
SCOPE: Compress Mathematical Reasoning Steps for Efficient Automated
Process Annotation

Anonymous ACL submission

Abstract

Process Reward Models (PRMs) have demon-001
strated promising results in mathematical rea-002
soning, but existing process annotation ap-003
proaches, whether through human annotations004
or Monte Carlo simulations, remain compu-005
tationally expensive. In this paper, we intro-006
duce Step COmpression for Process Estimation007
(SCOPE), a novel compression-based approach008
that significantly reduces annotation costs. We009
first translate natural language reasoning steps010
into code and normalize them through Abstract011
Syntax Tree, then merge equivalent steps to012
construct a prefix tree. Unlike simulation-based013
methods that waste numerous samples on esti-014
mation, SCOPE leverages a compression-based015
prefix tree where each root-to-leaf path serves016
as a training sample, reducing the complex-017
ity from O(NMK) to O(N). We construct018
a large-scale dataset containing 509K samples019
with only 5% of the computational resources re-020
quired by previous methods. Empirical results021
demonstrate that PRMs trained on our dataset022
consistently outperform existing automated an-023
notation approaches on both Best-of-N strategy024
and ProcessBench 1.025

1 Introduction026

As Large Language Models (LLMs) advance in027

complex reasoning tasks (Jaech et al., 2024; Liu028

et al., 2024; Yang et al., 2024; Dubey et al., 2024),029

designing effective reward models has become in-030

creasingly crucial. Process Reward Models (PRMs)031

(Uesato et al., 2022; Lightman et al., 2023) evalu-032

ate the reasoning process step-by-step, providing033

more fine-grained supervision than Outcome Re-034

ward Models (ORMs) that only assess final outputs035

(Cobbe et al., 2021; Yu et al., 2023). Recent studies036

consistently demonstrate PRMs’ superior perfor-037

mance across complex reasoning tasks (Wang et al.,038

1Our code, data, and models are available at https://
github.com/anonymous.

0.5 0.2 0.4 0.8

Simulation

Compression

Sampling

...

...

0.6

0.5

0 1.0

0.67

1.0 0.5

1.0 01.00

Figure 1: Comparison of PRM training data construc-
tion. Simulation-based methods require numerous com-
pletions solely for Q-value estimation, with these com-
pletions (gray nodes) being discarded without contribut-
ing to training. Our compression-based approach elimi-
nates such data waste by merging equivalent steps from
all sampled solutions into a prefix tree, where every
root-to-leaf path becomes a valuable training instance.

2024; Snell et al., 2024). But PRMs face a signifi- 039

cant challenge: they require intensive human effort 040

for data annotation, as every reasoning step needs 041

a label (Lightman et al., 2023). 042

To alleviate this limitation, recent studies explore 043

simulation-based methods. For instance, Math- 044

shephred (Wang et al., 2024) uses Monte Carlo 045

estimation to automate the data annotation. As 046

shown in Figure 1, it samples N solutions for a 047

math problem, and then for each step in the so- 048

lution, it simulates M potential completions and 049

calculates the Q-value based on the proportion of 050

completions that lead to the correct answer. While 051

Math-shepherd eliminates human annotation re- 052

quirements, it incurs high computational complex- 053

ity of O(NMK), where K denotes the average 054

1

https://github.com/anonymous
https://github.com/anonymous

step count of solutions. Recent studies have shown055

that Math-shepherd requires 38.8× more FLOPs056

than ORM training (Yuan et al., 2024). Although057

OmegaPRM (Luo et al., 2024) reduces complexity058

to O(NM logK) through a divide-and-conquer059

strategy, the efficiency gains remain limited due to060

typically short lengths (K < 10). We argue that061

these simulation-based approaches are inherently062

inefficient as they generate numerous completions063

solely for Q-value estimation (gray area in the Fig-064

ure 1), resulting in wasted data.065

In this paper, we introduce Step COmpression066

for Process Estimation (SCOPE), a novel auto-067

matic PRM label annotation strategy that achieves068

O(N) complexity while maintaining annotation069

quality. Unlike prior simulation-based methods070

(Wang et al., 2024; Luo et al., 2024), SCOPE intro-071

duces a novel compression-based approach: first072

sample numerous solutions for each problem, then073

merge equivalent solution steps to construct a pre-074

fix tree (Trie), as shown in Figure 1. For each node075

in the tree, its Q-value could be calculated as the076

proportion of solutions passing through it that reach077

the correct answer. Each path from root to leaf in078

the tree represents a training sample with step-by-079

step labels. Compared to simulation-based meth-080

ods, SCOPE not only achieves O(N) complexity081

through step compression, but also fully utilizes all082

sampled solutions by incorporating them directly083

into training data through the prefix tree structure.084

The key challenge of SCOPE lies in identifying085

step equivalence. Naive exact string matching is086

too restrictive and results in limited compression.087

Edit distance and sentence embedding often fail to088

capture the subtle distinctions in mathematical rea-089

soning (Wallace et al., 2019). To address this chal-090

lenge, we propose a code-based step compression091

through a three-stage process: (1) translate natural092

language reasoning steps into executable Python093

code using a code LLM, (2) normalize the code094

through Abstract Syntax Tree (AST) (Aho et al.,095

2007) (e.g., variable renaming), and (3) merge steps096

with identical normalized code using a Trie. This097

approach enables precise identification of mathe-098

matically equivalent steps while being robust to099

surface-level variations. Although code translation100

and AST add computation, the overall complexity101

remains O(N), ensuring substantially lower com-102

putational costs for large-scale PRM datasets.103

Based on SCOPE, we construct a PRM training104

dataset containing 509K samples with 4M labels,105

exceeding Math-shepherd’s scale while requiring106

only 5% of its computational resources. Empir- 107

ical evaluation demonstrates the effectiveness of 108

our approach, with PRMs trained on our dataset 109

consistently outperforming other automated anno- 110

tation approaches in both Best-of-N strategy and 111

the ProcessBench (Zheng et al., 2024a). Our main 112

contributions are: 113

• We propose SCOPE, a novel automatic PRM 114

label annotation method that introduces a 115

sample-and-compress paradigm to replace 116

traditional sample-and-simulation paradigm, 117

achieving O(N) complexity. 118

• We introduce a new PRM training dataset con- 119

taining 509K samples and 4M step labels with 120

only 5% of previous MathShepherd’s compu- 121

tational resources. 122

• Extensive experiments demonstrate that 123

PRMs trained on our dataset achieve superior 124

performance compared to other automated an- 125

notation approaches across multiple evalua- 126

tion settings, including Best-of-N strategy and 127

ProcessBench. 128

2 Related Work 129

2.1 PRMs Training 130

Process Reward Models (PRMs) demonstrate sig- 131

nificant potential in mathematical reasoning tasks, 132

though their traditional training approaches re- 133

quire substantial human annotation effort (Light- 134

man et al., 2023). While Math-shepherd (Wang 135

et al., 2024) introduces an innovative approach us- 136

ing Monte Carlo simulation to automate PRM train- 137

ing, its practical applications are constrained by in- 138

tensive computational demands. OmegaPRM (Luo 139

et al., 2024) attempts to address these limitations 140

through a divide-and-conquer Monte Carlo Tree 141

Search strategy, yet computational costs remain a 142

significant barrier. Recent research explores alter- 143

native approaches to reduce these computational 144

requirements: ImplicitPRM (Yuan et al., 2024) 145

demonstrates the possibility of deriving PRMs from 146

outcome-level labels, while AutoPSV (Lu et al., 147

2024) develops a novel verification model that eval- 148

uates step quality through confidence variation anal- 149

ysis. However, recent studies (Zheng et al., 2024a) 150

have revealed that these approaches often fail short 151

of their claimed effectiveness, particularly strug- 152

gling on more challenging datasets. 153

2

Question: KK climbed a 30-foot ladder 20 times, and Tom climbed a 26-foot
ladder 15 times. What is the total length they climbed in inches?

Code:

<Code 1>
kk_height = 30
kk_climbs = 20
kk_len = kk_height * kk_climbs

<Code 2>
tom_height = 26
tom_climbs = 15
tom_len = tom_height * tom_climbs

<Code 3>
total_len = kk_len + tom_len

<Code 4>
result = 990

Code:

<Code 1>
var0 = 30
var1= 20
var2 = var0 * var1

<Code 2>
var3 = 26
var4 = 15
var5 = var3 * var4

<Code 3>
var6 = var2 + var5

<Code 4>
var7 = 990

Solution:

Step 1: KK climbed a 30-foot ladder
20 times. The total length he climbed
is: $30 \times 20 = 600$ feet.

Step 2: Tom’s ladder is 26 feet tall.
He climbed it 15 times, so the total
length is $26 \times 15 = 390$ feet.

Step 3: To find the total length both
workers climbed, add the lengths
climbed by KK and Tom.

Step 4: Therefore, the answer is:
$600 + $390 = 990$ feet.

Abstract Syntax Tree Normalized Code

Figure 2: Illustration of code translation and normalization. The solution of a math problem is first converted into
corresponding codes through a code-LLM. Then, we use AST module of Python to derive the abstract syntax tree.
Finally, the codes are normalized via their corresponding AST.

2.2 PRMs in Mathematical Reasoning154

Process Reward Models enhance mathematical rea-155

soning capabilities through dual mechanisms: rein-156

forcement learning during the training phase and157

solution selection during inference. In reinforce-158

ment learning (Wang et al., 2024; Yuan et al., 2024;159

Shao et al., 2024), PRMs serve as reward func-160

tions that guide policy optimization by providing161

fine-grained feedback on each reasoning step, en-162

abling more targeted learning compared to tradi-163

tional outcome-based rewards. During inference164

(Lu et al., 2024; Lightman et al., 2023; Wang et al.,165

2024), the effectiveness of PRMs is commonly eval-166

uated using the Best-of-N strategy, which identifies167

the highest-quality solution from multiple candi-168

dates by aggregating step-wise scores, demonstrat-169

ing superior performance compared to outcome-170

based selection methods. The recent introduc-171

tion of ProcessBench (Zheng et al., 2024a) estab-172

lishes a more rigorous framework for evaluating173

PRMs’ capabilities in identifying erroneous reason-174

ing steps, offering a comprehensive assessment of175

their process-level understanding. Building upon176

these insights into PRM effectiveness and evalu-177

ation frameworks, we comprehensively evaluated178

SCOPE on both Best-of-N strategy and Process-179

Bench. Our method not only achieved state-of-180

the-art performance on Best-of-N, but also demon-181

strated remarkable effectiveness on the challeng-182

ing ProcessBench benchmark, outperforming the183

second-best method by 6.3%, validating the effec-184

tiveness of our compression-based approach.185

3 Method 186

In this section, we present SCOPE, a novel ap- 187

proach for automatic PRM dataset annotation: (1) 188

First, we motivate and explain our code translation 189

strategy, which converts reasoning steps into exe- 190

cutable code through a code LLM. (2) Then, we 191

detail our step compression based on AST normal- 192

ization to construct a prefix tree. (3) Finally, we 193

describe our PRM training details. 194

3.1 Code Translation 195

As we have discussed in the Section 1, the key chal- 196

lenge of SCOPE lies in efficiently identifying and 197

merging equivalent reasoning steps. A naive way 198

using exact matching fails to recognize equivalent 199

steps expressed differently (e.g., "multiply 5 by 3" 200

vs "calculate 5 × 3"), leading to an overly sparse 201

compression space. While edit distance or sentence 202

embedding offer more flexibility, they struggle with 203

precise numerical comparisons or operator prece- 204

dence (e.g., failing to distinguish between "(3 + 205

4) × 2" and "3 + 4 × 2"), making them unreliable 206

for mathematical scenario (Wallace et al., 2019). 207

The core issue is that they operate on surface-level 208

text similarities rather than identifying true mathe- 209

matical equivalence, which can manifest in various 210

forms such as different arithmetic representations 211

or algebraic transformations. 212

Therefore, we propose using code as an inter- 213

mediate representation that can precisely capture 214

mathematical operations and logical reasoning. As 215

shown in Figure 2, we first use the math LLM to 216

3

0.5

0.5

1.0 0

0

0.5

0.5

1.0 0

0.5

0.5

0.5

1.0 0

0.33

0

0

0

0.5

0.5

1.0 0

+ + +

Figure 3: Visualization of prefix tree construction process. Same-colored nodes indicate equivalent normalized step
codes. Q-values reflect the proportion of correct solutions passing through each node.

sample N solutions for each math problem, then217

employ a code LLM to convert each natural lan-218

guage step into executable code blocks (see prompt219

details in Appendix B). This code translation trans-220

forms natural language steps into a more structured221

and precise representation, laying the foundation222

for identifying mathematical equivalence. A de-223

tailed example of complex code generation is pro-224

vided in Appendix C.225

3.2 Step Compression226

While code translation captures mathematical oper-227

ations precisely, direct code matching remains inef-228

fective due to syntactic variations. For example, "x229

= 5 * 3" and "result = 3 * 5" would be recognized230

as different operations despite being mathemati-231

cally equivalent, due to different variable names232

and operand orders. To address this, we utilize Ab-233

stract Syntax Tree (AST), which represents code as234

a hierarchical structure of its syntactic elements, to235

normalize code through systematic transformations,236

as shown in Figure 2:237

• Variable renaming: Mapping arbitrary vari-238

able names and function names to canonical239

form (e.g., var0, func0).240

• Operation normalization: Standardizing241

equivalent operations (e.g., multiply/-242

times/product→ mul).243

• Expression reordering: Sorting commutative244

operations for consistent representation.245

• Constant folding: calculating constant expres-246

sions (e.g., 2 * 3→ 6).247

Through AST normalization, code blocks that are248

mathematically equivalent but syntactically differ-249

ent will have the same representation.250

After AST normalization, we merge equivalent 251

code blocks to construct a prefix tree (Trie), where 252

each node represents a distinct solution step and 253

edges denote reasoning branches. As illustrated in 254

Figure 3, this tree structure naturally captures the 255

shared reasoning patterns across different solutions. 256

Since both AST normalization and Trie construc- 257

tion have linear complexity to the number of so- 258

lutions, SCOPE maintains an overall complexity 259

of O(N). Moreover, this hierarchical representa- 260

tion enables efficient Q-value computation directly 261

from the solution paths without requiring additional 262

Monte Carlo simulations. The Q-value could cal- 263

culated recursively by propagating the correctness 264

of leaf solutions up through the tree, weighted by 265

the number of solutions passing through each path. 266

The code for Q-value calculation is shown below, 267

and the pseudocode of the complete workflow of 268

SCOPE is presented in Algorithm 1. 269
270

def compute_q_values(node): 271
if node.is_leaf (): 272

return node.is_correct , node.count 273
274

total_value , total_count = 0, 0 275
for child in node.children: 276

value , count = compute_q(child) 277
total_value += value * count 278
total_count += count 279

280
q_value = total_value / total_count 281
return q_value , total_count 282283

3.3 PRM Training 284

Through the above step compression process, we 285

obtain Q-values for each step, which naturally serve 286

as labels for their corresponding reasoning steps. 287

Following Math-shepherd, we explore two strate- 288

gies to estimate the label ysi for the step si, hard 289

estimation (HE) and soft estimation (SE). For HE, 290

we assign binary labels based on the Q-value Q(si) 291

of step si: a positive Q-value indicates that at least 292

4

Algorithm 1 SCOPE: Automatic PRM Dataset Annotation with Step Compression

Require: Math problem P , Number of samples N , Math LLM Mmath, Code LLM Mcode

Ensure: Compressed solution space T with Q-values for PRM training
1: function SCOPE(P,N,Mmath,Mcode)
2: S ← ∅ ▷ Store all normalized solution paths
3: for i← 1 to N do ▷ Sample N solutions using Math LLM
4: steps←Mmath(P) ▷ Each step in natural language
5: code_steps← {Mcode(step) | step ∈ steps} ▷ Convert all steps to executable code
6: norm_steps← {NormalizeAST(code) | code ∈ code_steps} ▷ AST normalization
7: S ← S ∪ norm_steps ▷ Add normalized solution path to solution set
8: end for
9: T ← BuildPrefixTree(S) ▷ Construct Trie from solution paths

10: Q← ComputeQValues(T) ▷ Calculate Q-values by propagating correctness
11: return (T,Q) ▷ Return compressed solution space
12: end function

one solution path through this step reaches the cor-293

rect answer:294

yHE
si =

{
1 Q(si) > 0

0 Otherwise
(1)295

For SE, we directly use the Q-value as the label,296

which reflects the proportion of paths from this step297

that reach the correct answer:298

ySEsi = Q(si) (2)299

We adopt different loss functions for HE and SE300

to align with their respective label characteristics.301

For HE with binary labels, we use the binary cross-302

entropy loss for optimization:303

LHE = −
K∑
i=1

ysi log ŷsi + (1− ysi) log(1− ŷsi)

(3)304

where ŷsi is the model’s predicted probability for305

step si, and K is the total number of steps. For SE306

with continuous Q-values as labels, we employ the307

mean squared error (MSE) loss:308

LSE = −
K∑
i=1

(ysi − ŷsi)
2 (4)309

The choice of different loss functions reflects the310

distinct nature of HE and SE: binary cross-entropy311

is suited for classification tasks with hard labels,312

while MSE better handles regression with continu-313

ous values. We experimentally validate the effec-314

tiveness of these loss functions in Section 4.4.315

4 Experiments 316

All experiments are conducted on a server equipped 317

with 8 NVIDIA A100-80GB GPUs and 512GB of 318

system RAM. We utilize PyTorch (Paszke et al., 319

2019) as the implementation framework, SGLang 320

(Zheng et al., 2024b) for sampling and DeepSpeed 321

(Aminabadi et al., 2022) for distributed training. 322

4.1 Settings 323

Base Models. For our experiments, we employ 324

Qwen2.5-Math-7B-Instruct2 (Yang et al., 2024) 325

as the base model for PRM training and dataset 326

construction. For code translation, we utilize 327

Qwen2.5-Coder-14B-Instruct3 (Hui et al., 2024), 328

which exhibits strong performance in converting 329

natural language into executable code. 330

331

Dataset Construction. We construct our PRM 332

training dataset through a comprehensive process 333

using SCOPE. Starting with mathematical prob- 334

lems extracted from the openbmb/UltraInteract_sft 335
4 dataset, we generate 64 solution samples for 336

each problem using Qwen2.5-Math-7B-Instruct. 337

To ensure dataset quality, we carefully filter 338

out problems where solutions unanimously 339

yield either correct or incorrect results, as these 340

extreme cases might introduce training bias. The 341

processing pipeline continues with Qwen2.5- 342

Coder-14B-Instruct translating each reasoning 343

2https://huggingface.co/Qwen/Qwen2.
5-Math-7B-Instruct

3https://huggingface.co/Qwen/Qwen2.
5-Coder-14B-Instruct

4https://huggingface.co/datasets/openbmb/
UltraInteract_sft

5

https://huggingface.co/Qwen/Qwen2.5-Math-7B-Instruct
https://huggingface.co/Qwen/Qwen2.5-Math-7B-Instruct
https://huggingface.co/Qwen/Qwen2.5-Coder-14B-Instruct
https://huggingface.co/Qwen/Qwen2.5-Coder-14B-Instruct
https://huggingface.co/datasets/openbmb/UltraInteract_sft
https://huggingface.co/datasets/openbmb/UltraInteract_sft

Setting GSM8K MATH Minerva
Math

GaoKao
2023 En

Olympiad
Bench

College
Math Avg.

Greedy 95.1 80.1 38.2 65.2 39.4 40.6 59.8
Pass@8 (Upper Bound) 97.8 91.5 55.5 79.2 58.1 48.5 71.8
Majority@8 96.7 85.6 43.8 69.6 42.1 41.8 63.3

Math-Shepherd-PRM-7B 95.6 81.3 37.1 64.9 38.2 39.9 59.5
RLHFlow-PRM-Mistral-8B 96.1 83.5 39.3 67.0 41.2 40.8 61.3
RLHFlow-PRM-Deepseek-8B 96.4 83.5 40.8 67.0 39.7 41.1 61.4
Skywork-PRM-1.5B 96.0 83.8 39.0 66.5 39.8 41.2 61.1
Skywork-PRM-7B 96.0 84.1 40.3 66.3 40.4 41.8 61.5
EurusPRM-Stage1 95.3 83.1 37.7 65.8 38.5 39.1 59.9
EurusPRM-Stage2 95.1 83.4 37.9 66.1 40.2 39.2 60.3

SCOPE 96.4 83.8 41.2 67.1 41.2 41.9 61.9

Table 1: Performance comparison on the Best-of-8 strategy of the policy model Qwen2.5-Math- 7B-Instruct.

step into executable code, followed by AST-based344

normalization as detailed in Section 3. For each345

mathematical problem, we then construct a prefix346

tree from the 64 normalized solutions and compute347

Q-values for every node within the tree structure.348

This enables us to derive both soft and hard labels349

for each reasoning step based on the computed350

Q-values. Through this systematic approach, we351

successfully constructed a comprehensive dataset352

comprising 509K samples with 4M step labels.353

354

Evaluation. We evaluated our approach using two355

complementary metrics: (1) Consistent with previ-356

ous work (Lightman et al., 2023; Luo et al., 2024),357

we employ the Best-of-N (BoN) sampling strategy358

for evaluation, which selects the highest-scored359

response from N candidates according to PRM.360

Using Qwen2.5-Math-7B-Instruct, we sample361

N = 8 responses across multiple mathematical362

benchmarks: GSM8K (Cobbe et al., 2021),363

MATH (Hendrycks et al., 2021), MinervaMath364

(Lewkowycz et al., 2022), GaoKao2023En (Liao365

et al., 2024), OlympiadBench (He et al., 2024), and366

CollegeMath (Tang et al., 2024). Each candidate367

solution is scored using the product of step-wise368

scores from PRM. (2) ProcessBench (Zheng et al.,369

2024a), which is specifically designed to assess370

error identification in mathematical reasoning,371

contains four sub-benchmarks: GSM8K, MATH,372

OlympiadBench, and Omni-MATH (Gao et al.,373

2024). ProcessBench requires models to either374

identify the first erroneous step in incorrect375

solutions or verify the correctnesss in valid376

solutions.377

378

Baselines. We compare against several recent 379

PRMs: Math-Shepherd-PRM-7B (Wang et al., 380

2024) which estimates process labels through 381

Monte Carlo simulation, RLHFlow-PRM-Mistral- 382

8B and RLHFlow-PRM-DeepSeek-8B (Xiong 383

et al., 2024) which adopt Math-Shepherd’s method- 384

ology with different optimization objectives, 385

Skywork-PRM-1.5B and Skywork-PRM-7B 386

(o1 Team, 2024) are two recently released 387

Qwen2.5- Math-based PRMs by Skywork, and 388

EurusPRM-Stage1 and EurusPRM-Stage2 (Cui 389

et al., 2025) which learns process rewards implic- 390

itly using ORM-based training. 391

392

Training Details. For solution generation, we set 393

both the sampling temperature and top-p to 0.8, 394

with a maximum new token limit of 2048 to ensure 395

comprehensive solution generation. In the code 396

translation phase, we employ a temperature of 0 to 397

ensure deterministic outputs, maintaining a maxi- 398

mum new token limit of 2048. For PRM training, 399

we use a batch size of 256, gradient clipping of 1.0, 400

and the AdamW optimizer (Loshchilov, 2017) with 401

a learning rate of 5e-7 and warm-up ratio of 0.05. 402

4.2 Main Results 403

Best-of-N. Table 1 presents a comprehensive com- 404

parison of our proposed SCOPE with existing 405

PRMs on the Best-of-N strategy. Our method 406

achieves an average score of 61.9%, showing 407

a 2.4% improvement over Math-Shepherd-PRM- 408

7B (59.5%) while requiring only 5% of its com- 409

putational cost. SCOPE’s performance is com- 410

petitive with strong baselines such as Skywork- 411

PRM-7B (61.5%) and RLHFlow-PRM-Deepseek- 412

6

Model
GSM8K MATH OlympiadBench Omni-MATH

Avg. F1
Error Correct F1 Error Correct F1 Error Correct F1 Error Correct F1

Math-Shepherd-PRM-7B 32.4 91.7 47.9 18.0 82.0 29.5 15.0 71.1 24.8 14.2 73.0 23.8 31.5
RLHFlow-PRM-Mistral-8B 33.8 99.0 50.4 21.7 72.2 33.4 8.2 43.1 13.8 9.6 45.2 15.8 28.4
RLHFlow-PRM-Deepseek-8B 24.2 98.4 38.8 21.4 80.0 33.8 10.1 51.0 16.9 10.9 51.9 16.9 26.6
Skywork-PRM-1.5B 50.2 71.5 59.0 37.9 65.2 48.0 15.4 26.0 19.3 13.6 32.8 19.2 36.4
Skywork-PRM-7B 61.8 82.9 70.8 43.8 62.2 53.6 17.9 31.9 22.9 14.0 41.9 21.0 42.1
EurusPRM-Stage1 46.9 42.0 44.3 33.3 38.2 35.6 23.9 19.8 21.7 21.9 24.5 23.1 31.2
EurusPRM-Stage2 51.2 44.0 47.3 36.4 35.0 35.7 25.7 18.0 21.2 23.1 19.1 20.9 31.3

SCOPE 60.4 86.5 71.1 42.1 71.7 53.8 31.0 40.7 35.2 25.7 50.6 34.1 48.4

Table 2: Performance comparison on ProcessBench. Error means detection rate in incorrect solutions, Correct
means verification rate in correct solutions, and F1 scores combining both measures for balanced evaluation.

8B (61.4%) while maintaining lower training costs.413

For context, we also report three reference414

metrics: greedy decoding (59.8%), majority voting415

(63.3%), and pass@8 (71.8%, upper bound). While416

there remains a considerable gap to the theoretical417

upper bound, SCOPE consistently outperforms418

the greedy baseline. Note that PRM and majority419

voting capture complementary aspects of solution420

quality and can be combined to achieve better421

performance.422

423

ProcessBench. As a complementary evaluation424

metric, ProcessBench assesses PRMs’ ability to425

either identify the first erroneous step (error) in in-426

correct solution or verify the correctness of correct427

solution (correct). Table 2 reveals a common lim-428

itation among existing PRMs, with most models429

struggling to achieve satisfactory performance on430

this challenging task.431

The previous best performance was achieved by432

Skywork-PRM-7B with an average F1 score of433

42.1%. Our SCOPE significantly improves upon434

this, reaching 48.4% F1 score, representing a 6.3%435

absolute improvement. The improvement is more436

pronounced on challenging datasets: on Olympiad-437

Bench, SCOPE achieves an F1 score of 35.2% com-438

pared to Skywork-PRM-7B’s 22.9%, and on Omni-439

MATH, our method reaches 34.1% versus 21.0%,440

demonstrating superior capabilities in error iden-441

tification. This consistent performance advantage442

across both simpler and more complex benchmarks443

suggests that SCOPE has developed a more robust444

and generalizable understanding of mathematical445

reasoning processes.446

4.3 Impact of Best-of-N Sampling447

To investigate the impact of sampling size in Best-448

of-N setting, we conduct experiments with different449

N values (4, 8, 16,32,64) across various mathemat-450

Datasets N=4 N=8 N=16 N=32 N=64

GSM8K 96.5 96.4 96.8 97.1 97.0
MATH 81.7 83.8 84.2 84.9 85.1
MinervaMath 39.0 41.2 42.3 43.0 42.9
GaoKao2023En 66.1 67.1 67.7 68.2 68.7
OlympiadBench 39.8 41.2 41.5 41.7 42.1
CollegeMath 40.1 41.9 42.5 42.8 42.9

Table 3: Performance comparison of different N values
in Best-of-N setting.

Soft Label Hard Label

Best-of-8 (Avg. Acc) 61.5 61.9
ProcessBench (Avg. F1) 46.8 48.4

Table 4: Comparison on soft and hard labels.

ical benchmarks. As shown in Table 3, increasing 451

N generally leads to improved performance, with 452

MATH steadily rising from 81.7% to 85.1% and 453

GaoKao2023En from 66.1% to 68.7%. However, 454

the improvements become marginal when N in- 455

creases from 32 to 64, as evidenced by the minimal 456

gains across all benchmarks (e.g., from 97.1% to 457

97.0% on GSM8K), indicating that simply increas- 458

ing N cannot continuously boost performance. 459

4.4 Soft Labels vs. Hard Labels 460

As outlined in Section 3.3, PRMs can be trained us- 461

ing either hard labels or soft labels. Table 4 presents 462

a comparative analysis of these two training ap- 463

proaches on both the Best-of-8 and ProcessBench 464

benchmarks. The results consistently demonstrate 465

the superiority of hard labels over soft labels across 466

both evaluation settings, with hard labels achieving 467

performance gains of 0.4% and 1.2% on Best-of-8 468

and ProcessBench respectively. We attribute the 469

limited performance of soft labels to the noise they 470

introduce into the training process. This limitation 471

7

95.8

81.5

36.8

63.9

36.7
41.0

95.8

82.4

37.1

65.4

37.9 40.6

96.2

83.1

40.4

66.5

40.6 41.5

96.4

83.8

41.2

67.1

41.2 41.9

20

40

60

80

100

GSM8K MATH MinervaMath GaoKao2023En OlympiadBench CollegeMath

Ac
c

(%
)

Best-of-8

58.3

42.7

34.4 33.5

60.8

45.7

35.8
33.3

67.7

52.3

34.2 33.1

71.1

53.8

35.2 34.1

20

40

60

80

GSM8K MATH OlympiadBench Omni-MATH

F1
 (%

)

ProcessBench

Sampling_size=8
Sampling_size=16
Sampling_size=32
Sampling_size=64

Figure 4: Comparison of different sampling sizes (8, 16, 32, 64) during PRMs dataset construction. We report the
F1 scores on ProcessBench.

is particularly evident in complex math problems472

where correct intermediate steps might receive low473

soft labels due to the difficulty of reaching the cor-474

rect final answer, which can introduce confusion475

during the training process.476

4.5 Impact of Sampling Size477

To investigate how the number of sampled solu-478

tions affects model performance, we conduct ex-479

periments with different sampling sizes (8, 16, 32,480

64) during PRM dataset construction. Figure 4481

presents the results across both Best-of-8 and Pro-482

cessBench evaluations. On Best-of-8 (left), we ob-483

serve modest but consistent improvements across484

all benchmarks as sampling size increases, with485

GSM8K accuracy improving from 95.8% to 96.4%486

and MinervaMatch from 36.8% to 41.2% when487

scaling from 8 to 64 samples.488

The impact on ProcessBench (right) shows vary-489

ing patterns. GSM8K and MATH demonstrate490

substantial improvements with increased sampling,491

achieving 12.8% and 11.1% absolute gains respec-492

tively. However, on OlympiadBench and Omni-493

MATH, the performance gains are limited, likely494

due to the training data distribution - UltraInter-495

act primarily contains problems from GSM8K and496

MATH. Based on these observations and consider-497

ing the computational trade-offs, we chose N = 64498

as our default sampling size.499

4.6 Computational Efficiency500

To evaluate the computational efficiency, we sam-501

ple 100 problems from UltraInteract dataset and502

conduct PRMs training dataset using different503

methods. As shown in Figure 5, the GPU504

hours vary significantly across different approaches.505

MathShepherd requires 19.8× more GPU hours506

compared to our method. OmegaPRM and Eurus-507

PRM consume 9.8× and 0.6× GPU hours respec-508

11.4 (19.8x)

5.7 (9.8x)

0.3 (0.6x) 0.6 (1x)

0

2

4

6

8

10

12

MathShepherd OmegaPRM EurusPRM Ours

G
PU

 H
ou

rs

Figure 5: Comparison of time costs (GPU hours) for
generating PRM training data across different methods.

tively. While EurusPRM shows faster computa- 509

tion, our previous experiments have demonstrated 510

that it yields the poor performance on Process- 511

Bench. In contrast, our approach achieves strong 512

performance while maintaining efficient computa- 513

tion. A detailed breakdown of computational costs 514

for different stages in our method is provided in 515

Appendix A. 516

5 Conclusion 517

This paper introduces SCOPE, a novel automatic 518

PRM dataset annotation method that significantly 519

reduces computational costs while maintaining la- 520

bel quality. By translating natural language rea- 521

soning steps into code and merging equivalent 522

steps through AST normalization, our approach 523

achieves O(N) complexity compared to previ- 524

ous O(NMK) methods. Using only 5% of the 525

computational resources, we construct a large- 526

scale dataset containing 509K samples, and PRMs 527

trained on our dataset consistently outperform ex- 528

isting approaches on both Best-of-N strategy and 529

ProcessBench, demonstrating SCOPE’s effective- 530

ness as a scalable solution for PRM training. 531

8

Limitations532

While SCOPE demonstrates promising results, sev-533

eral limitations deserve attention: (1) Code Trans-534

lation Reliability: The quality of our annotations535

heavily depends on the code LLM’s ability to ac-536

curately translate natural language reasoning into537

executable code. Complex mathematical concepts538

or domain-specific terminology may lead to inac-539

curate translations, affecting the overall annota-540

tion quality. (2) Limited Mathematical Coverage:541

Our current implementation primarily handles ba-542

sic arithmetic operations and common mathemat-543

ical functions. More sophisticated mathematical544

operations, especially those involving abstract al-545

gebra or advanced calculus, may not be adequately546

captured by our code-based representation.547

Future work could focus on developing more548

robust code translation techniques and expanding549

the coverage of mathematical operations. Addi-550

tionally, investigating the integration of domain-551

specific knowledge and mathematical formalism552

could further improve the accuracy and applicabil-553

ity of our approach.554

References555

Alfred Aho, Monica Lam, Ravi Sethi, and Jeffrey D556
Ullman. 2007. Compilers: Principles, techniques557
and tools, 2nd editio.558

Reza Yazdani Aminabadi, Samyam Rajbhandari, Am-559
mar Ahmad Awan, Cheng Li, Du Li, Elton Zheng,560
Olatunji Ruwase, Shaden Smith, Minjia Zhang, Jeff561
Rasley, et al. 2022. Deepspeed-inference: enabling562
efficient inference of transformer models at unprece-563
dented scale. In SC22: International Conference for564
High Performance Computing, Networking, Storage565
and Analysis, pages 1–15. IEEE.566

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,567
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias568
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro569
Nakano, et al. 2021. Training verifiers to solve math570
word problems. arXiv preprint arXiv:2110.14168.571

Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang,572
Wendi Li, Bingxiang He, Yuchen Fan, Tianyu Yu,573
Qixin Xu, Weize Chen, et al. 2025. Process rein-574
forcement through implicit rewards. arXiv preprint575
arXiv:2502.01456.576

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,577
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,578
Akhil Mathur, Alan Schelten, Amy Yang, Angela579
Fan, et al. 2024. The llama 3 herd of models. arXiv580
preprint arXiv:2407.21783.581

Bofei Gao, Feifan Song, Zhe Yang, Zefan Cai, Yibo 582
Miao, Qingxiu Dong, Lei Li, Chenghao Ma, Liang 583
Chen, Runxin Xu, et al. 2024. Omni-math: A univer- 584
sal olympiad level mathematic benchmark for large 585
language models. arXiv preprint arXiv:2410.07985. 586

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, 587
Zhen Leng Thai, Junhao Shen, Jinyi Hu, Xu Han, 588
Yujie Huang, Yuxiang Zhang, et al. 2024. Olympiad- 589
bench: A challenging benchmark for promoting agi 590
with olympiad-level bilingual multimodal scientific 591
problems. arXiv preprint arXiv:2402.14008. 592

Dan Hendrycks, Collin Burns, Saurav Basart, Andy Zou, 593
Mantas Mazeika, Dawn Song, and Jacob Steinhardt. 594
2021. Measuring mathematical problem solving with 595
the math dataset. NeurIPS. 596

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day- 597
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang, 598
Bowen Yu, Kai Dang, et al. 2024. Qwen2. 5-coder 599
technical report. arXiv preprint arXiv:2409.12186. 600

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richard- 601
son, Ahmed El-Kishky, Aiden Low, Alec Helyar, 602
Aleksander Madry, Alex Beutel, Alex Carney, et al. 603
2024. Openai o1 system card. arXiv preprint 604
arXiv:2412.16720. 605

Aitor Lewkowycz, Anders Andreassen, David Dohan, 606
Ethan Dyer, Henryk Michalewski, Vinay Ramasesh, 607
Ambrose Slone, Cem Anil, Imanol Schlag, Theo 608
Gutman-Solo, et al. 2022. Solving quantitative rea- 609
soning problems with language models. Advances 610
in Neural Information Processing Systems, 35:3843– 611
3857. 612

Minpeng Liao, Wei Luo, Chengxi Li, Jing Wu, and 613
Kai Fan. 2024. Mario: Math reasoning with code 614
interpreter output–a reproducible pipeline. arXiv 615
preprint arXiv:2401.08190. 616

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri 617
Edwards, Bowen Baker, Teddy Lee, Jan Leike, 618
John Schulman, Ilya Sutskever, and Karl Cobbe. 619
2023. Let’s verify step by step. arXiv preprint 620
arXiv:2305.20050. 621

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, 622
Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi 623
Deng, Chenyu Zhang, Chong Ruan, et al. 2024. 624
Deepseek-v3 technical report. arXiv preprint 625
arXiv:2412.19437. 626

I Loshchilov. 2017. Decoupled weight decay regulariza- 627
tion. arXiv preprint arXiv:1711.05101. 628

Jianqiao Lu, Zhiyang Dou, WANG Hongru, Zeyu Cao, 629
Jianbo Dai, Yunlong Feng, and Zhijiang Guo. 2024. 630
Autopsv: Automated process-supervised verifier. In 631
The Thirty-eighth Annual Conference on Neural In- 632
formation Processing Systems. 633

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat 634
Phatale, Harsh Lara, Yunxuan Li, Lei Shu, Yun Zhu, 635

9

https://dl.acm.org/doi/10.5555/1177220
https://dl.acm.org/doi/10.5555/1177220
https://dl.acm.org/doi/10.5555/1177220
https://arxiv.org/abs/2207.00032
https://arxiv.org/abs/2207.00032
https://arxiv.org/abs/2207.00032
https://arxiv.org/abs/2207.00032
https://arxiv.org/abs/2207.00032
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2502.01456
https://arxiv.org/abs/2502.01456
https://arxiv.org/abs/2502.01456
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2410.07985
https://arxiv.org/abs/2410.07985
https://arxiv.org/abs/2410.07985
https://arxiv.org/abs/2410.07985
https://arxiv.org/abs/2410.07985
https://arxiv.org/abs/2402.14008
https://arxiv.org/abs/2402.14008
https://arxiv.org/abs/2402.14008
https://arxiv.org/abs/2402.14008
https://arxiv.org/abs/2402.14008
https://arxiv.org/abs/2402.14008
https://arxiv.org/abs/2402.14008
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2409.12186
https://arxiv.org/abs/2409.12186
https://arxiv.org/abs/2409.12186
https://arxiv.org/abs/2412.16720
https://arxiv.org/abs/2206.14858
https://arxiv.org/abs/2206.14858
https://arxiv.org/abs/2206.14858
https://arxiv.org/abs/2401.08190
https://arxiv.org/abs/2401.08190
https://arxiv.org/abs/2401.08190
https://arxiv.org/abs/2305.20050
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/2405.16802

Lei Meng, Jiao Sun, et al. 2024. Improve mathemati-636
cal reasoning in language models by automated pro-637
cess supervision. arXiv preprint arXiv:2406.06592.638

Skywork o1 Team. 2024. Skywork-o1 open series.639
https://huggingface.co/Skywork.640

Adam Paszke, Sam Gross, Francisco Massa, Adam641
Lerer, James Bradbury, Gregory Chanan, Trevor642
Killeen, Zeming Lin, Natalia Gimelshein, Luca643
Antiga, et al. 2019. Pytorch: An imperative style,644
high-performance deep learning library. Advances in645
neural information processing systems, 32.646

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,647
Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan648
Zhang, YK Li, Y Wu, et al. 2024. Deepseekmath:649
Pushing the limits of mathematical reasoning in open650
language models. arXiv preprint arXiv:2402.03300.651

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Ku-652
mar. 2024. Scaling llm test-time compute optimally653
can be more effective than scaling model parameters.654
arXiv preprint arXiv:2408.03314.655

Zhengyang Tang, Xingxing Zhang, Benyou Wang, and656
Furu Wei. 2024. Mathscale: Scaling instruction657
tuning for mathematical reasoning. arXiv preprint658
arXiv:2403.02884.659

Jonathan Uesato, Nate Kushman, Ramana Kumar, Fran-660
cis Song, Noah Siegel, Lisa Wang, Antonia Creswell,661
Geoffrey Irving, and Irina Higgins. 2022. Solv-662
ing math word problems with process-and outcome-663
based feedback. arXiv preprint arXiv:2211.14275.664

Eric Wallace, Yizhong Wang, Sujian Li, Sameer Singh,665
and Matt Gardner. 2019. Do nlp models know num-666
bers? probing numeracy in embeddings. arXiv667
preprint arXiv:1909.07940.668

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai669
Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang Sui.670
2024. Math-shepherd: Verify and reinforce llms step-671
by-step without human annotations. In Proceedings672
of the 62nd Annual Meeting of the Association for673
Computational Linguistics (Volume 1: Long Papers),674
pages 9426–9439.675

Wei Xiong, Hanning Zhang, Nan Jiang, and Tong Zhang.676
2024. An implementation of generative prm. https:677
//github.com/RLHFlow/RLHF-Reward-Modeling.678

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao,679
Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-680
hong Tu, Jingren Zhou, Junyang Lin, Keming Lu,681
Mingfeng Xue, Runji Lin, Tianyu Liu, Xingzhang682
Ren, and Zhenru Zhang. 2024. Qwen2.5-math tech-683
nical report: Toward mathematical expert model via684
self-improvement. arXiv preprint arXiv:2409.12122.685

Fei Yu, Anningzhe Gao, and Benyou Wang. 2023.686
Outcome-supervised verifiers for planning in mathe-687
matical reasoning. arXiv preprint arXiv:2311.09724.688

Lifan Yuan, Wendi Li, Huayu Chen, Ganqu Cui, Ning 689
Ding, Kaiyan Zhang, Bowen Zhou, Zhiyuan Liu, 690
and Hao Peng. 2024. Free process rewards without 691
process labels. arXiv preprint arXiv:2412.01981. 692

Chujie Zheng, Zhenru Zhang, Beichen Zhang, Runji 693
Lin, Keming Lu, Bowen Yu, Dayiheng Liu, Jin- 694
gren Zhou, and Junyang Lin. 2024a. Processbench: 695
Identifying process errors in mathematical reasoning. 696
arXiv preprint arXiv:2412.06559. 697

Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue 698
Sun, Jeff Huang, Cody Hao Yu, Shiyi Cao, Chris- 699
tos Kozyrakis, Ion Stoica, Joseph E Gonzalez, 700
et al. 2024b. Sglang: Efficient execution of struc- 701
tured language model programs. arXiv preprint 702
arXiv:2312.07104. 703

10

https://arxiv.org/abs/2406.06592
https://arxiv.org/abs/2406.06592
https://arxiv.org/abs/2406.06592
https://arxiv.org/abs/2406.06592
https://arxiv.org/abs/2406.06592
https://huggingface.co/Skywork
https://huggingface.co/Skywork
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2403.02884
https://arxiv.org/abs/2403.02884
https://arxiv.org/abs/2403.02884
https://arxiv.org/abs/2211.14275
https://arxiv.org/abs/2211.14275
https://arxiv.org/abs/2211.14275
https://arxiv.org/abs/2211.14275
https://arxiv.org/abs/2211.14275
https://arxiv.org/abs/1909.07940
https://arxiv.org/abs/1909.07940
https://arxiv.org/abs/1909.07940
https://arxiv.org/abs/2312.08935
https://arxiv.org/abs/2312.08935
https://arxiv.org/abs/2312.08935
https://github.com/RLHFlow/RLHF-Reward-Modeling
https://github.com/RLHFlow/RLHF-Reward-Modeling
https://github.com/RLHFlow/RLHF-Reward-Modeling
https://arxiv.org/abs/2409.12122
https://arxiv.org/abs/2409.12122
https://arxiv.org/abs/2409.12122
https://arxiv.org/abs/2409.12122
https://arxiv.org/abs/2409.12122
https://arxiv.org/abs/2311.09724
https://arxiv.org/abs/2311.09724
https://arxiv.org/abs/2311.09724
https://arxiv.org/abs/2412.01981
https://arxiv.org/abs/2412.01981
https://arxiv.org/abs/2412.01981
https://arxiv.org/abs/2412.06559
https://arxiv.org/abs/2412.06559
https://arxiv.org/abs/2412.06559
https://arxiv.org/abs/2312.07104
https://arxiv.org/abs/2312.07104
https://arxiv.org/abs/2312.07104

A Computational Cost Analysis 704

Table 5 shows the GPU hours required for each stage of our method. The sampling stage, which involves 705

generating 64 solution samples per problem using Qwen2.5-Math-7B-Instruct, consumes 192 GPU hours. 706

The code translation phase, where Qwen2.5-Coder-14B-Instruct converts natural language steps into 707

executable Python code, requires the most computational resources at 280 GPU hours. Finally, the PRM 708

training stage is relatively efficient, taking 70 GPU hours. 709

GPU Hours

Sampling (N = 64) 192
Code Translation 280

PRM Training 70

Table 5: Breakdown of computational costs in different stages of our method.

B Code Translation Prompt 710

You are a Python expert. I will provide a math problem along with a step-by-step solution. Please
present each step of the solution as Python code. Ensure the following requirements are met:

1. Clearly separate each step and save them in different code blocks, using<STEP_START_i>
and <STEP_END_i> to separate them, where i represents the i-th step.

2. All calculations should be done in python code. Provide concise reasoning and thinking in
the comments of the code.

3. If libraries are required, import them before the first step, using <IMPORT_START> and
<IMPORT_END> tags. The most related python packages include ‘math’, ‘sympy’, ‘scipy’,
and ‘numpy’.

4. Do not use any custom defined functions. Do implement the functionality with the simplest
code.

5. Ensure there is corresponding code for each step, even if the code is empty.

Math Problem:
...(math problem)...

Solution:
...(solution)...

711

11

C A Complex Code Translation Example712

Question: The quadratic 8x2 + 12x − 14 has two real roots. What is the sum of the squares of these
roots? Express your answer as a common fraction in lowest terms.
Response Code
Step 1: We are given the quadratic equation
8x2 + 12x− 14 and are asked to find the sum of the
squares of its roots.

Step 2: To find the sum of the squares of the roots,
we can use the relationship between the sum of the
roots, the product of the roots, and the coefficients of
the quadratic equation.

Step 3: Let’s denote the roots of the quadratic
equation as x1 and x2. We know that the sum of the
roots of a quadratic equation ax2 + bx + c = 0 is
given by x1 + x2 = − b

a = −12
8 and the product of

the roots is given by x1x2 =
c
a = −14

8 = −7
4 .

Step 4: In order to find the sum of the squares of the
roots, which is given by x21 + x22, we can use the
identity (x1 + x2)

2 = x21 + 2x1x2 + x22 to express
the sum of the squares of the roots in terms of the
sum and product of the roots.

Step 5: Substituting the values we found earlier, we
get (x1 + x2)

2 =
(
−3

2

)2
= 9

4 .

Step 6: Then, we can express x21 + x22
as (x1 + x2)

2 − 2x1x2, which gives us
x21 + x22 =

9
4 − 2

(
−7

4

)
.

Step 7: Simplifying this, we get x21+x22 =
9
4 +

14
4 =

23
4 .

Step 8: Therefore, the sum of the squares of the roots
of the quadratic equation 8x2 + 12x− 14 is 23

4 .

<CODE_1>
Given quadratic equation coefficients
a = 8
b = 12
c = -14

<CODE_2>
No calculations needed in this step

<CODE_3>
Calculate the sum and product of the roots
sum_of_roots = -b / a
product_of_roots = c / a

<CODE_4>
No calculations needed in this step

<CODE_5>
Calculate the square of the sum of the roots
sum_of_roots_squared = sum_of_roots ** 2

<CODE_6>
Calculate the sum of the squares of the roots using
the identity
sum_of_squares_of_roots = sum_of_roots_squared -
2 * product_of_roots

<CODE_7>
Simplify the result
sum_of_squares_of_roots_simplified = sp.Rational
(sum_of_squares_of_roots).limit_denominator()

<CODE_8>
No calculations needed in this step

Table 6: An example of natural language reasoning steps and their corresponding code translations for solving a
quadratic equation problem.

12

	Introduction
	Related Work
	PRMs Training
	PRMs in Mathematical Reasoning

	Method
	Code Translation
	Step Compression
	PRM Training

	Experiments
	Settings
	Main Results
	Impact of Best-of-N Sampling
	Soft Labels vs. Hard Labels
	Impact of Sampling Size
	Computational Efficiency

	Conclusion
	Computational Cost Analysis
	Code Translation Prompt
	A Complex Code Translation Example

