. (36) and rearranging terms,

R(w0)−R(wt)+4ηtC2R2d

√
2 ln( tdδ )

N
≥
∑
s<t

η

(〈
gs, Ez

[
∇ℓ
(
⟨ws, z⟩

)]〉
− ηG(ws)

∥∥∥Zgs∥∥∥2
∞

)
.
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Recall that N was the number of unseen data. Taking N ≥ 32
(
ηtC2R2d

)2
ln( tdδ ), we can simplify

the mirror descent guarantee,

R(w0)−R(wt) + 1 ≥
∑
s<t

η

(〈
gs,Ez∼D

[
∇ℓ
(
⟨ws, z⟩

)]〉
− ηG(ws)

∥∥∥Zgs∥∥∥2
∞

)
. (39)

We first handle the inner product term. Recall that we have defined Ms =∑
k≤s as,kEz∼D

[
∇ℓ ⟨ws, z⟩

]
and Es := Ez∼D

[
∇ℓ
(
⟨ws, z⟩

)]
. Adding and subtracting various

quantities,

⟨gs, Es⟩ =

〈
Es√
vs + ϵ

, Es

〉
+

〈
Ms − Es√
vs + ϵ

, Es

〉
+

〈
gs −

Ms√
vs + ϵ

, Es

〉
. (40)

We tackle each term separately. We start by handling the first term. By Assumption 2,

∥Es∥2 =

∥∥∥∥Ez∼D

[
∇ℓ
(
⟨ws, z⟩

)]∥∥∥∥
2

= sup
∥u∥2≤1

〈
u,Ez∼D

[
∇ℓ
(
⟨ws, z⟩

)]〉
≥ γ2G(ws).

Since √
vsj ≤ 1 for all j ∈ [d] and ϵ ≤ 1, by the preceding inequality,

〈
Es√
vs + ϵ

, Es

〉
=
∑
j∈d

E2
sj√

vsj + ϵ
≥ 1

1 + ϵ
∥Es∥22 ≥ γ2

1 + ϵ
G(ws)∥Es∥2 ≥ γ2

2
G(ws)∥Es∥2 .

(41)

We now handle the second term in eq. (40). Applying Lemma 16 with β = β1 and letting C = 1√
1−β1

be the constant defined in Lemma 16,

∥Ms − Es∥2 =

∥∥∥∥∥∥
∑
k≤s

as,kEz
[
∇ℓ
(
⟨wk, z⟩

)]
− Ez

[
∇ℓ
(
⟨ws, z⟩

)]∥∥∥∥∥∥
2

≤ η
4CR2

(1− β1)
2G(ws).

Hence, by the preceding inequality and since η = γ2(1−β1)
2ϵ

32CR2 ,〈
Ms − Es√
vs + ϵ

, Es

〉
≤ 1

ϵ
∥Ms − Es∥2∥Es∥2 (42)

≤ η

(
4CR2

ϵ (1− β1)
2

)
G(ws)∥Es∥2

≤ γ2
8
G(ws)∥Es∥2 . (43)

Now we handle the third term in eq. (40). By Lemma 33, either there exists a time k < t such that

G(wk) ≤
128d ln(2

√
nd/δ)

ϵ2γ22
√
n

,

or, with probability at least 1− δ, for all time s < t,∣∣∣∣∣∣
〈
ms −Ms√
vs + ϵ

,E
[
∇ℓ(wk)

]〉∣∣∣∣∣∣ ≤ γ2
4
G(ws)∥Es∥2 . (44)

In the former case, we are done. Hence, suppose we are in the latter case. Then,

〈
gs −

Ms√
vs + ϵ

, Es

〉
=

〈
ms −Ms√
vs + ϵ

, Es

〉
≤ γ2

4
G(ws)∥Es∥2 ≤ γ2

4
G(ws)∥Es∥2 . (45)
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Therefore, by applying eqs. (40) to (42) and (45) to eq. (39) and by the definition of η, β,

R(w0)−R(wt) + 1 ≥
∑
s<t

η

(
γ2
8
G(ws)∥Es∥2 − ηG(ws)

∥∥∥Zgs∥∥∥2∞
)
. (46)

It remains to control the squared gradient term. By Theorem 32, either there exists a time k < t such
that

G(wk) ≤
2048 ln(2

√
nd/δ)

γ22
√
n

,

or, with probability at least 1− δ, for all time s < t,∥∥∥Zgs∥∥∥2
∞

≤ γ2

256ϵ2
G(ws)

2. (47)

In the former case, we are done. Thus, suppose the latter case. Then, applying eq. (47) to eq. (46),

R(w0)−R(wt) + 1 ≥
∑
s<t

η

(
γ2
8
G(ws)∥Es∥2 − η

γ22
256ϵ2

G(ws)
3

)
.

Since∥Es∥2 ≥ γ2G(ws), η ≤ ϵ2(1−β1)
2

4CR2 ≤ ϵ2, and G(ws) ≤ 1, the preceding inequality simplifies,

R(w0)−R(wt) + 1 ≥
∑
s<t

η

(
γ22
8
G(ws)

2 − γ22
256

G(ws)
2

)
≥
∑
s<t

η
γ22
16
G(ws)

2 ≥ ηtγ22
16

inf
s<t

G(ws)
2.

Dividing ηtγ2
2

16 on both sides grants and recalling that w0 = 0 which implies R(w0) = ln(2) < 1,

32

ηγ22t
≥ 16

ηγ22t

(
R(w0)−R(wt) + 1

)
≥ inf
s≤t

G(ws)
2.

Furthermore,
Pr(⟨ws, z⟩ < 0) ≤ 4G(ws)

2.

Putting everything together and since t =
√
n and η = ϵ2(1−β1)

5/2γ2
4R2 ,

inf
s<t

Pr(⟨ws, z⟩ < 0) ≤ 128

ηγ22t
=

512R2

γ32ϵ
2 (1− β1)

5/2 √
n
≤ 8192R2

γ32ϵ
2 (1− β1)

5/2 √
n
.
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