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ABSTRACT

Accurate numerical solutions of partial differential equations (PDEs) are crucial
in numerous science and engineering applications. In this work, we introduce a
novel neural PDE solver named AFDONet, which incorporates neural operator
learning and adaptive Fourier decomposition (AFD) theory for the first time into
a specifically designed variational autoencoder (VAE) structure, to solve a gen-
eral class of nonlinear PDEs on smooth manifolds. AFDONet is the first neural
PDE solver whose architectural and component design is fully guided by an es-
tablished mathematical framework (in this case, AFD theory), turning neural op-
erator design from an art to a science. Thus, AFDONet also exhibits exceptional
mathematical explainability and groundness, and enjoys several desired proper-
ties. Furthermore, AFDONet achieves outstanding solution accuracy and com-
petitive computational efficiency in several benchmark problems. In particular,
thanks to its deep connections with AFD theory, AFDONet shows superior per-
formance in solving PDEs on i) arbitrary (Riemannian) manifolds, and ii) datasets
with sharp gradients. Overall, this work presents a new paradigm for designing
explainable neural operator frameworks.

1 INTRODUCTION

A wide range of scientific and engineering phenomena can be characterized and modeled by partial
differential equations (PDEs). Most nonlinear PDEs do not have analytical solutions and need to be
solved numerically. Traditional discretization-based numerical solvers, such as finite element meth-
ods (FEM) and finite difference methods (FDM), can become quite slow, inefficient, and unstable
(Hittinger & Banks, [2013} [Sokic et al.| [2011} [Carey et al., [1993). On the other hand, data-driven
methods, such as neural PDE solvers, can directly learn the trajectory of the family of equations
from the data, and thus can be orders of magnitude faster than traditional solvers [Li et al.| (2020).
Most neural PDE solvers operate either by approximating the solutions (Raissi et al., |2019; [Han
et al., 2018)), directly learning the mappings between function spaces (Li et al., 2020;|Li & Ye, 2025;
Tripura & Chakraborty, 2023} |Lu et al., |2020), or integrating neural networks with conventional
numerical solvers in a hybrid manner (Bar-Sinai et al.,[2019; |Li et al., [2025} [Brevis et al.| 2020).

While most existing PDE solvers are designed for regular Euclidean domains, in many real-world
applications, PDEs are defined on non-Euclidean manifolds. Most existing approaches to solve
PDEs on manifolds rely on classical numerical approaches, such as parameterization (Lui et al.,
2003)), collocation (Chen & Ling| 2020), and spectral methods (Yan et al.| 2023). Although re-
searchers have begun to explore manifold-aware neural architectures that can learn directly from
point clouds (He et al.;,2024; [Liang et al., 2024) or graphs (Bronstein et al.,[2017)), they cannot eas-
ily be generalized to different manifolds. Thus, extending neural PDE solvers to manifold domains
remains challenging. Instead, pullback operators are often used in existing neural PDE solvers to
map functions and differential operators from the manifold to a Euclidean space.

Another research gap in neural operator solver is that, so far, the design of exact neural architec-
tures in many neural PDE solvers has been “more of an art than a science” (Sanderse et al., [2025).
Typically, neural architecture design is done in a bottom-up approach that involves significant intu-
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ition, expert experience, and trial-and-error experimentation. And rigorous mathematical basis and
explainability have been lacking in guiding the design of these neural architectures.

Our approach. To bridge these gaps, in this work, we propose a novel neural PDE solver named
AFDONet for solving general nonlinear PDEs on smooth manifolds. Specifically, AFDONet is a
variational autoencoder (VAE)-based neural operator whose design replicates adaptive Fourier de-
composition (AFD), a novel signal decomposition technique achieving higher accuracy and signifi-
cant computational speedup compared to conventional signal decomposition methods (Qian, [2010).
AFD can approximate signals and functions in a reproducing kernel Hilbert space (RKHS) on differ-
ent domains and manifolds (Qian et al.,|2011;[2012;|Zhang et al., 2023} Song & Sun [2022), making
it a desirable choice for designing theory-guided, interpretable neural operator for solving PDEs on
manifolds. Motivated by this, in AFDONet, latent variables are first mapped to their nearest repro-
ducing kernel Hilbert space (RKHS) via a latent-to-RKHS network, followed by reconstructing the
solution manifold using a new type of decoder replicating AFD operations.

Key contributions. The key contributions of this work are summarized as follows:

1. We follow a unique, top-down approach based on adaptive Fourier decomposition (AFD)
theory to guide every step in the design of AFDONet’s neural architecture. This presents a
new paradigm for designing explainable neural operator frameworks.

2. AFDONet is mathematically grounded in AFD theory, as the solutions produced by our
novel neural architecture can be interpreted as an adaptive decomposition into basis func-
tions. Thus, AFDONet has rigorous mathematical foundations based on approximation
theory and possesses several desirable properties.

3. We demonstrate the effectiveness of our AFDONet solver by comparing its solution accu-
racy with several neural PDE solvers over benchmark problems on arbitrary (Riemannian)
manifolds and datasets with sharp gradients. We show that AFDONet achieves outstand-
ing performance in terms of solution accuracy and its capability to reconstruct solution
manifolds.

2 PROBLEM STATEMENT

We consider a PDE defined on a spatial domain 2 C R? and a time interval (0, T':
Lofu(z, )] = f(x,1), V(z,t) € Qx(0,T], (1)

where £ denotes the differential operator, f(x,t) is the source/sink term, and the parameter function
a € A specifies the physical parameters and the initial and boundary conditions. Our goal is to learn
a neural operator G : A — F(D x [0,T]), which maps the parameter function « from its parameter
space A to the corresponding solution u(x,t) € F. In this work, we focus on two types of tasks:
(1) the static task, which solves a PDE for one set of physical parameters « and a fixed final time T’
(i.e., u(z,T)); and (ii) the autoregressive task, which forecasts the PDE solution at time step ¢ + 1
(i.e., u(z,t + 1)) based on the solution at the previous time step ¢ (i.e., u(x, t)).

3 RELATED WORK

Classic Fourier-based methods, such as Fourier transform approaches (Negerol 2014), Fourier
series expansions (Asmar, |2016), and Fourier spectral methods (Alali & Albin, [2020), have been
extensively used to solve PDEs numerically. Classic Fourier-based methods offer accurate and effi-
cient representations of smooth, periodic functions by transforming differential operators into simple
algebraic operations in the frequency domain. However, the use of global basis functions produces
oscillations when approximating functions with discontinuities or sharp transitions (Gottlieb & Shul,
1997). Furthermore, the fixed basis structure in these methods lacks adaptability to signals with
time-localized, transient, or nonperiodic features. In addition, these methods are typically defined
on simple, regular domains, making them difficult to apply directly to manifolds.

Operator learning aims to directly learn the mapping between infinite-dimensional function spaces
(e.g., from input functions to solutions) to enable fast, mesh-independent approximation of PDE
solutions across various input conditions, including source and/or sink term, physical parameters,
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and initial and boundary conditions. Among existing operator learning-based PDE solvers, two
notable ones backed by the approximation theory are DeepONet (Lu et al., 2019} 2021), which is
inspired by the universal approximation theorem for nonlinear operators, and the Fourier Neural
Operator (FNO) (Li et al.| [2020; |2023b)), which performs convolution in the frequency domain to
capture global spatial dependencies efficiently. Both operator learning paradigms have led to several
new variants. Some of the recently developed network architectures (He et al., 2023} Goswami et al.}
2022;|He et al.l[2024; [Li et al., 2023a)) built upon DeepONet provide enhancements such as physics-
informed structure, parameterized geometry and phase-field modeling. Some of the new variants of
FNO include Factorized FNO (F-FNO) (Tran et al.l [2021)), Decomposed FNO (D-FNO) (Li & Ye!
2025)), Spherical FNO (Bonev et al.l 2023), Domain Agnostic FNO (DAFNO) (Liu et al.| [2023),
Wavelet Neural Operator (WNO) (Tripura & Chakrabortyl [2023), Multiwavelet Neural Operator
(MWT) (Gupta et al.,[2021), Coupled Multiwavelet Neural Operator (CMWNO) (Xiao et al., |2025)),
and Adaptive Fourier Neural Operator (AFNO) (Guibas et al., 2021]).

Physics-informed representation learning and variational autoencoder (VAE). Another av-
enue for solving PDE:s is to directly incorporate physical knowledge and constraints derived from
the PDE into a neural architecture. One of the popular frameworks is the Physics-Informed Neural
Network (PINN) (Raissi et al., [2019; 2017), where the PDE itself is embedded in the loss func-
tion as a regularization term. Another approach is to introduce variational autoencoders (VAEs)
(Tait & Damoulas} [2020; Kingma et al., 2013) in a physics-informed architecture. This provides a
structured latent space and a probabilistic framework for integrating physics, leading to more sta-
ble and generalizable representation learning. Several physics-informed VAE models have recently
been proposed, including |Glyn-Davies et al.| (2024);|Zhong & Meidani| (2023); [Takeishi & Kalousis
(2021); [Lu et al.|(2020). Specifically, |Lu et al.| (2020) used a dynamics encoder and a propagating
decoder to extract interpretable physical parameters from PDEs. Later, |Takeishi & Kalousis| (2021)
proposed a physics-informed VAE model by introducing physics-based models to augment latent
variables, encoder, and decoder. However, these methods lack rigorous theoretical justifications for
the design of their neural architectures that ensure convergence and performance guarantees.

4 PRELIMINARIES TO ADAPTIVE FOURIER DECOMPOSITION (AFD)

AFD is a novel signal decomposition technique that leverages the Takenaka-Malmquist system and
adaptive orthogonal bases (Qian, |2010; |Qian et al., 2012). It is established as a new approxi-
mation theorem in a reproducing kernel Hilbert space (RKHS) sparsely in a given domain € as
Sooo (s, Bi)%; for the chosen orthonormal bases %; (Saitoh et al.l [2016). An RKHS is a Hilbert
space of functions where evaluation at any point is continuous with respect to the inner product (-, -),
and each point on the domain corresponds to a unique kernel function. For AFD in RKHS, the sparse
bases {%;}; are made orthonormal to each other by applying Gram-Schmidt orthogonalization to
the normalized reproducing kernels associated with a set of adaptively selected “poles” {a; };, which
are complex numbers used to parameterize the sparse bases. Specifically, to decompose signals in
a Hardy space (i.e., a Hilbert space consisting of holomorphic functions defined on the unit disk),
which can be further relaxed to an RKHS (Song & Sunl 2022), the orthonormal basis functions %;
can be derived as:

1—a;z 1—-ajz

T— a2 2—a;
Bi(2) = ] 1%, aweb, )
j=1

where D = {z € C : |z] < 1}. To adaptively select the sequence of poles such that convergence of
AFD approximation is ensured, one shall follow the so-called “maximal selection principle”, such
that the resulting |(s, %;)| is as large as possible. That is, to select the next pole a; given i — 1

already selected poles, a1, ...,a;—1 (hence bases %, ..., %B;_1), the corresponding orthonormal
basis #; needs to satisfy:
(s, #i)| > pisup{(s, B;)|bi € Q\{a1,...,a;-1}}, 3)
i—1
< p; [— L J— kbifzj:ﬂkbiﬁ%j)%j .
where 0 < po < pi < L%y = 5 Ty 304 %0 = 0 — St LT i S the

reproducing kernel (e.g., Gaussian or Bergman kernel) at ;. In classic AFD theory, the algorithmic
procedure of pole selection, which is discussed in|Song & Sun|(2022)), is computationally expensive.
Therefore, integrating the classical AFD with neural operators is a promising approach to enable fast
and accurate solution of PDEs through the use of adaptive orthonormal basis functions.
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5 AFDONET ARCHITECTURE

Guided by the AFD theory, we design AFDONet to approximate PDE solution spaces on any smooth
manifold. The AFDONet architecture shown in Figure [T consists of an encoder, a latent-to-RKHS
network, and an AFD-type dynamic convolutional kernel network (CKN). These components work
synergistically to enhance the performance of the AFDONet solver. After the encoder, AFDONet
identifies the closest RKHS where the latent variables reside using a latent-to-RKHS network. Sub-
sequently, AFDONet reconstructs the PDE solutions by replicating the AFD operation and adap-
tively selecting the poles using a specially designed decoder network. For static tasks, the training
dataset is denoted as {u(x, T') } {4} for different sets of physical parameters «, while for autoregres-

sive tasks, the training dataset is denoted as {u(z,t), u(z,t + 1)}_,.
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Figure 1: Our proposed AFDONet framework, which adopts VAE as the backbone, introduces a
latent-to-RKHS network and a dynamic CKN decoder to reproduce the AFD setting and operation.

The use of VAE as architecture backbone is motivated from both methodological and experi-
mental perspectives. From a methodological perspective, the use of VAE architecture as the back-
bone for our AFDONet is motivated by several reasons. First, many PDE solution fields lie on
low-dimensional manifolds in high-dimensional function space. VAE-based neural operators can
learn a probabilistic latent representation of these manifolds, mapping high-dimensional inputs to a
compact latent space while capturing variation in solution behavior. This reduces the complexity of
learning and enables generalization across parametric inputs, as shown in many prior successes in
VAE-based neural operators (Zhong & Meidani}, 2023; |Rafiq et al., 2025} |Lu et al., [2020; Takeishi &
Kalousis| [2021)). Second, VAE is inherently connected to AFD theory in several ways. For instance,
VAE:s benefit from frequency transformations (Li et al., 2024), which are the foundation of bases
used in AFD. Also, the maximal selection principle of basis functions in AFD aligns well with the
variational inference of VAE (Chen et al.| |2020a)).

From an experimental perspective, we will show in Section [/| that the use of VAE and its holis-
tic integration with other components in the AFDONet architecture help significantly improve the
accuracy of PDE solutions on manifolds.

The encoder network maps the inputs « or u(z,t) to a latent space in the complex domain C2"
using a standard probabilistic encoder network based on the VAE framework. For the static task,
this means:

(1(@), logo?(a)) = Ax(¥(Ai1a)), z = pla)+o(a)@e, e~CN(0,1,), 4)

where A; € CWe*d and Ay € C?*We are the weight matrices (where W, = O(r)), ®(-) is the
activation function, the latent mean is p(«) € C", the log-variance is log 0%(a) € C", and z is the
latent parameter vector.

For the autoregressive task, the input u; = u(z,t) lies on the Hilbert space H (M) of manifold M.
Therefore, u; = u(x,t) must be projected from H (M) into an appropriate complex domain. Let
{1 }72, be an orthonormal Fourier basis. Then, we define a linear projection:

HKut = (<ut7¢0>7 ey <ut7¢K—1>) € (CKa (5)
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which retains the first X modes of the field. This leads to the following encoder structure:
(e, logo?) = A2(‘I)(A1 HKut))7 2e = p+0r O, e ~CN(0, 1), (6)

where A; € CWe*X and Ay € C2*We are the weight matrices (where W, = O(r)), ®(-) is the
activation function. In both tasks, the encoder network has a depth L, = 2 and width W, = O(r).

The latent-to-RKHS network maps the latent parameters to convolutional kernels while con-
straining the corresponding functional space to be an RKHS, where the AFD operations are defined.
This extends the latent-to-kernel network proposed by [Lu et al.| (2020) by explicitly accounting for
the fact that the kernels are constructed in a Hilbert space. Our latent-to-RKHS network consists
of multi-layer fully-connected feedforward (MLP) networks and feature maps. The MLP networks
will first take the latent parameter vector z obtained from the encoder network to generate @(x, )
on H(M). Then, feature maps FM(-) will map @(z, -) to its nearest RKHS H (M) via orthogonal
projection. This way, the latent-to-RKHS network learns the feature maps from H (M) to its nearest
RKHS (M), in which the reproducing kernel k, can be obtained by:

N’

ka(€) = Y wila) ™) Va6 e M (7)
i=1
where j2 = —1 and ¢ is the fundamental frequency. Here, weights v; € C and parameters y; € M

are learnable from the latent-to-RKHS network. Essentially, a feature map applies a fast Fourier
transform (FFT) to its input, multiplies the top N’ low-frequency components by learnable com-
plex weights while discarding the high-frequency components, and then performs an inverse FFT.
Note that this is different from Fourier layers in FNO because we only perform one-sided (positive-
frequency) operations, whereas FINO performs both positive- and negative-frequency operations.
This is because, in AFD, negative frequencies are redundant, as they can be determined by the
positive ones via complex conjugation.

We also point out that, since Fourier basis kernel e2™¢(¢=%i(2)) Jies in H (M), which is closed
under finite linear combinations, the reproducing kernel k, (&) is guaranteed to lie in H (M) as well.
In addition, although Fourier basis kernels are orthogonal to each other, the reproducing kernels are
not. Thus, orthogonalization is still needed.

Orthogonal reproducing kernels. Like AFD, in AFDONet, a set of reproducing kernels in Equa-

tion[7] each corresponding to one of the IV distinct poles a1, . ..,an € M, need to be first orthogo-
nalized via Gram-Schmidt orthogonalization:
i—1
ka kai - j— kai ’ B;)B;
B O (©) — 21 ko (©), #5) %, fori=2,...,N. (8

RGNS

To adaptively select the poles, we develop a maximum selection principle that is analogous to Equa-
tion3]in AFD theory as:

() = i ha, (€), 2505 |

H(M)

[FM (u(z,-)) * B;| > pisup {|[FM (u(z,-)) * B.| : b; € M\{a1,...,a;-1}}, )
. N ) ;_ ko, () =341 (Ko, (£),85) B, . .
where %1 = i @ can* Pi = Ty )-S5 ey €188 ][, g (70— 2o I and Ko s the

reproducing kernel at b;.

The AFD-type decoder network reconstructs PDE solutions from FM (4(z, -)) once the RKHS
and its reproducing kernel are established. The decoder adopts a dynamic convolutional kernel net-
work (CKN) (Mairal et al., 2014} |Chen et al., |2020b), which (i) performs cross-correlation between
FM (@(z, -)) and the orthogonal reproducing kernels %;, (ii) assigns a multiplier 0 < pg < p; < 1
to the output of each convolutional layer, and (iii) incorporates skip connections for each convolu-
tional layer. With this, the output of the dynamic CKN with N convolutional layers (each pole is
associated with a layer) replicates the AFD operation and reconstructs the PDE solution as:

N N
ﬁN79($7 ) = Z<FM (ﬂ(l’, )) ) ‘@i+7i>*@i+ﬂ = Z (FM (ﬂ(l’, )) *’@l) '@i‘f’Ti? (10)

i=1 =1
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where * is the cross-correlation defined as f x g(7:) = [, f(2)g(z + 7;)dz and 7; can choose
between 0 and N — ¢ for convolutional layer <.

Training. Overall, our AFDONet model is trained end-to-end by minimizing the loss function:

reconstruction loss in RKHS feature map loss

(1)

k
+ w Dk, (C/\/‘(/QL7 o?) H CN (0, IT)) + Z w; Hvi’&]\/‘)e(.’f, ) — Viu(z, -)H2LQ(M),
i=0

latent space regularization - .
holomorphic training loss

where V*u denotes the i-th covariant derivative defined on manifold M. Notice that here, we
extend the idea of Sobolev training (Czarnecki et al.,|2017) to the complex domain and introduce a
holomorphic training loss to enforce consistency with the ground truth solutions both at the function
value level and across all orders of derivatives. This enables AFDONet to better capture the inherent
smoothness and analytic structure of the target function.

6 PROPERTIES OF AFDONET

The design of AFDONet architecture is fully guided by the AFD theory, making it mathematically
interpretable in several aspects. Here, we list three important properties of AFDONet:

1. Under the loss function of Equation[T1] we can rigorously bound the error of AFDONet in
Theorem I] which is formally stated and proved in Appendix [A]

2. By extending the work of |Caragea et al.| (2022)), we can rigorously prove the existence
of RKHS (M) through the construction of feature map FM(-) in the latent-to-RKHS
network in Theorem 2] (see proof in Appendix [B).

3. To ensure convergence of AFDONet, we leverage the convergence mechanism of AFD to
design a convergent dynamic CKN decoder by regulating the layer width, depth, and kernel
complexity based on the number of samples and the intrinsic smoothness of the target
function. This result is formalized in Theorem [3|and is stated and proved in Appendix [C|

7 EXPERIMENTS

We evaluate the performance of our proposed model across three different PDEs on different man-
ifolds whose solution spaces are not necessarily an RKHS, and compare it with recent neural PDE
solvers including FNO (Li et al.} [2020; 2023b), WNO (Tripura & Chakraborty, 2023)), D-FNO (L1
& Yel 2025), and DeepONet (Lu et al.,|2019). Then, we present some key results from selected ab-
lation studies to demonstrate the need for each of the core components of our AFDONet framework.
The detailed experimental settings and the complete numerical results can be found in Appendix [E]

7.1 PDE PROBLEM SETTINGS

Helmholtz equation on planar manifold with boundary. Let (M, g) be a smooth planar Rie-
mannian manifold with boundary M C R? equipped with the Euclidean-induced metric g. We
consider the 2-D Helmholtz equation on M with perfectly-matched layer (PML) absorption on 0. M
as follows:

AMU(Z‘,y) + anQ(x,y)u(x,y):—S(a:,y), (Jf,y) 6M7

12
PML absorption on O M, 12

where wavenumber k is a positive constant, n : M — C is the complex refractive-index field, and
S : M — C is the source density. In our experiment, the planar manifold is constructed following
Marchand|(2023)). Furthermore, one can show that the solutions of the Helmholtz equation naturally
span an RKHS (see Appendix D).
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Incompressible Navier-Stokes equation on a torus. Let (T?, g) denote a flat two-dimensional
torus T? = ([0, 27] x [0, 27]) /~ obtained by identifying opposite edges of the square and endowed
with the Euclidean metric g. For viscosity v > 0, we study the 2-D incompressible Navier-Stokes
system:

Ou+ (u-V)u=—-Vp + vArzu, (z,y,t) € T? x (0,7,
Vrz-u =0, (z,y,t) € T x [0, 7], (13)
u(-,0) = u, x € T?,

where u = (u,v) : T2 x [0, 7] — R? is the velocity field and p : T? x [0, T] — R is the pressure.

Homogeneous Poisson equation on a quarter-cylindrical surface. Let (M, g) be a smooth two-
dimensional Riemannian manifold M = {(cos p,sing,z) ER3 1 0< ¢ < 5, 0<z< L},
which restricts the lateral surface of the unit cylinder to a single quadrant. The metric g is the

Euclidean metric pulled back by the embedding, so that in local coordinates (¢, z) one has A =
Ogp + 0... We study the 2-D homogeneous Poisson problem with Dirichlet boundary conditions on

oOM:
- AMU((baz) = f(¢vz>7 (¢7 Z) € (07 %) X (07L)a
(14)
u(¢,z) =0, (¢, 2) € OM,
where the source term f(¢, z) = [(O‘—L")Q(l — cos @) — (cos ¢ + sin ¢ — 4sin ¢ cos (b)} sin(%)
(Kamulis}, [2013)).

Since Helmholtz and Poisson equations are stationary, we focus on the static task for both problems.
And for the Navier-Stokes equation, we consider both static and autoregressive tasks.

7.2 RESULTS AND DISCUSSIONS

Comparison with benchmark methods. In Table[I] we report the performance of AFDONet and
benchmark methods in terms of average mean absolute error (MAE) and relative L? error, as well as
their standard deviations (+£) obtained using five random seeds and dataset size of 5000. Synthetic
datasets are generated using finite difference and isogeometric methods, and each model is trained
on a 60/20/20 split of training, validation, and testing data. We conclude that, given different dataset
sizes, our AFDONet solver consistently outperforms FNO-based solvers and DeepONet across all
PDE cases on manifolds. Note that FNO, D-FNO, AFNO, and WNO solvers rely on fast Fourier
transform and wavelet transform, both of which are inherently defined on Euclidean domain and thus
do not generalize well to curved geometries. Meanwhile, DeepONet does not exploit the spectral
sparsity of the solution space. In contrast, AFDONet adaptively selects analytic modes and employs
pullback operators to ensure accurate, manifold-aware representations.

Table 1: Average MAE and relative L? errors and their standard deviations for different PDE bench-
mark solvers obtained using five random seeds. Dataset size is 5000. The best results are bolded.
All values in the table have been multiplied by 100.

Equation Metric AFDONet (Ours) FNO D-FNO WNO DeepONet
Helmholtz MAE 0.937 + 0.063 1.855 +£0.165  6.085 £ 0.355 11.701 + 1.429 16.224 4+ 1.054
Rel. L? 8.141 + 1.401 11.915+£0.935 39.191 £9.361 69.735 £ 12.675 46.310 + 10.540

Navier-Stokes MAE 0.332 + 0.030 2908 £0.741  0.375 £+ 0.103 3.974 £+ 0.005 3.189 £ 0.164
(Static) Rel. L2 0.882 + 0.059 7.567+£0.173  0.996 & 0.263 9.989 £ 0.004 7.251 £0.422

Navier-Stokes MAE 0.068 + 0.037 2.386 +£0.249  0.142 £ 0.009 3.826 £ 0.191 3.168 £+ 0.221
(Autoreg.) Rel. L2 0.170 £ 0.104 6.288 +0.820  0.298 £ 0.060 9.541 £ 0.475 7.071 4+ 0.897

Pois%on MAE 0.158 & 0.033 0.777+£0.093  0.343 & 0.066 0.770 &+ 0.161 0.531 +0.030
. Rel. L2 0.472 4 0.109 2.567+0.502  0.513 4 0.242 1.754 £ 0.943 0.483 4 0.305

Scalability of AFDONet. In Figure[7.2] we show that AFDONet is scalable subject to increasing
dataset size for all benchmark PDE problems considered.
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Latent-to-RKHS network vs. Latent-to-kernel network. Our decoder operates within an RKHS
H (M), which is constructed via a latent-to-RKHS network. This network maps latent representa-
tions to their nearest RKHS within a Hilbert space. To understand the need for function restrictions
within an RKHS, we conduct an ablation study and compare the latent-to-RKHS network with the
latent-to-kernel network 2020), which directly maps latent representations to a kernel
function that does not necessarily satisfy the reproducing property. By comparing the results in Ta-
bles[T]and 2} we observe that latent-to-RKHS network consistently outperforms the latent-to-kernel
network. Both MAE and relative L? error show at least an order of magnitude reduction for all PDE
cases except the Helmholtz equation [I2} which only yields a slight performance gain. This is due to
the fact that the solution space for the the Helmholtz equation[I2]is already an RKHS (See Appendix
D). This illustrates the need and benefit of restricting the latent representations to their RKHS.

Table 2: Ablation studies of our AFDONet architecture show that latent-to-RKHS and AFD-type
dynamic CKN decoder work synergistically to improve the solution accuracy. Note that the results
for the full architecture are presented in Table[T} The dataset size is 5000.

5x10%
Size of dataset

2x10*

Figure 2: Average MAE, relative L? error, and total computational time comparisons with respect
to dataset size (averaged over five random seeds) for Navier-Stokes equation (static task) (top row),

Equation Metric Latent-to-kernel Latent-to-RKHS Latent-to-RKHS Latent-to-RKHS Latent-to-RKHS network
network + AFD-type  network + MLP-type network + propagation  + AFD-type decoder + AFD-type decoder
decoder decoder decoder (static CNN) (without EquationE
Helmholtz MAE 1.27E-02 £ 1.91E-03  2.11E-01 & 2.04E-03 1.93E-01 £ 5.11E-02 2.41E-02 £ 1.16E-02 1.81E-01 % 5.16E-02

Rel. L 8.89E-02 + 6.90E-03 1.17 £ 1.22E-02 1.07 £ 2.64E-01 1.72E-01 £ 9.13E-02 1.10 £ 2.62E-01

Navier-Stokes MAE 8.32E-02 + 1.46E-02  4.00E-01 & 4.46E-03 3.98E-01 + 4.68E-04 7.12E-02 £ 1.20 E-02 1.27E-02 £ 2.03E-03
(Slalic) Rel. L 2.19E-01 + 3.44E-02 1.00 £ 9.36E-03 1.00 £ 8.30E-06 1.85E-01 £ 3.54E-02 3.71E-02 + 6.29E-03
Navier-Stokes MAE 6.11E-02 + 2.92E-03  1.45E-01 + 2.59E-02 1.48E-01 £ 1.09E-01 8.32E-02 + 9.28E-03 2.53E-03 + 8.26E-04
(Autoreg,) Rel. L 1.58E-01 £9.20E-03  3.85E-01 + 6.84E-02 3.91E-01 + 2.30E-01 2.16E-01 =+ 2.35E-02 7.80E-03 + 1.10E-03
Poisson MAE 3.16E-01 + 8.76E-04  1.71E-02 + 7.73E-03 1.81E-02 + 1.84E-03 6.08E-02 + 6.88E-03 3.53E-02 £ 5.51E-03
) Rel. L2 9.77B-01 + 2.31E-03  5.10E-02 + 2.22E-02 5.61E-02 + 2.17E-02 1.77E-01 £ 5.16E-03 1.30E-01 £ 1.44E-02

5x10
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AFD-type decoder vs. other decoder architectures. We conduct ablation studies by replacing
our full AFD-type dynamic CKN decoder with three alternatives, namely an MLP decoder, a prop-
agation decoder (Lu et al.| 2020; Buchberger et al.| |2020), and an AFD-type decoder with a static
CNN. As shown in Table[2] full AFD-type dynamic CKN decoder achieves the best performance for
all PDE cases. The improvements are especially significant for the Navier-Stokes equation |13|and
Poisson equation where both the MAE and relative L? error are reduced by one to two orders
of magnitude compared to the benchmark decoders. Also, we observe that AFD-type decoder with
a static CNN performs slightly worse than our AFD-type dynamic CKN decoder since CNN uses
stationary kernels that lack adaptability to the varying spatiotemporal dynamics in PDE solutions. In
contrast, dynamic CKN enables data-driven, non-stationary kernel learning, which can better cap-
ture these inherent dynamics, especially for heterogeneous equations such as the Poisson equation
[[4] or time-dependent equations like the Navier-Stokes equation [T3]

Need for VAE backbone. We design a new ablation study for the Navier-Stokes example with
randomized vortex field dataset (see Appendix [E.3|for details). The randomized vortex field dataset
exhibits sharp gradients and turbulence-like behavior and includes a phase shift for the v-component.
Therefore, the dynamics of this dataset are challenging to learn. Our goal is to determine whether
the v-component solution profile would visually match with the ground truth solution when the VAE
backbone and its components are removed or replaced. From Table 3] it is clear that the synergistic
integration of VAE backbone, latent-to-RKHS network, and AFD-type decoder is essential in ac-
curately capturing v-component solution profile in the dataset. Guided by the AFD theory in their
design and integration, these components come together to establish the accuracy of our AFDONet
solver.

Table 3: Ablation study of replacing VAE with multi-layer fully-connected feedforward (MLP)
network as the encoder. Here, v': v-component solution dynamics visually matches with the ground
truth solution; X: v-component solution dynamics does not visually match with the ground truth.

Backbone Full AFDONet (latent-to-RHKS  Latent-to-kernel Latent-to-RKHS Latent-to-RKHS + Latent-to-RKHS + Latent-to-RKHS + AFD-type
network + AFD-type decoder + network + AFD- + MLP-type propagation AFD-type decoder decoder (without maximal
EquationE] type decoder decoder decoder (static CNN) (without EquationE
VAE v X X X v v
Without VAE (encoder X X X X X X

deterministic MLP)

8 CONCLUSION

Existing neural PDE solvers do not perform well to PDEs on manifolds, mainly due to the lack of
mathematically grounded methods to design tailored neural network architectures. In this work, we
introduce AFDONet, a new neural PDE solver for solving general nonlinear PDEs on smooth man-
ifolds. AFDONet is the first neural PDE solver whose architectural and component design is fully
guided by the AFD theory. Thus, it exhibits exceptional mathematical explainability and ground-
ness, and enjoys several desired properties, such as convergence guarantee. AFDONet also achieves
outstanding solution accuracy and competitive computational efficiency in benchmark problems
studied. In particular, thanks to its deep connections with AFD theory, AFDONet shows superior
performance in solving PDEs on i) arbitrary (Riemannian) manifolds, and ii) datasets with sharp
gradients. Overall, this work presents a new paradigm for designing explainable neural operator
frameworks.

9 REPRODUCIBILITY STATEMENT

The source code is uploaded as part of the supplementary material. A complete description of the
data processing steps is provided in Appendix [El The assumptions made in proving Theorems
through [3| are provided in Appendices [A]through|C] respectively.
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A PROOF OF THEOREM 1]

Under the loss function of Equation[TT] we can rigorously bound the error of AFDONet in Theorem
[1l which states:

Theorem 1. Let P C R? be compact and {(p;,w;)}Z_, be Z i.i.d. samples with u; = F(p;) + &,
& ~ SubGaussian(H(M)), and E[§;] = 0, where F : P — H(M) is holomorphic, and H(M)
is an RKHS with a kernel k,, whose eigenvalues decay polynomially with rate k. Suppose Ly =

O(log Z) and Wq = O(Z ED ) in the decoder network. For the minimizer 0 of the loss function
L(0) in Equation|l I| there exists a constant C' > 0 such that:

d
We introduce and prove a few lemmas before proving Theorem|[I] We assume that the neural network
fo is Lipschitz continuous with respect to hyperparameters 6 (i.e., || fo — for|ln < Ly |6 — €'||2).

2

. _ 2k+1 9
uN,éfFH | <0z log 27

H(M

Lemma 1. Forany 0 < d <1, for the class of complex-analytic networks with depth L and width
Wy, denoted as Ny, 2. W, N, there exists C' > 0 such that:

. WaL
log N (0, N1, wa,ns |I|l2) < CWaLglog (L;Cl) 7
where N (0, N1, w, .~ ||| ) means the 6-covering number of (N, w, .~ ||*||12)-

Proof. Let us consider the p-dimensional ¢2-unit ball BP(1) = {x € R? : ||z||2 < 1}. Results for
covering B? (Wainwright, [2019) concludes:

log A6, B0, - o) < plog (14 ) < poe (3. 15)

Extending this result to a ¢5-ball of radius R, Equation becomes:

2R 3R
log A6, B (), 1) < o (14 5 ) < poe (55 16)

by rescaling § in the RHS of Equationwith 0/ R. Furthermore, by letting p = 2W, L4, Equation
becomes:

0

From the Lipschitz property and the fact that the parameter space of N, w, n can be controlled by
B2Wala(R), we have:

log N (5, B2We 4 (R), | - [l2) < 2WLalog (33) . am

1) 3L:R
log N (0, N, wans || - l2) < log NV (Lf’B2Wde(R)7 [ - ||2) < 2WqLqglog ((;) , (18)

where Ly is the Lipschitz constant. With R = O(WyLq), Equationleads to:

. WyL
log N (8, Ny wa,ns || - 1) < CWaLglog (fﬁ) : (19)

which completes the proof. O

Lemma 2. Fora > 1 and 0 < r < min(a, e) where e is the base of the natural logarithm, there
exists b > 0 that satisfies the following inequality:

4 /log (%) < \/B\/m.

Proof. For the case 1 < r < min(a, ), we may choose b = e. Squaring both sides of the inequality
and rearranging lead to (r — e)loga < rlogr. Suppose r = e, the inequality is automatically
satisfied for any ¢ > 1. Suppose r < e, since a > r, we have: (r — e)loga < (r — e)logr.
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Thus, it suffices to show (r — e) logr < rlogr, which is equivalent to showing e log r > 0. This is
automatically satisfied because 0 < logr < 1.

r(log a—log r)

For the case 0 < r < 1, we rearrange the inequality and obtain b > © oz
r(log a—log r)

loga

> (. Furthermore,

reaches its maximum, atr = ;. Thus, suppose a < e, then we may choose

b > o and the inequality is satisfied. Suppose a > e, then max%g‘;ogr) = 1 within

0 < 7 < 1. Thus, we may choose b > 1 and the inequality is satisfied. O

elog‘a’

Lemma 3. There exists C > 0 such that:
z

1

7 > eifo(pi)
i=1

where €; are i.i.d. Rademacher variables and % is a function class for a radius 0 < r < e defined

as{f € Noywyn : IIf = Fllag <7}

E.

sup

<& \/rWde log(WaLy)
feEF

Z )

Proof. From Dudley’s entropy integral bound (Wainwright, [2019), we have:
z

1 24 7T
E. [sup ZZeif(p»} <= [ ViegN (t,Z, |- |x)dt. (20)

fE(g i=1 N \/Z £
Since N'(6, Z, || - %) < N(86, N, wu,n || - l¢) and according to Lemmal[l} Equation 20]becomes:

zZ 24 2r
LS ] < 2 [ or N N )

24 [ . L
<= CWyLgylog (Wd d) dt.
N t

To evaluate the integral on the RHS of Equation 21] we apply the change of variables technique by
defining u = log Wde (and thus dt = —WyLge “du):

2r log d)
/ lo g Wde dt = V- WaLge ™™ du
og( Fgrd)
B 3 Wde 3 Wde
=Wyl [F(2,10g< or )) I‘<2,log< . )>} (22)
- Wde T
f2'l" log( 27" >+O<10g(W‘lLd)>,

where I'(s, z) = f;o t*~Le~tdt is the upper incomplete gamma function.

Substituting Equation [22]into Equation[21]and applying Lemma 2| lead to:

sup
feF

E

2n

4 WL
1 CWyLqlog (W)
E. | sup |5 eif(pi)|| <24-2r
sup | 7 ; f(pi) ] \/ Z
. 23
- 24\/5\/27’CW(1L(1 log (WaLa) 23)
A
_ CN'\/TWde log(Wde)’
= Z
where C' > 241/2bC. )

Lemma 4. Let 6 minimize the loss function L in Equation With probability at least 1 — et for
allt > 0,
A WaLglog(WaLg) +t

Z

L) < inf £(0) + C
holds for some C.
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Proof. From the symmetrization inequality (Boucheron et al.,[2012), we have:

Z
E [ﬁ(é) - £(9>] < 2E | sup % ; eif(pi)l : (24)
where ¢; are i.i.d. Rademacher variables.
Let us define the centered process:
z
Z = sup Y (f(pi) — E[f(p:)]) (25)

feF =

under the assumptions that there exists Z”j such that: (1) &', < Z — 2% < 1 almost surely;
(ii) E¥[2"}] > 0, where E* is the expectation taken conditionally to the sigma field generated by
(P1,- -y Pk—1,Dk+1,---Pz); and (iii) there exists ¢ > 0 such that &’} < ¢ almost surely. Here,

2 = SuPyrez Zi;ﬁk (f(pi) —E[f(ps)])-
Applying Bennett concentration inequality (Bousquet, 2002) to the process 2 leads to:

P (ff > E[Z] 4+ V2ut + ;) <et, (26)

where v = (1 + q)E[Z] + Zo® and 02 > & 27 EF [(274)?].
Combining Equations and 26| with probability at least 1 — e, we have:
z

sup % Z € f(pi)

feF 4o

L(0) — L(9) < 2E

1 t
+ (\/2@1% + 3> . Q27

Moreover, by putting [E, [sup fes ’% ZiZ:1 & f(pi) } = r for Lemma = stands for asymptotic

equivalence), we obtain:
e WyLqlog(WaLg)

7 (28)
Extending the result of Equation[24]to 2 defined in Equation [23]leads to:
1 Z
E[Z] <2ZE |sup — > e f(pi)
fez Z =
i=1 (29)

~ Lal L ~
< 220\/ TWala OZg(Wd 1) 2CW, Ly log(Waly),

where the second inequality and last asymptotic equivalence come from Lemma[3]and Equation 28]
respectively.

According to Efron-Stein inequality (Boucheron et al., 2012), there exists 2/, = 2 — %4, such
that:

02§

M~

E[(Z - E[Z | p))®] <EF[(27:)7), (30)

>
Il

1

where Z | py, excludes py from 2. Thus, to derive an upper bound on E¥[(Z”})?], we write:

(2":)? < (sup |f(pi) — E[f(m)]) <2 (Sup flow)? + E[f(pk)]2> <4sup f(pr)®, (31
feF feF feF

where the second inequality comes from (a — b)? < 2(a? + b?) and the last inequality holds by
Jensen’s inequality (E[f(px)]?> < E[f(pk)?]). Then, for f € % and a bounded function F, it
follows:

Ef(pe)*] < 2(|1f = Fliz, + [1F117) < 20 + |1FI3,). (32)
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Substituting the result of Equation [32]into Equation [3]and combining it with Equation [30] give:
WaLalog(WaLa) > ’

7 (33)

o2 < Dr? = (
for some D > 0.
Substituting Equations 33| and 29]into [26] gives:
(WaLglog(WaLa))®

v=(1+qE[Z]+ Zo* < C'(1+ q)WyLglog(WyLg) + ~

, (34)
< <Cl(1 +q)+ Z> (WqLq log(Wde))Q .

Substituting Equations [34] and 28] into [27] gives:
A ~WyLgl L 1 Lyl L
c(0) < £(6) + 20 VaLalos Wala) [y 1+ q) + | ¢ Yald 0g(Wala)
i Z Z 32 (35

- L4l L t
§£(9)+C’Wd d Og(ZVVd d) +

holds forany 6, where G = max {25’ \/2 [C"(1+4q) + %] t, %} Thus, we conclude that £(6) <
infy £() + CWaLalosWWaLa)tt, -

PROOF OF THEOREM [1]

Proof. From Lemma@ we know that with probability at least 1 — e~* for all ¢ > 0 and some C,

WyLg log(Wde) +t
7 .

Realizing £(0) < ||in,g — F||3,, then for sg = infy £(0) + ¢ Wala log(;VdLD)HO , it holds that:

L£(0) < inf £(0) + C (36)

Ble) < [ TR(L() > 5)ds

_ / P P(L(6) > s)ds + / T P(L) > s)ds
0

S0

(37)
<s9g+ M- et

+
= S —_—
0 Za

where ty = log Z and we assume that £ < M for t > .
Since Ly = O(log Z) and Wy = O(Z2<k1+1J ), we have:
WaLglog(WaLy) _ ZT5 -log Z - log(Z T log Z)
Z - Z
77w log Z - <# log Z + log log Z)

2(k+1)
= 38
Z (38)

= Z7w0 " log Z -log Z
_ 2k41 9
= Z 2040 (log Z)°.
Combining Equations [36] 37 and [38]leads to the final result:

?|

where C' > 0 is a constant and the term O(Z~!) vanishes for a large Z. O

i A—FHZ} < CZ7 5k (log Z)2 + O(Z ) (39)
N6 wl = & ’

17
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B PROOF OF THEOREM [2]

Theorem 2. Let H be a Hilbert space on a manifold M. Fix d,n € N, then for any * € H(M)
and any € > 0, there exist a convolutional kernel K defining an RKHS H(M) and a complex-
valued modReLU neural network FMg: with at most C'In(2/¢) layers, Cny~ 24" In*(2/¢) weights,
and weights bounded by Ce=*'? such that

FMQ' (f) € H(M) and Hff — FMQ' (i)”H(M) S i%f ||f — FMO(-}E)”H(M) + g,
where C = C(d,n) > 0 depends only on the dimension d and the smoothness parameter n.

Proof. First, we show that H (M) exists by introducing a map ® : H(M) — H(M) and the
reproducing kernel is defined as K (z,2") = (®(x), ®(z')) 3 (m). Specifically, the map ®(z) corre-
sponding to a convolutional kernel K can be represented as Ay o M oPr - - - A; o M7 0Prx where
L is the depth of the kernel and A;, M; and P; are the linear operators related to pooling, kernel
mapping and patch extraction, respectively (Bietti,2022). Without loss of generality, we assume that
H(M) C H(M). Next, we point out that (M) is convex by showing that, for any two functions
frg € HM):

af+(1—-a)g=ao(f, Ao MpoPr--- Ao My oPix)ym) + (1 — )
(9, AL o MpoPr--- Ay o My o Pra)y(m) (40)
= <Oéf+(1—06)g,ALOMLOPL---A1 OMl OPlx>’H(M)

for « € [0, 1]. Thus, H (M) is closed due to the closedness of manifold M and the completeness of
Hilbert space H.

Next, from the Hilbert projection theorem, for ¥ € H (M), there exists a unique y € H (M) such
that, for any y € H(M), || — yllam) < | — Yllm (). Let us denote y as ¥(z), where ¥ is a
map from H (M) to H(M). Following the main result of (Caragea et al.|(2022)), for any 5 € H (M)
and any € > 0, there exists a complex-valued modReLU neural network with hyperparameters 6,
FMy, containing no more than C'In(2/¢) layers, Cn~2%/™ In*(2/¢) weights (all weights bounded by
Ce=*4), such that || — FMg(Z)|| () < §. In addition, there also exists another complex-valued
modReLU neural network with hyperparameters 6’, FMyg:, such that || ¥ (Z) — FMg/ (Z)|| g (am) < §-
Thus, we have:

|7 = My (2)[| r vy = [[7 = W(Z) + U(Z) = FMgr (Z)] )
<7 = U@y + [[0(@) = FMa: ()| ()

~ ~ 13
<7 = yllamy + 3

o - - € 41)
=1 = §+ FMo(®) — PN (@)l aa) + 5
~ ~ — o~ €
< || = FMo(@)[| () + [[FMo(Z) = Yl my + 3
< |z = FMp ()| m) + e
This completes the proof. O

C PROOF OF THEOREM [3]

Theorem 3. Let Ly, Wy, and N denote the depth, width, and number of layers of dynamic CKN
decoder network satisfying Equation |§] For any ¢ > 0, there exist Ly = O(log %),Wd =

O(g‘l«%l),N = O(log %) and 0 € N, w, n such that

sup HﬁN,G - F(p)HH(M) < g,
pEP

where NV, Lq,Wa,N 18 the class of complex-analytic networks with depth L4 and width W.

To prove Theorem 3] we first introduce and/or prove a few lemmas.

18
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Lemma 5 ((Yarotsky, 2017)). For any dimension n, smoothness parameter k + 1, and error tol-
erance € € (0,1), there exists a ReLU neural network architecture such that it can approximate
any function f with accuracy ¢, i.e., with approximation error at most €. The network has depth at

most c(In(1/¢) 4 1), and uses at most c== (In(1/¢) + 1) weights and computation units, where
¢ = ¢(d,n) is a constant depending only on d and n.
Lemma 6. Let f € C*(]0,1]%) or WFH1:20([0,1]%), for & > 0, there exists a ReLU network fo with

width Wy = O (E_’T(Zl) such that ||f — fol|lpe <e.

Proof. The result follows from Lemma which states that for any d € N, n € N, and € € (0, 1),

there exists a ReLU neural network of depth O(log(1/¢)) and size O(c~# log(1/)) that can uni-
formly approximate any function in the class F}; ,,, which includes functions in W™°°([0, 1]¢) with
bounded norm. By setting n = k + 1, it holds that f € W¥*+1.>°([0, 1]¢), with the network width
scaling as O (g~ 32 ), up to a logarithmic factor. Note that any f € C*([0, 1]¢) with bounded deriva-
tives up to order k also belongs to W#>°([0, 1]¢) and can be embedded into W**+1:°°, Thus, Lemma
E]holds forany f € C*([0,1]%). O

Remark. The result of Lemma [0] is nearly optimal. [Yarotsky| (2017, Theorem 5) shows that there
exist functions f € W™°([0,1]9) for which the complexity N (f,¢) is not o(e= %) ase — 0. This
implies that no network architecture can uniformly approximate all such functions with significantly
better scaling in e.

Lemma 7. Let H be a separable Hilbert space and f € H belong to a class of functions with k-th

order smoothness. For € > 0, there exists a ReLU network fg with width Wy = O (E_ﬁ) such
that || f — follu < e.

Proof. Assume f € dom(A~") with respect to its operator A with input dimension d. Let {e; )

be an orthonormal basis of H with associated eigenvalues \; < j2* (assuming that @ > %) of

A. Then, we have ||A* f|3, = Z;’;l )\fk|<f, e;)|> < oo. We can define the eigenexpansion of f
as Pxf = Y0 (f.ej)ej and || f — Py flla < CN~(-+9) < ¢/2 holds for N = [~ 7055 | <
e~ . In the finite-dimensional subspace span{ey, ...,ex } = RY, each coordinate function fi
(f, e;) inherits C regularity and can be approximated by a ReLU network f; with | f;(x)— f;(z)|

IA I

£

s using width O(~F¥7) per coordinate from LemmalEI The RELU network fg = Zjvzl fie;

then satisfies ||f — foll < |f — Pnflla + /3, 15 — fil}~ < e The total width Wy =

d

O(N - e 1) = O(c~ 7¥1) O

PROOF OF THEOREM [3]

Proof. First, we show that, for a sufficiently large NV and any € > 0,
€
4
holds. From Equation , we have Uy g = Zivzl(FM (@) , Bitr,)Pitr,. Here, we prove by

contradiction. Suppose [[in,g — FM (@) ||3a1) > §. then there exists an open ball B and C' > 0
such that:

lin.e — FM (@) |3 m) < (42)

N
FM (i(z,-)) = Y _(FM (")), Bitr,) Bitr,

i=1

_ C%&?(Hkm(g)”) >
H(M) ’

;o (43)

=] m

for (z,-) € B C M. Furthermore, since the term Zi\il IKEM (@(z,-)) , Bitr,)
finite, there exists Ny such that for any n > Ny, we have:

2 .
3(my < 00 s

N p C 2
> IEM (i) s nn < (250 ) (44)

i=n
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Next, we examine the term || {uy, Hl’z—zm 12 (m)» where (z,b) € B and

n—1
o = FM (a2, ) — 3 (FM (a2, )) , B 7, B,
i=1
N N (45)
— M (i, ) — S (FM (3, ) , B ) B, + S (FM (a2, ) Bisr) B,
i=1 i=n
Therefore, we have:
k ol k
b _ _ b
[l ||<FM ()~ S (M (0), D) Brir, + Z (FML(3), Bisr) B, ||k||>|
b H(M) i=1 b H(M
al k
> (a0 - 10, 91, ,;|>
i=1 1 g
_ Ky
1=n b H(M)
(FM (@) = XL (FM (@), Bt ) Bisr, )|
>
B [[Kell
H(M)
N
_ 2
— | D IEM (@, -) s Bitr) 300
c C
>0- 2 ==
- 2 2 )
(46)
where the third inequality holds due to the reproducing property of RKHS: (f, k,,) = f(m).
Meanwhile, there exists v > 0 satisfying Equation [9]such that:
N [, b = 2 s B i)
e F
oll e [[Fs
nvki nlk;%i T'%’iT‘ ’
) | b = S5 O, B i)
T ke = " ke, Bir ) By,
H b Zl:l< by +1> +7i H(M)
b
= [[{un, L@n+m>||H(M) “7)
1
S H <un7%n+7n> - l
Po Po [l (m)
<L e
po 2 po
¢
5

Hence, Equations @ and M lead to a contradiction. Therefore, Equation @ must hold.

Next, from Theorem [2} there exists a network FM with appropriate hyperparameters 6’ such that:

[[a = FMgr (@) ) < inf [ — FMo(u )HH(M)‘F* (48)

Let us denote FMy, as FM. Note that @ in Equation [48]lies in the Hilbert space H (M), not the
RKHS H(M). Furthermore, from Lemma [5} there exists a set of hyperparameters ¢ such that
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lw — FMg(w)|| raqy < §- Therefore, Equationreduces to:

_ 9
[ = EM (@)l #1(am) < inf e = FMo(@)llzran) + 5
_ - £
< @ = FMG(@) | mn) + 5 49
cE E_¢
442

From Lemma for w which is the output of a neural network with width Wy = O (57%1), we
have:

5
1@ = Fllaoa < - (50)

Putting Equations 42} 49] and [50] together leads to:
line — FP)llaypn) < v = FM (@) [[2m) + llu = FM@) ||y + 0 = Fll 51

<e

for any p € P. Therefore, taking supremum on LHS and RHS of Equation we have proven
Theorem 3] O

D PROOF THAT THE HELMHOLTZ EQUATION SPANS AN RKHS

Let us consider the Helmholtz equation Ayu + k*u = 0 without loss of generality. We first
introduce some background and preliminaries before proceeding with the proof.

LetA=3Y" 6 be the Euclidean Laplace operator acting on the Sobolev space of weakly twice

differentiable functlons defined on R™. Let k > 0 be a fixed constant. A function u defined on R™
is called a solution of the Helmholtz equation, if Au + k%u = 0 on R™. In other words, u satisfies
one of the following:

« u € C?*(R") is a classical solution of the above equation on R"™; or

°u € WQ(R") is a solution in the weak L%-sense, i.e., u is locally square integrable, and
satisfies [, u(x) [ Ap(z) + k*p(z) | dz = 0 for any (test) function ¢ € C°°(R™) with
compact support.

It follows from |Axler et al.| (2001) that any solution of homogeneous Helmholtz equation is real
analytic on R™. We define the following space:

Witeim,k(R™) = {u € C*(R") | Au+ k*u = 0on R™}. (52)
Hartman & Wilcox| (1961) introduced the concept of Herglotz wave function. The Herglotz wave

functions consists of all the entire solutions u of the homogeneous Helmholtz equation Au+k?u = 0
on R™ with k£ > 0 such that Herglotz boundedness condition:

Jim /z|<R 2dz < 400 (53)

holds. [Hartman & Wilcox| (1961) characterized the Herglotz wave functions as the entire solutions
u of the homogeneous Helmholtz equation with far-field pattern in L?(S"~1). That is, functions u
defined on R"” can be written as:

uw) = [ Mgt dae), 54)

for some g € L2(S"~1).

With this, let us consider the Helmholtz equation on the standard n-dimensional unit sphere S™ =
{z € R*™ : ||z|| = 1} in R™"! with canonical spherical Riemannian metric g. Let Ag» be
the spherical Laplacian acting on the Sobolev space W?2(S™) of real-valued, square-integrable, and
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twice weakly differentiable functions on S™. Consider the Helmholtz equation on the Riemannian
manifold (S"~!, g) with canonical spherical metric g. Its entire solution can be expressed as:

uw=Wo(z) = (2m) = /S €M Ep(E)da(€), (55)

where W is the Fourier extension operator and ¢ € L?(S"~!) is Herglotz wave function. It has been
shown that TV defined in Equationis an isomorphism of L?(S"~!) onto the space W? consisting
of all solutions of Helmholtz equation with radial and angular derivatives satisfying:

s Do P
Il = [ (@ + 5@ + g5 @) s < (56)

(see (Pérez-Esteva & Valenzuela-Diaz, [2017)). In this sense, the space W2 in R? is a Hilbert space
with reproducing kernel (i.e., RKHS).

Meanwhile, to the best of our knowledge, there exists no such formal analysis on Helmholtz equation
on any smooth (Riemannian) manifold (M, g). For any smooth manifold (M, g), the Laplace-
Beltrami operator A, defined in Equation ??, has orthonormal eigenbases on L?(OM) as {tx }
with corresponding eigenvalues A > 0. For each 1/, let us consider:

(Apm+k)pr =0in M,  dxlom = ¥a. (57)

By elliptic regularity, ¢y € H?(M). Furthermore, we extend the Fourier extension operator in
Equation [55]to W on any smooth manifold M:

W f(x) 2/

oM

U(x,€)f()do(€), where U(z,&) = da(x)¥a(€). (58)
A

Now, we present the main result in Theorem that WW2(M) is the space of all Herlotz wave func-
tions.

Theorem 4. The operator Wpq : L?(OM) — W?2(M) defined in Equation |58|is a topological
isomorphism, where W*(M) = {u € H* (M) : (Apm + k*)u = 0}.

Remark. Theoremd|implies that W a4 is an isomorphism between L*(OM) and W?(M), the space
of H?-solutions to the Helmholtz equation (A + k?)u = 0. Such an isomorphism W x4 implies
that H(M) inherits a Hilbert space or RKHS structure from L?(OM). In other words, W?(M) is
an RKHS.

To prove Theorem[d] we first introduce and prove a lemma.

Lemma 8. Let J, (z) be the Bessel function of order v € R. For each eigenfunction 1; of A,
define Fj = W ;. Then:

1. Fj(z) = (27r)1/2i”(j)7’*% V() (kr)Y;(§), where x = 1€ in normal coordinates near

OM.
2. The family {F}} is orthogonal in W?(M), and
1
Il =240 (5 ).
j
3. For f =3 a3 € L*(OM) andu = 3 ; a;Fy € W*(M),

Nl zr2(mt) ~ 1 fll 220095

with absolute and uniform convergence on compact subsets of M.
Proof. We prove the three components of Lemma [§]as follows:
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1. Helmholtz equation (A + k?)¢; = 0 can be written as:

(o84 "o+ Zaon+ 1) 07 R (e . (59)

r

Substituting ¢; = i R;(r)1;(&) into Equation [59|yields:

1 )?
R;»' + ;R; + (k2 - 1/5?2) >Rj =0, (60)

whose solution is R;(r) = J,(;)(kr). By the Funk-Hecke formula (Xu, 2000), we have:

Fj(z) = /OM (z, £)1h;(€)do(€) = (2m) /2@y

n—2
2

v (k)i (€).  (61)

2. Since v; and v, are orthonormal eigenbases, 1); and 1)y, are orthogonal on d M. Therefore,

(Fj, Fr) 2 (m) = / (i1 + Vo, - Vi) dVy =0 (62)
M
for any j # k. Using the asymptotic J,,(;y(kr) ~ % for r — 0T and oscillatory

decay for r — oo, we have:

1
B e =2+ 0 (3 ).
J
where the error term comes from the next-order Bessel asymptotics.

3. From Part 2, the map f — wu is bounded:

[ullFrz gy = Z |aj P11 E5 1 72 ) ~ Z la;* = 1 I72(0m)- (63)
J J

Next, we prove |J, (kr)| ~ O(v~'/2) uniformly holds on compact subsets K C M.
According to Watson| (1922, §8.4), we have:

1/2 X (_1\ym 1
J,(vsec ) ~ (2) [cos (Vtanﬂfyﬂf%) Z (=) F(im+2)~

v tan 8 = I'(3)
Ao, . ™ o= (=1)™T(2m + 3)
S G P I
A2m+1
(v tan B)2m+1 |’

(64)
where Ay, is defined following Ag = 1, A1 = 3 + 2 cot? B, Ay = 1oc + <o cot® B +
385 cot* 3, and so on.

3456

Let z = sec 3, which implies tan 3 = v/22 — 1 and cot 3 = ——~—. Moreover, 7 is defined

2

asn(z) = tan B — B = V22 — 1 —sec™! 2. Then, by cosf = R(e?), sind = I(e¥),

3

we have:
cos(v = 7/4) - Sy + sin(vn — m/4) - Sy = R [0Sy —isy)], (69)
1) (2ma L - (23
whete Sy = Yoo SUREMER L s ang 5y =y UL
Ao

(%Vtan 5)2m+1 .

We say that there exists Uy (p) which is a polynomial combination of Ay by comparing
(thrf’g)zm and U’;Ef”. Bytanf8 =+v2z2 —1landp = ﬁ we have:

2 \'? 1 1 2.2\ ©6)
v tan 3 (12 o \22-1 .
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Combining Equation [64] Equation[65] and Equation [66]leads to:

U
3 Uulr)

k=0

exp (1/77 — %)

(1 + 22)Y/4/2mv
Next,forv > landr € K (ie., z = % is bounded), we have:

2\ /2 cos (vn(z) — )
) O

Ju(vz) ~ (67)

Jy(kr) = ( (68)

Since | cos(-)] < 1 and (1 + 22)/* has positive lower bound G on K, we have:
9\ 1/2
|1, (kr)| < G () =0 1?). (69)
%
Finally, substituting Equation [69]into [63] we have, for compact subsets K C M:

1/2 1/2

S laillE @) < 1Y o) > 1y (k)P < 0. (70)
j j j

This completes the proof. O

PROOF OF THEOREM [4]

Proof. For f =3, ajih; € L*(9M), let us define:

Wmf = Zaij, where F; = Wa);. (71)
J

From Part 3 of Lemma 8] the series converges absolutely and uniformly on compact subsets K as:
1/2 1/2

Sl Ellne ) < C 1D lagl? SNV <o, (72)
J

J J

_1 -
where || Fj|| (k) < CA; * comes from Bessel decay (Matviyenko, 1993) and A; ~ jﬁ comes
from Weyl’s law (Liokumovich et al.,[2018).

Then, from Part 2 of Lemma 8}

Wiz ) = Z |aj P11 E5 1 72 ) ~ Z la; > = 1 FlIZ20m0)- (73)
J J

Next, we prove the surjectivity of Wx,. Let u € W?2(M). On OM, we expand v in eigenfunctions
using:

u(r €)=Y A (€), A5(r) = (ulr, ). 05 r2om). (74)
J
This way, the Helmholtz equation (A + k2)u = 0 reduces to an ordinary differential equation:
-1 i+ n—2)2
argt A;+(k2—’ (22))Aj=0, (75)
r r

whose solution is A;(r) = ajr*% L) (kr), where v(j) = \/Aj + (%52)2. Therefore, u =
a5l = Wamf for f =% a0 € L?(OM). Finally, the inverse W' : u — ulpaq is
bounded by the trace theorem (Adams & Fournier, [2003)):

Wit ull 2 oam) = llulorllz2 o) < Cllullgzam)- (76)
This completes the proof. O
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E EXPERIMENT DETAILS

In this section, we provide a detailed description of datasets, implementation details, and additional
experimental results.

E.1 DATASETS

Helmholtz equation. We generate the dataset using the Helmholtz equation solver
helmhurts-python, which is available in Marchand| (2023). This solver computes the
electric field distribution u(z, y) for given n(z,y) and source terms S(x,y), discretized on a uni-
form grid with resolution Az = Ay = 1cm. S(x,y) is constructed by assigning a complex-valued
excitation P - e*? to all pixels marked as sources (RGB (255,0,0)) in the input image, where P
is the transmitter power and ¢ = 0 denotes a uniform phase alignment. Perfectly matched layers
(PMLs) of thickness 12 cells absorb outgoing waves to approximate open boundary conditions.
We select randomized physical parameters to generate the full dataset, including transmitter
power P ~ U(0.5,2.0), frequency f ~ U(1.5,3.0) GHz, and wall properties n ~ U(1.5,3.0),
k ~ U(0.05,0.2). The resulting field intensities |u| are log-scaled and normalized to [0, 1].

Navier-Stokes equation. The dataset is generated by numerically solving the 2D incompressible
Navier-Stokes equations using a spectral method solver adapted from the NSsimulation reposi-
tory (lavenderses, 2021)) on a torus. The viscosity v are sampled following v ~ 1/(0.001,0.1). For
the static task, the dataset contains the value of parameters o and the numerical solutions u. For the
autoregressive task, the dataset contains the numerical solutions u(z, t) and u(x,t + 1).

Poisson equation. Using isogeometric analysis with NURBS basis functions of order p = 2 pro-
posed in (Kamilis, 2013), we generate the dataset for this problem by specifying o ~ (2, 6).

E.2 IMPLEMENTATION DETAILS

We run all experiments in a Dell Precision 7920 Tower equipped with Intel Xeon Gold 6246R CPU
and NVIDIA Quadro RTX 6000 GPU (with 24GB GGDR6 memory).

For FNO-based solvers (Li et al., [2020; [2023b; |L1 & Ye, 2025)), the number of Fourier modes con-
sidered in the spectral convolutions is an important hyperparameter. We find that no more than
16 Fourier modes are enough to solve the three benchmark PDE problems. In fact, increasing the
number of Fourier modes beyond 16 could lead to worse performance. From Figure 3] we plot the
average MAE and total computational time of FNO with 8,12, 16, 32, 64, 128 Fourier modes. As
a result, in our experiments, we set the number of Fourier modes to be 12 for all FNO and D-FNO
models. Similar trends happen to other benchmark PDE problems, so we use 12 Fourier modes in
all benchmark PDE problems.
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Figure 3: Average MAE and total computational time (in seconds) of FNO solver with respect to
number of Fourier modes (averaged over five random seeds) for solving the Helmholtz equation[I2]

In addition, for AFDONet, increasing the dimension of the latent space helps achieve higher accu-
racy. However, this also comes with an increase in computational costs. This is illustrated in Table ]
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below taking Navier-Stokes equation. Therefore, to demonstrate the effectiveness of our AFDONet
solver even in the worst-case scenario, we set the latent space dimension to 10 for all benchmark
PDE problems.

Table 4: Average MAE, relative L2 error, and computational time (in seconds) of AFDONet (av-
eraged over five random seeds) for solving Navier-Stokes equation [13| (autoregressive task) under

different latent space dimensions.

Latent dimension

MAE

Relative L? error

Time (sec)

16 6.40E-04 = 9.90E-05 1.11E-03 £ 1.91E-04 1058.39 &+ 19.30
20 5.35E-04 £+ 1.36E-04 1.40E-03 + 1.03E-03  1190.61 + 15.67
32 3.77E-04 £ 1.28E-04 9.60E-04 + 8.03E-04 1110.57 & 18.38
64 4.62E-04 = 1.35E-04 1.22E-03 £ 8.92E-04 1173.40 £ 17.22
100 4.05E-04 &+ 1.09E-04 1.06E-03 £ 9.94E-04 1365.03 £ 21.89
128 3.89E-04 £+ 1.26E-04 9.99E-04 + 8.48E-04 1406.05 + 23.98
256 5.03E-04 £ 1.98E-04 1.27E-03 £ 1.14E-03  1743.28 + 27.64

The AFDONet loss function and training specifications are listed in Table [5] below.

Table 5: Specifications of loss function and training for AFDONet solver.

Parameter Value
Training epochs 100
Loss weights (w) 10~5
Loss weights (w;) 108
Optimizer Adam
Learning rate 1073
Batch size 16
Encoder hidden layers dimension 256
Latent space dimension 10

For the benchmark solvers, their detailed architectures are as follows:

* The FNO solver (Li et al.l [2020; 2023b) consists of an initial linear projection layer P
(width is 32) followed by 5 Fourier layers with 12 Fourier modes and GeLU activation
function. A neural network with two fully connected layers @) (the first layer has 128 neu-
rons and the second layer has 2 neurons) is used to project back to the target dimension. The
Adam optimizer (learning rate: 10~3) is used to train the FNO solver based on minimizing
the MSE loss.

* The D-FNO solver (Li & Yel 2025) has a similar architecture as the FNO solver, except
that a reduction layer is introduced between the initial linear projection layer P and the 5
Fourier layers to decompose the output of P into a series of two one-dimensional vectors.
The reduction layer does not use traditional neurons. Instead, it projects inputs into a rank-
16 subspace via factor matrices (see Equation 6 of|[Li & Ye|(2025))). The Fourier layers have
12 Fourier modes (also suggested by |L1 & Ye|(2025)) and use GeLU activation function.
After that, an operation called product is used to put the two vectors together. In D-FNO,
@ has two layers (the first layer has 128 neurons and the second layer has one neuron).
The Adam optimizer (learning rate: 10~3) is used to train the D-FNO solver based on
minimizing the MSE loss.

* The WNO solver (Tripura & Chakrabortyl [2023) adopts the FNO architecture by replac-
ing Fourier layers with wavelet integral layers that decompose the inputs using Daubechies
wavelets and apply learnable linear transformations to the wavelet coefficients before re-
construction. The structure of () is the same as that of FNO. GeLU activation function and
the Adam optimizer (learning rate: 10~3) are used.

e The DeepONet solver (Lu et al.,|2019) consists of two subnetworks: a branch network and
a trunk network. The branch network which handles the high-dimensional input functions

26



Under review as a conference paper at ICLR 2026

has three fully-connected layers with 64 neurons per layer. The truck network which han-
dles spatial coordinates also has three fully-connected layers with 64 neurons per layer.
Their outputs are combined via a dot product. ReLU activation function is employed in
both branch and truch networks. We use the Adam optimizer (learning rate: 10~3) to
minimize the MSE loss.

E.3 ADDITIONAL EXPERIMENTAL RESULTS

VISUALIZATION OF SOLVER PERFORMANCE IN BENCHMARK PDE PROBLEMS

In Figures [ through[6] we plot the ground truth and predicted solutions of AFDONet and baseline
methods for the three case studies. The corresponding MAE and relative L? error results are listed
in Table [Tl

Ground truth AFDONet (ours
component u componentv ~ component u component v component u component v C(gmpon)ent u comionent 4
component u component VFN((;)omponent u component v component u component \P-Fug?nponent u component v
WNQ DeepONet
component u component v mponentu_componentv component u componentyv component u component v

OOHE 9 oNN

Figure 4: Ground truth and predicted solutions (u,v) of the Navier-Stokes equation (static task) on
the torus and heat map.

Ground truth AFDONet (ours) FNO

DeepONet

Figure 5: Ground truth and predicted solutions w(x,y) of the Helmholtz equation on the planar
manifold.
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Ground truth AFDONet (ours) FNO D-FNO WNO DeepONet

Figure 6: Ground truth and predicted solutions u(¢, z) of the Poisson equation on the quarter-
cylindrical surface.

AFDONET PERFORMANCE ON NAVIER-STOKES EQUATION WITH RANDOMIZED VORTEX
DATASET

We extend the ablation study shown in Table [2] with a new ablation study for the Navier-Stokes

example with randomized vortex field dataset. The initial condition is set by vortex structures via
2 2

Gaussian-based stream functions ) = A - exp (—%) with randomized parameters

vortex centers (¢, ¢,) ~ U(1,5)?, radii r ~ U(0.5,2), and strengths A ~ U(—2,2).

Ground truth Ours MAE=1.95E-03+1.50E-03, Rel. L2=2.26E-01£1.72E-01
componentu  component v component u component v componentu  component v component u component v
FNO MAE=4.11E-03+4.20E-04, Rel. L2=1.28E-0245.92E-04 D-FNO MAE=8.10E-04+2.91E-04, Rel. L2=8.14E-02+1.67E-02
component u component v component u component v component u component v component u component v
WNO MAE=6.64E-03+2.83E-03, Rel. L2=1.0740.28 DeepONet MAE=5.31E-03£2.00E-05, Rel. L2=7.14E-0118.80E-04
component u component v component u component v component u component v component u component v

O T ooE

Figure 7: Ground truth and predicted fields (u, v) of the Navier-Stokes equation (for static task) on
both the torus T? and the heatmap for various solvers. Here, the dataset is generated from Gaussian-
based randomized vortex fields (dataset size is 5000) (Pedergnana et all [2020). Average MAE and
relative L2 errors and their standard deviations obtained using five random seeds are also reported.
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