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Abstract
In recent years, graph convolution networks and hypergraph convolution networks have become a research hotspot in

collaborative filtering (CF) because of their information extraction ability in dealing with the user-item interaction

information. In particular, hypergraph can model high-order correlation of users and items to achieve better performance.

However, the existing graph-based CF methods for mining interactive information remain incomplete and limit the

expressiveness of the model. Moreover, they directly use low-order Chebyshev polynomials to fit the convolution kernel of

graph and hypergraph without experimental proof or analysis, lacking interpretability. We propose an effective hybrid

graph and hypergraph convolutional network (EHGCN) for CF to obtain a capable and interpretable framework. In

EHGCN, the graph and the hypergraph are used to model the correlation among nodes in the interaction graph for

multilevel learning. EHGCN also optimizes the information flow framework to match the improved convolution strategy of

the graph and hypergraph we proposed. Extensive experiments on four real-world datasets show the considerable

improvements of EHGCN over other state-of-the-art methods. Moreover, we analyze the graph and hypergraph convo-

lution kernel in terms of the spectral domain to reveal the core of the graph-based CF, which has a heuristic effect on future

work.

Keywords Collaborative filtering � Graph neural network � Hypergraph learning � Recommender systems

1 Introduction

Collaborative filtering (CF) is a key method for con-

structing personalized recommender systems, which

exploits the experience of user groups with similar pref-

erences to recommend items in which users are interested.

Specifically, CF uses the corresponding collaborative fil-

tering algorithm to filter the user groups based on the user-

item interaction history and generates the recommendation

sequences according to their interaction items. As an early

model, Matrix Factorization (MF) [1] directly uses the ID

of users and items to perform feature mapping. Then, it

generates a rating matrix by inner product for recommen-

dations. Given the deep learning development, Neural

Collaborative Filtering (NCF) [2] uses multi-layer per-

ceptron (MLP) to obtain the final embeddings, then gen-

erates the rating matrix through interaction function. It

achieves significant improvement. Therefore, we summa-

rize that the core of CF is to generate effective user and

item embeddings that contain the interaction behavior

patterns between them.
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Inspired by the Convolutional Neural Network (CNN),

Graph Convolution Network (GCN) [3–5] adopts spectral

theory to perform the graph convolution operation. The

theoretical basis of graph convolution is that convolution in

the time domain is equivalent to the dot product in the

spectral domain. First, the Fourier Transform is used to

transform the graph signals in the time domain and the

spectral domain, and then the convolution operation is

conducted by parameterizing the convolution kernel. The

widely used GCN [5] utilizes the first-order Chebyshev

polynomials as the graph convolution kernel to simplify the

calculation. In CF, the interactive information between

users and items is a bipartite graph, which can be extracted

by GCN. Based on this, the graph-based CF methods, such

as Neural Graph Collaborative Filtering (NGCF) [6],

LightGCN [7], and Linear Residual Graph Convolutional

Collaborative Filtering (LR-GCCF) [8], possess remark-

able advantages. NGCF applies GCN to the CF task, which

is divided into message construction and message aggre-

gation. LightGCN improves the GCN processes to achieve

better performance in the recommendation. LR-GCCF uses

a new information propagation model Simple Graph Con-

volution (SGC) [9] and proposes residual links to conduct

feature embeddings. However, the existing graph-based CF

methods use the first-order Chebyshev polynomials as the

filter to conduct the convolution operation by default

without experimental proof or analysis. Therefore, there is

a lack of interpretability.

As a generalization of the graph, the hypergraph has also

attracted extensive attention in recent years. In the view of

mathematics, the hyperedges of hypergraphs connect any

of the vertices, which can model high-order correlation

among nodes. Inspired by the GCN method [5], the

hypergraph convolutional network (HGCN) [10] utilizes

the unique structured information of the hypergraph to

perform the hypergraph convolution in the spectral domain.

Compared with the graph, the hypergraph successfully

models high-order data correlation (except pair connection)

for downstream tasks. Dual channel hypergraph collabo-

rative filtering (DHCF) [11] first applies the hypergraph

convolution method to CF, which generates the hypergraph

over the user-item interaction matrix. However, it is limited

by the complex information propagation framework and

the intuitive judgment that defines the hypergraph convo-

lution kernel.

Although the above graph-based CF methods have

achieved great performance improvement, the following

limitations still exist: (1) insufficient mining of interactive

information and (2) intuitively fitting convolution kernel

with first-order Chebyshev polynomials. The above prob-

lems are attributed to the fact that the existing methods do

not analyze the core of the graph-based CF.

In order to solve the above problems, we propose an

effective hybrid graph and hypergraph convolution net-

work (EHGCN), focusing on the embedding process. First,

we further mine the interaction information by generating

the hypergraphs of users (items) to model the high-order

correlation among users (items) for multilevel learning. On

this basis, the convolution strategy and information flow

framework of graph and hypergraph are optimized to

improve the model performance. Compared with the

baselines, our method shows a considerable improvement

in four benchmark datasets. Meanwhile, the core of the

graph-based CF is analyzed for the first time from the

perspective of signal processing.

In summary, the main contributions of our work are as

follows:

• We propose an effective hybrid graph and hypergraph

convolution network for CF, which is the first method

to mine interactive information from different levels by

graph and hypergraph with significant performance

improvement.

• We optimize the convolution strategy from the graph

signal processing point of view, and the corresponding

improved information flow framework called Den-

seGCN is proposed.

• This is the first time to analyze the core of the graph-

based CF in the process of graph and hypergraph

convolution. Meanwhile, we draw an interpretable con-

clusion through large quantities of experiments.

The remainder of our paper is organized as follows. The

preliminaries are introduced in Sect. 2. Then, the archi-

tecture and details of the proposed model are illustrated in

Sect. 3. Moreover, Sect. 4 details the experimental results,

and EHGCN is analyzed based on the results. Then, Sect. 5

summarizes the existing literature on recommender sys-

tems. Finally, Sect. 6 highlights the conclusion of the

article with future guidelines.

2 Preliminaries

2.1 Graph and hypergraph convolution

The theoretical basis of graph convolution is that the pro-

duct operation in the spectral domain is equal to the con-

volution operation in the time domain. Based on this, the

graph convolution process is divided into graph filtering

and feature transformation. Hence, we need to define an

appropriate graph filter and a trainable weight matrix W to

support it. Laplacian smoothing filter depicts the trend of

signal change in the graph [12], which is often used

because of its high computational efficiency and superior

performance. It is defined as Hf ¼ I� kgL
g
sym, where I
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represents identity matrix and Lg
sym represents symmetric

normalized Laplacian matrix. X is usually the feature

matrix of graph nodes. Adaptive Graph Encoder (AGE)

[13] illustrates that kg is real-valued and can be selected

according to some rules. Hf can be employed as the filter

matrix. Then, eX denotes the signal processed by the filter:

eX ¼ HfX ¼ ðI� kgL
g
symÞX ¼ UðI� kgKÞU�1X; ð1Þ

where K and U 2 RN�N represent the diagonal matrix and

the unitary matrix comprising the eigenvectors of Lg
sym,

respectively. I� kgK represents a decaying non-negative

frequency response function, which is essentially a low-

pass filter. AGE denotes the maximum eigenvalue in K as

kmax. In theory, if kg [ 1=kmax, the filter is not low-pass in

the ð1=kg; kmax� interval. Otherwise, if kg\1=kmax, the filter
cannot denoise all the high-frequency components. More-

over, kg ¼ 1=kmax represents a low-pass filter. Graph signal

processing related works [14] and [15] prove that the sig-

nals of input data contain low-frequency and high-fre-

quency signals, which, respectively, reflect the correlation

and difference among signals and correspond to the

assortative networks and disassortative networks. The

symmetric normalized graph Laplacian is defined as:

eL
g

sym ¼ eD
�1

2
eL
g
eD
�1

2 ¼ I� eD
�1

2
eAg

eD
�1

2; ð2Þ

where eAg represents the adjacency matrix with self-con-

nection, and eD represents the diagonal matrix of eAg. SGC

[9] uses stacked t filtering operations to construct a low-

pass filter with stronger effect. Based on the above

derivation process, we illustrate the final generalized graph

Laplacian convolutional representation:

eX ¼ ðI� kgeL
g

symÞ
tX

¼ ðI� kgðeD
�1

2
eL
g
eD
�1

2ÞÞtX

¼ ðI� kgðI� eD
�1

2
eAg

eD
�1

2ÞÞtX:

ð3Þ

It should be noted that the feature transformation process

and activation function are ignored in the above derivation.

GCN [5] reduces computation complexity by using the

first-order Chebyshev polynomials to fit the convolution

kernels where kg ¼ 1 and t ¼ 1. After the feature trans-

formation process and activation function are added, the

widely used graph convolution formula is expressed as:

Xðlþ1Þ ¼ rðeXWðlÞÞ

¼ rððI� eD
�1

2
eL
g
eD
�1

2ÞXðlÞWðlÞÞ

¼ rðeD�1
2
eAg

eD
�1

2XðlÞWðlÞÞ;

ð4Þ

where WðlÞ represents the weight matrix of the l-th layer

and rð�Þ is a nonlinear activation function, such as ReLU.

Eq. 4 is the convolution strategy of GCN [5].

On the other hand, the hypergraph structure models

the high-order correlation of data and expresses complex

relationships through hyperedges. The adjacency matrix

of a graph corresponds to the incidence matrix of a

hypergraph. The incidence matrix of a hypergraph is

defined as H 2 RjVj�jEj, where jV j and jEj represent the
number of nodes and the number of hyperedges,

respectively. Wh is the weight matrix of the hyperedges.

The degree of nodes and hyperedges are dðvÞ ¼
P

e2E WhðeÞHðv; eÞ and dðeÞ ¼
P

v2V Hðv; eÞ, respec-

tively. Dv is the diagonal nodes degree matrix, and De is

the diagonal hyperedges degree matrix, comprising d(v)

and d(e), respectively. The related work of hypergraph

[16] derives the symmetric normalized Laplacian matrix

of hypergraph Lhg
sym ¼ I� D

�1
2

v HWhD
�1
e HTD

�1
2

v from the

spectral domain. Similar to the derivation of generalized

graph Laplacian convolution operation, the generalized

hypergraph Laplacian convolution operation is defined

as:

eXh ¼ ðI� khgL
hg
symÞ

tXh

¼ ðI� khgðI� D
�1

2
v HWhD

�1
e HTD

�1
2

v ÞÞtXh;
ð5Þ

where Xh denotes hypergraph signals, eXh represents the

hypergraph signals processed by the filters, and khg repre-

sents the weight coefficient of the frequency response

function of the hypergraph Laplacian matrix. Note that the

feature transformation process and activation function are

ignored in the above derivation.

The hypergraph convolution proposed by HGCN [10] is

a spectral-domain convolution operation applied to hyper-

graph structures, where khg ¼ 1 and t ¼ 1. After the feature

transformation process and activation function are added,

the widely used hypergraph convolution formula can be

expressed as:

X
ðlþ1Þ
h ¼ rðD�1

2
v HWhD

�1
e HTD

�1
2

v X
ðlÞ
h WðlÞÞ; ð6Þ

where X
ðlþ1Þ
h and W

ðlÞ
h denote the model output and weight

matrix at l-th layer, respectively. Essentially, hypergraph

convolution is also an information propagation model. The

graph signals referred to below contain the simple graph

signals and the hypergraph signals.

2.2 Graph-based CF method

Graph-based CF methods combine the users and items in a

shared space. R 2 f0; 1gjMj�jNj
is a user-item interaction

matrix, where jMj is the number of users, and jNj is the
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number of items. The matrix element value is 1 if an

interaction exists between user i and item j; otherwise, it is

0. Then, the adjacency matrix representing the interaction

history of users and items is defined as a symmetric matrix:

A ¼
0 R

RT 0

� �

;A 2 RjMþNj�jMþNj: ð7Þ

A is used to perform the matrix calculation for user and

item embeddings. In implicit feedback-based CF, user and

item IDs only have weak semantic information. We obtain

embeddings by mining the topological information in the

user-item interaction matrix and weak semantic informa-

tion, which is described as:

eðlþ1Þ
u ¼ AGGðeðlÞu ; feðlÞi : i 2 N ugÞ;

e
ðlþ1Þ
i ¼ AGGðeðlÞi ; feðlÞu : u 2 N igÞ;

ð8Þ

where AGGð�Þ represents the graph information propaga-

tion model, e
ðlÞ
u is the user embeddings at the l-th layer, and

e
ðlÞ
i is the item embeddings at the l-th layer. N u and N i

represent the item i with which user u has interacted and

the user u with which item i has interacted, respectively.

The hypergraph uses degree-free hyperedges to encode

high-order data correlation and strengthen the topological

information in the interaction matrix. We present the def-

inition of hypergraph generation from the perspective of

items, and the definition of hypergraph generation based on

the perspective of users are similar.

Definition 1 (Item’s k-order reachable users.) If a path

exists between userk and itemj, and the number of users on

that path is equal to k, then userk is the k-order reachable

user of itemj.

For example, Fig. 1 shows that the first-order reachable

users of Item1 are User1 and User4 because paths ‘‘Item1 -

User1’’ and ‘‘Item1 - User4’’, respectively, exist and the

number of users on these paths is equal to 1. Similarly, the

second-order reachable users of Item1 are User3 and User2
because paths ‘‘item1 - User1 - Item2 - User3’’ and ‘‘Item1 -

User1 - Item3 - User2’’, respectively, exists and the number

of users on these paths is equal to 2.

On the basis of the above definition, we generate the

hypergraph structure data over the interaction matrix. The

information propagation model of the hypergraph is

defined as:

eðlþ1Þ
u ¼ HAGGðeðlÞu ; feðlÞu : u 2 N

k
ugÞ;

e
ðlþ1Þ
i ¼ HAGGðeðlÞi ; feðlÞi : i 2 N

k
i gÞ;

ð9Þ

where HAGGð�Þ represents the hypergraph information

propagation model, k is the k-order correlation information

from the same type of nodes, and other notations are the

same as those in Eq. 8.

3 Method

In this section, we introduce hypergraph generation meth-

ods, the EHGCN with generalized graph and hypergraph

Laplacian convolution kernel, and the improved informa-

tion flow framework.

3.1 Hypergraph generation

In this section, the method of generating a hypergraph

structure with high-order data correlation based on the

user-item interaction matrix is introduced. The above-

mentioned user-item interaction matrix is defined as

R 2 f0; 1gjMj�jNj
. In the hypergraph, the hyperedges are

defined to connect two or more nodes. Therefore, the high-

order correlation information between the nodes is

extracted by modeling the topology with a hypergraph. For

example, we construct the user hypergraph incidence

matrix based on the interaction graph and the hyperedge

over the k-order reachable user sets of certain items. Then,

the high-order hyperedge group EBk
u

is constructed

according to the k-order reachable rule among users. The k-

order reachable matrix for the items is described as

Ak
i 2 f0; 1gjNj�jNj

, and the hyperedge group of incidence

matrix is HBk
u
2 f0; 1gjMj�jNj

, which is generated by the

Fig. 1 Illustration for constructing the user hypergraph incidence

matrix with Item1 marked by N. User-item interaction matrix is used

to encode the high-order relevance of users
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user’s k-order rules. As a hyperedge group of incidence

matrix, fusion function f ð�Þ is a connection operation �jj�.
Finally, we generate the user hypergraph correlation matrix

Hu. The above calculations are defined as:

EBk
u
¼ fBk

uðiÞ; i 2 Ig; ð10Þ

Ai
k ¼ minð1; powerðHTH; kÞÞ; ð11Þ

HBk
u
¼ HA

ðk�1Þ
i ; ð12Þ

Hu ¼ f ðE
B
k1
u
; E

B
k2
u
; :::; EBka

u
Þ

¼ H
B
k1
u
jjH

B
k2
u
jj:::jjHBka

u
;

ð13Þ

where I represents the entity sets, indicating that each user

node u must be added to the high-order hyperedge group,

powerðM; kÞ is a function for calculating the k power of the
given matrix M, and H 2 f0; 1gjMj�jNj

denotes the user-

item incidence matrix. In the same way, we also perform

the corresponding operations on the items. Finally, Hu and

Hi are obtained to represent the hypergraph correlation

matrices of users and items, respectively. We present the

construction of the second-order hyperedge incidence

matrix as an example. As shown in Fig. 1, this matrix is

represented as Hu ¼ H
B
k1
u
jjH

B
k2
u
. In short, the interaction

matrix of users and items is illustrated as a special bipartite

graph with two types of nodes. Taking the first-order

hypergraph of the users as an example, we consider the

item nodes as the hyperedge to connect the user nodes in

the broad sense. Thus, the item nodes simply constitute the

first-order hypergraph of the users based on the items. The

hypergraph convolution uses the hyperedge of the item

nodes as the medium to construct the high-order relevance

among users for model learning.

3.2 Hybrid convolution of graph and hypergraph

In CF, the user and item IDs only own weak semantic

information. This scenario indicates that using the initial

embedding layer to map the feature space of the IDs is

sufficient for the learning of the initial features. The core of

the convolution calculation is using graph and hypergraph

filters in processing graph signals to obtain meaningful

embeddings, which is considered complex interaction

pattern between users and items in CF. Therefore, we

optimize the information flow framework to match the

filter operation, which can be expressed as:

Glþ1 ¼ DðGl;L
g;LhgÞ

¼ T ðF ðGl;L
g;LhgÞ;Gl�1Þ

¼ T ðF ðGl;L
g;LhgÞ; :::;FðG0;L

g;LhgÞ;G0Þ;

ð14Þ

where Dð�Þ is the DenseGCN convolution operation and is

divided into Fð�Þ and T ð�Þ. Fð�Þ is the information prop-

agation function, which represents the use of generalized

graph and hypergraph Laplacian filters Lg and Lhg to

process the graph signals. The generalized graph and

hypergraph Laplacian convolution kernel is used to achieve

robust learning and filter the invalid signals. Gl denotes the

graph information at l-th layer. T ð�Þ is a vertex cascading

function, which intensively fuses the input graph G0 with

all intermediate GCN layers. Thus, Glþ1 contains the

results of all GCN outputs from the previous layer.

According to LightGCN and SGC, we conclude that the

self-loop connection is essentially equivalent to a weighted

sum of the embeddings propagated at every EHGCN layer,

which is also a part of DenseGCN. Inspired by this finding,

we propose EHGCN, which contains the optimized con-

volution strategy and information flow framework. The

final representation is as follows:

eðlþ1Þ
u ¼ Dð

X

i2N u

X

u2N k
u

ððI� kgL
g
symÞe

ðlÞ
i þ ðI� khgL

hg
symÞeðlÞu ÞÞ;

e
ðlþ1Þ
i ¼ Dð

X

u2N i

X

i2N k
i

ððI� kgL
g
symÞeðlÞu þ ðI� khgL

hg
symÞe

ðlÞ
i ÞÞ;

ð15Þ

where e
ðlþ1Þ
u and e

ðlþ1Þ
i represent the user and item

embeddings at the l-th layer, and N uðN iÞ denotes the sets

of items (users) that interact with user u (item i). N
k
u and

N
k
i represent the same type neighbor nodes of the k-order

of the user nodes and the item nodes, respectively. Lh
sym and

Lhg
sym represent the normalized graph and hypergraph

Laplacian filter, respectively. In the definition of the

propagation model, we eliminate the meaningless param-

eter matrix W and the redundant nonlinear activation

function rð�Þ. The learning strategy of our model is to learn

the features of weak semantic information through the

initial embedding layer. We hope to use the filters to mine

the implicit association in the data based on the graph

topology, that is, the interaction mode between users and

items.

In summary, our model uses an optimized hybrid graph

and hypergraph information propagation framework to

conduct multilevel learning from the perspective of signal

processing. The model framework can be referred to Fig. 2.

With one user as an example, the graph is used to model

the topology information of the adjacent items, whereas the

hypergraph is used to model the topology information of

the high-order adjacent users. High-order connections are

established for users and items by constructing hypergraph

connections, respectively. Thus, each node feature update

can obtain information not only from adjacent nodes but
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also from super-edge nodes, allowing the full mining of

interactive information from different levels by the graph

and hypergraph. Moreover, we optimize convolution the-

ory and framework to process graph signals, which can also

be considered as a signal enhancement approach. Finally,

we sum up the output results of every layer and average the

final user and item embeddings. The embeddings of users

and items are learned by EHGCN and can be expressed as:

Eu ¼
1

Lþ 1

X

L

l¼0

eðlÞu ;

Ei ¼
1

Lþ 1

X

L

l¼0

e
ðlÞ
i ;

ð16Þ

where L is the number of convolution layers. We finally

implement the recommendations according to the score

matrix ŷ to verify the ability of EHGCN through the simple

inner product of user embeddings Eu and item embeddings

Ei:

ŷ ¼ ET
u Ei: ð17Þ

3.3 Optimization

In our proposed model, we only require to train the weight

matrix of the initial embedding layer, which transforms the

initial feature into the specified dimension. We choose

Bayesian Personalized Ranking (BPR) [17] as the loss

function. BPR mainly adopts the implicit feedback of users

to rank items by the maximum posterior probability and

then generates a recommendation. The ŷ from the inner

product is used as implicit user feedback. The positive and

negative sample pairs are obtained through the negative

sampling strategy to accelerate the model training. There-

fore, our loss function is described as:

LBPR ¼
X

ðu;i;jÞ2O
ð�lnrðŷui � ŷujÞ þ kjjHð0Þjj22Þ; ð18Þ

where O ¼ ðu; i; jÞjðu; iÞ 2 Rþ; ðu; jÞ 2 R�f g, and Rþ and

R� represent the positive and negative samples obtained

by negative sampling, respectively. k represents the regu-

larization parameter, and jjHð0Þjj22 is a regularization term.

The only trainable parameter of our model is the initial

feature mapping; thus, our regularization term only applies

to the first layer to prevent overfitting. In the process of

model training, we use the Adam [18] optimizer for gra-

dient descent and the appropriate learning rate for different

datasets.

4 Experiments

We perform our model on four benchmark datasets and

compare it with the latest models. The experimental data

are the best result of the methods in the test process.

Moreover, we further design the following questions to

investigate the effectiveness of EHGCN, explain the core

Fig. 2 Framework overview of EHGCN, where the weighted sum

module representing the output of every layer is concatenated to

obtain its average value as the final user and item embeddings. En
u and

En
i represent the embedding result of the n-th layer. Eu and Ei

represent the final embeddings output of the model

2638 Neural Computing and Applications (2023) 35:2633–2646
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of the graph-based CF task, and explain the principle of the

method:

• RQ1: What is the core of the graph-based CF from the

perspective of signal processing?

• RQ2: How can EHGCN build an efficient and sufficient

information propagation model?

• RQ3: What does the number of EHGCN layers mean in

the generalized convolution process of graph and

hypergraph?

• RQ4: How does hypergraph work efficiently in graph

signal processing?

4.1 Experiments settings

4.1.1 Datasets

The benchmark datasets AToy, AMusic, LastFM, and ML-

1M are utilized as our experiment datasets; LastFM is the

same as the LightGCN used in the present study, whereas

the AMusic, AToy, and ML-1M datasets we use are pro-

vided by DeepCF [19]. On the basis of these datasets, we

perform random extraction operations to obtain sparse

interaction matrices and verify the validity of our model.

The details of the datasets are shown in Table 1.

4.1.2 Baselines and evaluation metrics

The models we compared, including MultiVAE [20]1,

NGCF [6]2, LR-GCCF [8]3, LightGCN [7]4 and Low-pass

Collaborative Filter Network (LCFN) [21]5, are the meth-

ods with the best performance in recent years. DHCF [11]

is one of the hypergraph works for CF. However, the

implementation method codes and data are not open

sources. The details of other compared models are as

follows:

• MultiVAE: MultiVAE applies the variational autoen-

coder (VAE) to CF. It is expected to use the generative

model in simulating the interaction mode of users and

items full of various possibilities. However, the per-

formance of the model is limited.

• NGCF: The information propagation in NGCF requires

message construction and message propagation to

conduct embeddings. The model is limited by the

complex information propagation process and high

computational complexity.

• LR-GCCF: LR-GCCF applies SGC [9] and residual

links for CF. However, it does not mine the topological

relationship based on the interaction matrix of users and

items.

• LightGCN: LightGCN constructs a light GCN frame-

work for CF. However, the sparsity of the interaction

matrix confines the first-order associated entities and

leads to ineffective data utilization.

• LCFN: LCFN analyzes the frequency information in

the user-item interaction matrix under the condition of

adding the artificial noise and obtains the trainable

convolution kernel through multiple matrix decompo-

sition. However, the model is limited by the high

computational complexity.

We use two evaluation metrics commonly adopted in

Top-N recommendation issues: recall@N and ndcg@N.

Both are generated by the rating matrix, and the principles

are as follows: (1) The results of a high correlation degree

have more influence on the final index score than those of a

general correlation degree. (2) The index is high because

the results with a high correlation degree appear at a higher

position. In our experiment, N is set as 20 to evaluate the

comprehensive ability of the models.

4.1.3 Parameters settings

We perform our method EHGCN in the PyTorch frame-

work. In the experiments, our hyperparameters include L2
regularization parameter weight k, the number of model

layers N, the retention probability a for trimming edges

when generating hypergraphs, and the parameters of the

frequency response function of graph and hypergraph fil-

ters kg and khg. To ensure the fairness of model perfor-

mance comparison, the user and item embeddings

dimensions are set to 64. The L2 regularization hyperpa-

rameter settings are as follows: ½1e� 1; 1e� 2;

1e� 3; 1e� 4; 1e� 5�. Our experimental results of the

regularization parameter are shown in Fig. 3, and the best

choice of the regularization parameter is k ¼ 1e� 4. We

use the Xavier [22] method to initialize the embedded

parameters, whereas Adam [18] is used to optimize the

Table 1 Details of the datasets used in the experiment

Dataset User Item Interactions Denisty

AToy 3122 33950 81,785 0.00077

AMusic 1733 12926 44,802 0.00200

LastFM 1892 4489 52,658 0.00620

ML-1M 6040 3706 994,169 0.04441

1 https://github.com/makgyver/rectorch.
2 https://github.com/huangtinglin/NGCF-PyTorch.
3 https://github.com/newlei/LR-GCCF.
4 https://github.com/gusye1234/LightGCN-PyTorch.
5 https://github.com/Wenhui-Yu/LCFN.
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EHGCN. The size of the mini-batch for all datasets is 1024,

and the experimental result is shown in Table 2.

4.2 Model analysis

According to Table 2, our method shows obvious advan-

tages in most cases. The existing graph-based CF methods

are confined to one single graph modeling approach, which

leads to incomplete information mining and thus impacts

the expressiveness of the model. We use hybrid graph and

hypergraph convolution to learn node features, and mine

the interactive information from different levels by the

graph and hypergraph. The graph models the pairs of

nodes, whereas the hypergraph establishes the high-order

connectivity to mine additional information. Therefore,

better node representations are learned than baselines. It

should be emphasized that the ML-1M dataset is an

extreme case with a dense user-item interaction matrix, and

LCFN adopts matrix decomposition to generate the

embeddings of users and items. Thus, the initial embed-

dings with richer semantics are obtained from the dense

interaction matrix. However, this phenomenon is not gen-

eral, as shown by the performance of LCFN on other

datasets. LCFN has limited expression ability in the case of

minimal interactive information. Moreover, the computa-

tional speed of the model decreases while dealing with

dense interactive data. Compared with other baseline

methods, the performance of EHGCN on the ML-1M

dataset is significantly improved, and our method is

applicable to both sparse and dense datasets. All of these

demonstrate that EHGCN has good scalability. Meanwhile,

due to the extreme distribution of data in AToy, the

existing baseline methods do not learn it well, but our

method still shows superior performance. The model is

further analyzed in detail below.

4.3 Discussion of graph and hypergraph
Laplacian filters (RQ1)

In the graph-based CF, there is no analysis work from the

perspective of graph and hypergraph convolution kernel.

Most of the existing methods use graph and hypergraph

Laplacian convolution kernel by default which is essen-

tially a low-pass filter for processing graph signals and then

generate the embeddings of users and items to obtain the

final recommendations. In this section, we aim to explore

how to perform efficient graph and hypergraph convolution

in CF from the perspective of signal processing. In Fig. 4,

K-G and K-G-Enhanced stands for I� kgL
g
sym and

ðI� kgL
g
symÞ

2
, respectively. K-HG and K-HG-Enhanced

are similar. We use four generalized graph Laplacian filters

to analyze the properties of the graph signals and then draw

the conclusion of scalability about the graph-based CF.

Analyzing the properties of the graph signals is partic-

ularly important. According to Frequency Adaptation

Graph Convolutional Networks (FAGCN) [15], the low-

frequency and the high-frequency information reflect the

similarity and difference, respectively, among the graph

nodes signals, which correspond to the assortative and

disassortative networks. Moreover, both are important to

the embedding process. Note that LCFN [21] proposes a

trainable convolution kernel, which is also a low-pass filter

in essence. In the information propagation framework of

LCFN, the interference signal is added artificially, and the

results of real-time matrix decomposition are embedded as

users and items. We find that LCFN is fundamentally dif-

ferent from our work because its framework is not illus-

trated by the general graph-based CF. From the previous

works, the learnable filters need to be performed by the

attention mechanism or matrix factorization. In summary,

both of the above methods require a large number of

parameters and extra computational costs. The core

remains to be discussed. Our main focus is on exploring the

core of graph-based CF through the filters and leaving the

way to obtain adaptive filters for future work.

Before analyzing the experimental results, we first

explain the reasons for using the four filters and the intu-

itive analysis of graph and hypergraph signals. In the graph

signal process, the amplitude may be negative as the value

of the frequency response function parameter changes,

resulting in a negative effect. As enhanced graph and

hypergraph filters, K-G-Enhanced and K-HG-Enhanced

solve the above problems by keeping the amplitude posi-

tive, thereby providing a greater value for the low-fre-

quency signals and high-frequency signals, respectively.

Meanwhile, they provide more alternatives in the signal

process. In the user-item interaction matrix, we consider it

as a simple heterogeneous graph with two types of nodes.

Therefore, the graph signals are often complex because

they contain not only high-frequency information with

differences between two types of nodes but also low-fre-

quency information with a high correlation that is directly

connected with the nodes. Conversely, for the hypergraph

signals, the difference information between nodes has been

taken into account in the construction of the hypergraph, so

it only contains the low-frequency information of the direct

correlation between the hyperedge vertices.

Figure 4 shows our experimental results and verifies our

conclusion. According to the experimental results, the

enhanced graph and hypergraph Laplacian filters alleviate

the impact of negative amplitude, and their relatively

stable property can be used as the basis for the follow-up

work. In the experiments, it is a low-pass filter when k ¼ 1,

a bandpass filter when k 2 ½�1; 1Þ, and a high-pass filter
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when k 2 ð1; 3�. We find that the model shows the best

performance when kg ¼ 1 and khg ¼ 1 in most cases, and

the two kinds of filters are low-pass filters. Therefore, our

conclusion is as follows. For the hypergraph signals, low-

pass filters have obvious advantages because the nodes that

connect in the hypergraph belong to the same type and

have a high association for the existence of hyperedges. For

the graph signals, the low-frequency information is as

important as the high-frequency information. The low-

frequency signals reflect the direct interaction information

between the users and the items. The high-frequency sig-

nals reflect the interactive correlation between the users

and the items, which have a high value in the following

situation: if the user u interacts with the item i and the final

rating matrix yui is a large value. On the contrary, if user u

and item i interact but yui in the final rating matrix is small,

then the value of the high-frequency signal is small. Hence,

for some special datasets or specific task requirements, it is

necessary to optimize the filter by adjusting the parameters

of the frequency response function to achieve the best

performance, rather than directly using a low-pass filter.

4.4 Ablation experiments for EHGCN (RQ2)

We design the ablation experiments on EHGCN to analyze

each module and answer RQ2. The experimental results

Fig. 3 The L2 regularization

parameter weight k of EHGCN

on AMusic, LastFM, AToy and

ML-1M datasets

Table 2 Experimental results of different models on AMusic, LastFM, AToy, and ML-1M

Dataset LastFM AMusic AToy ML-1M

Model recall@20 ndcg@20 recall@20 ndcg@20 recall@20 ndcg@20 recall@20 ndcg@20

MultiVAE 0.2384 0.1772 0.0853 0.0483 0.0142 0.0068 0.2713 0.2617

NGCF 0.2329 0.1823 0.0649 0.0335 0.0170 0.0075 0.2750 0.2806

LightGCN 0.2749 0.2138 0.1006 0.0607 0.0189 0.0080 0.2868 0.2921

LR-GCCF 0.1519 0.0961 0.0989 0.0596 0.0227 0.0098 0.2793 0.2651

LCFN 0.1868 0.1162 0.0919 0.0539 0.0145 0.0075 0.3096 0.3184

EHGCN 0.2911 0.2265 0.1180 0.0682 0.0243 0.0109 0.3041 0.3125

The best results of the model are shown in bold, and the second-best result is underlined. The evaluation metrics are recall@20 and ndcg@20 by

default
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are shown in Table 3. The baseline represents a graph

convolution paradigm composed of feature transformation

and information aggregation without any optimization

methods. The representative methods are GCN [5] and

HGCN [10].

EHGCN* indicates that we use the generalized Laplacian

convolutional kernel and an optimized information propa-

gation framework to perform learning. However, due to the

application of hybrid graph and hypergraph convolution, its

computational complexity increases. EHGCN*(Hyper-

graph, W, A) uses the generalized information propagation

model after using the hypergraph structure. We implement

multilevel learning by the graph and hypergraph, containing

generalized Laplacian filters and an improved information

flow framework. Moreover, EHGCN*(Hypergraph, A) and

EHGCN*(Hypergarph) represent the efficient convolution

approach of removing redundant feature transformation and

simultaneously removing feature transformation and non-

linear activation function during the convolution of graphs

and hypergraphs, respectively. FromEHGCN*(Hypergraph,

W, A) to EHGCN*(Hypergraph, A), the number of param-

eters and the amount of computation are reduced; from

EHGCN*(Hypergraph, A) to EHGCN*(Hypergarph), the

amount of computation is reduced again. In this scenario, the

computational burden is reduced and the efficiency of

information propagation is increased. Ultimately, there are

no extra parameters in the convolution of graph and hyper-

graph, so the increase of the model computation is limited.

The data distribution of the AToy dataset is extreme in

Table 1, so we choose the result of loss convergence to

express. Different from the baselines, our model constructs

hypergraph structure to establish high-order connectivity in

users and items respectively, enabling the direct feature

transformation and information aggregation between nodes

of the same type. Finally, improved node representations can

be obtained through hybrid convolution of the graph and

hypergraph. As can be seen from Table 3, with the intro-

duction of hypergraph structure, the performance of the

model is significantly improved, undoubtedly verifying the

effectiveness of EHGCN. The generalized Laplacian

Fig. 4 Experimental results of

Laplacian filters and enhanced

filters for the graph and the

hypergraph on AMusic and

LastFM datasets. (The results on

AToy and ML-1M, which are

omitted for space reasons, show

the same trend)
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smoothing filter is used to process more complex graph

signals, and the improved information flow framework

matches our information propagation model to improve the

performance. Meanwhile, we eliminate the feature trans-

formation process and nonlinear activation function of

learning weak semantic information to focus on mining the

topological relationship between data. The results show that

our methods further improve the performance of the model.

They also prove that the weak semantic information is

learned sufficiently by the trainable parameters of the initial

embedding layer to conduct the transformation of feature

space.

4.5 EHGCN layers analysis (RQ3)

EHGCN layers represent the number of calculations that

the filters act on the graph signals. Fitting the convolution

kernel with first-order Chebyshev polynomials is essen-

tially a low-pass filter, which inevitably leads to the over-

smoothing problem with the increase of model layers.

However, we choose the generalized Laplacian graph and

hypergraph filters in EHGCN and use the DenseGCN

framework as a signal enhancement method to optimize the

information flow. All of these methods effectively improve

the performance of the model. Meanwhile, no extra

parameters exist in the convolution process of graph and

hypergraph, so the increase in the computational cost of the

model is limited. The experimental results are represented

in Table 4.

The generalized graph and hypergraph filters are pre-

sented in the functional normal forms Eqs. 3 and 5. The

effect of order t is the same as that of the layers; thus, t ¼ 1

is adopted by default. From the experimental results, we

draw a conclusion that the generalized Laplacian filters and

DenseGCN are effective for signal processing to improve

the model effect and alleviate the signal failure phe-

nomenon, such as the over-smoothing problem.

4.6 Efficient application of hypergraph (RQ4)

We use users (items) as hyperedges to generate the

hypergraph based on items (users) to model the high-order

relationship of data. Although there are no extra parameters

in the convolution of graphs and hypergraphs, this method

undoubtedly increases the computational and spatial com-

plexity of the model. We eliminate the values of the

hypergraph incidence matrix in the process of generating

hypergraph to alleviate this problem and improve the

robustness of the model. Moreover, the high-order inci-

dence matrix constructed from the interaction data is

incomplete and noisy, so the value of the incidence matrix

of the hypergraph is eliminated in the process of generating

the hypergraph to reduce the influence of noise informa-

tion. The experimental results show that this method

effectively improves the performance of the model while

reducing computational complexity and spatial complexity.

The experimental results are shown in Table 5.

Our conclusion is that if the interaction matrix is dense,

the edge retention probabilities need to be set to a large

value when the hypergraph is generated. The reason is that

the topology information of the data is abundant, and

hypergraph provides valuable information, which is con-

ducive to the model mining information from the interac-

tion matrix. On the contrary, if the interactive information

is scarce, the construction of a complete hypergraph may

generate a large amount of noise information. This scenario

produces a negative impact on the interactive information

data and affects the performance of the model.

5 Related work

5.1 Collaborative filtering

MF [1] has been widely applied to recommender systems

because it was proposed to solve the problem of predicting

unknown ratings by an incomplete rating matrix, which

evolves from the singular value decomposition (SVD) [23]

algorithm. Consequently, the subsequent variants are pro-

posed in [24, 25]. These methods optimize the matrix

factorization algorithm by introducing additional informa-

tion or adapting the learning rate. However, the expression

ability of the above methods is limited.

Table 3 Ablation experiments results for EHGCN

LastFM AMusic AToy ML-1M

recall@20 ndcg@20 recall@20 ndcg@20 recall@20 ndcg@20 recall@20 ndcg@20

Baseline 0.1793 0.1203 0.0546 0.0268 0.0109 0.0043 0.2008 0.2098

EHGCN*(Hypergraph, W, A) 0.2103 0.1505 0.0613 0.0318 0.0167 0.0069 0.2393 0.2475

EHGCN*(Hypergraph, A) 0.2771 0.2109 0.1048 0.0594 0.0211 0.0091 0.3029 0.3115

EHGCN*(Hypergarph) 0.2911 0.2265 0.1180 0.0682 0.0243 0.0109 0.3041 0.3126
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In recent years, deep learning has achieved the best

performance in various fields. Thus, some CF methods

based on it have been proposed. AutoRec [26] uses an auto-

encoder to learn user and item embeddings, and the train-

ing purpose is to minimize the difference between the

constructed rating matrix and the original rating matrix.

The Collaborative Denoising Auto-Encoder (CDAE) [27]

proposes the ID numbers as an additional feature to train a

denoising auto-encoder based on AutoRec. MultiVAE [20]

models the probability distribution of interaction mode

through the variational auto-encoder to predict the scoring

matrix. NCF [2] is a general framework expressing and

generalizing matrix factorization which uses MLP to learn

user-item interaction functions. DeepCF [19] trains an

extensive network comprising stacked MLP to conduct CF.

The advantage of DeepCF is the construction of an MLP as

a complex matching function that calculates feature

embeddings to generate the final scoring matrix. Outer

Product-based Neural Collaborative Filtering (ONCF) [28]

uses the CNN to model the interaction relationship and

learn the score prediction function considered as another

matching function.

5.2 Graph in recommendation

GCN and HGCN have been widely studied in recent years

due to their strong ability to express non-Euclidean data.

Some optimization methods related to GCN [9, 29–31] are

proposed to perform graph convolution effectively, and the

hypergraph has recently attracted extensive attention. For

example, SGC [9] eliminates the nonlinear calculation

among GCN layers and folds the resulting function into a

linear transformation to reduce the additional complexity

brought by GCN. The results show that SGC is equivalent

to a fixed low-pass filter and a linear classifier. Based on

these models, graph structures have been widely used in

various studies. In particular, GCN and HGCN are widely

used in clustering tasks [32–35], text classification [36–38],

and computer vision [39–41].

In the recommender systems, we abstract the interac-

tions among users and items into a bipartite graph. Cur-

rently, graph and hypergraph are two widely graph

structures. GCN [5] and HGCN [10] define the widely

recognized information propagation models of the graph

and hypergraph, respectively. Graph Convolutional Matrix

Completion (GC-MC) [42] and STAcked and Recon-

structed Graph Convolutional Networks (STAR-GCN) [43]

use the graph auto-encoder to transform the rating predic-

tion into a link prediction problem and aim to restore the

original rating matrix as much as possible. PinSage [44],

NGCF [6], LR-GCCF [8], and LightGCN [7] use GCN to

learn the topological relations from neighbors and generate

the user and item embeddings. Finally, matrix multiplica-

tion computes the prediction of the rating matrix. DHCF

[11] conducts embeddings by modeling the high-order

correlation of the interaction matrix through the hyper-

graph and generates a prediction score matrix.

6 Conclusion and future work

In this work, we propose a hybrid graph and hypergraph

convolution framework for the graph-based CF. EHGCN

performs data mining and multilevel learning from the

hypergraph, optimizes the convolution kernel and infor-

mation flow framework from the perspective of graph

signal processing, and redefines the graph-based CF

information propagation framework. The experiments

show that our method achieves state-of-the-art perfor-

mance. Moreover, we use the generalized graph and

hypergraph Laplacian filters for the first time to analyze the

core of the graph-based CF and draw reliable conclusions

on large quantities of experiments, thereby contributing to

the follow-up research works.

Table 4 Experimental results of different EHGCN layers in ML-1M

and AToy

Dataset ML-1M AToy

Layers recall@20 ndcg@20 recall@20 ndcg@20

EHGCN-2 0.2903 0.2985 0.0227 0.0104

EHGCN-4 0.2998 0.3083 0.0234 0.0102

EHGCN-6 0.3041 0.3125 0.0235 0.0104

EHGCN-8 0.2995 0.3088 0.0243 0.0109

EHGCN-10 0.2964 0.3052 0.0240 0.0107

The best performance is shown in bold. (The results on AMusic and

LastFM, which are omitted for space reasons, show the same trend)

Table 5 Experimental results of different edges retention probabilities

a on LastFM, AMusic, AToy, and ML-1M

Dataset LastFM AMusic AToy ML-1M

HyperGraph recall@20 recall@20 recall@20 recall@20

EHGCN(0.1) 0.2885 0.1164 0.0233 0.3029

EHGCN(0.3) 0.2911 0.1159 0.0243 0.3032

EHGCN(0.5) 0.2890 0.1180 0.0239 0.3030

EHGCN(0.7) 0.2850 0.1158 0.0236 0.3041

EHGCN(0.9) 0.2797 0.1160 0.0232 0.3030

The evaluation metrics are recall@20. The best performance is shown

in bold
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In the future, we are committed to finding other efficient

hypergraph structure generation methods to reduce the

computational cost further and improve the scalability of

the model. We also hope to find an adaptive convolution

kernel optimization method to optimize the performance of

the model further while reducing the computational cost.
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