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ABSTRACT

Generative modeling has emerged as a powerful paradigm for representation
learning, but its direct applicability to challenging fields like medical imaging re-
mains limited: mere generation, without task alignment, fails to provide a robust
foundation for clinical use. We propose MAGIC-Flow, a conditional multiscale
normalizing flow architecture that performs generation and classification within
a single modular framework. The model is built as a hierarchy of invertible and
differentiable bijections, where the Jacobian determinant factorizes across sub-
transformations. We show how this ensures exact likelihood computation and sta-
ble optimization, while invertibility enables explicit visualization of sample likeli-
hoods, providing an interpretable lens into the model’s reasoning. By conditioning
on class labels, MAGIC-Flow supports controllable sample synthesis and princi-
pled class-probability estimation, effectively aiding both generative and discrimi-
native objectives. We evaluate MAGIC-Flow against top baselines using metrics
for similarity, fidelity, and diversity. Across multiple datasets, it addresses gener-
ation and classification under scanner noise, and modality-specific synthesis and
identification. Results show MAGIC-Flow creates realistic, diverse samples and
improves classification. MAGIC-Flow is an effective strategy for generation and
classification in data-limited domains, with direct benefits for privacy-preserving
augmentation, robust generalization, and trustworthy medical Al

1 INTRODUCTION

Generative modeling has become a cornerstone of modern machine learning, powering advances
in representation learning, data augmentation, and controllable synthesis. In addition to semi-
supervised and transfer learning, generative models have been increasingly used to mitigate data
scarcity. GANs (Goodfellow et al., 2014; Makhlouf et al., 2023; Han et al., |2018)), VAEs (Sohn
et al., 2015} [Diamantis et al., 2022), and diffusion models (Nichol & Dhariwal, [2021; Dhariwal &
Nicholl 2021; |Hung et al., [2023; [Kazerouni et al.,|2022) have been proven effective at synthesizing
realistic samples and improving classifier robustness (Shorten & Khoshgoftaar, [2019; [Shin et al.|
2018)). Yet, in sensitive domains such as medical imaging, their limitations are clear. Datasets are
small, expensive to curate, and biased by acquisition protocols (Zech et al., [2018)). Models that
generate realistic images without offering task alignment or interpretability fall short in clinical
contexts, where reliability and transparency are critical. Moreover, adversarial and diffusion-based
models suffer from mode collapse, hallucination, and instability (Arjovsky et al.,[2017;/Cohen et al.}
20185 Y1 et al., [2019), undermining their trustworthiness.

Normalizing flows provide a principled alternative. Unlike GANs or diffusion models, flows offer
exact likelihood estimation, stable training, and invertible mappings, making them attractive for
data-limited, safety-critical applications. However, existing architectures such as ReaINVP (Dinh
et al.| 2016) and Glow (Kingma & Dhariwall 2018)) have been designed almost exclusively for gen-
eration. When adapted to classification, they typically rely on auxiliary discriminative heads or
downstream training on latent embeddings. This separation prevents a unified treatment of gen-
eration and classification and limits interpretability, as likelihoods are not directly exploited for
decision-making.
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In this context, we introduce MAGIC-Flow, a conditional multiscale normalizing flow that unifies
generation and classification within a shared invertible architecture, standing out from canonical
flows, which remain purely generative, and from hybrid approaches that bolt on classification heads.
Our key contribution is to show that with only minor architectural changes, the same flow backbone
can be adapted to both tasks:

* In its generative configuration, MAGIC-Flow synthesizes diverse, controllable samples
with exact likelihoods.

* Inits discriminative configuration, MAGIC-Flow leverages the same invertible mappings to
derive class probabilities directly from normalized densities, avoiding opaque embeddings
or external classifiers.

We benchmark MAGIC-Flow against state-of-the-art generative models: unlike these approaches,
MAGIC-Flow does not treat the two tasks as independent; instead, it shows that a single invert-
ible backbone suffices for both, while preserving tractable likelihoods and stability. The evaluation
is conducted on two clinically relevant challenges: (i) generation and classification under scanner
noise, where classes are defined by acquisition artifacts rather than semantics - which represents a
more challenging task with respect to e.g. diagnosis prediction -, and (ii) cross-modality generaliza-
tion across imaging modalities. In both settings, MAGIC-Flow consistently improves over baselines
in terms of sample fidelity, diversity, and classification accuracy, while uniquely offering inherent
interpretability via likelihood visualization.

Contributions. Our main contributions are threefold:

* We propose MAGIC-Flow, the first conditional multiscale normalizing flow that supports
both generation and classification within a shared invertible framework.

* We show that only minor architectural changes are required to switch between the two
tasks, while maintaining exact likelihood computation and interpretability.

* We demonstrate that MAGIC-Flow outperforms strong generative and discriminative base-
lines in challenging medical imaging settings, providing a principled and trustworthy foun-
dation for aiding clinically relevant Al

2 THEORETICAL FOUNDATION

Normalizing flows are a class of generative models that represent complex probability distributions
by transforming a simple base distribution through a sequence of invertible and differentiable map-
pings. Let z ~ pz(z) be a latent variable and f an invertible mapping. A flow defines z = f(z) and
z = f~!(z). The inverse mapping z + z enables tractable likelihood evaluation, while the forward
mapping z — x enables exact sampling. By the change-of-variables formula, the log-likelihood of

T is
-1
logpx () = logpz (/™ (x) + log et 21| (1)

The design of flow transformations balances two requirements: (i) expressiveness, to capture com-
plex distributions, and (ii) tractability, to allow efficient computation of inverses and Jacobian deter-
minants. Several architectures embody these trade-offs: NICE (Dinh et al.| |2014)) introduced addi-
tive coupling layers; ReaNVP (Dinh et al., 2016)) extended this with affine couplings and multiscale
architectures; Glow (Kingma & Dhariwal, [2018) further improved expressiveness with invertible
1 x 1 convolutions. See |[Kobyzev et al. (2020); Papamakarios et al.| (2021) for surveys.

Normalizing flows therefore provide a principled framework for generative modeling, combining
exact likelihood training with efficient sampling. We now extend this formulation to the conditional
setting, which is central to our architecture.

Conditional normalizing flows. Conditional normalizing flows (cNFs) incorporate auxiliary in-
formation y (e.g., class labels or embeddings) into the transformation f (-, y), enabling modeling of
conditional densities px|y. Applications include structured prediction (Winkler et al.,[2019), guided
image generation with conditional invertible neural networks (cINNs) (Ardizzone et al.[[2019), and
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autoregressive conditional flows (CAFLOW) (Batzolis et al.,[2021)). More recent works apply cNFs
to mitigate mode collapse (Kanaujia et al., [2024) or enable anomaly detection (Gudovskiy et al.,
2022).

Our theoretical contribution is to show that the two cornerstone properties of flows—invertibility
and Jacobian factorization—also hold in the conditional setting. Extensive proofs are provided in
Appendix and .

Invertibility property. Under mild assumptions, the conditional change-of-variable formula is

of x,y) ‘ .

det
¢ ox

)

pxiy (@ |y) =pz(fHz,y)) -

Here, 2 € REXHXW denotes images, y € RX encodes labels (e.g., one-hot or learned embeddings),
and z ~ N(0, I) is the latent representation. Conditioning is handled by parameterizing each flow
transformation f; (-, y) with y, while preserving bijectivity in x.

Factorization property. As in the unconditional case, the overall flow can be expressed as a com-
position of N bijective mappings f = fyo fy_10...0 f; with intermediate states h; = f;(hi—1,y),
where hg = x and hy = z. Since each f;(-,y) is bijective in z, their composition is bijective as
well. The Jacobian determinant factorizes across layers:

— N
‘det 6f 1($,y)’ — H
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This result establishes that conditional flows inherit the same tractability guarantees as unconditional
flows, while enabling controlled generation and likelihood-based classification. It forms the theo-
retical foundation of MAGIC-Flow, which builds upon conditional invertibility and factorization to
support both generative and discriminative tasks within a shared architecture.

3 UNIFIED ARCHITECTURE OF MAGIC-FLow

Building on the conditional formulation from the previous section, we present the unified architec-
ture of MAGIC-Flow. The theoretical foundation showed that invertibility and Jacobian factoriza-
tion extend naturally to the conditional case, guaranteeing that conditional flows remain tractable.
MAGIC-Flow instantiates these principles in a hierarchical, multiscale design that combines condi-
tional flow steps, squeeze operations, and split operations. This framework is fully general: only the
definition of the affine coupling transformation is task-specific, as discussed later in Section 4}

Flow steps. A single conditional flow step (Figure[Th) consists of three standard invertible compo-
nents: (1) ActNorm (Kingma & Dhariwal, 2018): a channel-wise affine transformation initialized
from data statistics (Salimans & Kingma, 2016) and subsequently learned as trainable parameters;
(2) Invertible 1 x 1 Convolution (Kingma & Dhariwal, 2018): a learnable channel permutation that
improves flexibility while preserving invertibility and efficient Jacobian computation; (3) Affine
Coupling Transformation (Dinh et al., 2016): the core operation, here extended to incorporate
conditioning on y. The scale and shift functions of the coupling transformation are defined by task-
specific layers (Section ).

Concretely, the input x € RC*#*W s partitioned into x 4 and x 3 with a binary mask M, such that

x4 =M G xand xg = (1 — M) ® x. The two partitions are alternately transformed, conditioned
on the other partition and the label y, via scale and shift functions s;, t;:

Uy =Xa, up=3xpOexp(si(xa,y))+ti(xa,7),
Xy =uy ©exp(s2(up,y)) +t2(up,y), xp=up.

The output is recombined as x’ = x/, @ x5, with log-determinant

log ‘ det ‘]‘ = Z (1 - Mc,h,’w) S1,c,h,w T+ Z Mc,h,w S$2,¢,h,w-

c,h,w c,h,w
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Squeeze and split operations. To model multiscale structure efficiently, MAGIC-Flow incorpo-
rates two standard architectural operations: Squeeze that reshapes a tensor of size (C, H, W) into
(4C, H/2,W/2), reducing spatial resolution while increasing channel depth. This allows coupling
layers to operate over larger receptive fields without added convolutional cost (Hoogeboom et al.,
2019); Split that divides the feature map along the channel dimension into two halves. One half
is factored out directly into the latent representation, while the other continues through subsequent
flow steps. Splits yield a hierarchical latent variable z that encodes fine-grained details at early
stages and coarser structure at later stages (Ardizzone et al., [2019} |Gudovskiy et al., 2022).

Masking strategy. To ensure that all dimensions of x are transformed across the flow, MAGIC-
Flow alternates between three types of binary masks M € {0,1}¢*H#>*W: (1) Checkerboard
masks: update alternating spatial locations to promote pixel-level mixing; (2) Channel-wise
masks: transform subsets of channels, enabling feature-level transformations; (3) Application-
specific masks: selectively emphasize semantically relevant regions, adapting the transformation to
the downstream objective. Alternating checkerboard and channel-wise masks across flow steps bal-
ances spatial and feature-level expressiveness while maintaining tractable Jacobian computations.
See Appendix [A4]for details and visualization.

Overall design. The full MAGIC-Flow architecture (Figure [Tb) stacks 24 conditional flow steps
organized in a multiscale hierarchy. The sequence begins with a flow step using an application-
specific mask, followed by three checkerboard flow steps, a squeeze operation, and three channel-
wise flow steps, after which a split operation is applied. Subsequent blocks repeat this pattern:
three checkerboard steps, a squeeze, three channel-wise steps, and another split, and so on. At
each split, half of the channels are factored into the latent representation, while the remainder is
further transformed. This recursive decomposition produces a hierarchical latent representation that
captures both local detail and global structure, while preserving tractable likelihood evaluation.

MAGIC-Flow is a unified framework where the conditional invertibility and factorization properties
are instantiated through a hierarchy of flow steps, squeeze and split operations, and structured mask-
ing. This design ensures both expressive generative modeling and efficient discriminative feature
learning. In this way, MAGIC-Flow serves as both a conditional generative model and a conditional
density estimator for classification, within a single framework. The only task-specific component
lies in the definition of the affine coupling layers, which we detail next in Section 4]
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Figure 1: Illustration of components of the model: (a) single flow step and (b) full multiscale flow.
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4 TASK-SPECIFIC COUPLING LAYERS AND LEARNING OBJECTIVES

While the unified architecture of MAGIC-Flow (Section [3) guarantees conditional invertibility and
tractable likelihood computation, its flexibility stems from the design of the task-specific affine cou-
pling layers. These layers specialize the shared framework for two complementary objectives: high-
fidelity conditional image generation and accurate label-informed classification.

4.1 TASK-SPECIFIC AFFINE COUPLING LAYERS

Both coupling layers adopt a convolutional conditioning network that maps the input x € RE*HxW

and label y € R¥ into scale and shift parameters (s, t). The key difference lies in how conditioning
is injected and how feature transformations are optimized for each task. See Appendix for
detailed architectures of both layers.

Generation coupling layer. For conditional synthesis, the coupling network prioritizes expres-
siveness and contextual richness. Conditioning information is injected at multiple depths via FiILM
layers (Perez et al., [2018)), while CBAM modules (Woo et al., 2018) provide channel- and spatial-
wise attention. Residual blocks with FiLM modulation (He et al., 2016) enhance representational
capacity. To capture long-range dependencies and multi-scale context, we integrate global context
blocks (Hu et al., |2018; |Cao et al., 2019) and ASPP-SE modules (Chen et al., 2017; Hu et al.,
2018)). Together, these components enable the coupling transformation to leverage label information
across scales, producing condition-aware transformations richer and more flexible than conventional
shallow coupling networks (Dinh et al., [2016} |Kingma & Dhariwall 2018)).

Classification coupling layer. For discriminative modeling, the coupling network is streamlined
to emphasize label-informed, discriminative transformations rather than multi-scale expressiveness.
It includes a residual label embedding module, FiLM-based conditioning, CBAM attention, and
residual convolutional blocks. Convolutional features are normalized, regularized with dropout,
and then fused with the label embedding. Finally, parallel prediction heads output translation and
bounded scale parameters. This design ensures that transformations are explicitly conditioned on
label information, yielding features that are discriminative and robust for likelihood-based classifi-
cation.

4.2 GENERATION AND CLASSIFICATION PROCEDURES

With the task-specific couplings defined, we now describe how MAGIC-Flow performs the two pri-
mary tasks: image generation and classification. Both tasks leverage the same invertible backbone,
differing only in the coupling transformation.

Training objective. Given a dataset of paired inputs and labels {(z;,y;)}},, the parameters of
MAGIC-Flow are optimized by maximizing the conditional log-likelihood:

Generation. To synthesize an image conditioned on a label y, we draw a latent variable z ~
N(0,I) and apply the inverse flow: x = f~!(z,y). The hierarchical architecture (squeeze, split,
and multiscale flow steps) ensures that both global structure and fine detail are generated consis-
tently. The generation coupling layers inject label information at every stage, enabling the synthesis
of diverse and realistic images aligned with y.

det oz,

L(0) = Zlogpxw (i | yi) = Z[logpz fo M (@i i) + log

=1 i=1

Classification. To classify an input x, MAGIC-Flow evaluates conditional likelihoods. The for-
ward flow maps the input into the latent space z = f(x,y) and the conditional log-likelihood can
be computed using Equation [2| At inference time, the predicted label y is obtained by maximum
likelihood:

y= argm)?XIngX\Y(x ly).
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S5 INTERPRETABILITY VIA LIKELIHOOD ATTRIBUTION MAPS

A key advantage of MAGIC-Flow over existing generative frameworks is its ability to compute ex-
act likelihoods. This property enables not only training via maximum likelihood estimation, but
also principled interpretability through likelihood decomposition. We introduce likelihood attri-
bution maps, which quantify the spatial contribution of each image location to the conditional
log-likelihood. Unlike heuristic, post-hoc methods such as Grad-CAM (Selvaraju et al.| [2017)
or integrated gradients (Sundararajan et al., |2017), our attribution maps are derived directly from
the internal computations of the flow, ensuring faithfulness and model consistency. To compute
H(x,y) € REOHXW e traverse the model as follows:

1. Forward pass: Map a input x conditioned on y to the latent representation z via the
conditional flow.

2. Backward pass: Accumulate contributions to the log-likelihood from two sources:

* Local Jacobian contributions: Each affine coupling layer ¢ contributes
g.i](xv y)c,h,w = (]- - Mc,h,w) Sl,c,h,w(XAv y) + Mc,h,w 32,c,h,w(uB7 y)

* Latent contributions: In the multiscale architecture, split operations factor out subsets
z; (j = 1,...,5 + 1, where S is the number of splits), each contributing via its
Gaussian prior 1og p(2;)c,h,w-

3. Accumulation: ~ Starting from the final latent subset (zs in Figure [Ib, size
(8C, H/8,W/8)), we add its log-probability logp(z4) to the Jacobian contributions of
the last flow layers ( = 20,...,23), which share the same resolution. At the subse-
quent split, we concatenate this attribution map with the factored-out latent part (zs, also
(8C, H/8,W/8)) along the channel dimension, yielding a combined attribution map of
size (16C, H/8,W/8). Continuing backward, we add the Jacobian contributions from lay-
ers i = 17,...,19, then unsqueeze the map to (4C, H/4,W/4) to align with the earlier
stage (see Figure[6]in Appendix for a detailed illustration of these initial steps). This
process of summation, concatenation, and reshaping is repeated until the full attribution
map H(x,y) is obtained.

This recursive construction yields a faithful, spatially resolved map of how each pixel contributes to
the conditional log-likelihood, providing insight into MAGIC-Flow’s reasoning while fully respect-
ing the model’s invertible structure.

6 EXPERIMENTS

We evaluate MAGIC-Flow on two tasks: conditional generation (scanner- and modality-
conditioned) and classification (scanner identification). Each task is tested on diverse, publicly
available datasets, compared against strong baselines, and evaluated with task-appropriate metrics.
All datasets and preprocessing details are provided in Section [B.T]and [B.2]

6.1 GENERATION EXPERIMENTS

Tasks and Datasets. We assess two conditional generation tasks: (i) scanner-conditioned gener-
ation, evaluating whether MAGIC-Flow can synthesize realistic MRI slices that capture scanner-
specific characteristics; and (ii) modality-conditioned generation, testing the ability to generate
anatomically consistent images across MRI (T1, T2, FLAIR) and PET (FDG, amyloid, tau) modali-
ties. Scanner-conditioned experiments use T1-weighted MRI slices from PPMI (Marek et al.,|2011),
IXTI (Brain-Development, 2019), and SALD (Wei et al., |2017). Modality-conditioned experiments
use multimodal MRI and PET from ADNI3/4 (Jack Jr et al.|[2008])). Dataset statistics are summarized

in Table fh and b of Appendix [B.2]

Evaluation Metrics and Benchmarks. We report FID and KID (Heusel et al., [2017; Binkowski
et al.l 2018) with domain-adapted feature extractors (FIDg,g and KIDg,q pre-trained on RadIma-
geNet; FIDgyav on SWAV) for medical realism (Mei et al., 2022} (Caron et al) 2020). To capture
sample-level fidelity and diversity, we use PRDC metrics (Precision, Recall, Density, Coverage)
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(Kynkaanniemi et al.,[2019; Naeem et al., 2020)), and intra-/inter-class MS-SSIM (Wang et al.,|2003;
Odena et al.|[2017). Details are provided in Appendix and[B.3.2] We compare against GANs
(SNGAN (Miyato et al.,|2018)), StyleGAN2-DiffAug-LeCam (Karras et al., 2020; Zhao et al., [2020;
Tseng et al., [2021), ADC-GAN (Hou et al.,|2022)), diffusion models (DDPM (Dhariwal & Nichol,
2021))), and latent-variable models (CVAE (Sohn et al.}|2015)). See Appendix for details.

6.2 CLASSIFICATION EXPERIMENTS

Task and Dataset. We evaluate MAGIC-Flow on scanner classification, where the model dis-
criminates between seven scanners, including scanners with comparable noise profiles e.g., Siemens
Prisma vs. Prisma Fit, using unbalanced datasets to test robustness. Coronal slices from PPMI,
SALD, IXI, and ADNI3 are used. Splits are performed across 5 folds with performance averaged
for robustness. See Tabledh of Appendix

Evaluation Metrics and Benchmarks. We report Accuracy, Balanced Accuracy, AUC, and
macro-averaged Precision, Recall, and Fl-score, accounting for both overall and class-balanced
performance. Details are provided in Appendix [B.3.3] We compare against CNNs pretrained on
RadImageNet (Mei et al.,2022) (ResNet-50, DenseNet-121, InceptionV3, InceptionResNetV?2) and
Vision Transformers (ViT, ViT-ResNet, Swin Transformer) (Dosovitskiy et al.| [2020; Jain et al.,
2024; Liu et al., [2021)). Baselines are evaluated with and without pretraining. See Appendix
for details.

7 RESULTS

In this section, we present the results of the experiments described in Section [6] The generation
results are reported in Section and the classification results are presented in Section

7.1 IMAGE GENERATION RESULTS

Table 1: Comparison of generative models on scanner- and modality-conditioned tasks using FID
variants. Bold indicates best scores; 95% Cls are shown for FIDg,q and KIDg_q.

Task Model FID| FIDpyg!  KIDgaa)  FIDsyav )  FIDR, (Clys) | KIDE, (Closq,) |
SNGAN 2991 3.03 24 x 107 4.98 [2.95, 3.18] [2.4,27] x 107

StyleGAN2 97.50 6.80 6.7 x 107 9.33 [6.64, 6.95] [6.5,6.9] x 107

Scanner ADC-GAN 59.83 5.12 46 x 107 5.21 [5.05, 5.31] [4.5,4.8] x 107
(Generation)  pppyp 39.5 13.80 175 x 102 574 [13.63, 14.01] [1.73,1.78] x 102
CVAE 244.07 16.69 2.07 x 102 21.56 [16.58, 16.83] [2.06,2.10] x 107

MAGIC-Flow  27.64 0.84 6.7 x 10 431 [0.83, 0.95] [6.2,7.5] x 10"

SNGAN 34.06 3.82 26 x 107 423 [3.76, 3.95] [2.5,2.7] x 107

StyleGAN2 59.2 4.75 34 x 107 6.50 [4.68, 4.85] [3.3.3.5] x 107

Modality ADC-GAN 57.84 4.94 2.7 x 107 5.46 [4.88, 5.07] [2.4,2.7] x 107
(Generation)  pppyp 70.48 15.22 172 x 10?2 8.08 [15.04, 15.38] [1.70, 1.74] x 10
CVAE 215.88 14.71 147 x 10? 19.40 [14.56, 14.88] [1.45,1.48] x 107

MAGIC-Flow  33.04 0.98 45 x 10 4.07 [0.94, 1.08] [4.0,5.2] x 10"

Quantitative results are summarized in Tables |l| and [2} MAGIC-Flow consistently outperforms all
baselines across both tasks. For scanner-conditioned generation, it achieves an FIDg,q of 0.84 and
KIDRgg of 6.7 x 10, substantially lower than the closest baseline (SNGAN: 3.03 and 2.4 x 10~%).
Similar trends are observed for modality-conditioned generation (FIDgag 0.98, KIDgog 4.5 X 10~%),
with bootstrapped confidence intervals confirming robust performance. Unlike GAN-based base-
lines, which often trade fidelity for diversity (e.g., SNGAN: P=0.79, R=0.05, D = 0.77, C = 0.40),
MAGIC-Flow achieves balanced performance with high precision (0.87) and substantially higher
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Table 2: Comparison of generative models using fidelity/diversity (P, R, D, C) and MS-SSIM. Gray
highlights show the best-performing model; “Real Data” provides reference values.

Task Model Pt RfT Dt C{1  MS-SSIM™"® | MS-SSIM‘™te" |
SNGAN 079 005 077 040 0.68 = 0.16 0.48 4 0.09
StyleGAN2 099 00 061 004 0.99 + 0.003 0.66 & 0.10
Scanner ADC-GAN 094 001 072 0.0 0.89 + 0.08 0.66 & 0.08
(Generation) DDPM 0.0 1.0 0.0 0.0 0.46 +0.12 0.33 £+ 0.12
CVAE 0.0 0.0 0.0 0.0 0.99 + 0.002 0.83 4 0.06
MAGIC-Flow 087 064 091 084 0.60 & 0.08 0.49 + 0.09
Real Data - - - - 0.51 +£0.11 043 £0.11
SNGAN 08 00 098 033 0.79 +0.18 0.22 4 0.19
StyleGAN2 098 002 10 025 0.90 + 0.07 0.29 4 0.25
Modality ADC-GAN 1.0 00 087 017 0.87 +0.11 0.23 4+ 0.21
(Generation) DDPM 0.0 0.0 0.0 0.0 0.55 £ 0.12 0.20 £ 0.18
CVAE 0.0 0.0 0.0 0.0 0.99 + 0.003 0.32 4 0.29
MAGIC-Flow 094 064 10 087 0.64 + 0.09 0.22 +0.18
Real Data - - - - 0.61 £ 0.12 022 +0.18
Gyroscan Intera Triotim (SALD) Triotim (PPMI)

Real
Images

MAGIC
Flow

CVAE

SNGAN

StyleGAN2
(DAL)

SNGAN

StyleGAN2
(DAL)
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Figure 2: Qualitative comparison of generated neuroimaging slices across (a) scanner types and (b)

imaging modalities.

recall (0.64), along with the highest density (0.91) and coverage (0.84), indicating realistic and rep-
resentative samples. MS-SSIM scores further show that intra-class variability closely matches real

data, while inter-class separability is maintained.
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Qualitative comparisons, shown in Figure 2] confirm these findings: MAGIC-Flow generates sharp,
anatomically consistent images preserving scanner- and modality-specific features, whereas CVAE
produces overly smooth outputs, GANs collapse to repetitive patterns, and DDPMs, though diverse,
often appear noisy or implausible.

In terms of efficiency, MAGIC-Flow generates 37.5 images/s, offering a favorable trade-off between
quality and speed compared to other approaches (SNGAN: 49.75; ADC-GAN: 38.17; StyleGAN2:
52.20; CVAE: 369.0; DDPM: 0.24).

7.2  SCANNER CLASSIFICATION

As shown in Table 3] MAGIC-Flow achieves 0.90 £ 0.01 accuracy, comparable to CNN and ViT
baselines, while surpassing them in balanced accuracy (0.76 +0.02), macro recall (0.76 =0.03), and
Fl1-score (0.75 + 0.03), demonstrating enhanced robustness to underrepresented scanners and dis-
crimination of close classes. MAGIC-Flow is shown to combine competitive predictive performance
with improved fairness across classes and provides interpretable, likelihood-based explanations.

Figure [3] shows likelihood-based attribution maps. MAGIC-Flow consistently attends to global in-
tracranial intensity distributions, partlcularly along gray—white matter boundaries, around ventricles,
and across cortical regions, while remaining insensitive to subject anatomy. This confirms the model
relies on acquisition signatures rather than anatomical variability.

Table 3: Comparison of classification performance on the test set.

Model Pre-Trained Accuracy Balanced Acc. AUC Precision Recall F1-score

MAGIC-Flow - 0.90 £+ 0.01 0.76 £ 0.02 0.97 £ 0.01 0.77 £0.03  0.76 £0.03  0.75 £ 0.03
ResNet-50 RadImageNet 0.91 + 0.01 0.73 £ 0.02 098 +0.002 0.71 £0.06 0.734+0.02 0.71 +0.04
DenseNet-121 RadImageNet 0.91 + 0.01 0.73 £ 0.03 0.98 £ 0.00 0.79 £0.03 0.734+0.03 0.72 +0.03
InceptionV3 RadImageNet 0.90 & 0.02 0.72 £ 0.02 097 £0.003 0.67 £0.04 0.724+0.02  0.69 & 0.03
IncepResNetV2 ~ RadImageNet 0.88 +0.02 0.74 £+ 0.03 0.97 £ 0.01 0.76 £0.03  0.74 £0.03  0.74 +0.03
ViT - 0.88 + 0.01 0.70 £ 0.02 097 £0.003 0.724+0.02 070 £0.02  0.70 £ 0.02
ViT-ResNet ImageNet-21k 0.91 + 0.01 0.73 £ 0.03 0.98 &+ 0.00 0.74 £0.09 0.73£0.03 0.71 £0.04
Swin-ViT ImageNet-22k  0.91 &+ 0.004 0.73 £+ 0.03 0.98 £ 0.01 0.71 £0.07 0.734+0.03 0.71 £ 0.05
Gyroscan Intera Intera Unspecified (I0P) Prisma Prisma Fit Triotim (SALD) Triotim (PPMI)

Figure 3: Likelihood attribution maps from MAGIC-Flow. Warm colors indicate regions with the
strongest positive contributions to the predicted likelihood.

8 CONCLUSION

We introduced MAGIC-Flow, a conditional multiscale normalizing flow that unifies generation and
classification within a likelihood-based framework. It enables high-fidelity synthesis, robust clas-
sification under scanner variability and imbalance, and interpretable likelihood attribution maps.
Current limitations include its 2D scope; extending to 3D, adding uncertainty measures, and explor-
ing pathology-conditioned generation and multi-institutional deployment are future directions. A
key use is augmenting scarce datasets of underrepresented conditions. MAGIC-Flow advances joint
generative-discriminative modeling for data-limited, privacy-sensitive domains.
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REPRODUCIBILITY STATEMENT

Extensive theoretical proof are provided in Appendix and while architectural details in|A.3]
[A.4and[A.3] We provide a comprehensive description of datasets and preprocessing in Appendix
and [B.2] The evaluation procedures are provided in [B.3] A complete overview of baseline
models and their implementations are provided Appendix All code and trained models will be
released anonymously as supplementary material. We believe that these resources ensure that all
results in this paper are reproducible.

USE oF LLM

This paper has benefited from the use of a Large Language Model (LLM), which was employed
solely to aid or polish the writing. The research ideas, methodology, and results are entirely the
authors’ own.

CODE OF ETHICS

This study involves only publicly available datasets containing human subjects. No private, sen-
sitive, or personally identifiable information has been collected or processed by the authors. All
datasets are properly cited in the paper, and the links and footnotes referring to them have been
carefully verified to ensure correctness.
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SUPPLEMENTARY MATERIAL

A  MATHEMATICAL AND ARCHITECTURAL DETAILS

A.1 CONDITIONAL CHANGE OF VARIABLES FORMULA: DETAILED DERIVATION

Let Z € R?and Y € R” be random variables with joint density pz y (z,y). Let
f:R*x RF - R?
be continuously differentiable, and suppose that for every fixed y, the map z — f(z,y) is a dif-

feomorphism onto its image with Jacobian matrix %(z, y) having nonzero determinant. Define
X := f(Z,Y), and write f~!(z,y) for the unique z such that f(z,y) = x. Assume py (y) > 0.

If Z and Y are independent, the conditional density of X given Y = y is
-1

pxir (@ | 9) = 02 (@) [det (2 a)|

Derivation. Consider the mapping
(Z2,Y) = (X,Y) = (f(2,Y),Y),

with Jacobian

a(x,y): af((azyy) 8fé?y)
8(Z7y) 0 ]k: ’

where I}, is the k x k identity matrix. Since this is block lower-triangular, its determinant is
0 0
dgot (2@ _ et (270N |
0(z,v) 0z

By the change-of-variables formula, the joint density of (X,Y) is

e (S )

—1
pxy(@,y) =pzy (f (2,9),9) -

If Z and Y are independent, then
pzy (2,y) = pz(2) Py (y).
Substituting, we obtain

Py (@,y) = p2(F (@,9) - oy () - :

dee (S0 @)

The conditional density follows from
px.y(@,y)
Pxiy\x 1Y) = .
Y =)

Using the Jacobian determinant of the inverse function,

-1 1
= ‘det (6(],9; (x,y))

det (%; (x,y)) ’ .

This result provides the conditional version of the change-of-variables formula used in our model.

)

e (S )

we obtain the final expression:

pxiy (@ | y) = pz(f (2,y))-
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A.2 AFFINE COUPLING: JACOBIAN DERIVATION

Let x € REXHXW be the input image and let M € {0,1}¢*#*W be a binary mask. Define the
complementary parts
X2 =MOx, xp=(1-M)ox.
First affine transformation (A — B). The update equations are
ug = X4, up =xp Oexp (s1(x4;y)) + t1(xa5y),
where s1,t; € REXHXW are elementwise scale and translation factors.

The Jacobian is

Jo— d(ua,up)
1= =~
8(XA,XB)
Since uyg = x4, we have 5 5
up ug
— =1 — =0.
aXA ’ aXB

Each element of up depends elementwise on g ; via

up,; = =B, - exp(s1,i(x4;y)) + t1,i(x45y),

SO
8’113’1'

31”371 = eXp(Sl,i(XA;Y))'

The Jacobian matrix is thus block-triangular:

Ouy  Oup T 0
Ji=|Gus oup { di :
o s x  diag (exp(s1))

where * represents entries that do not affect the determinant. Therefore, the log-determinant of the
first transformation is
log |det J1| = Z (1= Mehw)St,ehw-

c,h,w

Second affine transformation (B — A). The second transformation updates u4 while keeping
up fixed:

xp = ug, Xy =uy Oexp (52(113;}’)) +t2(up;y).

Again, the Jacobian is block-triangular, with

!/ !/
8XA BXB

= diag (exp(SQ)), =1

oua dup

Thus the log-determinant of the second transformation is
log | det J2| = Z Mc,h,w S2.¢,h,w-

c,h,w

Total log-determinant. The two transformations are composed sequentially, so the total log-
determinant is

log | det J| = log | det J1| + log | det Jo| = Z (1= Mepw)St,ehw T Z Me how S2,c,h -

c,h,w c,h,w
A.3 DESIGN OF AFFINE COUPLING LAYERS

Figure [4| illustrates the task-specific affine coupling layers used in MAGIC-Flow. The generation-
oriented coupling layer (Figure fa) is designed to capture multi-scale dependencies and global
context, enabling expressive transformations for high-fidelity sample synthesis. In contrast, the
classification-oriented coupling layer (Figure[db) incorporates label information directly into the fea-
ture transformations, prioritizing discriminative structure to improve predictive accuracy. Together,
these designs highlight the flexibility of our framework in tailoring flow-based transformations to
the demands of different tasks.
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(a) Generation coupling layer: designed for expres- (b) Classification coupling layer: optimized for label-
sive, multi-scale, and context-aware transformations to aware, discriminative feature transformations for pre-
synthesize high-fidelity outputs. dictive accuracy.

by

Figure 4: Architectures of the task-specific affine coupling layers. The generation layer emphasizes
multi-scale and global context features, while the classification layer focuses on integrating label
information into the feature transformations.

A.4 MASK DESIGN

To ensure that every dimension of x is transformed throughout the flow, MAGIC-Flow alternates
among three types of binary masks M € {0, 1}¢>*#*W. (1) Checkerboard masks: update al-
ternating spatial positions to encourage pixel-level mixing; (2) Channel-wise masks: transform
subsets of channels, enabling feature-level diversity; (3) Application-specific masks: emphasize
semantically relevant regions, adapting transformations to the downstream task.

By alternating checkerboard and channel-wise masks across flow steps, MAGIC-Flow achieves a
balance between spatial and feature-level expressiveness while preserving tractable Jacobian com-
putations.

The masks used in our experiments are shown in Figure[5] Because our applications involve coronal
slices, the application-specific mask is designed as a coronal binary mask. We find that incorporating
this application-specific mask reduces artifacts in the generated images.
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C
Coronal Checkboard
Mask Mask Channel-wise Mask

Figure 5: Examples of the masks used in MAGIC-Flow: (a) checkerboard mask, (b) channel-wise
mask, and (c) application-specific coronal mask. Together, these masks provide complementary
spatial, feature-level, and application-adaptive transformations.

A.5 LIKELIHOOD ATTRIBUTE MAPS

To better understand the predictive behavior of MAGIC-Flow, we introduce Likelihood Attribute
Maps. These maps provide a pixel-level attribution that links the model’s latent likelihood computa-
tions to the input domain. As illustrated in Figure[6] the method propagates contributions from deep
latent factors back to the input space through inverse split and squeeze operations, while accounting
for the Jacobian terms at each stage. The resulting attribution map H(x, y) offers an interpretable,
likelihood-grounded explanation of the model’s output.

B SUPPLEMENTARY EXPERIMENTAL DETAILS

B.1 IMAGING PREPROCESSING PIPELINE

All imaging data, including structural MRI and PET scans, were preprocessed using a customized
pipeline based on the FMRIB Software Library (FSL) Smith et al.| (2004); Jenkinson et al.| (2012).
T1-weighted images were processed with FSL’s £s1_anat pipeline, which included reorientation
to standard space, bias-field correction and nonlinear registration to the MNI152 template. T2-
weighted and FLAIR images were rigidly coregistered to the subject’s T1-weighted image using
normalized mutual information cost functions, with or without bias-field correction depending on
data quality. The resulting transformations were applied to align T2-weighted and FLAIR scans
to T1 space and subsequently to MNI space using the T1-derived warp fields. All PET data were
obtained from Alzheimer’s Disease Neuroimaging Initiative (ADNI3 and ADNI4). FDG, amyloid,
and tau PET scans were first coregistered to the subject’s T1-weighted image and then normalized
to MNI space using the T1-derived transformations. In ADNI, PET acquisitions occur during the
plateau phase of tracer uptake (e.g., 30—60 min post-injection for FDG, 50-70 min for florbetapir and
NAV-4694, 90—-110 min for florbetaben and MK-6240, 75-105 min for flortaucipir, and 45-75 min
for PI-2620) and are reconstructed into multiple short frames. Specifically, florbetapir, florbetaben,
and NAV-4694 scans are acquired as 4 x 5 min frames, whereas FDG, flortaucipir, and PI-2620 scans
are acquired as 6 x 5 min frames. To generate a single static image representing tracer distribution,
the median across frames was retained. The median was selected over the mean because it provides
a more robust estimate of plateau-phase uptake, minimizing the influence of motion artifacts or
frame-specific outliers that could bias the averaged signal. This multimodal preprocessing pipeline
ensured consistent alignment of structural (T1, T2, FLAIR) and molecular (FDG, amyloid, tau PET)
imaging data across participants.

After preprocessing, the resulting images had dimensions of (1, 182, 218, 182). For our ex-
periments, each 3D volume was processed by extracting coronal slices of shape (1, 182, 182).
Specifically, we selected the central coronal slice from each volume. To augment the datasets while
maintaining anatomical consistency, neighboring slices were also included only for the scanner-
conditioned and modality-conditioned generation tasks, typically within £5 slices of the center. In
some cases, fewer slices were used depending on the dataset size. No slice augmentation was applied
for the scanner classification task.
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Figure 6: Illustration of the initial steps in constructing the maps described in Section [5| Starting
from latent factors (green) at the deepest level, contributions are propagated backward through in-
verse split and squeeze operations, with the corresponding Jacobian terms accumulated at each step.
This process produces a pixel-level attribution map H(x,y), providing a principled, likelihood-
based interpretation of MAGIC-Flow’s predictions.
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B.2 IMAGING DATASETS OVERVIEW
B.2.1 DATASETS FOR GENERATION

Two conditional generation tasks were evaluated: (i) scanner-conditioned generation, assessing
whether MAGIC-Flow can synthesize realistic MRI slices that preserve scanner-specific character-
istics, and (ii) modality-conditioned generation, testing the model’s ability to generate anatomically
consistent images across MRI (T1, T2, FLAIR) and PET (FDG, amyloid, tau) modalities.

Scanner-conditioned experiments used T1-weighted MRI scans from PPMI (Marek et al., 201T), IXI
(Brain-Development, 2019), and SALD 2017), with the following slice counts: PPMI
(TrioTim, 41 slices for classification, 315 for generation), IXI (Gyroscan Intera: 322/349, Intera:
185/, GE unspecified: 74/310), and SALD (TrioTim: 494/345).

Modality-conditioned experiments used multimodal MRI and PET data from ADNI3/4
2008). Central coronal slices along with +5 neighboring slices were extracted from MRI
(FLAIR, T1, T2) and PET (FDG, amyloid, tau) scans. Slice counts per class were: MRI-FLAIR
(526), MRI-T1 (527), MRI-T2 (535), PET-Amyloid (516), PET-Tau (518), and PET-FDG (522),
yielding a total of 3,144 slices across all modalities.
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Table 4: Overview of imaging datasets used across the three tasks. (a) Scanner-conditioned gen-
eration and scanner classification: scanner models and manufacturers, along with the number of
coronal slices available for each scanner in both classification and generation tasks. (b) Modality-
conditioned generation: MRI sequences and PET tracers, with the corresponding number of coronal
slices per modality and total counts.

Scanner Model Manufacturer Dataset # Coronal slices (Classification) # Coronal slices (Generation)
Gyroscan Intera Philips IXT 322 349
Intera Philips IXT 185 -
Unspecified (IOP) GE IXI 74 310
TrioTim SIEMENS PPMI 41 315
TrioTim SIEMENS SALD 494 345
Prisma SIEMENS ADNI3 69 -
Prisma Fit SIEMENS ADNI3 167 -
(@
Modality Sequence Tracers Dataset # Coronal slices
MRI FLAIR N/A ADNI3 526
MRI T1-weighted N/A ADNI3 527
MRI T2-weighted N/A ADNI4 535
PET Amyloid AV4S - FBB - NAV4694 ADNI3 / ADNI4 516
PET Tau AV1451 - MK6240 - PI2620  ADNI3 / ADNI4 518
PET FDG 18F-FDG ADNI3 522
(b)

B.2.2 DATASETS FOR CLASSIFICATION

Scanner classification evaluates MAGIC-Flow’s ability to discriminate among seven scanner mod-
els, including closely related models (e.g., Siemens Prisma vs. Prisma Fit), using unbalanced
datasets to test robustness. Coronal slices from PPMI, SALD, IXI, and ADNI3 were used, with
the following slice counts: PPMI (TrioTim, 41 slices), IXI (Gyroscan Intera: 322, Intera: 185, GE
unspecified: 74), SALD (TrioTim: 494), and ADNI3 (Prisma: 69, Prisma Fit: 167). Data were split
into 5 folds, with performance averaged across folds.

B.3 EVALUATION METRICS FOR GENERATION AND CLASSIFICATION

We evaluate our method against benchmarking methods using metrics designed for both medical
image generation and classification. These metrics capture distributional similarity, sample-level
fidelity, diversity, and predictive performance.

To rigorously assess the quality of generated medical images, we employ metrics that evaluate both
distributional similarity, which measures how closely generated images match real data, and sample-
level fidelity and diversity, which measure how realistic and varied the images appear. This dual per-
spective provides a comprehensive understanding of generative performance in the medical domain.

B.3.1 DISTRIBUTIONAL SIMILARITY METRICS.

The Fréchet Inception Distance (FID) (Heusel et al., [2017) is a standard metric for comparing real
and generated image distributions. It measures the Fréchet distance between multivariate Gaus-
sian distributions fitted to deep features, typically extracted from the pool3 layer of an ImageNet-
pretrained InceptionV3 network. However, this approach is suboptimal for medical imaging due to
the domain gap between natural and medical images.

To address this, we adopt domain-specific adaptations. FIDg,q leverages features from an Incep-
tionV3 model pretrained on RadlmageNet (Mei et al.,|2022), a large-scale medical imaging dataset.
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This improves alignment with clinical image characteristics and has been shown to correlate more
strongly with radiological quality and anatomical fidelity (Fernandez et al.l [2024)). In addition,
we employ FIDgwav (Morozov et al.l 2021), which replaces Inception features with embeddings
from SwAYV, a self-supervised model trained with clustering and contrastive objectives (Caron et al.,
2020). Unlike ImageNet features, SWAV embeddings are robust to domain shifts and better suited
for grayscale medical images, capturing subtle textures and anatomical structures (Woodland et al.,
2024).

Despite its popularity, FID is biased when computed on small sample sizes, a common constraint in
medical datasets. This arises because Gaussian parameters are poorly estimated under limited data,
resulting in high variance and unstable scores. To mitigate this, we also report the Kernel Inception
Distance (KID) (Binkowski et al., 2018)), which computes the squared Maximum Mean Discrepancy
using polynomial kernels. Unlike FID, KID is an unbiased estimator and therefore more reliable for
small datasets. To maintain consistency with domain-specific features, we compute KIDg,q using
RadImageNet-pretrained embeddings.

Finally, to further stabilize estimates, we include bootstrapped versions of the domain-adapted met-
rics, denoted FIDPg,q and KIDPgr,q. These are obtained via repeated random subsampling, and we
report the 95% confidence intervals across subsamples. This reduces variance and improves robust-
ness in small-sample settings.

By combining standard FID with domain-adapted, unbiased, and bootstrapped variants, we con-
struct a robust framework for measuring global distributional similarity between real and generated
medical images.

B.3.2 SAMPLE-LEVEL FIDELITY AND DIVERSITY METRICS.

While distributional metrics capture overall similarity, they do not directly assess sample-level fi-
delity (how realistic individual images appear) or diversity (how well the generator covers variations
in the data). To address this, we employ a complementary set of metrics: Improved Precision and
Recall, Density and Coverage (PRDC), and Structural Similarity (MS-SSIM).

Improved precision (P) (Kynkdanniemi et al.,|2019) measures the fraction of generated samples that
lie within the support of real data, estimated via a fixed-radius nearest-neighbor approach in feature
space. Higher values (up to 1.0) indicate greater fidelity, meaning generated images are visually
indistinguishable from real ones. Conversely, recall (R) (Kynkaanniemi et al., |2019) measures the
fraction of real images that are covered by at least one generated sample, reflecting diversity. Higher
values (up to 1.0) suggest the generator successfully captures variations in the real distribution.

To provide a more granular view, we additionally compute density (D) (Naeem et al., [2020), which
counts the average number of generated samples within the neighborhood of each real image using
k-nearest neighbors. High density (up to 1 in the normalized version) indicates that many generated
samples cluster near real images, while low density indicates sparse coverage around real images.
Complementing this, coverage (C) (Naeem et al.|[2020) quantifies the fraction of real images that are
matched by at least one generated image within a fixed distance. Coverage ranges from 0 to 1: higher
values indicate that the generator spans almost all distinct regions of the real distribution, while lower
values indicate that some modes are missing entirely, even if the generator produces realistic samples
elsewhere. Whereas recall emphasizes broad inclusion, coverage specifically evaluates whether
the generator touches all distinct regions of the real distribution. Interpreted together, density and
coverage provide a complete view of generation quality: high density with low coverage signals
realistic samples concentrated in few regions (mode collapse), while high density with high coverage
indicates both realistic and diverse generation.

All PRDC metrics are computed in the feature space of the RadlmageNet-pretrained InceptionV3
model, ensuring domain-specific alignment with medical image characteristics.

To directly assess intra-class and inter-class diversity, we use the Structural Similarity Index Mea-
sure (SSIM)(Wang et al, 2004), which compares luminance, contrast, and structural information
between two images. In particular, we adopt the Multi-Scale SSIM (MS-SSIM)(Wang et al., 2003),
which extends SSIM by evaluating image similarity across multiple spatial resolutions, capturing
both coarse and fine details. Following prior work (Odena et al., [2017; |Dash et al., 2017} [Dragan
et al., 2023), we compute MS-SSIM scores over 500 randomly selected pairs of generated images,
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distinguishing between intra-class and inter-class diversity due to our conditional setting. Intra-
class diversity (MS-SSIM™"™) is computed among samples of the same class. Lower values indicate
greater diversity within a class, while higher values suggest mode collapse toward visually simi-
lar outputs. Inter-class diversity (MS-SSIM™*") is computed across samples from different classes.
Lower values reflect good class separability, whereas higher values may indicate insufficient differ-
entiation between categories.

B.3.3 CLASSIFICATION METRICS.

For classification models, we report standard metrics including overall Accuracy, Balanced Ac-
curacy, Area Under the ROC Curve (AUC), and macro-averaged Precision, Recall, and F1-score.
Accuracy measures the fraction of correctly classified samples, while Balanced Accuracy accounts
for class imbalance by averaging recall across all classes. AUC evaluates the model’s discriminative
ability across decision thresholds. Macro-averaged Precision, Recall, and F1-score summarize per-
class performance and provide a comprehensive view of sensitivity and specificity across categories.

B.4 BENCHMARK MODELS FOR COMPARISON

To evaluate the effectiveness of MAGIC-Flow, we benchmark it against a diverse set of competitive
state-of-the-art models spanning adversarial training, diffusion-based generation, and latent-variable
modeling. These baselines are well-established in the literature and cover a broad methodological
spectrum, ensuring a robust and informative comparison.

B.4.1 GENERATIVE MODELS

SNGAN: Spectral Normalization GAN (Miyato et al.,[2018) introduces spectral normaliza-
tion to the discriminator’s weights, enforcing a Lipschitz constraint that stabilizes training.
It is a widely adopted conditional GAN known for generating high-fidelity samples with
reliable convergence.

StyleGAN2-DiffAug-LeCam: This approach extends StyleGAN2 (Karras et al.l [2020)
by incorporating DiffAugment (Zhao et al., [2020) and LeCam regularization (Tseng et al.,
2021)), which together improve training efficiency and generalization on limited data. These
augmentations help maintain strong conditional generation performance without requiring
large-scale datasets.

ADC-GAN: The Auxiliary Discriminative Classifier GAN (Hou et al., [2022)) enhances
the BigGAN framework by integrating an auxiliary classifier that simultaneously predicts
class labels and discriminates real versus fake samples via class-specific labeling. This
dual role improves intra-class diversity and promotes stable training dynamics compared to
traditional conditional GAN variants like AC-GAN (Odena et al.,[2017)).

DDPM: Denoising Diffusion Probabilistic Models (Nichol & Dhariwall [2021}; |Dhariwal &
Nichol, 2021} are non-adversarial generative models that learn to reverse a fixed noising
process through iterative denoising. We adopt the conditional DDPM framework with clas-
sifier guidance, which leverages a pretrained classifier’s gradients during sampling to steer
generation towards the desired class, significantly improving conditional sample quality
and fidelity.

CVAE: The Conditional Variational Autoencoder (Sohn et al., 2015) models conditional
distributions via latent variables by injecting conditioning information into both the en-
coder and decoder networks. This probabilistic approach captures multimodal outputs and
enables principled maximum likelihood training.

B.4.2 DISCRIMINATIVE MODELS FOR CLASSIFICATION

To establish a robust comparison framework, we further benchmark against convolutional neural
networks (CNNs) pretrained on RadlmageNet, as well as Vision Transformers (ViTs).

CNNs. RadlmageNet is a large-scale medical imaging database containing approximately 1.35
million annotated CT, MRI, and ultrasound images across 11 anatomic regions and 165 pathologic
labels (Mei et al., [2022). Unlike ImageNet pretraining on natural images, RadlmageNet provides
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domain-specific initialization that has been shown to improve transferability to radiologic tasks. We
selected four widely used CNN architectures, all initialized with RadImageNet-pretrained weights
and subsequently fine-tuned on our dataset:

* ResNet-50 (He et al., 2016)) — A residual network that mitigates vanishing gradients with
skip connections, providing a strong balance of depth and efficiency.

* DenseNet-121 (Huang et al., 2017) — A densely connected network that enhances feature
reuse and parameter efficiency.

* InceptionV3 (Szegedy et al.| 2016) — An architecture employing factorized convolutions
and dimensionality reduction to capture multi-scale features efficiently.

* InceptionResNetV2 (Szegedy et al.,2017) — A hybrid combining Inception modules with
residual connections for deeper feature extraction and stable optimization.

Vision Transformers. Unlike CNNs, which learn spatial hierarchies through convolutions, ViTs
partition images into fixed-size patches that are linearly projected and processed by transformer en-
coder layers with self-attention (Dosovitskiy et al., 2020). Prior work has demonstrated that ViTs
pretrained on large datasets (e.g., ImageNet-21k) can achieve strong performance in medical imag-
ing tasks, particularly when combined with CNN backbones (Dosovitskiy et al., [2020; Jain et al.,
2024])). We include the following variants:

¢ ViT-v1/32 — A baseline transformer dividing 224 x 224 images into 32 x 32 patches.

* ViT-ResNet/16 — A hybrid model that extracts features with a ResNet backbone before
transformer encoding. It uses 16 x 16 patches and ImageNet-21k pretraining, enabling
improved initialization and faster convergence relative to standalone ViTs.

¢ Swin Transformer (Liu et al 2021)) — A hierarchical vision transformer that introduces
shifted window attention to efficiently model both local and global dependencies. Swin
achieves state-of-the-art performance on natural image benchmarks such as ImageNet,
COCO, and ADE20K, and has been shown to transfer well to medical imaging tasks by
capturing fine-grained features while maintaining scalability (Liu et al., 2021} |He et al.|
2023).

Together, these CNN and ViT baselines provide strong and diverse comparators for evaluating the
performance of MAGIC-Flow in medical image classification.
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