© ®©® N O g A~ W N =

ROSE: Reconstructing Objects, Scenes, and
Trajectories from Casual Videos for Robotic
Manipulation

Anonymous Author(s)
Affiliation
Address

email

Abstract

In this paper, we build a real-to-sim-to-real (Real2Sim2Real) system for robot
manipulation policy learning from casual human videos. We propose a new frame-
work, ROSE, that directly leverages casual videos to reconstruct simulator-ready
assets, including objects, scenes, and object trajectories, for training manipulation
policies with reinforcement learning in the simulation. Unlike existing real-to-sim
pipelines that rely on specialized equipment or time-consuming and labor-intensive
human annotation, our pipeline is equipment-agnostic and fully automated, facili-
tating data collection scalability. From casual monocular videos, ROSE enables
the direct reconstruction of metric-scale scenes, objects, and object trajectories
with physics information in the same gravity-calibrated coordinate for robotic data
collection in the simulator. With ROSE, we curate a dataset of simulator-ready
scenes from casual videos from our own capture and the Internet, and create a
benchmark for real-to-sim evaluation. Across a diverse suite of manipulation tasks,
ROSE outperforms the existing baselines, laying the groundwork for scalable
robotic data collection and achieving efficient Real2Sim2Real deployment.

1 Introduction

Learning complex manipulation skills from human demonstrations is a long-standing goal in robotics.
Casual human videos offer a vast and diverse source of demonstrations, but translating this unstruc-
tured visual data into executable robot policies is a significant challenge. Since replicating these
scenes in the real world for direct imitation is often impractical or unsafe, a more scalable approach
is needed.

This paper develops a real-to-sim-to-real system that bridges this gap, enabling robust policy learning
by first reconstructing the essence of a human demonstration within a physically-realistic simulator.
Three features need be simultaneously present in one gravity-aligned, metric world frame: (G) coll-
idable geometry for both scene and objects; (P) physics plausibility so that contact, scale, and gravity
are sensible in simulation (coarse priors over material/density belong here, but exact identification
is not the point); and (M) executable motion—a time-aligned 6-DoF object trajectory the robot can
imitate, replay, or condition on. The minimal sufficient assets that let a robot both plan and act are
this G/P/M triad, coherently aligned in world coordinates.

Previous works have explored reconstructing robotics manipulation data from human videos. How-
ever, we argue that four elements based on the G/P/M triad need to co-occur for turning casual video
into robotic data as a scalable data engine—casual video, object trajectory, scene, and object. It
surfaces where representative methods in Tab. 1 leave gaps. (1) Being Able to Reconstruct from
Casual Video. Internet-scale demonstrations are predominantly casual (narrow baseline, dynamics).
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Table 1: Comparison with existing real-to-sim pipelines. Scene mesh: 3D collision mesh of the
scene. Object Mesh: 3D collision mesh of objects. Object Traj.: The 6-DoF pose of objects to be
manipulated. Gravity Dir: The gravity direction of the reconstructed scene and objects. Metric Scale:
If the reconstructed scene is in metric space (cm). World Coord.: If the reconstructed scene is in the
world coordinate. Automation: It is a fully automated pipeline or requires human annotations (e.g.,
RialTo [57] needs expert human annotation using GUI tools). O: Unknown.
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RialTo [57] S S S ST X RGB-Video
Video2Policy [71] X v v X v X V MV-imgs/LiDAR
RL-GSBridge [65] X v X X X vV X MV-imgs
SplatSim [46] O/ /X X /X RGB-D
ReBot [10] X X v X v v 7/ Video / Mesh
Digital Cousins [7] O 0 x x Ov Vv Image
Chen et al. [4] X X X X X X  Mesh/Trajectory
URDFormer [5] /X X X v/ MV-imgs
Ditto Inthe House [19] v v X X X O Image/ Interaction
Ours v v 7 v /S RGB-Video

GS-based pipelines such as [46, 57, 65] are typically tuned for multi-view, stable captures and are
sensitive to dynamics or camera-trajectory violations, which limits robustness under single-take
narrow-baseline inputs; several other entries rely on multi-view or controlled capture [4, 5, 7, 10, 19].
(2) Object trajectory. A world-aligned 6-DoF object trajectory provides task-resolution signals that
planners and policies can directly reuse; video-conditioned control and end-to-end policy learning
confirm the value of motion cues [21, 71], while methods emphasizing 3D assets or interaction with-
out exporting an executable, world-frame object trajectory offer less leverage for planning [5, 19, 57].
(3) Scene. Object motion is contextual: contact feasibility, clearances, and gravity alignment are
defined with respect to the scene; pipelines that do not reconstruct a collidable, metric-scale, gravity-
aligned scene (e.g., learning directly from videos without scene geometry [71]) provide limited
support for validating contacts or credibly replaying motion. (4) Object. Interaction requires an
interactable object; modern simulators assume well-behaved meshes for stable contact, so policies
validated without object geometry risk overfitting to appearance rather than contact-rich behavior.
Taken together, partial solutions in Tab. 1 (e.g., scene/object without motion, motion without scene,
or assets lacking world/scale/gravity alignment) are valuable components but harder to use as a
generalizable engine. Our aim is to deliver simulator-ready scene/object meshes and an executable,
world-aligned object trajectory from casual video so that downstream planners and policies can both
plan and act.

Our thesis is that casual, narrow-baseline videos can be turned into such assets at scale if two design
choices are made early and enforced end-to-end: first, unify camera, metric scale, and gravity so
that geometry and motion live in a single world frame throughout; second, treat reconstruction as
a high-throughput generator and guard it with a re-rendering consistency gate. We use SSIM with
geometric/physical sanity checks to convert long-tail failures into discardable samples before errors
cascade. In addition, we treat physics as plausibility: we incorporate coarse, category-conditioned
priors (e.g., mass estimated by VLM) into the simulation setup to avoid obviously non-physical
interactions without over-promising fine identification [34, 47, 62].

Concretely, from a single casual video we (i) recover cameras, metric scale, gravity and physics
information; (ii) produce collidable scene and object meshes suitable for standard simulators; (iii)
estimate an object-centric 6-DoF trajectory consistent with that world frame; and (iv) enforce a post-
filtering gate via differentiable re-rendering and SSIM, complemented by geometric and physical
checks. The result is a simulator-ready bundle with geometry, physics plausibility and motion
produced automatically from casual video.
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Figure 1: ROSE Real2Sim pipeline illustration. (a) We leverage MegaSaM[31] and GeoCalib[58]
to reconstruct scene point cloud in the metric-scale and gravity-align world coordinates. (b) We
further use SAM-2[48] and DINO-X[49] to detect and track interactor and object mask from videos.

Given only a single RGB camera moving through a real scene, ROSE automatically builds an interac-
tive 3D simulation of that scene, reconstructing the geometry, appearance, and physics information of
objects and surfaces. The resulting simulation (a “digital twin” of the scene) can be used to train and
evaluate manipulation strategies in a safe and scalable manner. By eliminating much of the manual
effort required to create detailed simulated environments, ROSE aims to enable robots to learn and
test manipulation policies in faithful virtual replicas of real-world settings, then execute them reliably
in the physical world. We collect a large-scale dataset comprising diverse scenes, objects, trajectories,
and physically plausible robotic actions for task completion. The dataset includes more than 30
scenes, 50 objects, 600 trajectories, and 3,500 robot action samples.

2 Related Work

2.1 Sim-to-Real RL Policy Transfer

Training robot policies with RL in simulation, followed by a sim-to-real (Sim2Real) policy transfer,
has become one of the most successful robot learning strategies in wide applications, such as
locomotion [18, 25, 26, 32, 55], loco-manipulation [11, 12, 17, 51], dexterous manipulation [16, 45],
etc. One advantage of such Sim2Real RL training lies in the low-cost, safe, and more potential in
improving generalization through domain / dynamic randosmizations [41, 56], making it a widely
adopted alternative to collecting real-world data that is typically time-consuming and labor-intensive.
However, such a low-cost and safe simulation training alternative may bring a Sim2Real gap that
makes it hard for the Sim2Real policy transfer. To address this issue, a lot of works have been proposed
to mitigate the gap, e.g., curriculum learning of Sim2Real constraints [18, 27, 33, 52], teacher-student
distillation of privileged information like object states or environment extrinsics [25, 27, 43], 3D
awareness [15, 23, 39, 54, 72], and perception augmentation / randomization [1, 2, 6, 9, 35, 50].

2.2 Real-to-Sim Dynamic Scene and Object Transfer

Recently, a lot of efforts in 3D vision have been devoted to creating simulated twins of the real-world
scenes / objects from 2D videos [22, 30, 38], which is critical in enriching operating environments
when training robot policies in simulation. Generally, transferring real-world scene videos to the 3D
simulation that is useful for robot learning involves three key components: i) 3D scene geometry, ii)
3D object geometry, and iii) object dynamics, which requires two key techniques as follows.

Dynamic 3D Scene Reconstruction from 2D focuses on recovering the appearance and geometry
of scenes from 2D images or videos. Earlier methods [28, 30, 59, 64, 70] typically rely on dense
multiview capture and require significant computational resources to reconstruct dynamic scenes,
often using NeRF-based [37] or 3D Gaussian Splatting [24] representations that evolve over time.
More recently, with advances in deep multiview stereo [29, 61] and monocular depth estimation [42,
69], a new line of work has emerged that better captures the geometry of dynamic scenes from casual
inputs. Notably, approaches such as MegaSaM [31], MonST3R [73], and CUT3R [60] demonstrate
robust and efficient dynamic 3D reconstruction from casually captured monocular videos. These
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methods mark a significant step towards scalable, large-scale scene reconstruction and asset creation
for downstream applications like robotics.

3D Object Dynamics from 2D provides the object-level kinematic dynamics encoded as object
spatial translation and orientation in 3D, offering valuable priors that help both traditional motion
planning methods and learning-based approaches. To capture such object dynamics, various object
representations have been used as the policy tracking goal. For example, Bharadhwaj et al. [2]
propose to use object and hand segmentation as proxy information, followed by a segmentation image
conditioned policy that achieves better generalization.

Meanwhile, some works utilize the point-level flow map of objects or images as the point tracking
objective and achieve great progress [3, 8, 13, 67]. Different from relying on such proxy represen-
tations, our approach directly collects 6DoF trajectories through pose estimation [63], offering a
scalable and efficient solution for acquiring high-quality motion data. Notably, a concurrent work,
Video2Policy [71], also proposes to use 6DoF object trajectories as object dynamics. However,
Video2Policy only reconstructs the object states and places objects on the same canonical tabletop
in a specific robot frame. In contrast, our approach transfers both the dynamic scenes and the
objects in the world coordinate, where the world frame reconstruction helps SLAM-based scene
reconstruction [31].

3 ROSE:Reconstructing Object, Scene, and Trajectory

3.1 Object Reconstruction

Object Grounding. As shown in Fig. 1, given a target object label from user input or LLM inference,
we scan the video frame-by-frame until the object is first detected by DINO-X [49]. The detected
bounding box is passed to SAM 2 [48] to obtain the initial target object mask MM, SAM 2
then pg\?pagates this mask through the remainder of the sequence, yielding per-frame object masks
{M}is .

Object Mesh Reconstruction. Using the segmented masks, we leverage TRELLIS [66] to reconstruct
the 3D object mesh M, which provides 3D reconstruction pipelines from both single image and
multiview images. Since most manipulation videos are filmed from a single viewpoint, we select the
initial mask M™ to reconstruct M°%. For highly occluded or feature unclear situation, we would
use masks from multiple non-occuluded views to reconstruct.

3.2 Scene Reconstruction

Scene Point Cloud Reconstruction. For every video frame I;, MegaSaM [31] provides the cam-
era intrinsics K;, the camera pose G; = [Ry|t;], and a relative depth map D''. We feed I, to
UniDepth [42] to obtain an absolute depth estimate D, A global scale factor & and offset B
align D™ to metric depth D*'€". Each pixel is back-projected using K;, G; and D" to obtain
its corresponding 3D point, which we accumulate into a raw scene point cloud P. Then we apply
GeoCalib [58] onto the first frame and obtain a gravity-align transformation P&, Then we apply
P&y (o each of the following frame to ensure the scene is under the gravity-aligned coordinate.

Scene Mesh Reconstruction. The sparse, hole-ridden point cloud P yielded by the previous
stage is first densified with Neural Kernel Surface Reconstruction (NKSR) [20]; its detail hyper-
parameter is tuned to close gaps while preserving fine geometry. To satisfy simulator requirements,
namely orientability, 2-manifoldness, and self-intersection freedom, we subsequently apply an Alpha
Wrapping procedure [44], producing a watertight, validity-guaranteed surface. Finally, color is
restored by a point-to-vertex transfer: each mesh vertex inherits the distance-weighted average RGB
of its three nearest neighbors in the processed point cloud, yielding a textured, simulation-ready scene
mesh M"¢,

3.3 Trajectory Reconstruction

Improved Foundation Pose. Given a set of segmentation masks {IM,; }¥ we employ Foundation-
Pose [63] in a model-based setting to estimate the object’s 6-DoF pose P°%. The estimator takes
as input the RGB image I, the reconstructed object mesh M from Sec. 3.1, the camera intrinsics
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matrix K, and the aligned depth map D#" from Sec. 3.2. Since FoundationPose assumes metric
consistency between depth and mesh, we introduce a scale-alignment procedure.

Specifically, we backproject pixels (u, v) inside M™ to 3D points p(u,v) € R? in camera coordi-
nates using D#i2" and K. We then compute the maximum pairwise distance among these points,

dimase — max uy,v1) — p(ug, v 1
(o) SR o [p(u1, v1) — p(uz, va)| M

For the mesh, we compute the maximum vertex-to-vertex distance dmesh,

d™" = max |[|x, — x| )

Xq ,Xp EMOPI
These yield an initial scale estimate py = d™ae¢ /dmesh,
To account for noise in depth, intrinsics, and occlusions, we refine the scale by a discrete search

pE [po/Oz7 poa} with step size s.

For each candidate scale p, we scale the mesh M°Pi, run FoundationPose to obtain the pose Pobi (p),
render the corresponding silhouette M(p), and select the p* that minimizes the IoU loss with the

ground-truth mask MM

> ica Mi(p) mi
Dicq (Mi(p) +mi —1ng(p) mi)
Here 2 denotes the image domain, m; € {0, 1} is the ground-truth mask value, and 1m;(p) € [0, 1] is

the rendered mask value at pixel i. We take the final pose as P°PI = P°Pi(p*) and use it to initialize
pose tracking, yielding poses for subsequent frames.

Liu(p) =1— 3

3.4 Post Filtering System

To ensure our pipeline maintains a high level of quality we run each result through a filtering system.
In order to holistically evaluate the quality of our results, we combine our reconstructed scene, object,
trajectory, and camera poses and render them into a reconstructed video to compare with the original
video. This formulation enables our filtering system to remove results which may have malformed
object meshes, incorrectly textured scenes, or inaccuracies in trajectory and pose reconstruction as
well as filter based on the accumulated error from each of these potential sources over time.

To ensure there is temporally consistent accuracy between our pipeline’s reconstruction and original
video, our filtering system places the object back into the scene following the reconstructed trajectory
from each time step of our pipeline’s result. For each object position we render a frame from the
corresponding reconstructed camera pose. Upon rendering each of the reconstructed frames, ",
we compute the SSIM with each of the video’s original frames, f€'. We average across all the frames
and finally filter results based on an established threshold from previous success and failure cases.

N
1
SSIMuyy = > SSIM(fen, fE) 4)
t=1

1, if SSIMuve > SSIMipresh
0, otherwise

&)

Success — {

With this filtering system, our pipeline gains the capability to reconstruct scenes from large numbers
of casual videos, offering scalability while ensuring that reconstruction quality is maintained.

3.5 Robot Action Collection

Building on the object trajectories reconstructed by the pipeline described above, we further explain
how we collect robotic action data to enable the object to follow the trajectory and complete the task.
With the reconstructed scene and object, we first load them into the simulator. Given the object’s
motion, our goal is to control the robot to interact appropriately with the object and guide it along the
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desired trajectory. We primarily utilize two baseline approaches for diverse robotic action collection:
motion planning-based and reinforcement learning-based methods.

Motion Planning. For the motion planning-based algorithm, we first predict an appropriate grasping
pose for the object. Once a stable grasp is achieved, the robot follows the object’s trajectory using end-
effector control based on cuRobo[53]. If the object remains stable and the trajectory is successfully
followed, a data sample is considered successfully collected. For this method, we only consider the
parallel-jaw gripper setting. In detail, we use GSNet [40] to predict grasp poses based on the point
cloud generated in the simulation. After executing a planned trajectory to successfully grasp the
object, the robot then follows the trajectory obtained from our vision pipeline to collect valid data.

Reinforcement Learning. Although the motion planning-based method is efficient and easy to
implement, it is not sufficient for all scenarios. For example, when using high-dimensional robotic
hands, as opposed to simple parallel-jaw grippers, predicting an appropriate grasping pose becomes
significantly more challenging. In such cases, reinforcement learning (RL) allows the robot to explore
and learn effective grasping strategies to complete the task.

Our RL baseline consists of two stages: object grasping and object manipulation. In the first stage,
we design a reward function composed of three terms: a reaching reward 7c,ch, a grasping reward
Torasp- 1IN the second stage, we follow the object trajectory generated by our previous pipeline to
complete the task. To achieve this, we use CuRobo to control the end-effector and track the trajectory
accurately.

It is also worth noting that we explored an end-to-end RL approach without the two-stage setting.
While we carefully designed a reward function for trajectory following, we found that it was difficult
for the policy to accurately replicate the generated motion, particularly in cases involving complex
rotations. This limitation arises from the inherent nature of RL: since learning relies heavily on
exploration, it is challenging for a policy to acquire precise trajectory-following behavior, especially
when the robot is simultaneously required to grasp and manipulate the object.

3.6 Sim-to-real Transfer

With action data collected, we further train a model for sim-to-real transfer. A key advantage of
our vision pipeline is its ability to generate high-quality, simulation-ready scene and object meshes,
along with corresponding object trajectories. This enables fast and accurate robotic data collection
in simulation. Using this data, we can leverage a high-quality renderer to produce realistic visual
datasets. This allows us to train a vision-based robotic model capable of directly transferring to
real-world scenarios.

4 Experiments

4.1 Experiment Setup

Our model is able to collect robotic data from diverse datasets from various sources, including
outdoor, indoor environments. We benchmarked our real-to-sim method in RoboVerse[14] simulation
environment and validated it in both simulation and real-world settings using the Franka arm and
Unitree G1 humanoid robots.

4.2 Benchmark Construction

We construct a new benchmark to evaluate the fidelity of real-to-sim-to-real pipeline scene recon-
structions from casual monocular videos as shown in Tab. 2. Because existing metrics treat scene
layout, object shape, and motion separately, our benchmark fuses them into one holistic evaluation. It
provides five simulated environments with full ground-truth geometry, appearance, and trajectories,
plus a casually captured video that serves as the pipeline’s input. Evaluation uses four metrics:
per-frame Chamfer distance between scene point clouds, Chamfer distance for object geometry, and
APE/RPE (translation and rotation) for object trajectories. Scores are averaged across frames to
yield stable measures. Together, these metrics reveal how well a method recovers both the static
environment and the dynamics of the objects within it.



234

235
236
237

239
240

Video Frames 4D Point Cloud Object Scene Trajectory

Pour Pepsi

» N

Rotate Stapler

Place Yellow Cube

TG

Pick Croissant

Figure 2: Qualitative ROSE Real2Sim results.

Task Avg. Scene Object Translation Rotation Translation
as Chamfer Dist. Chamfer Dist. ~ APE RPE RPE
Unstack 0.6211 0.02158 0.003242 3.724 0.001649
Place 0.6945 0.01060 0.02629 3.804 0.02269
Lift 0.6696 0.02786 0.02208 9.065 0.004374
Push 0.7513 0.01516 0.01086 4.229 0.002170
Rotate 0.6513 0.01394 0.008418 3.508 0.003301
Average 0.6776 0.01782 0.01418 4.866 0.006837

Table 2: Benchmark comparison across tasks. ROSE’s performance metrics from our benchmark.
Avg. Chamfer distance is computed for scene reconstructions, while object metrics include Chamfer
distance, Absolute Pose Error (APE), and Relative Pose Error (RPE).

4.3 Data Generation Time and Qualitative Results

With post filtering system we are able to reconstruct scenes from casual videos while maintaining
the quality of our results. We present qualitative results on Fig. 2, demonstrating how our pipeline
reconstructs geometrically accurate scene, object and object trajectory from casual videos to enable
policy training. Additionally we compare the runtime of our pipeline against the runtime of the
leading baseline which can be seen in Tab. 3. ROSE reconstructs environments and trajectory data
around 8x faster than the baseline on while remaining accuracy on geometry.
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Figure 3: Qualitative ROSE real-world results.

Task Name ROSE (Ours) Improved V2P
Recon Time | SSIM 1 Recon Time | SSIM 1
Triangle Move Mouse 8m46s 0.803 72m39s 0.746
Circle Move Mouse 8m28s 0.789 71m45s 0.734
Flip Magic Cube 7mS7s 0.718 70m37s 0.598
Rotate Stapler 8m39s 0.715 83m01s 0.582
Pour Pepsi 9m22s 0.713 77m58s 0.632

Table 3: Pipeline Runtime and Reconstruction Quality. Comparison of ROSE and Video2Policy
(V2P) with 3DGS-based scene reconstruction runtimes and SSIM values.

4.4 Robotic Dataset Collection

Leveraging our scene, object, and trajectory reconstruction results, along with our robotic data
collection pipeline, we construct a robotic manipulation dataset from monocular video. In the end,
we collect 3.5k valid robotic datasets with diverse task settings and environment variation.

Simulation Environment Setup. Based on RoboVerse [14], we develop a pipeline for generating
simulation environments. We use a standardized configuration file to process scene layouts and object
meshes. After loading the target robot into the simulation, we perform unit tests to ensure proper
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setup and collision-free initialization. We then follow the data collection pipelines to gather robotic
manipulation data.

Manipulation Benchmark in Simulation. We establish a simulation benchmark to evaluate the
performance of different robotic data collection methods. Specifically, we compare our proposed
motion-planning-based approach and a two-stage reinforcement learning (RL) method against an
end-to-end RL baseline. Our results show that the motion planning-based and two-stage RL methods
perform differently across various settings—each demonstrating strengths in different scenarios.
Comparing with strong baselines, including the concurrent work Video2Policy [? ], Our method
achieves the best performance on three out of four tasks as well as on the average score as shown
in Tab. 4.

Method PickPepsi ~ StackBlock  PlaceBowl ~MoveTriangle | Average
End-to-End RL 1.00 0.00 1.00 0.00 0.50
Video2Policy [71] 0.00 0.00 0.40 0.00 0.10
Ours (Motion Planning) 0.80 1.00 0.40 0.80 0.75
Ours (Two-stage RL) 1.00 0.60 1.00 1.00 0.90

Table 4: Task completion rate in simulation.

4.5 Sim-to-Real Transfer

To validate the usefulness of our collected data, we conduct experiments to demonstrate the effective-
ness of both the dataset and the trained policy.

Zero-shot Robotic Manipulation and Data Collection. We evaluate our collected robotic data and
data collection pipeline in real-world settings. Specifically, we deploy the motion-planning-based
method as shown at ¢ and d row in Fig 3 in a physical environment to assess its capability for zero-shot
data collection and task execution using only a single demonstration. We test the data collection
system across 13 different scenarios, achieving success in 11 of them—resulting in an 84.6% success.
The failure is primarily due to incorrect grasp poses and joint limit violations during motion planning.

Policy Sim-to-Real Transfer. We further train an RGB-based policy in simulation and demonstrate
that, using the assets generated by our real-to-sim pipeline, the action data collected in simulation,
and high-quality rendering based on RoboVerse [14], the resulting policy can zero-shot generalize to
the real world.

5 Conclusion

We presente ROSE, an end-to-end, equipment-agnostic Real2Sim pipeline that lifts casual monocular
videos into simulator-ready assets: metric-scale, gravity-aligned scene reconstructions, watertight
textured meshes that meet simulator validity constraints, and consistent 6-DoF object trajectories
in a unified world frame. The system combines robust geometric recovery with a post-hoc filtering
stage that enforces temporal consistency, yielding assets that can be consumed directly by both
motion-planning and learning-based controllers. On top of this vision stack, we standardized the
handoff to robotics—curating a benchmark that evaluates scene, object, and trajectory fidelity jointly,
and building data-collection routines that translate demonstrations into scalable simulation rollouts.

Empirically, ROSE recovers geometry and dynamics with strong fidelity across diverse manipulation
tasks and outperforms prior Real2Sim baselines in simulation, while also enabling zero-shot transfer
on real robots. Together with the curated assets and 3D reconstructions, these results indicate
that high-quality manipulation data can be collected from casual videos at scale, reducing manual
environment authoring and separating risky exploration from the real world. We view ROSE as a
step toward video-driven Real2Sim2Real at population scal, where casual videos become a training
substrate for policies. It standardizes the interface between perception, asset creation, and policy
learning, and opens a path to richer, safer, and more diverse robotic data collection.
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6 Limitations

Our current scope is restricted to rigid scenes and objects. Articulation, deformable materials, and
fluid-like dynamics are not modeled, and we do not yet reason about contact compliance or material
parameters beyond simple frictional settings. The object mesh is typically reconstructed from limited
viewpoints; under severe occlusion, low texture, specularity, or translucency, geometry and pose
tracking may degrade. As with any monocular pipeline, metric scale and intrinsics are estimated rather
than measured, making ROSE susceptible to residual scale or gravity misalignment in challenging
conditions.

On the control side, our data-collection stack emphasizes parallel-jaw grasping and a two-stage policy
structure; purely end-to-end trajectory following proved fragile for complex rotations, and we do
not yet leverage force/tactile feedback. Extending ROSE to articulated and deformable objects,
multi-object interactions, richer physics priors, tactile sensing, broader robot platforms, and physically
informed filtering is an important next step toward making casual videos a dependable substrate for
policy learning at scale.
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A Implementation Details

In this section, we introduce the implementation details of ROSE. To be specific, we present the
details of the Real2Sim transfer of human videos, Sim2Real policy training, and real-world setup in
Appendix A.1, Appendix A.2, and Appendix A.3, respectively.

A.1 Real-to-Sim Transfer

We use the videos with a resolution of 512 x 288 containing 60~300 frames in 30 FPS (spanning 2s
to 10s). We first reconstruct the 3D point clouds by running MegaSaM [31], detailed as follows.

Point Cloud Reconstruction For every frame, we follow MegaSaM [31] to get the affine-invariant
monocular disparity map with Depth-Anything V2 [68], a camera pose in the world coordinate, and
the focal length estimation obtained with UniDepth V2 [42]. With this information, we align the
disparity to the metric scale, which is converted to the pixel-aligned 3D point clouds coordinated
in the world frame. Afterwards, we use GeoCalib [58] on the first frame to estimate the scene’s
gravity direction. We then rotate the camera rig so that the estimated gravity is to the negative of
the z-axis in a right-hand coordinate system, resulting in gravity-aligned point clouds in the world
frame. To further avoid residual artifacts, we apply edge dilation to remove colors at boundaries
and depth-gradient pruning to remove point clouds with corresponding gravity exceeding a certain
threshold of 0.8 for reducing depth discontinuities.

For every image, we use Ground-SAM-2 [48] with DINO-X-Track[49] to obtain binary masks of
objects in the scene, used for object removal and reconstruction. For the scene point cloud, we fuse
the point clouds by random sampling over the video to leverage complementary information to reduce
the inaccurate point clouds caused by occlusions and partial scenes after object removal. The random
sampling is used for balancing every frame’s contribution. On average, the point cloud reconstruction
would take 3 minutes to process a 5-second casual video.

3D Mesh Reconstruction For the object mesh, we use TRELLIS [66] to reconstruct the 3D
mesh, and we set the a channel’s threshold to 0.2 to help reconstruct dark objects. For the scene
mesh, we use a three-stage method. In the first stage, we run Neural Kernel Surface Reconstruction
(NKSR) [20] for surface fitting. To close the small gaps created by mask removal while preserving
high-frequency geometry, we set the detail level to 0.4 and use a single MISE iteration. Afterwards,
to make the mesh orientable, two-manifold, and self-intersection-free for simulator usage, we wrap
the resulting mesh with CGAL alpha-wrapping algorithm [44]. The « value is set to 400. Finally,
each mesh vertex v of M, inherits the RGB value ¢(-):

c(w)= Y wp,v)clp), wlp,v)

PEN} (v)

This is the inverse-distance-weighted average of its k-nearest neighbours N (v) in the point cloud.
In this work, we use k = 3 with a maximum distance of Scm.

X .
Ip = vll2

Improved Foundation Pose Foundation pose [63] requires that the scale of the mesh and the scale,
unprotected from the depth map, be the same in order to ensure accurate pose estimation. Therefore,
we align the trellis mesh M with the scene mesh M*™ by the following transformation:

Mtrellis—align — GO QthrelliSf (6)
where s is the scale factor, G is the camera pose, Q is the object pose, and f is the focal length.

For pose tracking, we begin by using the scale s estimated in the first frame to adjust the scale
of M'llis We then follow the approach outlined in FoundationPose [63]. The object pose Q; is
initialized using the previously estimated pose Q;_1, and the refinement network is applied to further
refine Q;, yielding the final estimation of the object pose for the current frame.

A.2 Sim-to-Real Policy

Simulation Environment Setup We use RoboVerse [14] as our simulation platform to establish
the data collection pipeline. Specifically, we adopt the IsaacGym branch for mesh loading, policy ex-
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ecution, and reinforcement learning, while leveraging the IsaacLab branch for high-fidelity rendering
and vision-based policy training.

Simulation and control parameters follow the default settings provided by RoboVerse. For both
objects and scenes, we set the friction coefficient to 0.5. To ensure accurate collision detection and
reliable physics simulation, we apply convex decomposition to the scene geometry.

Robotic Data Collection based on Motion Planning We utilize GSNet [40] and cuRobo [53]
as the core components of our motion planning pipeline, and conduct all simulations within the
Isaac Gym environment. After reconstructing the scene (as described in Appendix A.1), we load the
reconstructed environment and the target object mesh into the simulator. The object is represented
using a high-resolution mesh, preserving geometric detail necessary for accurate grasp prediction and
motion planning.

Using GSNet, we extract both the surface point cloud and a predicted grasp pose for the target object.
These predictions are then used to initialize an inverse kinematics (IK) solver provided by cuRobo,
which computes a feasible trajectory for the robot’s end effector to reach the designated grasping
configuration. During this process, we account for kinematic constraints, joint limits, and potential
collisions in the environment.

Upon reaching the grasp pose, the robot executes a grasp based on a set of hand-crafted heuristics,
which evaluate grasp stability using factors such as contact normals and finger placement. Once
the grasp is completed, the robot follows a trajectory generated by a previously introduced motion
prediction model, which guides the object to a specified goal position or task-specific location.

Robotic Data Collection based on Reinforcement Learning Our method adopts a two-stage
policy for robotic manipulation. In the first stage, we employ a reinforcement learning (RL) approach
to train a policy that guides the robot’s end effector toward the object and performs a grasp once
proximity is sufficiently close. To facilitate generalization across different grippers or robotic hands,
we design a simple yet broadly applicable reward function. This reward encourages the end effector
to reduce its distance to the target object and penalizes undesired motions, without relying on
gripper-specific parameters, making it adaptable to a wide range of hardware configurations.

During deployment, we execute the learned grasping policy for a fixed horizon of 50 steps, under
the assumption that a successful grasp is achieved by the end of this phase. In the second stage, we
switch to a motion planning phase using cuRobo [53]. The robot follows a precomputed trajectory
that guides the grasped object to its goal location or completes the assigned task. This two-stage
setup decouples grasp acquisition from subsequent manipulation, allowing each component to be
optimized independently while ensuring end-to-end effectiveness.

A.3 Real-World Experimental Setups

Franka Setting For our real-world experiments, we use a Franka Emika Panda robotic arm equipped
with a Robotiq 2F-85 adaptive gripper. This setup provides a reliable and widely used platform for
evaluating grasping and manipulation policies in physical environments. The robot is controlled via a
high-level interface that integrates seamlessly with our planning and control pipeline.

To reconstruct the environment, we capture RGB-D data using both an iPhone 16 Pro and a DJI Osmo
Pocket 3. These consumer-grade devices offer high-resolution color and depth sensing capabilities,
allowing for efficient and accessible scene scanning.

B Real-to-sim Benchmark

B.1 benchmark evaluation metric details

Our proposed benchmark is based on three primary evaluations: scene reconstruction similarity,
object reconstruction similarity, and object trajectory reconstruction.

Uniform Sampling. Uniform sampling extracts a point cloud from a mesh by taking IV points

drawn i.i.d. over the surface of the mesh M. Unless stated otherwise, N = 10,000 in all our
experiments.
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Symmetric Chamfer Distance. Given two point clouds A and B, symmetric chamfer distance is
defined as:

1
ChamferDist (A, B) b in|b — alf3.
amferDist ( |A\ ZmlnHa % + Bl beszrgEH all;

Scene Reconstruction Similarity. To evaluate scene reconstruction similarity, we first construct a
point cloud P*°*" through uniform sampling the reconstructed mesh. We then align P5°*"® with each
frame’s ground-truth point cloud P¥*°*(; = 1,..., F) by optimizing an SE(3) transformation to
yield P**"_ Finally, we compute the average chamfer distance across the aligned frame point cloud
P*°e"® and the ground-truth scene point clouds.

F
1 . A
Esene = Y Z ChamferDist(P$" " pseene)
i=1
Object Reconstruction Similarity. Similarly to scene reconstruction similarity, we construct point
clouds P#-°% and P°% by uniformly sampling the ground-truth and reconstructed object meshes
respectively. We then align the point clouds by optimizing an SE(3) transformation to yield P°Y.

Finally, we evaluate object reconstruction similarity as the chamfer distance between the aligned
point clouds.

Eqpj = ChamferDist(P£% | povi)

Trajectory Reconstruction. We evaluate object trajectory reconstruction using three metrics: abso-
lute pose error translation (APEy,,,s), relative pose error translation (RPE;, ., s) and relative pose
error rotation (RPE,.,;). We compute these between the ground truth trajectory Q2°" and the recon-
structed trajectory Q%, after aligning the reconstructed trajectories scale and SE(3) transformations.

The absolute pose error (APE) measures the deviation between corresponding poses and is defined as:

t-obj bj t-ob bj
ape (QE, Q) = NZH%‘EJ Q.|

where Q. denotes the translation component of pose Q; and Q denotes the aligned trajectory.

The relative pose error (RPE) measures the local consistency of motion between consecutive poses.
For an interval A = 1, we define the relative transformations as:

Tgt —rel (Qgt Obj) 1 ng;oAbJ
T;)bj—rel _ (Q()b_]) QSEA
The translation component of the RPE at time ¢ is given by:
Erpe,trans (1) = Htrans ((Tft'rel)*lT;)bj"rel) H

where trans(-) extracts the translation part of a transformation.

2

The rotation component of the RPE is given by:
trace (rot ((Tft'rEI)_ngbj'rel)) -1
2

Erpe.rot(1) = arccos

where rot(-) extracts the rotation matrix component of a transformation.

B.2 Data Details
We select 5 representative tasks from CALVIN [36] implemented in RoboVerse [14], covering the
basic manipulation tasks on rigid objects: lift, push, rotate, “pick and place”, and unstack blocks.

These tasks are performed on top of a delicate desk, allowing for evaluating the proposed pipeline by
reconstructing both the scene (desk) and the objects in interest (blocks).

B.3 Qualitative Results
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Video Frames 4D Point Cloud Object Scene Trajectory

RoboVerse-Calvin: Lift Red Cube (Pred)

o

RoboVerse-Calvin: Lift Red Cube (GT)

Figure 4: Qualitative examples of our real-to-sim benchmark.
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