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ABSTRACT

This paper presents a fresh mathematical perspective on Adam, whose empirical
success is in stark contrast with its analytic intractability. We derive Adam via
duality, showing that many of its design choices such as coordinate-wise normaliza-
tion and exponential moving averages emerge naturally from a unified framework.
Using this framework, we first analyze two normalized gradient descent methods
in the setting of linearly separable data which favor different solutions with dif-
fering geometries: SignGD, which converges to a /,,-max-margin classifier at a
rate of (’)(ﬁ), and Normalized GD, which instead converges to a {3-max-margin

classifier at a rate of O(%), vastly improving upon the (’)(ﬁ) rate for gradient

descent. Next, we show that Adam, which replaces the solitary gradients within
SignGD with exponential moving averages, achieves margin maximization at a
rate of O(%) whereas prior work requires additional assumptions and has a rate

of O(#) In the stochastic setting, this duality approach gives the first high prob-
ability convergence guarantee for low test error with standard empirical choices of
the momentum factors 0 < 1 < 3 < 1, improving upon prior work which can
only establish bounds in expectation, and has a slower rate of O( t11/4 ).

1 INTRODUCTION

First-order gradient methods are the standard mechanism used in machine learning to fit model
parameters to data. This is primarily due to convenience of implementation thanks to modern auto-
differentiation, and due to statistical problems inherently being resistant to sophisticated high-accuracy
approaches such as Newton methods (Bottou, [2010). The Adam optimization method (Kingma &
Bal 2015)) is the dominant choice for many modern machine learning applications (Groeneveld et al.,
2024; [Brown et al.,|2020; [Touvron et al., |[2023; [Ramesh et al., 2022} [Polu & Sutskever, [2020; [Ellis
et al.| 2024), and is given by the coordinate-wise recursion
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(w8+1)j = (ws)j — s \/

where 7, is a step size, ws are parameters of the model, ﬁs(ws) is the average loss over the sth
minibatch, 81,82 € (0,1) are exponential weighting constants, ¢ is the stability constant. The
goal of this paper is to understand how each component plays a role in the training dynamics and
generalization properties of Adam; the coordinate-wise normalization and € completely determine
the implicit bias of Adam while the momentum factors /3; and S5 reduce stochastic noise.

In many machine learning tasks, the number of the model parameters typically exceed the number of
training examples. As a consequence of overparameterization, the training objective generally has
infinitely many solutions. Therefore, characterizing the set of solutions an optimization algorithm
converges toward, or its implicit bias, sheds valuable insight on the optimization algorithm. In this
vein, a line of work has investigated the implicit bias of Adam and other adaptive algorithms (Xie &
Li, 2024; Wang et al., 2021} [Fan et al., 2025} \Qian & Qianl [2019). Specifically, (Xie & Li, [2024)
showed that Adam converges to the /,,-max margin solution. Unfortunately, it is unclear from



Under review as a conference paper at ICLR 2026

¥ 4
*
4 [ ] o 4 [ ] o
&
o &
4 )
3 3 ; —k Py
< ¥ o
&
) | j ) 4
o
2 2 -
A @ rd
- g
— s
& - ) |
1 ® Data 1 ® Daa
* ) |
—* 6D = SignGD

+— [5-SignGD o «— Adam, B1 =20
0 ') SignGD, € = 1078 o ® e— Adam, B;1=6,-1

+— SignGD, e=10"* ¥— Adam

0 1 2 3 4 0 1 2 3 4

(a) GD with per-coordinate normalization (SignGD) or (b) SignGD (using full-batch gradients), and Adam
whole-gradient normalization (Normalized GD). (using stochastic gradients) with various (31, 82).

Figure 1: Figures anddepict trajectories of various first-order methods on simple but illustrative
data. In detail, the data consists of two points in R2, namely (0, 4) and (1,0) with positive labels,
corresponding to ¢.,-maximum-margin direction u., := (1, 1) and ¢2-maximum-margin direction
uy := (4/v/17,1/+/17). GD and Normalized GD are seen to converge to us in Figure|1a} albeit
GD is very slow. SignGD exactly follows the diagonal direction u, until the norm of the loss
gradient becomes similar in magnitude to the stability constant e, after which e = 10~* dominates
the denominator, changing SignGD’s implicit bias from maximizing the ¢.,-margin to maximizing
the ¢5-margin. Meanwhile Figure [Ib|shows SignGD and Adam, all ostensibly following ., though
with significant differences. The stochastic methods (all labeled “Adam”) use identical orderings of
the examples, and thus the initial updates are all vertical by the same coincidence, but the length of
this initial vertical segment varies.

prior work why Adam exhibits a ¢,-max margin bias. To resolve this issue, we develop a duality
framework which explains how this implicit bias arises as well as yielding faster margin maximization
rates and new generalization guarantees.

Contribution. This work provides another approach to deriving Adam, SignGD, and Normalized
GD. First we derive per-coordinate normalized gradient methods directly via a duality approach, with
unified mirror descent analyses. Then the bounds on the moving averages are estimated separately to
form the full analysis of Adam. To handle flexible choices of 31 and 33, some problem-dependence is
necessary. Indeed, (Reddi et al.| 2019) showed that for every choice of (31, 82), there exists an online
convex optimization problem such that Adam can fail to converge. Hence, like (Zhang et al., 2024),
the present work considers binary classification with linear predictors and logistic loss. Moreover, the
analysis operates in the setting of linear separability, meaning it will be possible to pick a single w
with zero classification error (see Section 2] for details). Our main contributions can be summarized
as follows.

* We develop a duality framework that shows exactly why Adam and SignGD are implicitly biased
toward ¢,-max margin solutions. Specifically, this arises as a consequence of Adam and SignGD
minimizing a ¢;-norm objective in the dual.

* We prove margin maximization rates for Adam, SignGD, and Normalized GD; notably, for Adam,
we sharpen margin maximization rates from O(1/t'/3) to (’)(%)

* We show that the test error of stochastic mini-batch Adam is at most O(%), where n is the number

of samples. We additionally provide a matching lower bound €2(d) for the sample complexity of
Adam.

We further elaborate and contextualize our contributions below.
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1. Duality Framework (cf. Section[3). In this section, we develop the duality framework. Given
Holder conjugates p, g, we first show that Adam and other normalized gradient methods are
solving a {,-minimization problem in the dual. Then, in Lemma@], we establish an equivalence
between the dual £,-minimization problem and the primal £,-margin maximization problem. In
short, Adam is implicitly biased toward /.,-max margin solutions since it solves a /1 -minimization
problem in the dual. This duality framework builds off the framework presented inJ1 & Telgarsky
(2019b). As technical contributions, we generalize the framework to handle stochastic updates
(see SectionE]) via a ghost sample technique and general £,-dual objectives.

2. Margin maximization for full-batch normalized methods (cf. Section[d). This section con-
siders the setting of full-batch gradients and linear separability. Here we show various margin
maximization results for three algorithms; SignGD, Normalized GD, and Adam. Concretely, the

margin of a classifer w over a training set {(z;, ¥;) }ic[n) is defined as min; <ﬁ Yi T Z> where

||| is some norm. In Theorem [2] we show that SignGD and Normalized GD maximize the
{0~ and the £5-margin with rates (9( -) and O(7) respectively. Next, in Theorem L we prove

Adam maximizes the {..-margin at a rate of O( \[) improving over the previous O(1/t!/3)

margin maximization rate | Xie & Li (2024), when the stablhty constant € is 0. When the stability
constant € is nonzero, Theoreml shows the same /,,-margin maximization rate (9( ) holds

until the gradient norm HVR(wé)

’ falls below O(4/€); such a result cannot be strengthened
1

to hold for all time as Adam with € > 0 asymptotically converges to the {2-maximum margin
solution (Wang et al.;,2021). Indeed, this phenomenon can be observed in Figure@]where various
instantiations of Adam initially follow the ¢,,-max-margin direction and then switches to the
£2-max-margin direction. It is also notable that GD, without normalization, maximizes margins at
arate of O(1/1n(¢)) or O(1/4/In(t)), depending on details of the setting (Soudry et al., 2017 Ji
& Telgarsky, [2018)).

3. Population loss minimization with high probability with minibatches (cf. Section [5). In this
section, we consider Adam with i.i.d stochastic minibatches. In particular, Theorem [5|analyzes
minibatch Adam (with 0 < 81 < B2 < 1), showing that the test loss is at most O( \F) with high

probability, where n is the number of samples. The dimension factor d in the test error bound is
unavoidable as demonstrated by Theorem E] which constructs a data distribution where the (¢4.)
margin is constant yet Adam still requires {2(d) samples to achieve low test error. The proof of
Theorem [5] combines the aforementioned duality techniques and a modified perceptron proof
adapted toward dual variables. To the best of our knowledge, this is the first high probability test
error guarantee, under typical (31, 82 values. The closest analysis in the literature has a rate which
translates to O(v/d/n'/*) in this classification setting, and is proved in expectation (Défossez
et al., [2022).

The rest of this paper is organized as follows. The following section closes this introduction with
brief notation and assumptions,Section [3|develops the duality framework as well as useful mirror
descent guarantees, Section 4] gives the full-batch margin maximization analysis, Section 5] gives the
stochastic Adam analysis, Section [6] provides further related work, and Section[7]closes with open
problems and future directions.

2 PRELIMINARIES

Notation and Assumptions. Norms are disambiguated with a subscript, as || - ||1, || - ||2, and || - || o
all appear frequently; in a few places, the analysis applies to arbitrary norms, and simply || - || is
written. Furthermore, (-, -) denotes inner product.

Data ((;,v;))", has z; € R? and y; € {—1,1}, with |lz;|« < 1 in the appropriate dual norm.
Inputs and their labels are collected into single vectors z; := y;x;, which are then collected as rows
(2])"_, of amatrix Z € R"*9, Correspondingly, Zw; is the unnormalized margin on all data points
at time . The loss, as above, is always the logistic loss £(r) = In(1 + exp(—r)).

Throughout, standard concepts from convex analysis will be used, e.g., f*(s) = sup,, ((s,z) — f(z))
will denote the Fenchel conjugate of a convex function f; for more on convexity and the key role of
this function, see for instance (Hiriart-Urruty & Lemaréchal, 2001} [Borwein & Lewis| 2000).
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The batch methods will use the following notion of batch margin.

Assumption 1. Suppose the data is linearly separable, meaning there exists u € R* with Zu > 0
(coordinate-wise) and define margins

Y2 i= max minz;u, Voo = max min 2] u,
lullo<1 i lullo<1 4

respectively for Normalized GD, SignGD, and Adam; context will disambiguate, thus simply -y is
often written to declutter. (Linear separability means yo > 0 and oo > 0.)

The stochastic case is similar, with some care for measure-theoretic issues.

Assumption 2. Given a distribution D over z = yz, let supp(D) denote its support. Define
corresponding margin notions as

Yo = sup inf  (z,u), Yoo (= SUp inf  (z,u).
\|u\|2§1265upp(D)< ’ > > Hu”oc§1z6supp(’D)< ’ >

The assumption is that D is linearly separable, which means vo > 0 and 7y, > 0.

3 DUALITY FRAMEWORK AND MIRROR DESCENT.

Dual analysis. We present the framework for deriving various normalized gradient methods includ-
ing SignGD, /5 normalized GD, Adam. We first develop some additional notation. Define £(v) =
L3 (v;), whereby L(Zw) = R(w), and define the smooth margin )(v) = £~ (nL(v)). Note
that for logistic loss, we have the following inequality

Y(Zw) < min (w, 2) -
1€|n

Hence, it suffices to lower bound 1 (Zw) to obtain a unnormalized margin bound for weight w. As 1)
is smooth and concave, we will work entirely with ).

We start by considering the margin maximization problem

max min (w, y; ;) ,
lwll<1i€ln]

which, by Lemma[20] has the corresponding dual problem

min Z7q|, . )
qu:w*(q)SOH al
Now given an arbitrary sequence {gs}s<: C R? and a learning rate > 0, consider the generic
update rule for the weights wy,
Ws41 = Ws — NYGs-
For the remainder of the paper, assume wy = 0 for all gradient methods. Let ¢ := —V¢(Zws). In

the case of GD, g; = Vﬁ(ws), and Ji & Telgarsky| (2019b) made the crucial observation that the
induced update rule for g5 coincided with the following mirror descent update,

V(=) (@s+1) = V(=) (¢5) = Vo (as);

where f(q) := %HZ Tqu. In other words, the (dual) variables ¢, were explicitly solving the dual
problem eq. (2). This connection makes it extremely clear why GD converges to the /o max margin
solution. Notice how we started with a primal update for wy and then derived the induced update
for ¢;. We can also do the reverse. Namely, by varying the dual objective f(g), we can derive new

primal algorithms with different implicit biases.

Set f(q) =1|Z7¢q||,, and let the dual variables ¢, be updated as follows

Vv (—¢)* (QS+1) =V (—W* (qs) - qu(Qs)'

As —1) is strongly convex, it follows that Zws = V(—1)*(gs) and hence the induced primal update
is
Zwsy1 = Lws — Nz sign(Zqu).
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Since ZTq, is —V,¢)(Zw,) , we have that sign(Z7q,) is sign(VR (w, ). Therefore, by letting w,_1
be any update satisfying the preceding equation, we have the following iterative update for the primal
variables, R

wsr1 = ws — nsign(VR(wy)), (3)
which is exactly SignGD. As the dual objective is f (¢9) =11Z7q||,. by Lemma20] it is immediate
that SlgnGD is 1mphcltly solving the /,-margin-maximization problem. In a similar fashion, setting
f(q) =11Z7q||, gives rise to Normalized GD,

Wep1 = Wg — 1N

VR(ws) @
),

Mirror descent. Next we provide a nonstandard mirror descent guarantee which will be used to
analyze the dual variables ¢5. Let the Bregman divergence be defined as

Dy (u,us) = h(u) — h(us) — (vs,u — ug),
where us = VA" (vs).

Lemma 1. Given initial iterates ug,vo € R?, learning schedule {ns},<; C R, and a sequence
{&,} C RY, suppose the iterates v, follow the update rule,

Vs41 = Us — nsfs-
Let h be any closed, proper, convex function and let h* be the convex conjugate of h. Suppose
us = Vh*(vs). Then, the sequence {us}s<; can equivalently be generated by mirror descent,

Ugy1 = argmin {775 <§sau> + Dh(u7 us) tu e Rd} :

In addition, if h is A\ * strongly convex over the line segment [, Ug 1]

h*(vo) = h*(ve) > Zﬁs (&sy us)

s<t

2
I

Of note, the preceding lemma considers generic updates & and hence can be specialized to handle
various normalized gradient methods such as SignGD and Adam. In addition, this lemma will be used
to prove both margin maximization and population loss minimization though with different choices
of mirror potential h. Most importantly, the mirror descent analysis of the dual variables provides a
control on the primal gap h*(vo) —h*(v:). We make a slight technical remark on the appearance of the
strong convexity constant as its reciprocal in the bound of Lemma|l|is common in (’)( ) -type mirror

descent analyses (Bubeckl,2015) and comes from lower bounding (ns&s, s+1 — us) + Dh (Ust1, Us)
via the standard application of strong convexity of h and Fenchel-Young inequality.

4 MARGIN MAXIMIZATION WITH FULL-BATCH METHODS

In this section, we will present margin maximization results for various normalized gradlent methods.
Concretely, Theoremshow SignGD maximizes the £.,-max-margin at a rate of O( \[) and Normal-

ized GD maximizes the {5-max-margin at a faster rate of (’)(;). Finally, Theorem I will show Adam
maximizes the {,-margin at a rate of O(i)

Theorem 2. Suppose Assumptwnlholds Take||-|| to be |1, and H ||y for SignGD and Normalized
GD respectively. Assume that for all i € [ ], . < 1. Suppose the iterates w,

are updated via SignGD, meaning eq. , with learning rate n = 7 Then fort > 8" SzgnGD

maximizes the {,-margin:
W(Zwy) S 8n

forlloe =7 7 GV
If the iterates ws are updated using Normalized GD, meaning eq. (E]) with learning rate = ¢,
then for t > l”y&, Normalized GD maximizes the {s-margin:
Y(Zwy) N 161n(4n)
Jwell2 Yot
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Before sketching the proof, we first make several remarks.

1. Note that Normalized GD enjoys a faster margin maximization rate of (’)(%) despite the fact that the

corresponding dual objective f(q) =||Z7¢||, is nonsmooth. This is because an alternative way to
view Normalized GD is that the dual variables are minimizing a smooth objective f(q) = 3|2 Tq||§
with an adaptive learning rate 7, = HZTLQH'

2. On the other hand, the same trick fails for SignGD as both || ZT¢||; and its square || Z Tq||§ are
nonsmooth which results in a slower rate of O(ﬁ)

We provide a proof sketch of SignGD and defer the remaining details to the apndix. The proof of

{5 is slightly more involved to get both O( In( f”)) rate. We first invoke Lemma|l|with the following
instantiation: mirror potential & = (—1)*, primal iterates v; = Zws, dual iterates u; = g5, primal

update g; = sign(Vﬁ(ws)), dual update £ = Zgs, and learning rate n = Z\"}

Hence, by Lemma T]and since by Lemma 20| the dual objective satisfies|| ZT g, ||, > 7Yoo

v(zw) 2 Yo | @aad) - D500 20,12 + vz
s<t
>3 (1 - ) 1275l + $(Zuo)
s<t

>y (1 - N) Yoo + W (Zwp). )

s<t

As wo = 0, the initial smoothed margin satisfies ¢ (Zwg) = —¢~!(nIn(2)) > —n. By the choice of
the learning rate and since ¢ > i%z, the right hand side of eq. || is nonnegative.

To finish the proof from here, it suffices to divide |w; || . across both sides of eq. , and upper bound
|we|| - By a simple application of triangle inequality and noting that each entry of the SignGD
update is bounded by 1, we obtain that ||w;|| ., <> _, 7 = nt.

Putting it altogether,

o(Zw) |1 (_1) .
Tl 2 e | 27\ gvg) =

s<t
8n
YooVt

Z’Yoc*

Adam. In this section, we prove various margin maximization results for Adam with full batch
gradients. As indicated by Figure/[I] the stability constant e plays a nontrivial role of determining the
implicit bias of Adam. Indeed, if € > 0, Adam asymptotically becomes GD and converges to the
{2-max-margin classifier which has been shown in [Wang et al.|(2021)). This effect becomes more

apparent as the norm of the gradient HVﬁ(ws) shrinks to the same magnitude as e. On the flip side,

if ¢ = 0, Adam is biased toward ¢,,-max-margin solutions for all time.

Theorem 3. Suppose Assumption|[l|holds with = oo and ||z, < 1 for everyi € [n]. Let C :=
(1=VB2)*y

1 51 . Forany 0 < 31 < < land 0 < e < 1, for constant learning rate 1 = ~—5;z7— %
where Adam iterates are updated using eq. lI , for all time t such that HVR (wy)|| > dv/e, Adam
1

maximizes the L, margin,

Y(Zwy) B 1—f, 2403
A e ey vy ©
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Several remarks are in order. If ¢ = 0, the theorem holds for all time. Hence, if 81 = (33, Adam
converges to £, max margin classifer at a rate O(1/v%). As the proof relies on arguing that the Adam
update is approximately SignGD, it inherits the O(1/v/%) rate from the SignGD proof which is superior
to O(1/¢1/3) rate given by [Zhang et al.[(2024). It should be noted that Zhang et al.|(2024) converges

to the true margin 7, instead of

1= gz Yo0. However, they rely on an additional assumption that
each coordinate of the gradient is bounded away from zero by a positive constant p. By making the

same assumption, we can likewise remove the ligf factor.

In the remainder of the section, we will provide a proof sketch of this theorem. For simplicity,
we only consider the case where € = 0. As with the SignGD proof, we apply Lemma [I] with the
following instantiation: the mirror potential h = (—1))*, primal iterates vs = Zws,, dual iterates
us = ¢, primal update g as defined in eq. (I), dual update {; = Zgs, and learning rate 7 as given in
Theorem 3] Therefore, Lemmal(T] gives

t

$(Zwy) = ¥(Zwo) =Y |n

s=0

n? 2
ng‘a QS - ?HZQGHOO

Abbreviating o, := sign(R(w,)), we have that the inner product term (Zgs, ) can be decomposed,

<ng7QS> = (ZUs7QS> - <ng - ZUS)qS> = HZquHl - <ng - ZUS,C]8> .

It suffices to bound the second term as the first term can be handled in the same manner as in the
SignGD proof. The following lemma controls the second term, namely the deviation between Adam
and SignGD updates.

Lemma 4 (Informal version of Lemmal[I8). Fix ¢ > 0, then

N 12C2 ~
<Os - gsavn(ws)> S 72779(7115)7

(1= VP5)

where gA(w) =_1 11:1 O ({w, ).

n

As in proof of Lemma A.3 in (Zhang et al.|[2024), the proof proceeds by showing the moving average
of the first and second moment of the gradients are close to the current gradient. We make several
refinements to improve the dependency on dimension d and 7, the latter being critical for obtaining
a faster margin maximization rate. To be more explicit, we first discuss the improved dependence
on 7). The proof of Lemma]relies on Lemma [I6] which argues that the averaged first moment 1
and the averaged second moment v, of the gradients are close to the current gradient and squared
gradient respectively. The improved dependence on 7 comes from a better control on the deviation
between /v and ‘Vﬁ(ws) ‘ The improved dependence on dimension d comes from bounding the

deviation instead of worse case bounding the deviation of each coordinate. With Lemmafd] we can
prove Theorem [3|by applying the same proof strategy used to show Theorem [2]

5 POPULATION LOSS MINIMIZATION WITH STOCHASTIC GRADIENTS

In this section, we consider mini-batch Adam in the online setting; in particular, we use the update in
eq. , with a minibatch S, of size B = |S;|. For convenience, the update will be written as
Ws+1 = Ws — NsYs-

Here, g, collects the various terms of eq. (1] '
Zs<t a, QVR (ws);
gSJ -
Vet b VR (w)? + €

where the numerator and denominator weightings and their rescahng are packaged within a; s and
b:,s. Under this setting, Theoreml 5|shows that Adam with mini-batch size of O(+/n) and iteration

count ¢ = +/n will achieve low test error O( f) Furthermore, Theorem (6| provides a lower bound

on the sample complexity of Adam, showing that the dimension factor d in the test error bound of
Theorem [3lis unavoidable.
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Theorem 5. Assume the distributional linear separability: Assumption 2| holds with -y = ~yo. Further
assume, for z = yx ~ D, the data satisfies ||z||, < 1 and | z||; < R almost surely. For any

201 5/2
0<B1 <By<land0 < e <1, for constant learning rate n = %, batch size B = \/n,
and iteration count t = +/n, with probability at least 1 — 108, Adam achieves low test error:

2048 R?
min Pr, ((ws, z) < 0) < 572 .
o<t (1= B1)"" ey3vn

N

A more detailed comparison to the literature is as follows. The only other analysis of Adam with
stochastic gradients is (Défossez et al., 2022)), which gives a rate of O(1/+/n), after trading off
various choices in their Theorem 4, in terms of squared gradient norms. In our setting, our proof
is ultimately controlling something on the same order as the unsquared gradient norm (namely, the
derivative of the loss), and thus the apples-to-apples rate is O(1/ nt/ 4). Moreover that rate is in
expectation, which is important as the denominator in Adam makes deviations and high probability
harder to control.

All that said, the bound here has two deficiencies. One is the dimension dependence. Unfortunately,
while the dimension factor d in the test error guarantee is unsavory, it is unavoidable. Indeed,
Theorem [6] provides a data distribution which is separable with a dimension-free margin, yet the
sample complexity of Adam is Q(d). A second issue is that the rate for Adam is worse in terms of
constants; there are many technical hurdles to overcome to make the rate better, and we leave this
interesting question to future work as well.

The proof superficially invokes a perceptron-style argument, but features a number of innovations;
the first of these is to track progress on a ghost sample. Fix N > 0 and sample another NV data
points {Z;, Y, }icn iid from the same population distribution. Note that the algorithm never sees

this dataset and hence we can make NN arbitrarily large. Let Z be the matrix such that it’s i-th row is
Z; := 7;Z;. Denote

Glw) = .z[;v] —((w,7)), Glw) = E [~ ((w, )]

The function G is an upper bound on the test zero-one error. Namely,

Pr.((w,z) <0) <

Hence, to get a good test error it suffices to control G(w). Now let R : RY — R to be the function
such that

R = 5 S 6.

and define ¢, := VR(Zw,), ps := Zws.

Primal and Dual update. Define h = R By contrast to Sectionand prior work (Ji & Telgarsky,
2019b), here the duality is formed with loss directly without any normalization. Then, by convexity,
ps = Vh(gs). Otherwise, proceeding is in the earlier dual derivation, starting from the Adam update
equation |1|and multiplying Z on both sides grants,

Ps4+1 = Ps — 7787953

which is equivalent to
Vh(qu) = Vh(QS) —NsZgs,
which is the mirror descent update rule for the dual variables g,.

With this key concept in hand, the proof proceeds via a similar analysis to Lemmal[I] but then using
standard perceptron steps to introduce the margin and bound the predictor norm.

The following theorem shows the existence of a data distribution that is separable with constant
margin, yet the sample complexity is £2(d) for Adam.
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Theorem 6. Suppose iterates are updated via eq. where g5 can be a stochastic or full batch
update. Let n denote the total number of data samples. There exists a data distribution such that if
{(zi,y)}oy ~ D and if n < &, then for all time s < t, the misclassification error is nonvanishing,

1
Prig ) (y (ws, z) < 0) > 5

The proof is by construction. In particular, consider the uniform distribution over the standard basis
vectors in R? with all positive labels. By inspection, one notes that the loss gradients are a linear
combination of the sampled data. Hence, if the number of data points sampled is less than %, for any

iterate w,, there are at least % entries that are zero. Consequently, each w, misclassifies at least %
standard basis vectors.

6 FURTHER RELATED WORK

Stochastic Adaptive Methods. In the convex setting, Duchi et al.[(2011) gave a convergence proof
for Adagrad, albeit under the strong assumption that the optimization problem was constrained within
a compact convex set. Under a similar boundedness assumption, Reddi et al.|(2019) showed a variant
of Adam, AMSGrad, obtained sublinear regret for online stochastic convex optimization.

In the nonconvex setting, |Li & Orabonal (2019) was the first to show convergence of AdaGrad.

Later, |[Ward et al.| (2021) obtained O(w) convergence rates for a variant of AdaGrad, AdaGrad-
Norm, which uses a uniform scalar for normalizing the gradients. |Shen et al.| (2023)) extended the

convergence guarantees to the vector case. |Défossez et al.[(2022); Zou et al.|(2019)) obtained O(@)
convergence rates for Adam. These rates are not easily related to the batch rates here, which on the
one hand are under a more stringent criterion (margin maximization, which translates to exponentially

fast rates for the loss), but on the other hand invoke the additional assumption of linear separability.

Margin Maximization of gradient methods. Margin maximization for linear models was first
shown for coordinate descentZhang & Yu|(2005)); Telgarsky|(2013)), and only much later for gradient
descent (Soudry et al., 2018 J1 & Telgarskyl 2019a). The idea to use the dual view on purely primal
methods such as gradient descent is not new (Molinari et al., [2021; |Apidopoulos et al., 2023), and
has been applied to simplify and strengthen the aforementioned margin maximization proofs (Ji &
Telgarskyl [2019b). Prior work does not seem to have applied these tools to normalized methods such
as those considered here.

7 CONCLUDING REMARKS AND OPEN PROBLEMS

Connecting to the dual places a different perspective on gradient normalization; rather than drawing
roots in AROW and AdaGrad to minimize an online bound, it comes from transformations to a batch
dual problem. This perspective allows many further ways to study and improve Adam.

Firstly, the rates here are only O(1/t) for Normalized GD. Is there a way to recover this bound for
({s) SignGD? An even more interesting option is that SignGD inherently exhibits nonsmoothness
and its rate is stuck at O(1/ \/f) but under certain favorable conditions, the rate of Adam, owing to
beneficial smoothing effects of the exponentially-weighted averaging, is in fact O(%)

A second natural candidate is to improve the stochastic bounds for Adam; here, the behavior of
Adam is only provided a sanity check, and the exponentially-weighted averages do not provide
benefits. Is there some way, for specific functions, to benefit from the smoothing effects of the
exponentially-weighted averaging scheme?
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A  ORGANIZATION

The appendix is organized as follows.

1. In Appendix [B] we establish various technical lemmas that will be used in the proofs of both
Theorems 29 and

2. In Appendix [C] we establish regret guarantees for mirror descent which only require local strong
convexity of the mirror potential.

3. In Appendix D] we prove margin maximization.

4. In Appendix [E} we prove high probability convergence guarantees.

Before proceeding, we define additional notation that will be used throughout the appendix. Fix a
coordinate j € [d], and let the m; and v,; denote the averaged first and second moments of gradients
respectively:

1-5 .
My = Tt Z@l PR (wy);
1 —

1- .
v 1= — 2 Zﬁz PRk (wi)?
2 —

B TECHNICAL LEMMAS

The following lemma establishes a ¢, control on the Adam update.

Lemma 7. For any choices of 81 and B2 such that 51 < By < 1, the Adam update g5, meaning

eq. (1), satisfies

1-5
sllo, < C = .
Il —

(3)
Proof. For any coordinate j, by Jensen’s inequality, and since 51 < (s,

‘msj’ = Zas,kvfék(wk)j < Zas,k‘vﬁk(wk)j

k<s k<s
Za&k (V'fék(’wk)j)2
k<s
2
i e
< \/ 1__ f}rl > 85 (VRk (wg); )2
1 k<s
1-8 1-p3+ 2
1— fil s ;bsk (VR (1))
/1 2
< 1 —52 ;bsk (VRk(wk) )
1- 5
1—p Vs
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Therefore, for C := }:g; , applying the preceding inequality,
| = Al Ime] OV _
VVUsj + € fUsj \/Usj
Therefore, ||gs|| . < C. O

Remark 8. It is interesting to consider an {5 variant of Adam, €s-Adam, where the normalization in
the update consists of {2 norms of the gradients. Concretely, suppose the weights w, are updated
using the recurrence, ws+1 = Ws — 1ngs, Where the update g5 is defined as

Zk<s askaRk? (U}k)
gs ‘= — 5 .
\/szSbs,kank(wk)H +e
Indeed, as most of the proofs regarding Adam uses a per-coordinate analysis, many of the same

proofs can modified with very little work to handle {5-Adam. Like Adam, the type of normalization
induces the implicit bias; it can be shown that {2-Adam maximizes the {y-margin at a rate of (9(%)

Furthermore, unlike in Adam, the stability constant € does not change its implicit bias.

Now we introduce several technical inequalities used in our proofs.

Lemma 9. Suppose {\}5_o, {ar}i_q. {bs};_ are nonnegative sequences. Then it follows that

Z/\kai— Z)\kbi Szm‘ak—bk‘.
k=0 k=0 k=0

Proof. By expanding the square, Cauchy-Schwarz, and recalling that {\;}7_,, {ar};_q. {bs}i—o
are nonnegative sequences,

2

Soaat =[S Mad | =S a (af +87) — 20| D Mad [0 b3
k=0 k=0 k=0 k=0 k
<> (ai + bi) — 23 Aearby
k=0 k=0

< Z)\k (ak - bk)z .
k=0

Applying square root on both sides and noting that /- is subadditive grants the desired inequality. [

Lemma 10. Forany x € R,
e —1| <l —1.

Proof. We consider two cases.

1. Ifz >0,
le? —1| =€ —1=¢€% —1.

2. Suppose x < 0. For any = € R, it follows that (e* — 1)2 > 0 which implies 2% — e2* < 1.
Multiplying e~ on both sides and then subtracting 1 on both sides grants,

l—e"<e®—1=d*l-1.

To conclude the proof, note that 1 — e® =|e* — 1| for z < 0.

13
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Lemma 11. Forany a,b € R,

' (b)
—1| <dbmal— 1.
f(a) ’— ’
Proof. By Theorem 10}
?'(b) e* +1 et —eb et —eb b
Y P i S et 1] i,
(a) ‘ eb+1 ‘ eb+1 7| e ‘ =€

O

Corollary 12. Suppose ws are updated using eq. (1) and let C' := \/11—% Then for any z such that

llz]l; < R, and time k < s,

O, 2) 1‘ onsitin g,

Proof. By Holder’s inequality, triangle inequality, and Lemmal[7]

s—1 s—1
[(wp = we, 2)| <llwk = wyll Mzl = || D nrgr|| Nzl SCRY e
7=k T=k

o0

By the preceding inequality and Theorem|[T1]

‘6/(<wk72>) N 1’ < e‘(wk,z)7<ws72>| 1< eCRZj;}CnT _1.

U'({ws, 2))
O
Lemma 13. Suppose f : [0,00) — [0, 00) is a differentiable function and there exists T € [0, 00)
such that
Vo<t f(x)>0 and Vx>, f'(x) <0.
Then

S sty <2 [ fk)dn
k=0

k=0

Proof. Let N = |7]. Since f is nondecreasing on [0, N], f is nonincreasing on [NV + 1, c0), and
f > 0 on the interval [0, 00),

=

Corollary 14. Forany 5 € (0,1) and ¢ > 1,
> Bk < 2/ BEE di.
k=0 0
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Proof. Let f be the function f : [0,00) — [0,00) such that f(k) := B¥k*. By calculation,
/ _ pRkpl—1 L. 1 f ot ¢
f'(k) =pB"k (6 k ln(ﬁ)) Abbreviating 7 : w1y
fi(k)>0, k<,

Fk) <0, k>

Applying Theorem[13]gives the desired inequality. O

Lemma 15. Forany o > 0, 8 € (0,1), and learning rates ns < n < %
E} s—1 4o
Sopt e |ad g | -1 <
k=0 T=k
Proof. By change of indices and since 7, < 7 for all &,
s s—1 s k
S exp |ad | =1 =D B |exp [ad ner| -1
k=0 7=k k=0 T=1

< z,ﬁk (exp [ovkn] — 1)

k=0
7251@ iakﬂ]zil
= *

B Zﬂk Z akn]

k=0 {=1

Switching the order of the summation, and since >~ , 8%k < 2 [* 8Lk dk by Theorem

B s—1 s 00 £
St fexp |3 n | —1| <3 (3 1k
k=0 =k k=0 {=1 ¢
o0 ¢ o0
SN
=1 k=0
[e'e) YA %)
<2y o / B4k dk
o ¢t

IA
.

8
N
= —
IR
=
=
N———
o~

s s—1
d s fexp |ad | —1 =

k=0 =k =1
2 1
= — o —1
()
2 an
1-B\1-p—-an
< 4a172
(1-5)
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The following lemma shows that the averaged moments of the gradients is close to the current moment
of the gradients. This lemma is critical in both the proof of margin maximization in the deterministic
setting (Theorem [29) and low test error guarantee in the stochastic setting (Theorem [34).

Lemma 16. Fix 31,32 € [0, 1) and assume the iterates w are updated using eq. . Fix distribution
D and assume z ~ D satisﬁes llzll; < R almost surely. Then for any 8 € (0,1) and learning rates

ns such thatns < n < C = 5 \where C' = r/ } gl the average loss derivatives satisfy

TgerT 28 Bl () — B (s, 21)| £ s [ ()] ©)
k<s

and the averaged first moments of the gradients satisfy

T P E V0] < (Ve | < s [ ()] a0
1

If instead n < 12—0\23’ then the averaged second moment of the gradients satisfy

1 pek EK’ Wk, Z El' ((ws, 2))zj|| < ————5nE, | =0 ((ws,2)) | -
ZH 55+Z (k. 2))25)* - | Dl < [~ (w5, )]

(1)
Proof. Applying Theorem|[I2]and Lemma[I5|with « = C'R,

: ﬁgﬂzﬁs VELE (s 2)) — Bal (s, 2)

k<s

> Bé+1 ZBS k [ wka >) 76 (<w‘33 >)i|‘
k<s

1— , A (<wk,z>)

< =P S gt (|0 (s, 2)) || o2y
- B +1 kzq ‘ ( )‘ 0 ((ws, 2))

< 1-— B ﬁl ‘Zﬁs k CRZ _
= 1 _ /83+1 wsv k<s exp 777'

ACR ,
< mnEz <<w57Z>>‘

Similarly, applying Theorem [I2]and Lemma[I3]with o = C'R,

/),S“ZB@ "E. [VE((w, 2))] — E [VE((ws, 2))]

k<s 1
1-—
T 8V [ (w2 — €, 2)] ]
k<s
1 s—k / a (<wk’z>) _
< Ry Wl;éﬁ E. (|¢ ((ws,2))] )
ACR?

< (1_ﬁ)277E [ 0 ((ws, >)}
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We now prove eq. (T1). Fix j € [d] and instantiate Ay, ay,, by, for k < s as

e =0"F ap= ‘E [6’ ((wk,z>)} z;

, by :‘IE {E’ ((ws,z>)} zil -

Applying Theorem 9] with A, a, by, defined above, reverse triangle inequality,

Zﬁsk

{ (wg, z ))} 2;

—_ Z/Bsk

[ ws,z))} Zj

< iﬁ(s_k)/z E {E’ ((wk,z>)} zj —E {—E’ ((ws,z>)} 2

<3 BRI E [
k=0

Summing over j € [d] and pushing summation over j € [d] inside, and recalling || z||; < R almost
surely,

U ((wy,z)) =€ ((w&z))“zjq :

SO ST (B (G, 20)5)° — |30 8% (B (s, )25)?
k=0

jEld] k=0
< 3 S ¢ e, h) ~ ¢ ((w2,3)J
je[d ] k=0
:ZB(sfk)/Z]E {
k=0

<R zs: B(s_k)/QE

k=0

-R i Bls=k)/2R

¢ (=) =€ (w2214

V' ((wy, 2)) = £ ((ws, >)‘

A (<wk,z>)
v ((ws,z))

Again applying Theoremand Lemmawith a = C'R and substituting 3 with /5,

-1

4 ((wé,z>)‘

> Zﬂk (B ((wy, 2 Z@k (e ((ws, 2)) ;)

jeldl| \ k=0
4C R?
< B m e ()]
(1-vB)
Finally multiplying both sides by 4/ 1_1/;7'6;1 and noting 4/ 1_157[11 < 1 grants the desired inequality.

O

2
Lemma 17. Let B,e > 0 be fixed constants and denote f(x) := Zje[d] xw—ie Let S be the
hat)
intersection of the positive orthant and a {1 bounded ball,

S = {u|u; >0and|ul; < B}.

Then x = (%, ey g) is the solution to the following optimization problem,

IIllIlf s.t. Zx]fB

zeS
J€ld]
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Proof. First note that S is a convex set and f is a strongly convex function over S. Hence, it follows
that the optimal solution must be unique. By symmetry, it follows that each coordinate of the optimal
solution must be identical. By the constraint condition and feasibility, the optimal solution must be

v=(4....5). =

The following lemma establishes that SignGD updates are close to Adam updates.
— VR(ws);
‘vﬁ(ws)j Te
that o3; = 0 when V R(ws); = 0. Then, under the same setting as Theorem 3| for all s < t,
N 12C°R*
(00 = 90, VR(w) )| € ———nG(w,).

(1-VB)

Lemma 18. Forany e > Oand j € [d), denote o5 = and for € = 0, take the convention

Proof. Applying Lemmawith D being the uniform distribution over the training data (z1, ..., z,)
(i.e. the empirical distribution), the following inequalities hold,

ACR? .

ms_Vﬁws Sigwsy 12
H (), < et (12)
~ 4CR?> 4
> Vs _‘VR(ws)j‘ = ﬁng(ws)- (13)
i€ld] ?
Expanding and applying triangle inequality,
~ VR Ws ) ; Mg ~
<Us — Gs; VR(ws)>‘ < Z = ( )] - ]+ VR(ws)j
7 \[TR(w), | +e Ve

~

VR(ws)j/Usj = Msj
<’V7€(ws)j’ + 6) (M—i— e)
vﬁ(ws)j‘ + (VR(w,); —mys) €
VUsj T €

Vﬁ(ws)j‘ + (Vﬁ(ws)j - msj) €

[VR(w,);|

R

~

VR(ws); VUsj — Msj

~M

~

(VR(ws)s = mis) /555 + (m - ’vﬁ(ws)jD + (VR(w,); —myj ) €

[
~™

\/Usj + €
Vﬁ(ws)j — Mygj| \/Usj + Msj|\/Us; —‘Vﬁ(ws)j —|—’V7€(ws)j — Mgl €
<
- \/Usj T €

] -M

IN

‘Vﬁ(ws)j — M,

+ ‘Vﬁ(ws)j - msj

J

= 22‘V7/€(ws)j — Mgy
J

+C’\/@—‘V7€(ws)j‘

+C

VUsj — ‘Vﬁ(ws)j ‘

= 2HV7€(w5) — My

C S-—‘vfz . ‘
O S|V [V R,
By eq. and eq. , since B < B2 < +/B2,and C > 1,

IS 12C?R* 5
<0’S —gS,VR(’LUS)>‘ < mngﬁvs)
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O

The following lemma is the well known Titu’s lemma. For the sake of completeness, we provide the
proof.

Lemma 19. Let {a;};cq,{b;};ca be nonnegative sequences of real numbers. Then

aj - (Zje[d] aj)Q.

jEld) bj = Ljelabi
Proof. By Cauchy-Schwarz,
2 2 )
a: as
So) - (L vm) < (Tu] 25
j€ld) jeldg VY j€ld] ield)
Dividing both sides by > jeld] b; gives the desired claim. O

The last lemma of this section gives an equivalency between the primal and dual objectives, providing
the crucial insight on how to obtain margin maximization guarantees.

Lemma 20. For any norm|||| and any matrix Z encoding a linearly separable problem (there exists
v with Zv > 0), then

. ]- 2 . w ]. 2
~|1Z7q|]" = — f Z—)+ - .
i SN2l et ez )+ gl
Proof. By computation, the convex conjugate of the function f(u) = %Hqu is f*(v) = %||v||z The
rest of the proof proceeds as the duality in Ji & Telgarsky| (2019b, Proof of Theorem A.2), except
using f and f* in place of[|-||, and 4. () Which is O when||z[[, < 1 and oo otherwise. O

C MIRROR DESCENT ANALYSIS

The following lemma establishes a mirror descent regret guarantee using only local strong convexity
of the mirror potential.

Lemma 21. Given initial iterates ug, vy € R?, learning schedule {ns}s<: C R, and a sequence
{&,} C RY, suppose the iterates v, follow the update rule,

Vs41 = Us — 77555-

Let h be any closed, proper, convex function and let h* be the convex conjugate of h. Suppose
us = Vh*(vs). Then, the sequence {us}s<+ can equivalently be generated by mirror descent,

us+1 = argmin{n, (€5, u) + Dp(u,us) : u € Rd}.

In addition, if h is \; ! strongly convex over the line segment [us, us 1] with respect to||-

’

* * 77?)‘5 2
W (vo) = h*(ve) 2 ) s {€s ) — 1€l -

2
s<t

Proof. By convexity, since us = Vh*(vs), we have vs = Vh(us) and hence the primal update
Vg1 = Vs — Ns€s gives the following induced dual update

Vh(ust1) = Vh(us) — nés,

which is equivalent to the mirror descent update described in Lemma

19
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Then, by the equality case of Fenchel-Young, local strong convexity of h, and another application of
Fenchel-Young inequality,

W (00) — h* (o) = 3 W (0,) — B*(041)

-~ @
I
=]

Il
g

h(usy1) — (Vsy1, Usq1) + h*(vs)

-~ @
I
=]

Il
g

Dh(us+1>us) + <Us — Us+1, Us+l>

-~ @
I
=]

Il
g

Dh (us+1> us) + <775§sa us+1>

-~ @
I
=]

lust1 — ws|| + (Ms€sy Ust1 — Us) + (NsGs, Us)

vV
™
|-

-~ @
Il
=]

1

v
]

[N}

>

As 9 1
lus+1 — usl| — ?”77555”* - 27)\5”7‘84-1 — Us| + (ss, us)

S

-~ @
Il
=]

As
= <775€s,us> - 3”77353”i .

s=

o

O

From the mirror descent result, we can develop a regret guarantee with h = R". We first show that
the local strong convexity condition is satisfied.

Lemma 22. Fix 51,02 € (0,1) and assume the iterates ws are updated using eq. . Suppose

Ns < 55 where C = }:g; Abbreviating \, = 2G(ws), the following statements hold.

1. On the line segment [Zwg, Zws11], the risk R is s smooth with respect to oo norm.

2. On the line segment [Vﬁ (Zws), VR (Zws+1)] = [Gs, @ss1), the conjugate of the loss R is

A1 strongly convex with respect to the {1 norm.

Proof. For any w, since ‘Z”’ < ’K’

bl

Hvé(w)Hl - % > (. z))z| < Glw)max|zi), < Gw). (14)

i€[N] X

Now let w, := (1 — ¢)ws + cwsy1 and let & € [0, 1] be the constant such that

G(wa) = sup G(w,).
c€[0,1]

By the mean value theorem, there exists r € (0,a) such that G(w,) — G(ws) =
<V@(wr),wa —ws>. By eq. and definition of «, and noting that ||w, —ws|, =
anS-‘rl - wsHoo < 0775,

G(wa) = G(ws) + G(wa) — G(ws)
= G(w,) + (VG(w,), wa — w,)
< é(wé) +Hvé(wr) ||wa ws”oo
< Glws) + Gwy) |[wa — ws| o
< G(ws) + CnsG(wa)
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Rearranging terms and since 1;C < % by assumption,

— 1 — _
G(wq) = —Cn G(ws) < 2G(ws). (15)

Hence, eq. and eq. 1mphes G is 2G(w;) lipschitz with respect to £, on the interval
[ws, Wst1]- Therefore since G is lipschitz, applying eq. . for any w, w’ on the line segment
[ws; ws+1]»

Hvﬁ(Zw) ~ VR(Zw')

= }VZ (¢ (w,z) - £((w', 7)) 7

G(w) - G(w) | max]=]|

1

IN

IA
Q
2
S\

< 3G, — w]|,

Hence, R is A\ smooth with respect to £, norm which implies R is A1 is strongly convex with
respect to the ¢1 norm. O

Lemma 23. —) is = ||ZTqS||1 smooth with respect to ||| . along the line segment [wg, wgy1).

Proof. Similar to the proof of Ji & Telgarsky| (2019b, Lemma 5.3), to check that — is # smooth
with respect to £, norm on a convex set .S, we only to ensure for all £ € S and v € R",

n
Z v <,6’max1)2

Take any £ € [Zws, Zws41] and let w € [ws, ws41] such that § = Zw. Then,

) s (&)
2 iy S e Z —0w(E)
()
<2 70
. Glw)
)
2G(ws)
")
n 2G(ws)
=" (Zwy)
_ 277l
a Y
O

The following lemma establishes a regret guarantee for mirror descent where the mirror potential is
h:=R".
Lemma 24. Suppose the iterates w are generated using the update rule eq. (1) where||g,|| ., < C
andns < n < 55. Then,

2

)

R(wo) — R(wy) > 1 <<ng, qs> —1sG(wy)| Z
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Proof. By Lemma 22| the function i := R is A strongly convex on the interval [gs, 754 1] which
implies

_ 1 _ 2
Dp(gs+1,ds) > 27/\3||qs+1 = a7 -
By the preceding inequality and applying Fenchel-Young,

2
”qs qs+1||1
2

A

nsng +

_ _ = _ 1 _
_Dh(q5+1?q8> + <778Z987QS - QS+1> > _2)\ HQSJrl - QS‘lf
S
s _ 2
— 152 9s
o0

2

IN

Now by the equality case of Fenchel - Young and since §; = Vh*(p;) and by the preceding inequality,

h*(po) — = 1*(ps) = B (psi1)
s<t
= Z <psa (js> - h(%) - h*(szrl)
s<t
- Z Dh((js—&-l, (js) + <7757957 st+1>
s<t
= ZDh(QS+la(js) + <n57957QS+1 - QS> + <n8795? QS>
s<t
_ Al = 112
> gy — %
> Z <nsZg57qs> 5 ‘ NsZgs .
s<t
Recalling that A := 2G(ws) completes the proof. O

D MARGIN MAXIMIZATION

In this section, we prove several margin maximization results for different full-batch methods. The
following lemma gives a proof of the SignGD claim in Theorem 2]

2
Lemma 25. Under the same assumptions as Theorem |2} for t > %, SignGD maximizes the
Loo-margin:

W(Zwy) > e — 8n .
[wi oo YooVt

Proof. We first invoke Lemmalw1th the following instantiation: mirror potential h = (—1)*, primal
iterates vs = Zwy, dual iterates us = g5, primal update g5 = mgn(VR(ws)), dual update &5 = Zgs,

and learning rate n = Zj}
Hence, by Lemma 1] and since by Lemma 20|the dual objective satisfies | 2T, > Yoo,
VA > 7 77||ZT‘15||1 7 2 7
V(Zwy) > Zﬁ (Zgs,qs) — TH 9sllse | + 1 (Zwo)

s<t

> 0 (1 o7 1270 + w(zwo)

s<t

>> ( ) Yoo + W(Zwp). (16)

s<t

As wg = 0, the inital smoothed margin satisfies 1)(Zwg) = —¢~'(n1n(2)) > —n. By the choice of
the learning rate and since ¢ > i%z, the right hand side of eq. is nonnegative.

To finish the proof from here, it suffices to divide ||w;|| ., across both sides of eq. , and upper
bound ||wy || . By a simple application of triangle inequality and noting that each entry of the SignGD

22
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update is bounded by 1, we obtain that [lw;|| ., < >, _, n = nt. Putting it altogether,

Y(Zwy) 1 _L _
Tl = Tewrl Z”<1 8\5)700

0 s<t

8n

The following lemma provides a warm start for £5-SignGD.

Lemma 26. Under the same assumptions as Theorem fort >ty := %, the empirical risk
satisfies R(wy) < 2O

n

which implies perfect classification.

Proof. Let T be the first time (potentially infinite) such that ﬁ(wT) < Y9 Let u be the unit vector

that has margin -y in Assumption Letu := WU. Since the exponential loss upper bounds
logistic loss and by the definition of ,

~ 1 1 1 1

R(u) < — —(u, z)) < — —=— < —.

Hence, for all time s < 7, the empirical risk is bounded below:

~

() _ Rw,)

R(u) < —— 17
@< 5> <= ()
In addition, for all time s < 7, by the choice of n = %,
. R(ws
2R < (ws) (18)
2 8
Expanding the square and by convexity and egs. and (I8), for all time s < 7,
[werr — al|* = ws — @l = 20 (g, & — wy) + 17| gs ]|
VR(ws)
=2 <A,u - ws> + 17l gs I
HV’R(wS)
R (1) — R(ws
o RO =R
HVR(wS)
R (1) — R(ws) + gHvﬁ(ws)
<2 =
o)
<y s)
HVR(wS)
Therefore, rearranging terms, summing across time s < 7, and telescoping terms,
R fwo—al o al? _fal _ 4en) )
s<T V’R(wg) n n Y
Note that ”v@% > 1. Hence, eq. simplifies,
2
T < 4111728@
Y
To conclude the proof, it suffices to note that the loss is monotonically decreasing. [
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With the warm start result above, we can prove the ¢5-SignGD claim in Theorem 2}

Lemma 27. Under the same setting as Theorem |2} for t > lni(ifn), l5-SignGD maximizies the

lo-margin:
Y(Zwy) N 321n(8n)

well2 — 5t

Proof. By Lemma for all time t > tg := %, the classifier w; has perfect classification.

Hence, 1) is 2-smooth by Ji & Telgarsky| (2019b, Lemma 5.2).

Now we invoke Lemma I with the following instantiation: mirror potential h = (—)*, primal
iterates v, = Zws, dual 1terates us = ¢s, primal update g; = —V¢(Zws), dual update s = Zgs,

and learning rate 63 = W

Hence, since ¢ (Zwy,) > 0,

1 1
w(zu) 2 0 (12707 - 1270l + 2 6. (Zowad)

to<s<t

> > 0277 (20)

to<s<t
To finish the proof, we need an upper bound on|w ||. First note that Lemma [26]also gives an upper
bound on ||wy, ||, namely ||wy, || <||@|| +||wi, — @] < w. Hence, by triangle inequality,

t
lwell < llweg | +llwey = well =llweo | + D 051 Z7qs]] -

s=to
Therefore,
vZw) | S 07Tl
lwll = 37, 051127 qs |+ [lw |
[[we, ||
=v(1- )
”wto H + Zi:to 93||ZTQS||
321In(8n
>y(1 - 321n(8n) )).

vt
O

Theorem 28. Suppose Assumpnonlholds Take |- || to be|-|| ., and||-||, for SignGD and {-SignGD
respectively. Assume that for all i € [n ] the data is bounded, ||z;||, < 1. Suppose the iterates w

are updated via SignGD, meaning eq. , with learning rate n = 1. Then fort > 8” SzgnGD

W
maximizes the L.-margin:
W(Zwy) S 8n

S s - ———,
lwelloo = ™ eVt
If the iterates ws are updated using {2-SignGD, meaning eq. (E[) with learning rate n = ¢, then for
t> 1":(737”, £o-SignGD maximizies the {3-margin:
Y(Zwy) S 321n(8n)
Jwell2 Yot

Proof. Simply apply Lemma [25]and O

The following theorem is the margin maximization result for full-batch Adam, which corresponds to
Theorem 3
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Theorem 29. Suppose Assumption |I| holds with v = 7o and ||z;||; < 1 for every i € [n]. Let

C:= }:g; Forany 0 < 81 < By < 1land 0 < e < 1, for constant learning rate n = % where
Adam iterates are updated using eq. ,for all time t > ;1??6?/3)2 and inf ;4 VR(wS) ) > dy/e,

Adam maximizes the {~, margin,

(Zwy) - 1-8  24C%n
fele 27UV TR .

Proof. Applying Lemmawith h= (=), vs = Zws, & = Zds, and us = qs := —V(Zw,),
we have the following bound,

t 2
n
W(Zwy) — Y(Zwo) > ZO n{(Zds, qs) —777||st||§0. (22)

We first prove a few preliminary inequalities to handle the inner product term (Zd, gs). Fix s < t.
Recall that HVﬁ(wS)H > dy/e. In addition, note that for any a > 0, the function g(z) = 7 is

monotonically increasing on the positive reals. Hence,

VR ()

! dve _ Ve, 5k

> =
[FR@[ +ea~ Werde  Vere T eh e

In addition, by Titu’s lemma and the preceding inequality,

N ~ 2
(VR(w.)) [vRw),

S | (VR(w)); | +€ || VR(w,)||| +de
~ HVR ws)
:HVR(wS
Y R@w,)|| -+ de
> | VR (w,) (1= Vo). (23)
Let o, be the vector such that o := M Then, by the preceding inequality,
‘ ‘ (VR (ws)); |+
1 VR Ws)) i
<ZO'S,qS> = _E/(,(/J(p )) (,\ ( ))J
/) jelal ‘(VR(ws))j‘ + €
]vﬁ(ws) 1
> (1= Ve
@) VY
=127qs]l, (1 = Vo).
Therefore, by Lemma Assumptionz} and let k := 7(11_273;2)2,
<ng»qs> = <ZJqus> - <ng - Zoqus>
1 12C? ~
2127 qall, (1= v/e) = nG(ws)
! (W (Zws)) (1 - /B3)°
1 12C? ~
> 127l (1= v/6) - 31| VR ()

FZ0)) (1 V)
=275, (1 —rn = Ve).
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Plugging the preceding inequality to eq. and since —(Zwg) > —

t
W(Zwe) > —n+ > 0 (1 =15 = Ve | Z7qs|l — n*nl| Zds| %,

s=0
¢
nC? n
Zva(l—nﬁ—ﬁ—n —t>. (24)
s 0 n
Since ) = %, time ¢ satisfies ¢ > ;1‘()?66\}’)2, and /e < i, each summand is positive.

Therefore, to get a margin lower bound from here, it suffices to divide both sides of eq. (24) by [|w.|| .,
and upper bound [|w || . By triangle inequality and since ||gs ||, < C' by Lemmal[7}

lwello <D nllgsllae < Cnt.

s<t

Hence, by the preceding inequality and eq. (24)),

T
g(lw o2
=2 0=V - & (meanct+ )
%(1—\/) %(’ym-l—ncz-i-n)

E STOCHASTIC ADAM

E.1 CONCENTRATION INEQUALITIES

In this section, we collect various concentration inequalities needed for the proof of Theorem
We open with a lemma copied essentially verbatim from |Beygelzimer et al.| (2011} Theorem 1) that
provides a Freedman type concentration inequality for martingales.

Lemma 30. Ler X1,...,X; be a sequence of real-valued random variables such that X; < R
almost surely for some constant R > 0. Abbreviating B4[X] := E[X | X1,...,X;_1], assume the
conditional mean E[X;] < 0. Define the random variables,

T T
S=> "X, V=) EJ[X7]
t=1 t=1

Then for any 6 > 0, with probability at least 1 — 0, and X € |0, ] we have

S<(e—2)\V + M (25)
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Proof. For any fixed A € [0, %], applying the inequality e* < 1+ z 4 (e — 2)2? for any z < 1 and
recalling that AX; < 1 almost surely, E; [X;] < 0,

Ey [exp (AX,)] < E, [1 FAX; + (e — 2)A2Xtﬂ
<14 AE[Xi] + (e — 2)NE, [Xf}

<1+ (e — 2)AE, {Xf]
< exp ((e —2)A2E, [XED . (26)
Defining the random variables Zy = 1 and for ¢t > 1,
Zy = Zi_1 - exp ()\Xt ~ (e — 2)A2E, [XED .
By eq. (26).
E.[Z)] = Zi_y - exp (AXy) - exp (—(e — 2)A2E, [XED < Zi 1

which implies,
E[Z] = EE,[Z,] < E[Z;-4],

and hence,
E[Zr] <E[Zr_1] < - < E[Z] = 1.

Applying Markov’s inequality to Zr and by the preceding inequality,

Recalling that Z7 = exp ()\S —(e— 2))\2V)) and using the preceding inequality gives the desired
result. H

Lemma 31. Under the same assumptions as Theorem[34] with probability at least 1 — 6,

al / wsazz 21D(M)
; E. [VO({ws, 2)]|| < dy) —3>

and, with probability at least 1 — ¢,
N _ 2t
} :El(<w87zi>) ’ — hl(?)
—_— 7 7 . <
N E. V ((ws,zﬁ)} - 2N

=1

Proof. Fix j € [d] and time s < ¢. Let X; be the random variable such that
Xi = K’((ws,§i>)§ij.
Since | X;| < 1, by Hoeffding’s inequality, with probability at least 1 — J,
N

Zlg/«w]i;zmz” [gl«wsa >)ZJ} < 211]1\55)'

Union bounding over coordinates j € [d] and time s < ¢, with probability at least 1 — 4,

N

S A Z0) o g (Ve ]| <d

21n(%)

; N N
1=1
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Similarly, fix time s < t. For i € [N], let Y; be the random variable such that
Y; =0 ((ws, Z)).
Since X; € (—1,0), by Hoeffding’s inequality, with probability at least 1 — J,

N _ 2
K'(<ws7zi>) / - ln(S)
_ ; < .
;1 N E. V ((ws, Zz>)] =\ 2N
Union bounding over time s < ¢, with probability at least 1 — 9,
N _ 2t
El(<wsazi>) / - hl(f)
S S T ) < .
> N E [ﬁ ((ws, ZZM =\ on

i=1

The following lemma controls the squared gradient term.

Lemma 32. Suppose ns =n < A=B1)° here C = ﬁ and the iterates wy are updated using

4CR?
eq. (I). Then there exists a time k < t such that
2048 1n(2y/nd/é
) < 2ASCVd)D)
\/>
or, with probability at least 1 — 0, for all time s < t,
2
Zgs|| < G(ws)?. 27
H 95|\, = 256e2 ¢ (0s) @7)

Proof. Define the set I := {(7,b)|1 < 7 <t andb € [B]}. Leti : N x N — N be the function
i(1,b) :== 7B + b. Note that 7 induces a total order on I. For the remainder of the proof, identify
the integer (7, b) with the tuple (7, b). In particular, for any random variable X, ;) abbreviate the
conditional mean as

Es(r,b) [X(T’b)] =E [ () | Xy st(r,e) € I, i(r,c) <i(r, b)}

Fix time s and j € [d]. Further pick time 7 < s and data z, € B, and define the random variable,
Xiray 1= o (€ (107, 2)) = E [ (15, 2))] )

Since w; is independent of data (z,y) € B, elements of B, are pairwise independent, and a;_, is
a deterministic constant, the conditional expectation satisfies E;(; 1 [X (r,b)] = 0. Hence X(, 5 isa
martingale difference sequence.

To obtain an almost sure bound on X, 5, note that /' € (—1,0), and {as,-}3_, is a nondecreasing

positive sequence. Hence, X(T,b)‘ <ass <1

Furthermore, the conditional variance satisfies,

Ei(ray X2 )] = Eala £ ((wg, 2))%] — s a0 ((w,,2)]” < a2 B¢ ((w,, 2))?]

By definition of G , G, it follows that

Zas,k (ék(wk) — G(wk)) = Z %.

k<s tel

Hence, applying Theorem.w1th A=
1—4,forall j € [d] and time s < t,

Zas,k (ék(wk) - G(Mk)) < M Zas il S LI DA wk, 2))?] .

k<s k<s

54> and union bounding over s < t, with probability at least
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Since |€’ | < 1land as ) < 1, by the definition of G and Lemma and since n < ﬁ;‘j;f, the
preceding inequality simplifies,
A 64 1n(2td/9)
Zas,k (Gk(wk) - G(wk)> 7/ Zas kG U}k
k<s ’y k:<s
641n(2td/5) ~
< T LN G
< B +64§a(,k (wk)
641n(2td/5) v 4C R?
< ==Y L Lo+ —C )G
< TR g g gy
641In(2td/5) ~
< ——"t 72— s)- 28
< B + 32G(w ) (28)
Consider two cases.
1. Suppose there exists time k& < ¢ such that
y 64 1n(2td/4)
— < — .
0w = =%
Since B =t = /n,
2048 1n(2y/nd/é
Gl < (2v7d/5)
Y2 V/n
2. Suppose for all time s < ¢,
ed 64 1n(2td/9)
32G(wk) > 773 .

Then by eq. (28),

> aun (Gulwr) = Glwp)) < LG(w,).

k<s

Therefore, since ||m;||, ,||2s]], < 1 and by the preceding inequality and triangle inequality,

= max (2] g;) 2

2
Z9s
H g 1€[N]

IN

max
1€[N]

Y oz
jeld

IN

€2 ie[N]

IN IN

IN
2

2

5

We define the averaged first moment of the gradients as M, :=

B Msj
ij
: \/Usj + €

maXIIzzH lms 13

(29)
O

> k<s Gs kB [V (w,, z)] and

abbreviate the expected gradient at time s as F; := E...p [VE ((ws7 z))] . The following lemma
controls the deviation between the estimate of the averaged first moment and the true averaged first

moment of the gradients.
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Lemma 33. Suppose ns =n < (16[22)2 where C' :=

eq. (I). Then there exists a time k < t such that

_ 1
1-B1

and the iterates wy are updated using

_ 128dIn(2/nd/9)

Glu) < eyiyn

or, with probability at least 1 — 6, for all time s < t,

s Ms
<nj/m7E[W(wkﬂ> < %G(ws)HESHQ' (30)

Proof. Define the set I := {(7,b)|1 <7 < ¢ andb € [B]}. Leti : N x N — N be the function
i(7,b) := 7B + b. Note that ¢ induces a total order on I. For the remainder of the proof, identify
the integer i(7, b) with the tuple (7, b). In particular, for any random variable X ;) abbreviate the
conditional mean as

Ei,(r,b) |:X(T,b):| =FE [X(T,b) | X(r,c) S.t (7”, C) elr, i(?”, C) < i(ﬂ b)} .

Fix time s and j € [d]. Further pick time 7 < s and data z, € B, and define the random variable,
X(ray = @ ((Gwr, 2)20,5 = B [0 (w4,2))3] )

Since w; is independent of data (z,y) € B, elements of B, are pairwise independent, and a;_, is
a deterministic constant, the conditional expectation satisfies E;(; 1) [X (T,b)] = 0. Hence X, 5 isa
martingale difference sequence.

To obtain an almost sure bound on X, ), note that |¢'| <1, zj‘ < 1 for any z ~ D almost surely,

and {as r }_ is a monotonically increasing positive sequence, | X| (rh)| < 2a5 5.

Furthermore, the conditional variance satisfies,

IEi(‘l',b) [X(Q-r,b)] =E. [ai_,_f’«ws, Z>)222‘] -E, [as7T£/(<w87 Z>)Zj]2 < a? ,E [El(<w87 Z))QZ

7 s, T % 2]

e
By definition of mg, Mj, it follows that

X
Msj — Msj = —_—.
B
lel

16vVd’
probability at least 1 — §, for all j € [d] and time s < t,

Hence, applying Theorem [30| with A = —X~ and union bounding over j € [d] and s < ¢, with

167/ In(2td/s E [£({wy,2))%22

) e 2
+ ag
o Tlova B

k<s

Msj; — Msj‘ S (31)
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By the preceding inequality and since ||||, < V/d|-||,

ms = M, b\ 5 (msj — My;) By
Vs e Voo

je[d]
<- Z |m5j stEsj|
JE [d]
16v/dIn(2td/s (<wkaz>)22’?
S LR
jeEld] k<s
16v/d n(2td /) (<Ufk,2>>22.2
e;’ly(B/ |Esl; + Z Z 3 [ ]:||Esj|
d k<s

2,2
16d1n(2td/5) [ (<wk7Z>) zj}
< g B+ Z ; |Ess]

(32)
Pushing the summation over the coordinates j € [d] inside, applying Cauchy-Schwarz, Jensen’s

inequality, and since ‘E’ | < 1 and for any ||z||, < 1 almost surely, the second term in eq. can be
bounded as follows,

216\/2

B[ <<wk, 2022 E [¢/((wr, )%

J}’Esj\:m\fz Y 5 }|Esj’

k<s MS d]
<= fz Jez[d] [¢ (Gwn 22221,
< e Ly [e' (i, ) 21151 Bl
<— fz £/ ({wrs 2))] | el
- %|\ES\|2 ;aik(}(?ﬂk)
< 176|Es|2k2<:as,kG(wk)-

(1-81)?
4CRZ2 >

Applying Lemma|16|to the preceding inequality and since <
pplying p g Ineq y

<wk, 2))222
Z 16[2 L

) Bl < LI, Y aerGlun)

k<s k<s
¥ 4CR?
< 1+ —— ) Es
_16< e L
< 1Gwy)|E],.- (33)
Applying eq. (33) to eq. (32),
ms — M 16d1n(2td/6) ~
Ms = s < (2220 T Glwy) ) B - 34
< ﬁvs+EaEs> < (BG4 Zotwn) )1, G4

Now consider two cases.
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1. Suppose for some time k < ¢

¥ 16d1n(2td/d)
L < — =7
sClun) = —o g
Since B =t = /n, dividing both sides by %,
128dIn(2+y/nd/d
Gluwy) < 8dIn(2y/nd/é)
€2y2\/n
2. Suppose for all time s < ¢,
5 16dIn(2td/6)
SG(wk) > 62’}/3 .
Then by eq. (34),
ms — My 16d1n(2td/d) Ta
Ms = 8s p o \| < (20E4/0) 7 E, IIE,
<¢%+€5>_( G+ 26w )[E.l, < TG Bl

E.2 POPULATION LOSS MINIMIZATION

In this section, we prove Theorem [34]

Theorem 34. Assume the distributional linear separability: Assumption[2] with v = ~o. Further
assume, for z = yx ~ < land|z||; < R almost surely. Forany 0 < 81 < By < 1 and

0<e<1, with probablllty at least 1 — 1006, for constant learning rate n = %, batch size
= \/n, and iteration count t = \/n,
192R?
min Pr((ws, z) < 0) < 5 S/QR (35)
o<t (1- B> egyn
Proof. By Lemma[24] we have the following regret guarantee,
_ _ e _ 2
Rlwo) = R(we) = 1 (96,274, ) = nG(w.)|[Zgs|_ ). (36)
s<t

Excluding ¢ failure probability from invoking Theorem 31]and by Lemmal(7] for all time s < ¢,

(. 773) = (0052 [0 2] )+ (0.7 - B [9 (0)]
2<%E4w«%¢y>—mmHZ@—E Ve (..

i . / n(2d)
> <gs,Ez w(<ws,z>) - cd 37)

Similarly, excluding another ¢ failure probability, by Lemma [7]and Theorem [31] for all time s < ¢,

_ —_ 2 — 2 ln(%)f 2 — 2 99 ln(%)
G(w)|Zgs| < Gw))||Za|_ +1/52 HZgS < G(w,)|Zg.|_+c2r2 52

(38)

)

Applying egs. and (38) to eq. (36) and rearranging terms,

n(id
ﬁ(wo)—ﬁ(wt)—kzlntCszd\/lem > ;n <<gs, [W ((ws, >)]> —nG(ws)
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Recall that N was the number of unseen data. Taking N > 32 (ntCszd)2 ln(%), we can simplify
the mirror descent guarantee,
2
. 39)

s<t
We first handle the inner product term. Recall that we have defined M, =
Y h<s @skEonp [V (ws,2)] and E; := E..p {Vé ((ws, z))} Adding and subtracting various
quantities,

Es Ms_Es Ms
S7ES = 77Es 77E3 s 7Es . 40
o) = () (Mmoo M) @

We tackle each term separately. We start by handling the first term. By Assumption

E.vp [Vﬁ ((ws, >)} = sup <U,E2~D [Vﬁ ((ws,z>)}> > 72G(ws).

2 lull;<1

Zgs

1B, =

Since ,/v,; < 1forall j € [d] and € < 1, by the preceding inequality,

Es > E? 72
B =Y s B2 2 2G| Bl = 2w, | Ell,.
<\/@+e Vs te 1+ 1+e€ 2
(41)
We now handle the second term in eq. lmi Applying Lemma.w1th B = p1 and letting C' = \/ﬁ
be the constant defined in Lemma [T6}
4CR?
1M, = Bylly = || Y- asBe | V€ ((wr, 2) | = E. [VE (s, 2) || < n———G(w,).
k<s (1—p1)
= 2
Hence, by the preceding inequality and since = %,
M, —FE 1
— B, < Z||M, — E|l,||Es 42
«@H,>7n (AT “2)
4CR?
<n| ——— | Gws) || Esll,
e(1—p1)
<2 E, 43
< 26w, 43)
Now we handle the third term in eq. . By Lemma 33| either there exists a time k < ¢ such that
128d1n(2+/nd/d
Glon) < 280213
or, with probability at least 1 — 4, for all time s < ¢,
ms — M ’72
14 s)||Es 44
< NoETh E [V (wk)]> 1 Cws)Esll (44)

In the former case, we are done. Hence, suppose we are in the latter case. Then,

s_Ms
&>=<m,&>sf (@) Eilly < FCw B, @)

M,
95" Toite ot
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Therefore, by applying egs. @0) to (@2)) and @3)) to eq. (39) and by the definition of 7, 3,

= = 72 - |I?
R(wo) — R(wy) +1 > ZW gG(WS)”ESHz —nG(ws)|| 29, ) (46)
s<t
It remains to control the squared gradient term. By Theorem [32] either there exists a time k < ¢ such
that
2048 1n(2y/nd/é
Glun) < (2y/nd/0)
f
or, with probability at least 1 — 6, for all time s < t,
2
Zgs|| < s)>. 47
H 95|, = 56 G ws) “7)

In the former case, we are done. Thus, suppose the latter case. Then, applying eq. (7)) to eq. {@6),

G(w5)3> .

Since || Es||y > 72G(ws), n < % < €2, and G(wy) < 1, the preceding inequality simplifies,

2
= g v
Rwo) = Rlw) +12 (;Gws)n&nz sl

s<t

_ — 2 ntys
Rlwo) = R(wy) +1> Y 7 (782@(108)2 256G ws) > Zn% Glw,)? > L2 inf G(w,)™.

s<t
s<t s<t

Dividing 5 L 72 on both sides grants and recalling that wy = 0 which implies R (wp) = In(2) < 1,
32 16 /— —
> (R(wo) — R(wy) + 1) > inf G(ws)?.
mat = 3t s<t
Furthermore,
Pr((ws, z) < 0) < 4G (w;)?.

. . . 201 5/2
Putting everything together and since ¢ = y/n and = W,

. 128 512R? 8192 R?
1réf;Pr(<ws,z> <0) < 5~ 3. 5/2 == 5/2
s et e (1-51)""Vn pe(1-5)""Vn
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