

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 GUIDED AND INTERPRETABLE NEURAL OPERATOR DESIGN FOR PARTIAL DIFFERENTIAL EQUATION LEARNING

Anonymous authors

Paper under double-blind review

ABSTRACT

Accurate numerical solutions of partial differential equations (PDEs) are crucial in numerous science and engineering applications. In this work, we introduce a novel neural PDE solver named AFDONet, which incorporates neural operator learning and adaptive Fourier decomposition (AFD) theory for the first time into a specifically designed variational autoencoder (VAE) structure, to solve a general class of nonlinear PDEs on smooth manifolds. AFDONet is the first neural PDE solver whose architectural and component design is fully guided by an established mathematical framework (in this case, AFD theory), turning neural operator design from an art to a science. Thus, AFDONet also exhibits exceptional mathematical explainability and groundness, and enjoys several desired properties. Furthermore, AFDONet achieves outstanding solution accuracy and competitive computational efficiency in several benchmark problems. In particular, thanks to its deep connections with AFD theory, AFDONet shows superior performance in solving PDEs on i) arbitrary (Riemannian) manifolds, and ii) datasets with sharp gradients. Overall, this work presents a new paradigm for designing explainable neural operator frameworks.

1 INTRODUCTION

A wide range of scientific and engineering phenomena can be characterized and modeled by partial differential equations (PDEs). Most nonlinear PDEs do not have analytical solutions and need to be solved numerically. Traditional discretization-based numerical solvers, such as finite element methods (FEM) and finite difference methods (FDM), can become quite slow, inefficient, and unstable (Hittinger & Banks, 2013; Sokic et al., 2011; Carey et al., 1993). On the other hand, data-driven methods, such as neural PDE solvers, can directly learn the trajectory of the family of equations from the data, and thus can be orders of magnitude faster than traditional solvers Li et al. (2020). Most neural PDE solvers operate either by approximating the solutions (Raissi et al., 2019; Han et al., 2018), directly learning the mappings between function spaces (Li et al., 2020; Li & Ye, 2025; Tripura & Chakraborty, 2023; Lu et al., 2020), or integrating neural networks with conventional numerical solvers in a hybrid manner (Bar-Sinai et al., 2019; Li et al., 2025; Brevis et al., 2020).

While most existing PDE solvers are designed for regular Euclidean domains, in many real-world applications, PDEs are defined on non-Euclidean manifolds. Most existing approaches to solve PDEs on manifolds rely on classical numerical approaches, such as parameterization (Lui et al., 2005), collocation (Chen & Ling, 2020), and spectral methods (Yan et al., 2023). Although researchers have begun to explore manifold-aware neural architectures that can learn directly from point clouds (He et al., 2024; Liang et al., 2024) or graphs (Bronstein et al., 2017), they cannot easily be generalized to different manifolds. Thus, extending neural PDE solvers to manifold domains remains challenging. Instead, pullback operators are often used in existing neural PDE solvers to map functions and differential operators from the manifold to a Euclidean space.

Another research gap in neural operator solver is that, so far, the design of exact neural architectures in many neural PDE solvers has been “more of an art than a science” (Sanderse et al., 2025). Typically, neural architecture design is done in a bottom-up approach that involves significant intu-

ition, expert experience, and trial-and-error experimentation. And rigorous mathematical basis and explainability have been lacking in guiding the design of these neural architectures.

Our approach. To bridge these gaps, in this work, we propose a novel neural PDE solver named AFDONet for solving general nonlinear PDEs on smooth manifolds. Specifically, AFDONet is a variational autoencoder (VAE)-based neural operator whose design replicates adaptive Fourier decomposition (AFD), a novel signal decomposition technique achieving higher accuracy and significant computational speedup compared to conventional signal decomposition methods (Qian, 2010). AFD can approximate signals and functions in a reproducing kernel Hilbert space (RKHS) on different domains and manifolds (Qian et al., 2011; 2012; Zhang et al., 2023; Song & Sun, 2022), making it a desirable choice for designing theory-guided, interpretable neural operator for solving PDEs on manifolds. Motivated by this, in AFDONet, latent variables are first mapped to their nearest reproducing kernel Hilbert space (RKHS) via a latent-to-RKHS network, followed by reconstructing the solution manifold using a new type of decoder replicating AFD operations.

Key contributions. The key contributions of this work are summarized as follows:

1. We follow a unique, top-down approach based on adaptive Fourier decomposition (AFD) theory to guide every step in the design of AFDONet’s neural architecture. This presents a new paradigm for designing explainable neural operator frameworks.
2. AFDONet is mathematically grounded in AFD theory, as the solutions produced by our novel neural architecture can be interpreted as an adaptive decomposition into basis functions. Thus, AFDONet has rigorous mathematical foundations based on approximation theory and possesses several desirable properties.
3. We demonstrate the effectiveness of our AFDONet solver by comparing its solution accuracy with several neural PDE solvers over benchmark problems on arbitrary (Riemannian) manifolds and datasets with sharp gradients. We show that AFDONet achieves outstanding performance in terms of solution accuracy and its capability to reconstruct solution manifolds.

2 PROBLEM STATEMENT

We consider a PDE defined on a spatial domain $\Omega \subset \mathbb{R}^d$ and a time interval $(0, T]$:

$$\mathcal{L}_\alpha[u(x,t)] = f(x,t), \quad \forall (x,t) \in \Omega \times (0,T], \quad (1)$$

where \mathcal{L} denotes the differential operator, $f(x, t)$ is the source/sink term, and the parameter function $\alpha \in \mathcal{A}$ specifies the physical parameters and the initial and boundary conditions. Our goal is to learn a neural operator $G : \mathcal{A} \rightarrow \mathcal{F}(D \times [0, T])$, which maps the parameter function α from its parameter space \mathcal{A} to the corresponding solution $u(x, t) \in \mathcal{F}$. In this work, we focus on two types of tasks: (i) the static task, which solves a PDE for one set of physical parameters α and a fixed final time T (i.e., $u(x, T)$); and (ii) the autoregressive task, which forecasts the PDE solution at time step $t + 1$ (i.e., $u(x, t + 1)$) based on the solution at the previous time step t (i.e., $u(x, t)$).

3 RELATED WORK

Classic Fourier-based methods, such as Fourier transform approaches (Negero, 2014), Fourier series expansions (Asmar, 2016), and Fourier spectral methods (Alali & Albin, 2020), have been extensively used to solve PDEs numerically. Classic Fourier-based methods offer accurate and efficient representations of smooth, periodic functions by transforming differential operators into simple algebraic operations in the frequency domain. However, the use of global basis functions produces oscillations when approximating functions with discontinuities or sharp transitions (Gottlieb & Shu, 1997). Furthermore, the fixed basis structure in these methods lacks adaptability to signals with time-localized, transient, or nonperiodic features. In addition, these methods are typically defined on simple, regular domains, making them difficult to apply directly to manifolds.

Operator learning aims to directly learn the mapping between infinite-dimensional function spaces (e.g., from input functions to solutions) to enable fast, mesh-independent approximation of PDE solutions across various input conditions, including source and/or sink term, physical parameters,

and initial and boundary conditions. Among existing operator learning-based PDE solvers, two notable ones backed by the approximation theory are DeepONet (Lu et al., 2019; 2021), which is inspired by the universal approximation theorem for nonlinear operators, and the Fourier Neural Operator (FNO) (Li et al., 2020; 2023b), which performs convolution in the frequency domain to capture global spatial dependencies efficiently. Both operator learning paradigms have led to several new variants. Some of the recently developed network architectures (He et al., 2023; Goswami et al., 2022; He et al., 2024; Li et al., 2023a) built upon DeepONet provide enhancements such as physics-informed structure, parameterized geometry and phase-field modeling. Some of the new variants of FNO include Factorized FNO (F-FNO) (Tran et al., 2021), Decomposed FNO (D-FNO) (Li & Ye, 2025), Spherical FNO (Bonev et al., 2023), Domain Agnostic FNO (DAFNO) (Liu et al., 2023), Wavelet Neural Operator (WNO) (Tripura & Chakraborty, 2023), Multiwavelet Neural Operator (MWT) (Gupta et al., 2021), Coupled Multiwavelet Neural Operator (CMWNO) (Xiao et al., 2025), and Adaptive Fourier Neural Operator (AFNO) (Guibas et al., 2021).

Physics-informed representation learning and variational autoencoder (VAE). Another avenue for solving PDEs is to directly incorporate physical knowledge and constraints derived from the PDE into a neural architecture. One of the popular frameworks is the Physics-Informed Neural Network (PINN) (Raissi et al., 2019; 2017), where the PDE itself is embedded in the loss function as a regularization term. Another approach is to introduce variational autoencoders (VAEs) (Tait & Damoulas, 2020; Kingma et al., 2013) in a physics-informed architecture. This provides a structured latent space and a probabilistic framework for integrating physics, leading to more stable and generalizable representation learning. Several physics-informed VAE models have recently been proposed, including Glyn-Davies et al. (2024); Zhong & Meidani (2023); Takeishi & Kalousis (2021); Lu et al. (2020). Specifically, Lu et al. (2020) used a dynamics encoder and a propagating decoder to extract interpretable physical parameters from PDEs. Later, Takeishi & Kalousis (2021) proposed a physics-informed VAE model by introducing physics-based models to augment latent variables, encoder, and decoder. However, these methods lack rigorous theoretical justifications for the design of their neural architectures that ensure convergence and performance guarantees.

4 PRELIMINARIES TO ADAPTIVE FOURIER DECOMPOSITION (AFD)

AFD is a novel signal decomposition technique that leverages the Takenaka-Malmquist system and adaptive orthogonal bases (Qian, 2010; Qian et al., 2012). It is established as a new approximation theorem in a reproducing kernel Hilbert space (RKHS) sparsely in a given domain Ω as $s = \sum_{i=1}^{\infty} \langle s, \mathcal{B}_i \rangle \mathcal{B}_i$ for the chosen orthonormal bases \mathcal{B}_i (Saitoh et al., 2016). An RKHS is a Hilbert space of functions where evaluation at any point is continuous with respect to the inner product $\langle \cdot, \cdot \rangle$, and each point on the domain corresponds to a unique kernel function. For AFD in RKHS, the sparse bases $\{\mathcal{B}_i\}_i$ are made orthonormal to each other by applying Gram-Schmidt orthogonalization to the normalized reproducing kernels associated with a set of adaptively selected “poles” $\{a_i\}_i$, which are complex numbers used to parameterize the sparse bases. Specifically, to decompose signals in a Hardy space (i.e., a Hilbert space consisting of holomorphic functions defined on the unit disk), which can be further relaxed to an RKHS (Song & Sun, 2022), the orthonormal basis functions \mathcal{B}_i can be derived as:

$$\mathcal{B}_i(z) = \frac{\sqrt{1 - |a_i|^2}}{1 - \overline{a_i}z} \prod_{j=1}^{i-1} \frac{z - a_j}{1 - \overline{a_j}z}, \quad a_i \in \mathbb{D}, \quad (2)$$

where $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$. To adaptively select the sequence of poles such that convergence of AFD approximation is ensured, one shall follow the so-called “maximal selection principle”, such that the resulting $|\langle s, \mathcal{B}_i \rangle|$ is as large as possible. That is, to select the next pole a_i given $i-1$ already selected poles, a_1, \dots, a_{i-1} (hence bases $\mathcal{B}_1, \dots, \mathcal{B}_{i-1}$), the corresponding orthonormal basis \mathcal{B}_i needs to satisfy:

$$|\langle s, \mathcal{B}_i \rangle| \geq \rho_i \sup \{ \langle s, \mathcal{B}'_i \rangle | b_i \in \Omega \setminus \{a_1, \dots, a_{i-1}\} \}, \quad (3)$$

where $0 < \rho_i \leq 1$, $\mathcal{B}'_1 = \frac{k_{b_1}}{\|k_{b_1}\|_{H(\Omega)}}$ and $\mathcal{B}'_i = \frac{k_{b_i} - \sum_{j=1}^{i-1} \langle k_{b_i}, \mathcal{B}_j \rangle \mathcal{B}_j}{\|k_{b_i} - \sum_{j=1}^{i-1} \langle k_{b_i}, \mathcal{B}_j \rangle \mathcal{B}_j\|_{H(\Omega)}}$. Here, k_{b_i} is the reproducing kernel (e.g., Gaussian or Bergman kernel) at b_i . In classic AFD theory, the algorithmic procedure of pole selection, which is discussed in Song & Sun (2022), is computationally expensive.

162 Therefore, integrating the classical AFD with neural operators is a promising approach to enable fast
 163 and accurate solution of PDEs through the use of adaptive orthonormal basis functions.
 164

165 5 AFDONET ARCHITECTURE

166 Guided by the AFD theory, we design AFDONet to approximate PDE solution spaces on any smooth
 167 manifold. The AFDONet architecture shown in Figure 1 consists of an encoder, a latent-to-RKHS
 168 network, and an AFD-type dynamic convolutional kernel network (CKN). These components work
 169 synergistically to enhance the performance of the AFDONet solver. After the encoder, AFDONet
 170 identifies the closest RKHS where the latent variables reside using a latent-to-RKHS network.
 171 Subsequently, AFDONet reconstructs the PDE solutions by replicating the AFD operation and adaptively
 172 selecting the poles using a specially designed decoder network. For static tasks, the training
 173 dataset is denoted as $\{u(x, T)\}_{\{\alpha\}}$ for different sets of physical parameters α , while for autoregressive
 174 tasks, the training dataset is denoted as $\{u(x, t), u(x, t + 1)\}_{t=0}^T$.
 175

188 Figure 1: Our proposed AFDONet framework, which adopts VAE as the backbone, introduces a
 189 latent-to-RKHS network and a dynamic CKN decoder to reproduce the AFD setting and operation.
 190

191 **The use of VAE as architecture backbone** is motivated from both methodological and experimen-
 192 tal perspectives. From a methodological perspective, the use of VAE architecture as the back-
 193 bone for our AFDONet is motivated by several reasons. First, many PDE solution fields lie on
 194 low-dimensional manifolds in high-dimensional function space. VAE-based neural operators can
 195 learn a probabilistic latent representation of these manifolds, mapping high-dimensional inputs to a
 196 compact latent space while capturing variation in solution behavior. This reduces the complexity of
 197 learning and enables generalization across parametric inputs, as shown in many prior successes in
 198 VAE-based neural operators (Zhong & Meidani, 2023; Rafiq et al., 2025; Lu et al., 2020; Takeishi &
 199 Kalousis, 2021). Second, VAE is inherently connected to AFD theory in several ways. For instance,
 200 VAEs benefit from frequency transformations (Li et al., 2024), which are the foundation of bases
 201 used in AFD. Also, the maximal selection principle of basis functions in AFD aligns well with the
 202 variational inference of VAE (Chen et al., 2020a).

203 From an experimental perspective, we will show in Section 7 that the use of VAE and its holis-
 204 tic integration with other components in the AFDONet architecture help significantly improve the
 205 accuracy of PDE solutions on manifolds.

207 **The encoder network** maps the inputs α or $u(x, t)$ to a latent space in the complex domain \mathbb{C}^{2r}
 208 using a standard probabilistic encoder network based on the VAE framework. For the static task,
 209 this means:

$$210 (\mu(\alpha), \log \sigma^2(\alpha)) = A_2(\Phi(A_1\alpha)), \quad z = \mu(\alpha) + \sigma(\alpha) \odot \varepsilon, \quad \varepsilon \sim \mathcal{CN}(0, I_r), \quad (4)$$

211 where $A_1 \in \mathbb{C}^{W_e \times d}$ and $A_2 \in \mathbb{C}^{2r \times W_e}$ are the weight matrices (where $W_e = \mathcal{O}(r)$), $\Phi(\cdot)$ is the
 212 activation function, the latent mean is $\mu(\alpha) \in \mathbb{C}^r$, the log-variance is $\log \sigma^2(\alpha) \in \mathbb{C}^r$, and z is the
 213 latent parameter vector.

214 For the autoregressive task, the input $u_t = u(x, t)$ lies on the Hilbert space $H(\mathcal{M})$ of manifold \mathcal{M} .
 215 Therefore, $u_t = u(x, t)$ must be projected from $H(\mathcal{M})$ into an appropriate complex domain. Let

216 $\{\phi_k\}_{k=0}^{\infty}$ be an orthonormal Fourier basis. Then, we define a linear projection:
 217

$$\Pi_K u_t := (\langle u_t, \phi_0 \rangle, \dots, \langle u_t, \phi_{K-1} \rangle) \in \mathbb{C}^K, \quad (5)$$

218 which retains the first K modes of the field. This leads to the following encoder structure:
 219

$$(221) \quad (\mu_t, \log \sigma_t^2) = A_2(\Phi(A_1 \Pi_K u_t)), \quad z_t = \mu_t + \sigma_t \odot \varepsilon_t, \quad \varepsilon_t \sim \mathcal{CN}(0, I_r), \quad (6)$$

222 where $A_1 \in \mathbb{C}^{W_e \times K}$ and $A_2 \in \mathbb{C}^{2r \times W_e}$ are the weight matrices (where $W_e = \mathcal{O}(r)$), $\Phi(\cdot)$ is the
 223 activation function. In both tasks, the encoder network has a depth $L_e = 2$ and width $W_e = \mathcal{O}(r)$.
 224

225 **The latent-to-RKHS network** maps the latent parameters to convolutional kernels while
 226 constraining the corresponding functional space to be an RKHS, where the AFD operations are defined.
 227 This extends the latent-to-kernel network proposed by Lu et al. (2020) by explicitly accounting for
 228 the fact that the kernels are constructed in a Hilbert space. Our latent-to-RKHS network consists
 229 of multi-layer fully-connected feedforward (MLP) networks and feature maps. The MLP networks
 230 will first take the latent parameter vector z obtained from the encoder network to generate $\tilde{u}(x, \cdot)$
 231 on $H(\mathcal{M})$. Then, feature maps $\text{FM}(\cdot)$ will map $\tilde{u}(x, \cdot)$ to its nearest RKHS $\mathcal{H}(\mathcal{M})$ via orthogonal
 232 projection. This way, the latent-to-RKHS network learns the feature maps from $H(\mathcal{M})$ to its nearest
 233 RKHS $\mathcal{H}(\mathcal{M})$, in which the reproducing kernel k_a can be obtained by:
 234

$$(235) \quad k_a(\xi) = \sum_{i=1}^{N'} \nu_i(a) e^{2\pi j \phi \cdot (\xi - y_i)}, \quad \forall a, \xi \in \mathcal{M} \quad (7)$$

236 where $j^2 = -1$ and ϕ is the fundamental frequency. Here, weights $\nu_i \in \mathbb{C}$ and parameters $y_i \in \mathcal{M}$
 237 are learnable from the latent-to-RKHS network. Essentially, a feature map applies a fast Fourier
 238 transform (FFT) to its input, multiplies the top N' low-frequency components by learnable
 239 complex weights while discarding the high-frequency components, and then performs an inverse FFT.
 240 Note that this is different from Fourier layers in FNO because we only perform one-sided (positive-
 241 frequency) operations, whereas FNO performs both positive- and negative-frequency operations.
 242 This is because, in AFD, negative frequencies are redundant, as they can be determined by the
 243 positive ones via complex conjugation.
 244

245 We also point out that, since Fourier basis kernel $e^{2\pi j \phi \cdot (\xi - y_i(a))}$ lies in $\mathcal{H}(\mathcal{M})$, which is closed
 246 under finite linear combinations, the reproducing kernel $k_a(\xi)$ is guaranteed to lie in $\mathcal{H}(\mathcal{M})$ as well.
 247 In addition, although Fourier basis kernels are orthogonal to each other, the reproducing kernels are
 248 not. Thus, orthogonalization is still needed.
 249

250 **Orthogonal reproducing kernels.** Like AFD, in AFDONet, a set of reproducing kernels in Equation
 251 7, each corresponding to one of the N distinct poles $a_1, \dots, a_N \in \mathcal{M}$, need to be first orthogo-
 252 nalized via Gram-Schmidt orthogonalization:
 253

$$(254) \quad \mathcal{B}_1 = \frac{k_{a_1}(\xi)}{\|k_{a_1}(\xi)\|_{\mathcal{H}(\mathcal{M})}}; \quad \mathcal{B}_i = \frac{k_{a_i}(\xi) - \sum_{j=1}^{i-1} \langle k_{a_i}(\xi), \mathcal{B}_j \rangle \mathcal{B}_j}{\left\| k_{a_i}(\xi) - \sum_{j=1}^{i-1} \langle k_{a_i}(\xi), \mathcal{B}_j \rangle \mathcal{B}_j \right\|_{\mathcal{H}(\mathcal{M})}} \quad \text{for } i = 2, \dots, N. \quad (8)$$

258 To adaptively select the poles, we develop a maximum selection principle that is analogous to Equation
 259 3 in AFD theory as:
 260

$$(261) \quad |\text{FM}(\tilde{u}(x, \cdot)) * \mathcal{B}_i| \geq \rho_i \sup \{|\text{FM}(\tilde{u}(x, \cdot)) * \mathcal{B}'_i| : b_i \in \mathcal{M} \setminus \{a_1, \dots, a_{i-1}\}\}, \quad (9)$$

262 where $\mathcal{B}'_1 = \frac{k_{b_1}(\xi)}{\|k_{b_1}(\xi)\|_{\mathcal{H}(\mathcal{M})}}$, $\mathcal{B}'_i = \frac{k_{b_i}(\xi) - \sum_{j=1}^{i-1} \langle k_{b_i}(\xi), \mathcal{B}_j \rangle \mathcal{B}_j}{\left\| k_{b_i}(\xi) - \sum_{j=1}^{i-1} \langle k_{b_i}(\xi), \mathcal{B}_j \rangle \mathcal{B}_j \right\|_{\mathcal{H}(\mathcal{M})}}$ for $i = 2, \dots, N$, and k_{b_i} is the
 263 reproducing kernel at b_i .
 264

265 **The AFD-type decoder network** reconstructs PDE solutions from $\text{FM}(\tilde{u}(x, \cdot))$ once the RKHS
 266 and its reproducing kernel are established. The decoder adopts a dynamic convolutional kernel net-
 267 work (CKN) (Mairal et al., 2014; Chen et al., 2020b), which (i) performs cross-correlation between
 268 $\text{FM}(\tilde{u}(x, \cdot))$ and the orthogonal reproducing kernels \mathcal{B}_i , (ii) assigns a multiplier $0 < \rho_0 \leq \rho_i < 1$
 269

270 to the output of each convolutional layer, and (iii) incorporates skip connections for each convolutional
 271 layer. With this, the output of the dynamic CKN with N convolutional layers (each pole is
 272 associated with a layer) replicates the AFD operation and reconstructs the PDE solution as:
 273

$$274 \hat{u}_{N,\theta}(x, \cdot) = \sum_{i=1}^N \langle \text{FM}(\tilde{u}(x, \cdot)), \mathcal{B}_{i+\tau_i} \rangle \mathcal{B}_{i+\tau_i} = \sum_{i=1}^N (\text{FM}(\tilde{u}(x, \cdot)) \star \mathcal{B}_i) \mathcal{B}_{i+\tau_i}, \quad (10)$$

$$275$$

$$276$$

277 where \star is the cross-correlation defined as $f \star g(\tau_i) = \int_{\mathcal{M}} \bar{f}(z)g(z + \tau_i)dz$ and τ_i can choose
 278 between 0 and $N - i$ for convolutional layer i .
 279

280 **Training.** Overall, our AFDONet model is trained end-to-end by minimizing the loss function:
 281

$$282 \mathcal{L}(\theta) = \underbrace{\|u(x, \cdot) - \hat{u}_{N,\theta}(x, \cdot)\|_{\mathcal{H}(\mathcal{M})}^2}_{\text{reconstruction loss in RKHS}} + \underbrace{\|\tilde{u}(x, \cdot) - \text{FM}(\tilde{u}(x, \cdot))\|_{H(\mathcal{M})}^2}_{\text{feature map loss}} \\ 283 \\ 284 \\ 285 + \underbrace{\omega \mathcal{D}_{\text{KL}}\left(\mathcal{CN}(\mu, \sigma^2) \parallel \mathcal{CN}(0, I_r)\right)}_{\text{latent space regularization}} + \underbrace{\sum_{i=0}^k w_i \|\nabla^i \hat{u}_{N,\theta}(x, \cdot) - \nabla^i u(x, \cdot)\|_{L^2(\mathcal{M})}^2}_{\text{holomorphic training loss}}, \quad (11)$$

$$286$$

$$287$$

$$288$$

289 where $\nabla^i u$ denotes the i -th covariant derivative defined on manifold \mathcal{M} . Notice that here, we
 290 extend the idea of Sobolev training (Czarnecki et al., 2017) to the complex domain and introduce a
 291 holomorphic training loss to enforce consistency with the ground truth solutions both at the function
 292 value level and across all orders of derivatives. This enables AFDONet to better capture the inherent
 293 smoothness and analytic structure of the target function.
 294

295 6 PROPERTIES OF AFDONET

$$296$$

297 The design of AFDONet architecture is fully guided by the AFD theory, making it mathematically
 298 interpretable in several aspects. Here, we list three important properties of AFDONet:
 299

- 300 1. Under the loss function of Equation 11, we can rigorously bound the error of AFDONet in
 $\mathcal{H}(\mathcal{M})$ in Theorem 1, which is formally stated and proved in Appendix A.
 $\mathcal{H}(\mathcal{M})$
- 301 2. By extending the work of Caragea et al. (2022), we can rigorously prove the existence
 $\mathcal{H}(\mathcal{M})$ of RKHS $\mathcal{H}(\mathcal{M})$ through the construction of feature map $\text{FM}(\cdot)$ in the latent-to-RKHS
 $\mathcal{H}(\mathcal{M})$ network in Theorem 2 (see proof in Appendix B).
- 302 3. To ensure convergence of AFDONet, we leverage the convergence mechanism of AFD to
 $\mathcal{H}(\mathcal{M})$ design a convergent dynamic CKN decoder by regulating the layer width, depth, and kernel
 $\mathcal{H}(\mathcal{M})$ complexity based on the number of samples and the intrinsic smoothness of the target
 $\mathcal{H}(\mathcal{M})$ function. This result is formalized in Theorem 3 and is stated and proved in Appendix C.
 $\mathcal{H}(\mathcal{M})$

$$303$$

$$304$$

$$305$$

$$306$$

$$307$$

$$308$$

$$309$$

310 7 EXPERIMENTS

$$311$$

312 We evaluate the performance of our proposed model across three different PDEs on different mani-
 313 folds whose solution spaces are not necessarily an RKHS, and compare it with recent neural PDE
 314 solvers including FNO (Li et al., 2020; 2023b), WNO (Tripura & Chakraborty, 2023), D-FNO (Li
 315 & Ye, 2025), and DeepONet (Lu et al., 2019). Then, we present some key results from selected ab-
 316 lation studies to demonstrate the need for each of the core components of our AFDONet framework.
 317 The detailed experimental settings and the complete numerical results can be found in Appendix E.
 318 **Additional experiments and their results, including one using real-world noisy dataset and another**
 319 **defined on an arbitrary manifold, are discussed in Appendix F.**
 320

321 7.1 PDE PROBLEM SETTINGS

$$322$$

323 **Helmholtz equation on planar manifold with boundary.** Let (\mathcal{M}, g) be a smooth planar Rie-
 $\mathcal{M} \subset \mathbb{R}^2$ emannian manifold with boundary $\mathcal{M} \subset \mathbb{R}^2$ equipped with the Euclidean-induced metric g . We

324 consider the 2-D Helmholtz equation on \mathcal{M} with perfectly-matched layer (PML) absorption on $\partial\mathcal{M}$
 325 as follows:

$$\Delta_{\mathcal{M}} u(x, y) + k^2 n^2(x, y) u(x, y) = -S(x, y), \quad (x, y) \in \mathcal{M}, \quad (12)$$

PML absorption on $\partial\mathcal{M}$,

326 where wavenumber k is a positive constant, $n : \mathcal{M} \rightarrow \mathbb{C}$ is the complex refractive-index field, and
 327 $S : \mathcal{M} \rightarrow \mathbb{C}$ is the source density. In our experiment, the planar manifold is constructed following
 328 Marchand (2023). Furthermore, one can show that the solutions of the Helmholtz equation naturally
 329 span an RKHS (see Appendix D).

330 **Incompressible Navier-Stokes equation on a torus.** Let (\mathbb{T}^2, g) denote a flat two-dimensional
 331 torus $\mathbb{T}^2 = ([0, 2\pi] \times [0, 2\pi]) / \sim$ obtained by identifying opposite edges of the square and end-
 332 endowed with the Euclidean metric g . It is worth noting that this two-dimensional torus is a compact
 333 manifold without boundary, thus it is not diffeomorphic to an open rectangular domain (which is
 334 non-compact) or a closed rectangular domain (which has boundary). In other words, even though
 335 this flat two-dimensional torus can be projected onto a rectangular domain, it does not necessarily
 336 have the same “shape” as a regular domain (e.g., a rectangular domain) from a topological perspec-
 337 tive. For viscosity $\nu > 0$, we study the 2-D incompressible Navier-Stokes system:

$$\begin{aligned} \partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} &= -\nabla p + \nu \Delta_{\mathbb{T}^2} \mathbf{u}, & (x, y, t) \in \mathbb{T}^2 \times (0, T], \\ \nabla_{\mathbb{T}^2} \cdot \mathbf{u} &= 0, & (x, y, t) \in \mathbb{T}^2 \times [0, T], \\ \mathbf{u}(\cdot, 0) &= \mathbf{u}_0, & x \in \mathbb{T}^2, \end{aligned} \quad (13)$$

341 where $\mathbf{u} = (u, v) : \mathbb{T}^2 \times [0, T] \rightarrow \mathbb{R}^2$ is the velocity field and $p : \mathbb{T}^2 \times [0, T] \rightarrow \mathbb{R}$ is the pressure.

342 **Homogeneous Poisson equation on a quarter-cylindrical surface.** Let (\mathcal{M}, g) be a smooth two-
 343 dimensional Riemannian manifold $\mathcal{M} = \left\{(\cos \phi, \sin \phi, z) \in \mathbb{R}^3 : 0 < \phi < \frac{\pi}{2}, 0 < z < L\right\}$,
 344 which restricts the lateral surface of the unit cylinder to a single quadrant. The metric g is the
 345 Euclidean metric pulled back by the embedding, so that in local coordinates (ϕ, z) one has $\Delta_{\mathcal{M}} =$
 346 $\partial_{\phi\phi} + \partial_{zz}$. We study the 2-D homogeneous Poisson problem with Dirichlet boundary conditions on
 347 $\partial\mathcal{M}$:

$$\begin{aligned} -\Delta_{\mathcal{M}} u(\phi, z) &= f(\phi, z), & (\phi, z) \in (0, \frac{\pi}{2}) \times (0, L), \\ u(\phi, z) &= 0, & (\phi, z) \in \partial\mathcal{M}, \end{aligned} \quad (14)$$

348 where the source term $f(\phi, z) = \beta \left[\left(\frac{\alpha\pi}{L} \right)^2 (1 - \cos \phi) - (\cos \phi + \sin \phi - 4 \sin \phi \cos \phi) \right] \sin \left(\frac{\alpha\pi z}{L} \right)$
 349 (Kamilis, 2013).

350 Since Helmholtz and Poisson equations are stationary, we focus on the static task for both problems.
 351 And for the Navier-Stokes equation, we consider both static and autoregressive tasks.

362 7.2 RESULTS AND DISCUSSIONS

363 **Comparison with benchmark methods.** In Table 1, we report the performance of AFDONet
 364 and benchmark methods in terms of average mean absolute error (MAE) and relative L^2 error,
 365 as well as their standard deviations (\pm) obtained using five random seeds and dataset size of 5000.
 366 Synthetic datasets are generated using finite difference and isogeometric methods, and each model is
 367 trained on a 60/20/20 split of training, validation, and testing data. We conclude that, given different
 368 dataset sizes, our AFDONet solver consistently outperforms FNO-based solvers and DeepONet
 369 across all PDE cases on manifolds. Note that FNO, D-FNO, AFNO, and WNO solvers rely on
 370 fast Fourier transform and wavelet transform, both of which are inherently defined on Euclidean
 371 domain and thus do not generalize well to curved geometries. Specifically, FNO uses fixed global
 372 Fourier bases, which struggle with sharp discontinuities and non-periodic boundaries, and WNO
 373 uses fixed wavelets. Meanwhile, DeepONet does not exploit the spectral sparsity of the solution
 374 space. In contrast, AFDONet adaptively selects analytic modes and employs pullback operators to
 375 ensure accurate, manifold-aware representations. It uses adaptive rational orthogonal bases (i.e., the
 376 Takenaka-Malmquist system) parameterized by poles that are learned from input data. This allows
 377 the bases to locally adapt to the spatiotemporal dynamics of the solution profile, such as sharp
 378 gradients.

378

379
380
381
Table 1: Average MAE and relative L^2 errors and their standard deviations for different PDE bench-
mark solvers obtained using five random seeds. Dataset size is 5000. The best results are bolded.
All values in the table have been multiplied by 100.

Equation	Metric	AFDONet (Ours)	FNO	D-FNO	WNO	DeepONet
Helmholtz 12	MAE	0.937 ± 0.063	1.855 ± 0.165	6.085 ± 0.355	11.701 ± 1.429	16.224 ± 1.054
	Rel. L^2	8.141 ± 1.401	11.915 ± 0.935	39.191 ± 9.361	69.735 ± 12.675	46.310 ± 10.540
Navier-Stokes (Static) 13	MAE	0.332 ± 0.030	2.908 ± 0.741	0.375 ± 0.103	3.974 ± 0.005	3.189 ± 0.164
	Rel. L^2	0.882 ± 0.059	7.567 ± 0.173	0.996 ± 0.263	9.989 ± 0.004	7.251 ± 0.422
Navier-Stokes (Autoreg.) 13	MAE	0.068 ± 0.037	2.386 ± 0.249	0.142 ± 0.009	3.826 ± 0.191	3.168 ± 0.221
	Rel. L^2	0.170 ± 0.104	6.288 ± 0.820	0.298 ± 0.060	9.541 ± 0.475	7.071 ± 0.897
Poisson 14	MAE	0.158 ± 0.033	0.777 ± 0.093	0.343 ± 0.066	0.770 ± 0.161	0.531 ± 0.030
	Rel. L^2	0.472 ± 0.109	2.567 ± 0.502	0.513 ± 0.242	1.754 ± 0.943	0.483 ± 0.305

390

391

392
Scalability of AFDONet. In Figure 7.2, we show that AFDONet is scalable subject to increasing
393
dataset size for all benchmark PDE problems considered.

394

419

420

421

422

423
424
425
Figure 2: Average MAE, relative L^2 error, and total computational time comparisons with respect
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
50100
50101
50102
50103
50104
50105
50106
50107
50108
50109
50110
50111
50112
50113
50114
50115
50116
50117
50118
50119
50120
50121
50122
50123
50124
50125
50126
50127
50128
50129
50130
50131
50132
50133
50134
50135
50136
50137
50138
50139
50140
50141
50142
50143
50144
50145
50146
50147
50148
50149
50150
50151
50152
50153
50154
50155
50156
50157
50158
50159
50160
50161
50162
50163
50164
50165
50166
50167
50168
50169
50170
50171
50172
50173
50174
50175
50176
50177
50178
50179
50180
50181
50182
50183
50184
50185
50186
50187
50188
50189
50190
50191
50192
50193
50194
50195
50196
50197
50198
50199
50200
50201
50202
50203
50204
50205
50206
50207
50208
50209
50210
50211
50212
50213
50214
50215
50216
50217
50218
50219
50220
50221
50222
50223
50224
50225
50226
50227
50228
50229
50230
50231
50232
50233
50234
50235
50236
50237
50238
50239
50240
50241
50242
50243
50244
50245
50246
50247
50248
50249
50250
50251
50252
50253
50254
50255
50256
50257
50258
50259
50260
50261
50262
50263
50264
50265
50266
50267
50268
50269
50270
50271
50272
50273
50274
50275
50276
50277
50278
50279
50280
50281
50282
50283
50284
50285
50286
50287
50288
50289
50290
50291
50292
50293
50294
50295
50296
50297
50298
50299
50300
50301
50302
50303
50304
50305
50306
50307
50308
50309
50310
50311
50312
50313
50314
50315
50316
50317
50318
50319
50320
50321
50322
50323
50324
50325
50326
50327
50328
50329
50330
50331
50332
50333
50334
50335
50336
50337
50338
50339
50340
50341
50342
50343
50344
50345
50346
50347
50348
50349
50350
50351
50352
50353
50354
50355
50356
50357
50358
50359
50360
50361
50362
50363
50364
50365
50366
50367
50368
50369
50370
50371
50372
50373
50374
50375
50376
50377
50378
50379
50380
50381
50382
50383
50384
50385
50386
50387
50388
50389
50390
50391
50392
50393
50394
50395
50396
50397
50398
50399
50400
50401
50402
50403
50404
50405
50406
50407
50408
50409
50410
50411
50412
50413
50414
50415
50416
50417
50418
50419
50420
50421
50422
50423
50424
50425
50426
50427
50428
50429
50430
50431
50432
50433
50434
50435
50436
50437
50438
50439
50440
50441
50442
50443
50444
50445
50446
50447
50448
50449
50450
50451
50452
50453
50454
50455
50456
50457
50458
50459
50460
50461
50462
50463
50464
50465
50466
50467
50468
50469
50470
50471
50472
50473
50474
50475
50476
50477
50478
50479
50480
50481
50482
50483
50484
50485
50486
50487
50488
50489
50490
50491
50492
50493
50494
50495
50496
50497
50498
50499
50500
50501
50502
50503
50504
50505
50506
50507
50508
50509
50510
50511
50512
50513
50514
50515
50516
50517
50518
50519
50520
50521
50522
50523
50524
50525
50526
50527
50528
50529
50530
50531
50532
50533
50534
50535
50536
50537
50538
50539
50540
50541
50542
50543
50544
50545
50546
50547
50548
50549
50550
50551
50552
50553
50554
50555
50556
50557
50558
50559
50560
50561
50562
50563
50564
50565
50566
50567
50568
50569
50570
50571
50572
50573
50574
50575
50576
50577
50578
50579
50580
50581
50582
50583
50584
50585
50586
50587
50588
50589
50590
50591
50592
50593
50594
50595
50596
50597
50598
50599
50600
50601
50602
50603
50604
50605
50606
50607
50608
50609
50610
50611
50612
50613
50614
50615
50616
50617
50618
50619
50620
50621
50622
50623
50624
50625
50626
50627
50628
50629
50630
50631
50632
50633
50634
50635
50636
50637
50638
50639
50640
50641
50642
50643
50644
50645
50646
50647
50648
50649
50650
50651
50652
50653
50654
50655
50656
50657
50658
50659
50660
50661
50662
50663
50664
50665
50666
50667
50668
50669
50670
50671
50672
50673
50674
50675
50676
50677
50678
50679
50680
50681
50682
50683
50684
50685
50686
50687
50688
50689
50690
50691
50692
50693
50694
50695
50696
50697
50698
50699
50700
50701
50702
50703
50704
50705
50706
50707
50708
50709
50710
50711
50712
50713
50714
50715
50716
50717
50718
50719
50720
50721
50722
50723
50724
50725
50726
50727
50728
50729
50730
50731
50732
50733
50734
50735
50736
50737
50738
50739
50740
50741
50742
50743
50744
50745
50746
50747
50748
50749
50750
50751
50752
50753
50754
50755
50756
50757
50758
50759
50760
50761
50762
50763
50764
50765
50766
50767
50768
50769
50770
50771
50772
50773
50774
50775
50776
50777
50778
50779
50780
50781
50782
50783
50784
50785
50786
50787
50788
50789
50790
50791
50792
50793
50794
50795
50796
50797
50798
50799
50800
50801
50802
50803
50804
50805
50806
50807
50808
50809
50810
50811
50812
50813
50814
50815
50816
50817
50818
50819
50820
50821
50822
50823
50824
50825
50826
50827
50828
50829
50830
50831
50832
50833
50834
50835
50836
50837
50838
50839
50840
50841
50842
50843
50844
50845
50846
50847
50848
50849
50850
50851
50852
50853
50854
50855
50856
50857
50858
50859
50860
50861
50862
50863
50864
50865
50866
50867
50868
50869
50870
50871
50872
50873
50874
50875
50876
50877
50878
50879
50880
50881
50882
50883
50884
50885
50886
50887
50888
50889
50890
50891
50892
50893
50894
50895
50896
50897
50898
50899
50900
50901
50902
50903
50904
50905
50906
50907
50908
50909
50910
50911
50912
50913
50914
50915
50916
50917
50918
50919
50920
50921
50922
50923
50924
50925
50926
50927
50928
50929
50930
50931
50932
50933
50934
50935
50936
50937
50938
50939
50940
50941
50942
50943
50944
50945
50946
50947
50948
50949
50950
50951
50952
50953
50954
50955
50956
50957
50958
50959
50960
50961
50962
50963
50964
50965
50966
50967
50968
50969
50970
50971
50972
50973
50974
50975
50976
50977
50978
50979
50980
50981
50982
50983
50984
50985
50986
50987
50988
50989
50990
50991
50992
50993
50994
50995
50996
50997
50998
50999
501000
501010
501020
501030
501040
501050
501060
501070
501080
501090
501100
501110
501120
501130
501140
501150
501160
501170
501180
501190
501200
501210
501220
501230
501240
501250
501260
501270
501280
501290
501300
501310
501320
501330
501340
501350
501360
501370
501380
501390
501400
501410
501420
501430
501440
501450
501460
501470
501480
501490
501500
501510
501520
501530
501540
501550
501560
501570
501580
501590
501600
501610
501620
501630
501640
501650
501660
501670
501680
501690
501700
501710
501720
501730
501740
501750
501760
501770
501780
501790
501800
501810
501820
501830
501840
501850
501860
501870
501880
501890
501900
501910
501920
501930
501940
501950
501960
501970
501980
501990
502000
502010
502020
502030
502040
502050
502060
502070
502080
502090
502100
502110
502120
502130
502140
502150
502160
502170
502180
502190
502200
502210
502220
502230
502240
502250
502260
502270
502280
502290
502300
502310
502320
502330
502340
502350
502360
502370
502380
502390
502400
502410
502420
502430
502440
502450
502460
502470
502480
502490
502500
502510
502520
502530
502540
502550
502560
502570
502580
502590
502600
502610
502620
502630
502640
502650
502660
502670
502680
502690
502700
502710
502720
502730
502740
502750
502760
502770
502780
502790
502800
502810
502820
502830
502840
502850
502860
502870
502880
502890
502900
502910
502920
502930
502940
502950
502960
502970
502980
502990
503000
503010
503020
503030
503040
503050
503060
503070
503080
503090
503100
503110
503120
503130
503140
503150
503160
503170
503180
503190
503200
503210
503220
503230
503240
503250
503260
503270
503280
503290
503300
503310
503320
503330
503340
503350
503360
503370
503380
503390
503400
503410
503420
503430
503440
503450
503460
503470
503480
503490
503500
503510
503520
503530
503540<br

432 However, in every Fourier layer, FNO performs dense matrix multiplications to mix these channels
 433 for every frequency mode. This cost scales with W^2 , which boils down to $32^2 = 1024$ operations
 434 per mode. Last but not least, AFDONet only performs one-sided (positive-frequency) operations
 435 due to the nature of AFD, while FNO implements both positive and negative-frequency operations,
 436 consuming twice as much memory and computational load.

437
 438
 439 **Latent-to-RKHS network vs. Latent-to-kernel network.** Our decoder operates within an RKHS
 440 $\mathcal{H}(\mathcal{M})$, which is constructed via a latent-to-RKHS network. This network maps latent representations
 441 to their nearest RKHS within a Hilbert space. To understand the need for function restrictions
 442 within an RKHS, we conduct an ablation study and compare the latent-to-RKHS network with the
 443 latent-to-kernel network (Lu et al., 2020), which directly maps latent representations to a kernel
 444 function that does not necessarily satisfy the reproducing property. By comparing the results in Ta-
 445 bles 1 and 2, we observe that latent-to-RKHS network consistently outperforms the latent-to-kernel
 446 network. Both MAE and relative L^2 error show at least an order of magnitude reduction for all PDE
 447 cases *except* the Helmholtz equation 12, which only yields a slight performance gain. This is due to
 448 the fact that the solution space for the Helmholtz equation 12 is already an RKHS (See Appendix
 449 D). This illustrates the need and benefit of restricting the latent representations to their RKHS.

450
 451 Table 2: Ablation studies of our AFDONet architecture show that latent-to-RKHS and AFD-type
 452 dynamic CKN decoder work synergistically to improve the solution accuracy. Note that the results
 453 for the full architecture are presented in Table 1. The dataset size is 5000.

Equation	Metric	Latent-to-kernel network + AFD-type decoder	Latent-to-RKHS network + MLP-type decoder	Latent-to-RKHS network + propagation decoder	Latent-to-RKHS + AFD-type decoder (static CNN)	Latent-to-RKHS network + AFD-type decoder (without Equation 9)
Helmholtz 12	MAE	1.27E-02 \pm 1.91E-03	2.11E-01 \pm 2.04E-03	1.93E-01 \pm 5.11E-02	2.41E-02 \pm 1.16E-02	1.81E-01 \pm 5.16E-02
	Rel. L^2	8.89E-02 \pm 6.90E-03	1.17 \pm 1.22E-02	1.07 \pm 2.64E-01	1.72E-01 \pm 9.13E-02	1.10 \pm 2.62E-01
Navier-Stokes (Static) 13	MAE	8.32E-02 \pm 1.46E-02	4.00E-01 \pm 4.46E-03	3.98E-01 \pm 4.68E-04	7.12E-02 \pm 1.20 E-02	1.27E-02 \pm 2.03E-03
	Rel. L^2	2.19E-01 \pm 3.44E-02	1.00 \pm 9.36E-03	1.00 \pm 8.30E-06	1.85E-01 \pm 3.54E-02	3.71E-02 \pm 6.29E-03
Navier-Stokes (Autoreg.) 13	MAE	6.11E-02 \pm 2.92E-03	1.45E-01 \pm 2.59E-02	1.48E-01 \pm 1.09E-01	8.32E-02 \pm 9.28E-03	2.53E-03 \pm 8.26E-04
	Rel. L^2	1.58E-01 \pm 9.20E-03	3.85E-01 \pm 6.84E-02	3.91E-01 \pm 2.30E-01	2.16E-01 \pm 2.35E-02	7.80E-03 \pm 1.10E-03
Poisson 14	MAE	3.16E-01 \pm 8.76E-04	1.71E-02 \pm 7.73E-03	1.81E-02 \pm 1.84E-03	6.08E-02 \pm 6.88E-03	3.53E-02 \pm 5.51E-03
	Rel. L^2	9.77E-01 \pm 2.31E-03	5.10E-02 \pm 2.22E-02	5.61E-02 \pm 2.17E-02	1.77E-01 \pm 5.16E-03	1.30E-01 \pm 1.44E-02

462
 463
 464 **AFD-type decoder vs. other decoder architectures.** We conduct ablation studies by replacing
 465 our full AFD-type dynamic CKN decoder with three alternatives, namely an MLP decoder, a prop-
 466 agation decoder (Lu et al., 2020; Buchberger et al., 2020), and an AFD-type decoder with a static
 467 CNN. As shown in Table 2, full AFD-type dynamic CKN decoder achieves the best performance for
 468 all PDE cases. The improvements are especially significant for the Navier-Stokes equation 13 and
 469 Poisson equation 14, where both the MAE and relative L^2 error are reduced by one to two orders
 470 of magnitude compared to the benchmark decoders. Also, we observe that AFD-type decoder with
 471 a static CNN performs slightly worse than our AFD-type dynamic CKN decoder since CNN uses
 472 stationary kernels that lack adaptability to the varying spatiotemporal dynamics in PDE solutions. In
 473 contrast, dynamic CKN enables data-driven, non-stationary kernel learning, which can better cap-
 474 ture these inherent dynamics, especially for heterogeneous equations such as the Poisson equation
 475 14 or time-dependent equations like the Navier-Stokes equation 13.

476
 477 **Need for VAE backbone.** We design a new ablation study for the Navier-Stokes example with
 478 randomized vortex field dataset (see Appendix E.3 for details). The randomized vortex field dataset
 479 exhibits sharp gradients and turbulence-like behavior and includes a phase shift for the v -component.
 480 Therefore, the dynamics of this dataset are challenging to learn. Our goal is to determine whether
 481 the v -component solution profile would visually match with the ground truth solution when the VAE
 482 backbone and its components are removed or replaced. From Table 3, it is clear that the synergistic
 483 integration of VAE backbone, latent-to-RKHS network, and AFD-type decoder is essential in ac-
 484 curately capturing v -component solution profile in the dataset. Guided by the AFD theory in their
 485 design and integration, these components come together to establish the accuracy of our AFDONet
 solver.

486
 487 Table 3: Ablation study of replacing VAE with multi-layer fully-connected feedforward (MLP)
 488 network as the encoder. Here, ✓: v -component solution dynamics visually matches with the ground
 489 truth solution; ✗: v -component solution dynamics does not visually match with the ground truth.

490 Backbone	491 Full AFDONet (latent-to-RKHS 492 network + AFD-type decoder + 493 Equation 9)	494 Latent-to-kernel 495 network + AFD- 496 type decoder	497 Latent-to-RKHS 498 + MLP-type 499 decoder	500 Latent-to-RKHS + 501 propagation 502 decoder	503 Latent-to-RKHS + 504 AFD-type decoder 505 (static CNN)	506 Latent-to-RKHS + AFD-type 507 decoder (without maximal 508 (without Equation 9))
499 VAE	✓	✗	✗	✗	✓	✓
500 Without VAE (encoder 501 deterministic MLP)	✗	✗	✗	✗	✗	✗

495 8 CONCLUSION

496 Existing neural PDE solvers do not perform well to PDEs on manifolds, mainly due to the lack of
 497 mathematically grounded methods to design tailored neural network architectures. In this work, we
 498 introduce AFDONet, a new neural PDE solver for solving general nonlinear PDEs on smooth mani-
 499 folds. AFDONet is the first neural PDE solver whose architectural and component design is fully
 500 guided by the AFD theory. Thus, it exhibits exceptional mathematical explainability and ground-
 501 ness, and enjoys several desired properties, such as convergence guarantee. AFDONet also achieves
 502 outstanding solution accuracy and competitive computational efficiency in benchmark problems
 503 studied. In particular, thanks to its deep connections with AFD theory, AFDONet shows superior
 504 performance in solving PDEs on i) arbitrary (Riemannian) manifolds, and ii) datasets with sharp
 505 gradients. Overall, this work presents a new paradigm for designing explainable neural operator
 506 frameworks.

507 9 REPRODUCIBILITY STATEMENT

508 The source code is uploaded as part of the supplementary material. A complete description of the
 509 data processing steps is provided in Appendix E. The assumptions made in proving Theorems 1
 510 through 3 are provided in Appendices A through C, respectively.

511 REFERENCES

512 Robert A Adams and John JF Fournier. [Sobolev spaces](#), volume 140. Elsevier, 2003.

513 Bacim Alali and Nathan Albin. Fourier spectral methods for nonlocal models. [Journal of
514 Peridynamics and Nonlocal Modeling](#), 2:317–335, 2020.

515 Nakhlé H Asmar. [Partial differential equations with Fourier series and boundary value problems](#).
516 Courier Dover Publications, 2016.

517 Sheldon Axler, Paul Bourdon, and Wade Ramey. [Harmonic Function Theory](#), volume 137 of
518 [Graduate Texts in Mathematics](#). Springer, 2nd edition, 2001.

519 Yohai Bar-Sinai, Stephan Hoyer, Jason Hickey, and Michael P Brenner. Learning data-driven dis-
520 cretizations for partial differential equations. [Proceedings of the National Academy of Sciences](#),
521 116(31):15344–15349, 2019.

522 Alberto Bietti. Approximation and learning with deep convolutional models: A kernel perspective.
523 In [International Conference on Learning Representations](#), 2022.

524 Boris Bonev, Thorsten Kurth, Christian Hundt, Jaideep Pathak, Maximilian Baust, Karthik
525 Kashinath, and Anima Anandkumar. Spherical Fourier neural operators: Learning stable dy-
526 namics on the sphere. In [International Conference on Machine Learning](#), pp. 2806–2823. PMLR,
527 2023.

528 Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. [Concentration Inequalities: A
529 Nonasymptotic Theory of Independence](#). Oxford University Press, 2012.

530 Olivier Bousquet. A Bennett concentration inequality and its application to suprema of empirical
531 processes. [Comptes Rendus Mathematique](#), 334(6):495–500, 2002.

540 Ignacio Brevis, Ignacio Muga, and Kristoffer G van der Zee. Data-driven finite elements methods:
 541 machine learning acceleration of goal-oriented computations. [arXiv preprint arXiv:2003.04485](#),
 542 2020.

543 Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. Geometric
 544 deep learning: going beyond Euclidean data. [IEEE Signal Processing Magazine](#), 34(4):18–42,
 545 2017.

546 Andreas Buchberger, Christian Häger, Henry D Pfister, Laurent Schmalen, and Alexandre Graell
 547 i Amat. Pruning and quantizing neural belief propagation decoders. [IEEE Journal on Selected
 548 Areas in Communications](#), 39(7):1957–1966, 2020.

549 Andrei Caragea, Dae Gwan Lee, Johannes Maly, Götz Pfander, and Felix Voigtlaender. Quantitative
 550 approximation results for complex-valued neural networks. [SIAM Journal on Mathematics of
 551 Data Science](#), 4(2):553–580, 2022.

552 C Carey, TJ Scanlon, and SM Fraser. SUCCA—an alternative scheme to reduce the effects of
 553 multidimensional false diffusion. [Applied Mathematical Modelling](#), 17(5):263–270, 1993.

554 Meng Chen and Leevan Ling. Extrinsic meshless collocation methods for PDEs on manifolds.
 555 [SIAM Journal on Numerical Analysis](#), 58(2):988–1007, 2020.

556 Qiuhibi Chen, Tao Qian, and Lihui Tan. [A Theory on Non-Constant Frequency Decompositions and
 557 Applications](#), pp. 1–37. Springer International Publishing, Cham, 2020a.

558 Yinpeng Chen, Xiyang Dai, Mengchen Liu, Dongdong Chen, Lu Yuan, and Zicheng Liu. Dynamic
 559 convolution: Attention over convolution kernels. In [Proceedings of the IEEE/CVF Conference on
 560 Computer Vision and Pattern Recognition](#), pp. 11030–11039, 2020b.

561 Wojciech M Czarnecki, Simon Osindero, Max Jaderberg, Grzegorz Swirszcz, and Razvan Pascanu.
 562 Sobolev training for neural networks. [Advances in Neural Information Processing Systems](#), 30,
 563 2017.

564 Alex Glyn-Davies, Connor Duffin, O Deniz Akyildiz, and Mark Girolami. ϕ -DVAE: Physics-
 565 informed dynamical variational autoencoders for unstructured data assimilation. [Journal of
 566 Computational Physics](#), 515:113293, 2024.

567 Somdatta Goswami, Minglang Yin, Yue Yu, and George Em Karniadakis. A physics-informed
 568 variational DeepONet for predicting crack path in quasi-brittle materials. [Computer Methods in
 569 Applied Mechanics and Engineering](#), 391:114587, 2022.

570 David Gottlieb and Chi-Wang Shu. On the Gibbs phenomenon and its resolution. [SIAM Review](#),
 571 39(4):644–668, 1997.

572 John Guibas, Morteza Mardani, Zongyi Li, Andrew Tao, Anima Anandkumar, and Bryan Catan-
 573 zaro. Adaptive Fourier neural operators: Efficient token mixers for transformers. [arXiv preprint
 574 arXiv:2111.13587](#), 2021.

575 Gaurav Gupta, Xiongye Xiao, and Paul Bogdan. Multiwavelet-based operator learning for differen-
 576 tial equations. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan
 577 (eds.), [Advances in Neural Information Processing Systems](#), volume 34, pp. 24048–24062. Cur-
 578 ran Associates, Inc., 2021.

579 Jiequn Han, Arnulf Jentzen, and Weinan E. Solving high-dimensional partial differential equations
 580 using deep learning. [Proceedings of the National Academy of Sciences](#), 115(34):8505–8510,
 581 2018.

582 Philip Hartman and Calvin Wilcox. On solutions of the Helmholtz equation in exterior domains.
 583 [Mathematische Zeitschrift](#), 75(1):228–255, 1961.

584 Junyan He, Seid Koric, Shashank Kushwaha, Jaewan Park, Diab Abueidda, and Iwona Jasiuk. Novel
 585 DeepONet architecture to predict stresses in elastoplastic structures with variable complex geome-
 586 tries and loads. [Computer Methods in Applied Mechanics and Engineering](#), 415:116277, 2023.

594 Junyan He, Seid Koric, Diab Abueidda, Ali Najafi, and Iwona Jasiuk. Geom-DeepONet: A
 595 point-cloud-based deep operator network for field predictions on 3D parameterized geometries.
 596 *Computer Methods in Applied Mechanics and Engineering*, 429:117130, 2024.

597

598 Jeffrey AF Hittinger and Jeffrey W Banks. Block-structured adaptive mesh refinement algorithms
 599 for Vlasov simulation. *Journal of Computational Physics*, 241:118–140, 2013.

600 T.J.R. Hughes, J.A. Cottrell, and Y. Bazilevs. Isogeometric analysis: Cad, finite elements, nurbs,
 601 exact geometry and mesh refinement. *Computer Methods in Applied Mechanics and Engineering*,
 602 194(39):4135–4195, 2005.

603

604 Dimitrios Kamilis. Numerical methods for the PDEs on curves and surfaces. Master’s thesis, Umeå
 605 University, Umeå, Sweden, 2013.

606 Diederik P Kingma, Max Welling, et al. Auto-encoding variational Bayes, 2013.

607

608 lavenderses. Nssimulation: Simulations of navier-stokes equation in 2d and 3d. <https://github.com/lavenderses/NSsimulation>, 2021.

609

610 Chenhao Li, Elijah Stanger-Jones, Steve Heim, and Sang bae Kim. FLD: Fourier latent
 611 dynamics for structured motion representation and learning. In *The Twelfth International
 612 Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=xsd211WYSA>.

613

614 Kangjie Li and Wenjing Ye. D-FNO: A decomposed Fourier neural operator for large-scale para-
 615 metric partial differential equations. *Computer Methods in Applied Mechanics and Engineering*,
 616 436:117732, 2025.

617

618 Tianyu Li, Yiye Zou, Shufan Zou, Xinghua Chang, Laiping Zhang, and Xiaogang Deng. Learning
 619 to solve PDEs with finite volume-informed neural networks in a data-free approach. *Journal of
 620 Computational Physics*, 530:113919, 2025.

621

622 Wei Li, Martin Z Bazant, and Juner Zhu. Phase-Field DeepONet: Physics-informed deep operator
 623 neural network for fast simulations of pattern formation governed by gradient flows of free-energy
 624 functionals. *Computer Methods in Applied Mechanics and Engineering*, 416:116299, 2023a.

625

626 Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
 627 drew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential
 628 equations. *arXiv preprint arXiv:2010.08895*, 2020.

629

630 Zongyi Li, Daniel Zhengyu Huang, Burigede Liu, and Anima Anandkumar. Fourier neural oper-
 631 ator with learned deformations for PDEs on general geometries. *Journal of Machine Learning
 632 Research*, 24(388):1–26, 2023b.

633

634 Senwei Liang, Shixiao W Jiang, John Harlim, and Haizhao Yang. Solving PDEs on unknown
 635 manifolds with machine learning. *Applied and Computational Harmonic Analysis*, 71:101652,
 636 2024.

637

638 Yevgeny Liokumovich, Fernando C Marques, and André Neves. Weyl law for the volume spectrum.
 639 *Annals of Mathematics*, 187(3):933–961, 2018.

640

641 Ning Liu, Siavash Jafarzadeh, and Yue Yu. Domain agnostic Fourier neural operators. *Advances in
 642 Neural Information Processing Systems*, 36:47438–47450, 2023.

643

644 Lu Lu, Pengzhan Jin, and George Em Karniadakis. DeepONet: Learning nonlinear operators for
 645 identifying differential equations based on the universal approximation theorem of operators.
 646 *arXiv preprint arXiv:1910.03193*, 2019.

647

648 Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
 649 nonlinear operators via DeepONet based on the universal approximation theorem of operators.
 650 *Nature Machine Intelligence*, 3(3):218–229, 2021.

651

652 Peter Y Lu, Samuel Kim, and Marin Soljačić. Extracting interpretable physical parameters from
 653 spatiotemporal systems using unsupervised learning. *Physical Review X*, 10(3):031056, 2020.

648 Lok Ming Lui, Yalin Wang, and Tony F Chan. Solving PDEs on manifolds with global conformal
 649 parametriaization. In *International Workshop on Variational, Geometric, and Level Set Methods*
 650 in Computer Vision

651, pp. 307–319. Springer, 2005.

652 Julien Mairal, Piotr Koniusz, Zaid Harchaoui, and Cordelia Schmid. Convolutional kernel networks.
 653 *Advances in Neural Information Processing Systems*, 27, 2014.

654 Pierre Marchand. `helmhurts-python`. <https://github.com/pierre-24/helmhurts-python>, 2023.

655

656 Gregory Matviyenko. On the evaluation of Bessel functions. *Applied and Computational Harmonic
 657 Analysis*, 1(1):116–135, 1993.

658

659 Naol Tufa Negero. Fourier transform methods for partial differential equations. *International Journal
 660 of Partial Differential Equations and Applications*, 2(3):44–57, 2014.

661

662 Tiemo Pedergnana, David Oettinger, Gabriel P Langlois, and George Haller. Explicit unsteady
 663 Navier–Stokes solutions and their analysis via local vortex criteria. *Physics of Fluids*, 32(4),
 664 2020.

665

666 Salvador Pérez-Esteva and Salvador Valenzuela-Díaz. Reproducing kernel for the herglotz functions
 667 in r^n and solutions of the helmholtz equation. *Journal of Fourier Analysis and Applications*,
 668 23:834–862, 2017.

669

670 Les Piegl and Wayne Tiller. *The NURBS book* (2nd ed.). Springer-Verlag, Berlin, Heidelberg, 1997.
 ISBN 3540615458.

671

672 Tao Qian. Intrinsic mono-component decomposition of functions: an advance of Fourier theory.
 673 *Mathematical Methods in the Applied Sciences*, 33(7):880–891, 2010.

674

675 Tao Qian, Liming Zhang, and Zhixiong Li. Algorithm of adaptive Fourier decomposition. *IEEE
 676 Transactions on Signal Processing*, 59(12):5899–5906, 2011.

677

678 Tao Qian, Wolfgang Sprößig, and Jinxun Wang. Adaptive Fourier decomposition of functions in
 quaternionic Hardy spaces. *Mathematical Methods in the Applied Sciences*, 35(1):43–64, 2012.

679

680 Khalid Rafiq, Wenjing Liao, and Aditya G. Nair. Single-shot prediction of parametric partial differ-
 681 ential equations, 2025. URL <https://arxiv.org/abs/2505.09063>.

682

683 Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Physics informed deep learn-
 684 ing (part i): Data-driven solutions of nonlinear partial differential equations. *arXiv preprint
 arXiv:1711.10561*, 2017.

685

686 Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
 687 deep learning framework for solving forward and inverse problems involving nonlinear partial
 688 differential equations. *Journal of Computational Physics*, 378:686–707, 2019.

689

690 Saburou Saitoh, Yoshihiro Sawano, et al. *Theory of reproducing kernels and applications*, vol-
 ume 44. Springer, 2016.

691

692 Benjamin Sanderse, Panos Stinis, Romit Maulik, and Shady E. Ahmed. Scientific machine learning
 693 for closure models in multiscale problems: A review. *Foundations of Data Science*, 7(1):298–337,
 2025.

694

695 Emir Sokic, Samim Konjicija, Melita Ahic-Djokic, and Almir Salihbegovic. Stability issues in
 696 discretization of wave equation. In *2011 18th International Conference on Systems, Signals and
 697 Image Processing*, pp. 1–4. IEEE, 2011.

698

699 Zeyuan Song and Zuoren Sun. Representing functions in H^2 on the Kepler manifold via WPOAFD
 700 based on the rational approximation of holomorphic functions. *Mathematics*, 10(15):2729, 2022.

701

Daniel J Tait and Theodoros Damoulas. Variational autoencoding of PDE inverse problems. *arXiv
 preprint arXiv:2006.15641*, 2020.

702 Naoya Takeishi and Alexandros Kalousis. Physics-integrated variational autoencoders for robust
 703 and interpretable generative modeling. *Advances in Neural Information Processing Systems*, 34:
 704 14809–14821, 2021.

706 Alasdair Tran, Alexander Mathews, Lexing Xie, and Cheng Soon Ong. Factorized Fourier neural
 707 operators. *arXiv preprint arXiv:2111.13802*, 2021.

709 Tapas Tripura and Souvik Chakraborty. Wavelet neural operator for solving parametric partial differ-
 710 ential equations in computational mechanics problems. *Computer Methods in Applied Mechanics
 711 and Engineering*, 404:115783, 2023.

712 Martin J Wainwright. *High-dimensional statistics: A non-asymptotic viewpoint*, volume 48. Cam-
 713 bridge university press, 2019.

715 George Neville Watson. *A treatise on the theory of Bessel functions*, volume 3. The University
 716 Press, 1922.

718 Xiongye Xiao, Defu Cao, Ruochen Yang, Gaurav Gupta, Gengshuo Liu, Chenzhong Yin, Radu
 719 Balan, and Paul Bogdan. Coupled multiwavelet neural operator learning for coupled partial dif-
 720 ferential equations, 2025. URL <https://arxiv.org/abs/2303.02304>.

721 Yuan Xu. Funk–Hecke formula for orthogonal polynomials on spheres and on balls. *Bulletin of the
 722 London Mathematical Society*, 32(4):447–457, 2000.

724 Qile Yan, Shixiao Willing Jiang, and John Harlim. Spectral methods for solving elliptic PDEs on
 725 unknown manifolds. *Journal of Computational Physics*, 486:112132, 2023.

727 Dmitry Yarotsky. Error bounds for approximations with deep ReLU networks. *Neural networks*, 94:
 728 103–114, 2017.

729 Huaiqian You, Quinn Zhang, Colton J. Ross, Chung-Hao Lee, and Yue Yu. Learning deep implicit
 730 fourier neural operators (ifnos) with applications to heterogeneous material modeling. *Computer
 731 Methods in Applied Mechanics and Engineering*, 398:115296, 2022.

733 Ying Zhang, Wei Qu, He Zhang, and Tao Qian. Simulation of non-stationary and non-Gaussian
 734 stochastic processes by the AFD-type sparse representations. *Mechanical Systems and Signal
 735 Processing*, 204:110762, 2023.

737 Weiheng Zhong and Hadi Meidani. Pi-VAE: Physics-informed variational auto-encoder for stochas-
 738 tic differential equations. *Computer Methods in Applied Mechanics and Engineering*, 403:
 739 115664, 2023.

741 A PROOF OF THEOREM 1

744 Under the loss function of Equation 11, we can rigorously bound the error of AFDONet in Theorem
 745 1, which states:

746 **Theorem 1.** *Let $\mathcal{P} \subset \mathbb{R}^d$ be compact and $\{(p_i, u_i)\}_{i=1}^Z$ be Z i.i.d. samples with $u_i = F(p_i) + \xi_i$,
 747 $\xi_i \sim \text{SubGaussian}(\mathcal{H}(\mathcal{M}))$, and $\mathbb{E}[\xi_i] = 0$, where $F : \mathcal{P} \rightarrow \mathcal{H}(\mathcal{M})$ is holomorphic, and $\mathcal{H}(\mathcal{M})$
 748 is an RKHS with a kernel k_m whose eigenvalues decay polynomially with rate k . Suppose $L_d =$
 749 $\mathcal{O}(\log Z)$ and $W_d = \mathcal{O}(Z^{\frac{1}{2(k+1)}})$ in the decoder network. For the minimizer $\hat{\theta}$ of the loss function
 750 $\mathcal{L}(\theta)$ in Equation 11, there exists a constant $C > 0$ such that:*

$$752 \mathbb{E} \left[\left\| \hat{u}_{N, \hat{\theta}} - F \right\|_{\mathcal{H}(\mathcal{M})}^2 \right] \leq CZ^{-\frac{2k+1}{2(k+1)}} (\log Z)^2.$$

754 We introduce and prove a few lemmas before proving Theorem 1. We assume that the neural network
 755 f_θ is Lipschitz continuous with respect to hyperparameters θ (i.e., $\|f_\theta - f_{\theta'}\|_{\mathcal{H}} \leq L_f \|\theta - \theta'\|_2$).

756 **Lemma 1.** For any $0 < \delta < 1$, for the class of complex-analytic networks with depth L_d and width
 757 W_d , denoted as $\mathcal{N}_{L_d, W_d, N}$, there exists $\dot{C} > 0$ such that:
 758

$$759 \quad 760 \quad \log \mathcal{N}(\delta, \mathcal{N}_{L_d, W_d, N}, \|\cdot\|_{\mathcal{H}}) \leq \dot{C} W_d L_d \log \left(\frac{W_d L_d}{\delta} \right),$$

761 where $\mathcal{N}(\delta, \mathcal{N}_{L_d, W_d, N}, \|\cdot\|_{\mathcal{H}})$ means the δ -covering number of $(\mathcal{N}_{L_d, W_d, N}, \|\cdot\|_{\mathcal{H}})$.
 762

763 *Proof.* Let us consider the p -dimensional ℓ_2 -unit ball $\mathcal{B}^p(1) = \{x \in \mathbb{R}^p : \|x\|_2 \leq 1\}$. Results for
 764 covering \mathcal{B}^p (Wainwright, 2019) concludes:
 765

$$766 \quad 767 \quad \log \mathcal{N}(\delta, \mathcal{B}^p(1), \|\cdot\|_2) \leq p \log \left(1 + \frac{2}{\delta} \right) \leq p \log \left(\frac{3}{\delta} \right). \quad (15)$$

768 Extending this result to a ℓ_2 -ball of radius R , Equation 15 becomes:
 769

$$770 \quad 771 \quad \log \mathcal{N}(\delta, \mathcal{B}^p(R), \|\cdot\|_2) \leq p \log \left(1 + \frac{2R}{\delta} \right) \leq p \log \left(\frac{3R}{\delta} \right) \quad (16)$$

773 by rescaling δ in the RHS of Equation 15 with δ/R . Furthermore, by letting $p = 2W_d L_d$, Equation
 774 16 becomes:
 775

$$776 \quad \log \mathcal{N}(\delta, \mathcal{B}^{2W_d L_d}(R), \|\cdot\|_2) \leq 2W_d L_d \log \left(\frac{3R}{\delta} \right). \quad (17)$$

777 From the Lipschitz property and the fact that the parameter space of $\mathcal{N}_{L_d, W_d, N}$ can be controlled by
 778 $\mathcal{B}^{2W_d L_d}(R)$, we have:
 779

$$780 \quad \log \mathcal{N}(\delta, \mathcal{N}_{L_d, W_d, N}, \|\cdot\|_{\mathcal{H}}) \leq \log \mathcal{N} \left(\frac{\delta}{L_f}, \mathcal{B}^{2W_d L_d}(R), \|\cdot\|_2 \right) \leq 2W_d L_d \log \left(\frac{3L_f R}{\delta} \right), \quad (18)$$

782 where L_f is the Lipschitz constant. With $R = \mathcal{O}(W_d L_d)$, Equation 18 leads to:
 783

$$784 \quad 785 \quad \log \mathcal{N}(\delta, \mathcal{N}_{L_d, W_d, N}, \|\cdot\|_{\mathcal{H}}) \leq \dot{C} W_d L_d \log \left(\frac{W_d L_d}{\delta} \right), \quad (19)$$

786 which completes the proof. \square
 787

788 **Lemma 2.** For $a > 1$ and $0 < r \leq \min(a, e)$ where e is the base of the natural logarithm, there
 789 exists $b > 0$ that satisfies the following inequality:
 790

$$791 \quad r \sqrt{\log \left(\frac{a}{r} \right)} \leq \sqrt{b} \sqrt{r \log a}.$$

793 *Proof.* For the case $1 < r \leq \min(a, e)$, we may choose $b = e$. Squaring both sides of the inequality
 794 and rearranging lead to $(r - e) \log a \leq r \log r$. Suppose $r = e$, the inequality is automatically
 795 satisfied for any $a > 1$. Suppose $r < e$, since $a \geq r$, we have: $(r - e) \log a \leq (r - e) \log r$.
 796 Thus, it suffices to show $(r - e) \log r \leq r \log r$, which is equivalent to showing $e \log r \geq 0$. This is
 797 automatically satisfied because $0 < \log r \leq 1$.
 798

799 For the case $0 < r \leq 1$, we rearrange the inequality and obtain $b \geq \frac{r(\log a - \log r)}{\log a} > 0$. Furthermore,
 800 $\frac{r(\log a - \log r)}{\log a}$ reaches its maximum, $\frac{a}{e \log a}$, at $r = \frac{a}{e}$. Thus, suppose $a \leq e$, then we may choose
 801 $b \geq \frac{a}{e \log a}$ and the inequality is satisfied. Suppose $a \geq e$, then $\max \frac{r(\log a - \log r)}{\log a} = 1$ within
 802 $0 < r \leq 1$. Thus, we may choose $b \geq 1$ and the inequality is satisfied. \square
 803

804 **Lemma 3.** There exists $\tilde{C} > 0$ such that:
 805

$$806 \quad 807 \quad \mathbb{E}_{\epsilon} \left[\sup_{f \in \mathcal{F}} \left| \frac{1}{Z} \sum_{i=1}^Z \epsilon_i f_{\theta}(p_i) \right| \right] \leq \tilde{C} \sqrt{\frac{r W_d L_d \log(W_d L_d)}{Z}},$$

808 where ϵ_i are i.i.d. Rademacher variables and \mathcal{F} is a function class for a radius $0 < r \leq e$ defined
 809 as $\{f \in \mathcal{N}_{L_d, W_d, N} : \|f - F\|_{\mathcal{H}} \leq r\}$.
 810

810 *Proof.* From Dudley's entropy integral bound (Wainwright, 2019), we have:
811

$$812 \quad \mathbb{E}_\epsilon \left[\sup_{f \in \mathcal{F}} \left| \frac{1}{Z} \sum_{i=1}^Z \epsilon_i f(p_i) \right| \right] \leq \frac{24}{\sqrt{Z}} \int_\varepsilon^{2r} \sqrt{\log \mathcal{N}(t, \mathcal{F}, \|\cdot\|_{\mathcal{H}})} dt. \quad (20)$$

815 Since $\mathcal{N}(\delta, \mathcal{F}, \|\cdot\|_{\mathcal{H}}) \leq \mathcal{N}(\delta, \mathcal{N}_{L_d, W_d, N}, \|\cdot\|_{\mathcal{H}})$ and according to Lemma 1, Equation 20 becomes:
816

$$817 \quad \mathbb{E}_\epsilon \left[\sup_{f \in \mathcal{F}} \left| \frac{1}{Z} \sum_{i=1}^Z \epsilon_i f(p_i) \right| \right] \leq \frac{24}{\sqrt{Z}} \int_\varepsilon^{2r} \sqrt{\log \mathcal{N}(t, \mathcal{N}_{L_d, W_d, N}, \|\cdot\|_{\mathcal{H}})} dt \\ 818 \quad \leq \frac{24}{\sqrt{Z}} \int_\varepsilon^{2r} \sqrt{\dot{C} W_d L_d \log \left(\frac{W_d L_d}{t} \right)} dt. \quad (21)$$

822 To evaluate the integral on the RHS of Equation 21, we apply the change of variables technique by
823 defining $u = \log \left(\frac{W_d L_d}{t} \right)$ (and thus $dt = -W_d L_d e^{-u} du$):
824

$$825 \quad \int_\varepsilon^{2r} \sqrt{\log \left(\frac{W_d L_d}{t} \right)} dt = \int_{\log \left(\frac{W_d L_d}{2r} \right)}^{\log \left(\frac{W_d L_d}{\varepsilon} \right)} \sqrt{u} \cdot W_d L_d e^{-u} du \\ 826 \quad = W_d L_d \left[\Gamma \left(\frac{3}{2}, \log \left(\frac{W_d L_d}{2r} \right) \right) - \Gamma \left(\frac{3}{2}, \log \left(\frac{W_d L_d}{\varepsilon} \right) \right) \right] \quad (22) \\ 827 \\ 828 \quad = 2r \sqrt{\log \left(\frac{W_d L_d}{2r} \right)} + \mathcal{O} \left(\frac{r}{\log \left(\frac{W_d L_d}{2r} \right)} \right),$$

833 where $\Gamma(s, x) = \int_x^\infty t^{s-1} e^{-t} dt$ is the upper incomplete gamma function.
834

835 Substituting Equation 22 into Equation 21 and applying Lemma 2 lead to:
836

$$837 \quad \mathbb{E}_\epsilon \left[\sup_{f \in \mathcal{F}} \left| \frac{1}{Z} \sum_{i=1}^Z \epsilon_i f(p_i) \right| \right] \leq 24 \cdot 2r \sqrt{\frac{\dot{C} W_d L_d \log \left(\frac{W_d L_d}{2r} \right)}{Z}} \\ 838 \\ 839 \quad \leq 24 \sqrt{b} \sqrt{\frac{2r \dot{C} W_d L_d \log (W_d L_d)}{Z}} \quad (23) \\ 840 \\ 841 \quad \leq \tilde{C} \sqrt{\frac{r W_d L_d \log (W_d L_d)}{Z}},$$

842 where $\tilde{C} \geq 24 \sqrt{2b\dot{C}}$. □
843

844 **Lemma 4.** Let $\hat{\theta}$ minimize the loss function \mathcal{L} in Equation 11. With probability at least $1 - e^{-t}$ for
845 all $t \geq 0$,
846

$$847 \quad \mathcal{L}(\hat{\theta}) \leq \inf_{\theta} \mathcal{L}(\theta) + \hat{C} \frac{W_d L_d \log(W_d L_d) + t}{Z}$$

848 holds for some \hat{C} .
849

850 *Proof.* From the symmetrization inequality (Boucheron et al., 2012), we have:
851

$$852 \quad \mathbb{E} \left[\mathcal{L}(\hat{\theta}) - \mathcal{L}(\theta) \right] \leq 2\mathbb{E} \left[\sup_{f \in \mathcal{F}} \frac{1}{Z} \sum_{i=1}^Z \epsilon_i f(p_i) \right], \quad (24)$$

853 where ϵ_i are i.i.d. Rademacher variables.
854

855 Let us define the centered process:
856

$$857 \quad \mathcal{Z} = \sup_{f \in \mathcal{F}} \sum_{i=1}^Z (f(p_i) - \mathbb{E}[f(p_i)]) \quad (25)$$

858 under the assumptions that there exists \mathcal{Z}'_k such that: (i) $\mathcal{Z}'_k \leq \mathcal{Z} - \mathcal{Z}_k \leq 1$ almost surely;
859 (ii) $\mathbb{E}^k[\mathcal{Z}'_k] \geq 0$, where \mathbb{E}^k is the expectation taken conditionally to the sigma field generated by
860

($p_1, \dots, p_{k-1}, p_{k+1}, \dots, p_Z$); and (iii) there exists $q > 0$ such that $\mathcal{Z}'_k \leq q$ almost surely. Here, $\mathcal{Z}_k = \sup_{f \in \mathcal{F}} \sum_{i \neq k} (f(p_i) - \mathbb{E}[f(p_i)])$.

Applying Bennett concentration inequality (Bousquet, 2002) to the process \mathcal{Z} leads to:

$$\mathbb{P} \left(\mathcal{Z} \geq \mathbb{E}[\mathcal{Z}] + \sqrt{2vt} + \frac{t}{3} \right) \leq e^{-t}, \quad (26)$$

where $v = (1+q)\mathbb{E}[\mathcal{Z}] + Z\sigma^2$ and $\sigma^2 \geq \frac{1}{\mathcal{Z}} \sum_{k=1}^Z \mathbb{E}^k [(\mathcal{Z}'_k)^2]$.

Combining Equations 24, 26 and 26 with probability at least $1 - e^{-t}$, we have:

$$\mathcal{L}(\hat{\theta}) - \mathcal{L}(\theta) \leq 2\mathbb{E} \left[\sup_{f \in \mathcal{F}} \frac{1}{Z} \sum_{i=1}^Z \epsilon_i f(p_i) \right] + \frac{1}{Z} \left(\sqrt{2vt} + \frac{t}{3} \right). \quad (27)$$

Moreover, by putting $\mathbb{E}_e \left[\sup_{f \in \mathcal{F}} \left| \frac{1}{Z} \sum_{i=1}^Z \epsilon_i f(p_i) \right| \right] \asymp r$ for Lemma 3 (\asymp stands for asymptotic equivalence), we obtain:

$$r \asymp \frac{W_d L_d \log(W_d L_d)}{Z}. \quad (28)$$

Extending the result of Equation 24 to \mathcal{Z} defined in Equation 25 leads to:

$$\begin{aligned} \mathbb{E}[\mathcal{Z}] &\leq 2Z\mathbb{E} \left[\sup_{f \in \mathcal{F}} \frac{1}{Z} \sum_{i=1}^Z \epsilon_i f(p_i) \right] \\ &\leq 2Z\tilde{C} \sqrt{\frac{rW_d L_d \log(W_d L_d)}{Z}} \asymp 2\tilde{C}W_d L_d \log(W_d L_d), \end{aligned} \quad (29)$$

where the second inequality and last asymptotic equivalence come from Lemma 3 and Equation 28, respectively.

According to Efron-Stein inequality (Boucheron et al., 2012), there exists $\mathcal{Z}'_k = \mathcal{Z} - \mathcal{Z}_k$, such that:

$$\sigma^2 \leq \sum_{k=1}^Z \mathbb{E} [(\mathcal{Z} - \mathbb{E}[\mathcal{Z} | p_k])^2] \leq \mathbb{E}^k [(\mathcal{Z}'_k)^2], \quad (30)$$

where $\mathcal{Z} | p_k$ excludes p_k from \mathcal{Z} . Thus, to derive an upper bound on $\mathbb{E}^k [(\mathcal{Z}'_k)^2]$, we write:

$$(\mathcal{Z}'_k)^2 \leq \left(\sup_{f \in \mathcal{F}} |f(p_k) - \mathbb{E}[f(p_k)]| \right)^2 \leq 2 \left(\sup_{f \in \mathcal{F}} f(p_k)^2 + \mathbb{E}[f(p_k)]^2 \right) \leq 4 \sup_{f \in \mathcal{F}} f(p_k)^2, \quad (31)$$

where the second inequality comes from $(a - b)^2 \leq 2(a^2 + b^2)$ and the last inequality holds by Jensen's inequality ($\mathbb{E}[f(p_k)]^2 \leq \mathbb{E}[f(p_k)^2]$). Then, for $f \in \mathcal{F}$ and a bounded function F , it follows:

$$\mathbb{E}[f(p_k)^2] \leq 2(\|f - F\|_{\mathcal{H}}^2 + \|F\|_{\mathcal{H}}^2) \leq 2(r^2 + \|F\|_{\mathcal{H}}^2). \quad (32)$$

Substituting the result of Equation 32 into Equation 31 and combining it with Equation 30 give:

$$\sigma^2 \leq Dr^2 \asymp \left(\frac{W_d L_d \log(W_d L_d)}{Z} \right)^2, \quad (33)$$

for some $D > 0$.

Substituting Equations 33 and 29 into 26 gives:

$$\begin{aligned} v &= (1+q)\mathbb{E}[\mathcal{Z}] + Z\sigma^2 \leq C'(1+q)W_d L_d \log(W_d L_d) + \frac{(W_d L_d \log(W_d L_d))^2}{Z} \\ &\leq \left(C'(1+q) + \frac{1}{Z} \right) (W_d L_d \log(W_d L_d))^2. \end{aligned} \quad (34)$$

918 Substituting Equations 34 and 28 into 27 gives:
919

$$\begin{aligned} 920 \quad \mathcal{L}(\hat{\theta}) &\leq \mathcal{L}(\theta) + 2\tilde{C} \frac{W_d L_d \log(W_d L_d)}{Z} + \sqrt{2 \left[C'(1+q) + \frac{1}{Z} \right] t} \frac{W_d L_d \log(W_d L_d)}{Z} + \frac{t}{3Z} \quad (35) \\ 921 \quad &\leq \mathcal{L}(\theta) + \hat{C} \frac{W_d L_d \log(W_d L_d) + t}{Z} \\ 922 \end{aligned}$$

923 holds for any θ , where $\hat{C} = \max \left\{ 2\tilde{C}, \sqrt{2 \left[C'(1+q) + \frac{1}{Z} \right] t}, \frac{1}{3} \right\}$. Thus, we conclude that $\mathcal{L}(\hat{\theta}) \leq$
924 $\inf_{\theta} \mathcal{L}(\theta) + \hat{C} \frac{W_d L_d \log(W_d L_d) + t}{Z}$. \square
925

926 PROOF OF THEOREM 1

927 *Proof.* From Lemma 4, we know that with probability at least $1 - e^{-t}$ for all $t \geq 0$ and some \hat{C} ,
928

$$929 \quad \mathcal{L}(\hat{\theta}) \leq \inf_{\theta} \mathcal{L}(\theta) + \hat{C} \frac{W_d L_d \log(W_d L_d) + t}{Z}. \quad (36)$$

930 Realizing $\mathcal{L}(\theta) \asymp \|\hat{u}_{N,\theta} - F\|_{\mathcal{H}}^2$, then for $s_0 = \inf_{\theta} \mathcal{L}(\theta) + \hat{C} \frac{W_d L_d \log(W_d L_d) + t_0}{Z}$, it holds that:
931

$$\begin{aligned} 932 \quad \mathbb{E}[\mathcal{L}(\hat{\theta})] &\leq \int_0^{\infty} \mathbb{P}(\mathcal{L}(\hat{\theta}) \geq s) ds \\ 933 \quad &= \int_0^{s_0} \mathbb{P}(\mathcal{L}(\hat{\theta}) \geq s) ds + \int_{s_0}^{\infty} \mathbb{P}(\mathcal{L}(\hat{\theta}) \geq s) ds \\ 934 \quad &\leq s_0 + M \cdot e^{-t_0} \\ 935 \quad &= s_0 + \frac{M}{Z}, \\ 936 \end{aligned} \quad (37)$$

937 where $t_0 = \log Z$ and we assume that $\mathcal{L} \leq M$ for $t > t_0$.
938

939 Since $L_d = \mathcal{O}(\log Z)$ and $W_d = \mathcal{O}(Z^{\frac{1}{2(k+1)}})$, we have:
940

$$\begin{aligned} 941 \quad \frac{W_d L_d \log(W_d L_d)}{Z} &\asymp \frac{Z^{\frac{1}{2(k+1)}} \cdot \log Z \cdot \log(Z^{\frac{1}{2(k+1)}} \log Z)}{Z} \\ 942 \quad &= \frac{Z^{\frac{1}{2(k+1)}} \cdot \log Z \cdot \left(\frac{1}{2(k+1)} \log Z + \log \log Z \right)}{Z} \\ 943 \quad &\asymp Z^{\frac{1}{2(k+1)} - 1} \cdot \log Z \cdot \log Z \\ 944 \quad &= Z^{-\frac{2k+1}{2(k+1)}} (\log Z)^2. \\ 945 \end{aligned} \quad (38)$$

946 Combining Equations 36, 37 and 38 leads to the final result:
947

$$948 \quad \mathbb{E} \left[\left\| \hat{u}_{N,\hat{\theta}} - F \right\|_{\mathcal{H}}^2 \right] \leq C Z^{-\frac{2k+1}{2(k+1)}} (\log Z)^2 + \mathcal{O}(Z^{-1}), \quad (39)$$

949 where $C > 0$ is a constant and the term $\mathcal{O}(Z^{-1})$ vanishes for a large Z . \square
950

951 B PROOF OF THEOREM 2

952 **Theorem 2.** Let H be a Hilbert space on a manifold \mathcal{M} . Fix $d, n \in \mathbb{N}$, then for any $\tilde{x} \in H(\mathcal{M})$
953 and any $\varepsilon > 0$, there exist a convolutional kernel K defining an RKHS $\mathcal{H}(\mathcal{M})$ and a complex-
954 valued modReLU neural network $\text{FM}_{\theta'}$ with at most $C \ln(2/\varepsilon)$ layers, $C \eta^{-2d/n} \ln^2(2/\varepsilon)$ weights,
955 and weights bounded by $C \varepsilon^{-44d}$ such that
956

$$957 \quad \text{FM}_{\theta'}(\tilde{x}) \in \mathcal{H}(\mathcal{M}) \quad \text{and} \quad \|\tilde{x} - \text{FM}_{\theta'}(\tilde{x})\|_{H(\mathcal{M})} \leq \inf_{\theta} \|\tilde{x} - \text{FM}_{\theta}(\tilde{x})\|_{H(\mathcal{M})} + \varepsilon,$$

958 where $C = C(d, n) > 0$ depends only on the dimension d and the smoothness parameter n .
959

972 *Proof.* First, we show that $\mathcal{H}(\mathcal{M})$ exists by introducing a map $\Phi : H(\mathcal{M}) \rightarrow \mathcal{H}(\mathcal{M})$ and the
973 reproducing kernel is defined as $K(x, x') = \langle \Phi(x), \Phi(x') \rangle_{\mathcal{H}(\mathcal{M})}$. Specifically, the map $\Phi(x)$ corre-
974 sponding to a convolutional kernel K can be represented as $\mathcal{A}_L \circ \mathcal{M}_L \circ \mathcal{P}_L \cdots \mathcal{A}_1 \circ \mathcal{M}_1 \circ \mathcal{P}_1 x$ where
975 L is the depth of the kernel and $\mathcal{A}_l, \mathcal{M}_l$ and \mathcal{P}_l are the linear operators related to pooling, kernel
976 mapping and patch extraction, respectively (Bietti, 2022). Without loss of generality, we assume that
977 $\mathcal{H}(\mathcal{M}) \subset H(\mathcal{M})$. Next, we point out that $\mathcal{H}(\mathcal{M})$ is convex by showing that, for any two functions
978 $f, g \in \mathcal{H}(\mathcal{M})$:

$$\begin{aligned} 979 \quad \alpha f + (1 - \alpha)g &= \alpha \langle f, \mathcal{A}_L \circ \mathcal{M}_L \circ \mathcal{P}_L \cdots \mathcal{A}_1 \circ \mathcal{M}_1 \circ \mathcal{P}_1 x \rangle_{\mathcal{H}(\mathcal{M})} + (1 - \alpha) \\ 980 \quad \langle g, \mathcal{A}_L \circ \mathcal{M}_L \circ \mathcal{P}_L \cdots \mathcal{A}_1 \circ \mathcal{M}_1 \circ \mathcal{P}_1 x \rangle_{\mathcal{H}(\mathcal{M})} \\ 981 \quad = \langle \alpha f + (1 - \alpha)g, \mathcal{A}_L \circ \mathcal{M}_L \circ \mathcal{P}_L \cdots \mathcal{A}_1 \circ \mathcal{M}_1 \circ \mathcal{P}_1 x \rangle_{\mathcal{H}(\mathcal{M})} \end{aligned} \quad (40)$$

983 for $\alpha \in [0, 1]$. Thus, $\mathcal{H}(\mathcal{M})$ is closed due to the closedness of manifold \mathcal{M} and the completeness of
984 Hilbert space \mathcal{H} .

985 Next, from the Hilbert projection theorem, for $\tilde{x} \in H(\mathcal{M})$, there exists a unique $y \in \mathcal{H}(\mathcal{M})$ such
986 that, for any $\tilde{y} \in \mathcal{H}(\mathcal{M})$, $\|\tilde{x} - y\|_{H(\mathcal{M})} \leq \|\tilde{x} - \tilde{y}\|_{H(\mathcal{M})}$. Let us denote y as $\Psi(\tilde{x})$, where Ψ is a
987 map from $H(\mathcal{M})$ to $\mathcal{H}(\mathcal{M})$. Following the main result of Caragea et al. (2022), for any $\tilde{y} \in \mathcal{H}(\mathcal{M})$
988 and any $\varepsilon > 0$, there exists a complex-valued modReLU neural network with hyperparameters θ ,
989 FM_{θ} , containing no more than $C \ln(2/\varepsilon)$ layers, $C\eta^{-2d/n} \ln^2(2/\varepsilon)$ weights (all weights bounded by
990 $C\varepsilon^{-44d}$), such that $\|\tilde{y} - \text{FM}_{\theta}(\tilde{x})\|_{H(\mathcal{M})} < \frac{\varepsilon}{2}$. In addition, there also exists another complex-valued
991 modReLU neural network with hyperparameters θ' , $\text{FM}_{\theta'}$, such that $\|\Psi(\tilde{x}) - \text{FM}_{\theta'}(\tilde{x})\|_{H(\mathcal{M})} < \frac{\varepsilon}{2}$.
992 Thus, we have:

$$\begin{aligned} 993 \quad \|\tilde{x} - \text{FM}_{\theta'}(\tilde{x})\|_{H(\mathcal{M})} &= \|\tilde{x} - \Psi(\tilde{x}) + \Psi(\tilde{x}) - \text{FM}_{\theta'}(\tilde{x})\|_{H(\mathcal{M})} \\ 994 \quad &\leq \|\tilde{x} - \Psi(\tilde{x})\|_{H(\mathcal{M})} + \|\Psi(\tilde{x}) - \text{FM}_{\theta'}(\tilde{x})\|_{H(\mathcal{M})} \\ 995 \quad &\leq \|\tilde{x} - \tilde{y}\|_{H(\mathcal{M})} + \frac{\varepsilon}{2} \\ 996 \quad &= \|\tilde{x} - \tilde{y} + \text{FM}_{\theta}(\tilde{x}) - \text{FM}_{\theta}(\tilde{x})\|_{H(\mathcal{M})} + \frac{\varepsilon}{2} \\ 997 \quad &\leq \|\tilde{x} - \text{FM}_{\theta}(\tilde{x})\|_{H(\mathcal{M})} + \|\text{FM}_{\theta}(\tilde{x}) - \tilde{y}\|_{H(\mathcal{M})} + \frac{\varepsilon}{2} \\ 998 \quad &\leq \|\tilde{x} - \text{FM}_{\theta}(\tilde{x})\|_{H(\mathcal{M})} + \varepsilon. \end{aligned} \quad (41)$$

1001 This completes the proof. □

1004 C PROOF OF THEOREM 3

1007 **Theorem 3.** *Let L_d , W_d , and N denote the depth, width, and number of layers of dynamic CKN
1008 decoder network satisfying Equation 9. For any $\varepsilon > 0$, there exist $L_d = \mathcal{O}(\log \frac{1}{\varepsilon})$, $W_d =$
1009 $\mathcal{O}(\varepsilon^{-\frac{1}{k+1}})$, $N = \mathcal{O}(\log \frac{1}{\varepsilon})$ and $\theta \in \mathcal{N}_{L_d, W_d, N}$ such that*

$$1010 \quad \sup_{p \in \mathcal{P}} \|\hat{u}_{N, \theta} - F(p)\|_{\mathcal{H}(\mathcal{M})} \leq \varepsilon,$$

1012 where $\mathcal{N}_{L_d, W_d, N}$ is the class of complex-analytic networks with depth L_d and width W_d .

1014 To prove Theorem 3, we first introduce and/or prove a few lemmas.

1015 **Lemma 5** (Yarotsky, 2017)). *For any dimension n , smoothness parameter $k + 1$, and error tol-
1016 erance $\varepsilon \in (0, 1)$, there exists a ReLU neural network architecture such that it can approximate
1017 any function f with accuracy ε , i.e., with approximation error at most ε . The network has depth at
1018 most $c(\ln(1/\varepsilon) + 1)$, and uses at most $c\varepsilon^{-\frac{d}{n}}(\ln(1/\varepsilon) + 1)$ weights and computation units, where
1019 $c = c(d, n)$ is a constant depending only on d and n .*

1020 **Lemma 6.** *Let $f \in C^k([0, 1]^d)$ or $W^{k+1, \infty}([0, 1]^d)$, for $\varepsilon > 0$, there exists a ReLU network f_θ with
1021 width $W_d = \mathcal{O}(\varepsilon^{-\frac{d}{k+1}})$ such that $\|f - f_\theta\|_{L^\infty} \leq \varepsilon$.*

1023 *Proof.* The result follows from Lemma 5, which states that for any $d \in \mathbb{N}$, $n \in \mathbb{N}$, and $\varepsilon \in (0, 1)$,
1024 there exists a ReLU neural network of depth $\mathcal{O}(\log(1/\varepsilon))$ and size $\mathcal{O}(\varepsilon^{-\frac{d}{n}} \log(1/\varepsilon))$ that can uni-
1025 formly approximate any function in the class $F_{d, n}$, which includes functions in $W^{n, \infty}([0, 1]^d)$ with

1026 bounded norm. By setting $n = k + 1$, it holds that $f \in W^{k+1,\infty}([0, 1]^d)$, with the network width
 1027 scaling as $\mathcal{O}(\varepsilon^{-\frac{d}{k+1}})$, up to a logarithmic factor. Note that any $f \in C^k([0, 1]^d)$ with bounded derivatives up to order k also belongs to $W^{k,\infty}([0, 1]^d)$ and can be embedded into $W^{k+1,\infty}$. Thus, Lemma
 1028 6 holds for any $f \in C^k([0, 1]^d)$. \square
 1029

1030
 1031 **Remark.** The result of Lemma 6 is nearly optimal. Yarotsky (2017, Theorem 5) shows that there
 1032 exist functions $f \in W^{n,\infty}([0, 1]^d)$ for which the complexity $N(f, \varepsilon)$ is not $o(\varepsilon^{-\frac{d}{9n}})$ as $\varepsilon \rightarrow 0$. This
 1033 implies that no network architecture can uniformly approximate all such functions with significantly
 1034 better scaling in ε .
 1035

1036 **Lemma 7.** Let \mathcal{H} be a separable Hilbert space and $f \in \mathcal{H}$ belong to a class of functions with k -th
 1037 order smoothness. For $\varepsilon > 0$, there exists a ReLU network f_θ with width $W_d = \mathcal{O}(\varepsilon^{-\frac{d}{k+1}})$ such
 1038 that $\|f - f_\theta\|_{\mathcal{H}} \leq \varepsilon$.
 1039

1040
 1041 *Proof.* Assume $f \in \text{dom}(A^{-k})$ with respect to its operator A with input dimension d . Let $\{e_j\}_{j=1}^\infty$
 1042 be an orthonormal basis of \mathcal{H} with associated eigenvalues $\lambda_j \asymp j^{2\alpha}$ (assuming that $\alpha \geq \frac{k+1}{2dk}$) of
 1043 A . Then, we have $\|A^k f\|_{\mathcal{H}}^2 = \sum_{j=1}^\infty \lambda_j^{2k} |\langle f, e_j \rangle|^2 < \infty$. We can define the eigenexpansion of f
 1044 as $P_N f = \sum_{j=1}^N \langle f, e_j \rangle e_j$ and $\|f - P_N f\|_{\mathcal{H}} \leq CN^{-(k+\frac{1}{2})\alpha} \leq \varepsilon/2$ holds for $N = \lceil \varepsilon^{-\frac{1}{2\alpha k + \alpha}} \rceil \asymp$
 1045 $\varepsilon^{-\frac{1}{2k\alpha}}$. In the finite-dimensional subspace $\text{span}\{e_1, \dots, e_N\} \cong \mathbb{R}^N$, each coordinate function $f_j =$
 1046 $\langle f, e_j \rangle$ inherits C^k regularity and can be approximated by a ReLU network \tilde{f}_j with $|\tilde{f}_j(x) - f_j(x)| \leq$
 1047 $\frac{\varepsilon}{2\sqrt{N}}$ using width $\mathcal{O}(\varepsilon^{-\frac{d}{k+1}})$ per coordinate from Lemma 6. The ReLU network $f_\theta = \sum_{j=1}^N \tilde{f}_j e_j$
 1048 then satisfies $\|f - f_\theta\|_{\mathcal{H}} \leq \|f - P_N f\|_{\mathcal{H}} + \sqrt{\sum_j \|\tilde{f}_j - f_j\|_{L^\infty}^2} \leq \varepsilon$. The total width $W_d =$
 1049 $\mathcal{O}(N \cdot \varepsilon^{-\frac{d}{k+1}}) = \mathcal{O}(\varepsilon^{-\frac{d}{k+1}})$. \square
 1050

1053 PROOF OF THEOREM 3

1054 *Proof.* First, we show that, for a sufficiently large N and any $\varepsilon > 0$,

$$1055 \quad \|\hat{u}_{N,\theta} - \text{FM}(\tilde{u})\|_{\mathcal{H}(\mathcal{M})} \leq \frac{\varepsilon}{4} \quad (42)$$

1056 holds. From Equation 10, we have $\hat{u}_{N,\theta} = \sum_{i=1}^N \langle \text{FM}(\tilde{u}), \mathcal{B}_{i+\tau_i} \rangle \mathcal{B}_{i+\tau_i}$. Here, we prove by
 1057 contradiction. Suppose $\|\hat{u}_{N,\theta} - \text{FM}(\tilde{u})\|_{\mathcal{H}(\mathcal{M})} > \frac{\varepsilon}{4}$, then there exists an open ball \mathcal{B} and $C > 0$
 1058 such that:

$$1059 \quad \left\| \text{FM}(\tilde{u}(x, \cdot)) - \sum_{i=1}^N \langle \text{FM}(\tilde{u}(x, \cdot)), \mathcal{B}_{i+\tau_i} \rangle \mathcal{B}_{i+\tau_i} \right\|_{\mathcal{H}(\mathcal{M})} = C \max_{m,\xi} (\|k_m(\xi)\|) > \frac{\varepsilon}{4}, \quad (43)$$

1060 for $(x, \cdot) \in \mathcal{B} \subset \mathcal{M}$. Furthermore, since the term $\sum_{i=1}^N \|\langle \text{FM}(\tilde{u}(x, \cdot)), \mathcal{B}_{i+\tau_i} \rangle\|_{\mathcal{H}(\mathcal{M})}^2 < \infty$ is
 1061 finite, there exists N_0 such that for any $n \geq N_0$, we have:

$$1062 \quad \sum_{i=n}^N \|\langle \text{FM}(\tilde{u}(x, \cdot)), \mathcal{B}_{i+\tau_i} \rangle\|_{\mathcal{H}(\mathcal{M})}^2 < \left(\frac{\rho_0 C}{2} \right)^2. \quad (44)$$

1063 Next, we examine the term $\|\langle u_n, \frac{k_p}{\|k_p\|} \rangle\|_{\mathcal{H}(\mathcal{M})}$, where $(x, b) \in \mathcal{B}$ and

$$1064 \quad u_n = \text{FM}(\tilde{u}(x, \cdot)) - \sum_{i=1}^{n-1} \langle \text{FM}(\tilde{u}(x, \cdot)), \mathcal{B}_{i+\tau_i} \rangle \mathcal{B}_{i+\tau_i} \\ 1065 \quad = \text{FM}(\tilde{u}(x, \cdot)) - \sum_{i=1}^N \langle \text{FM}(\tilde{u}(x, \cdot)), \mathcal{B}_{i+\tau_i} \rangle \mathcal{B}_{i+\tau_i} + \sum_{i=n}^N \langle \text{FM}(\tilde{u}(x, \cdot)), \mathcal{B}_{i+\tau_i} \rangle \mathcal{B}_{i+\tau_i}. \quad (45)$$

1080 Therefore, we have:
1081

$$\begin{aligned}
1082 \left\| \langle u_n, \frac{k_b}{\|k_b\|} \rangle \right\|_{\mathcal{H}(\mathcal{M})} &= \left\| \left\langle \text{FM}(\tilde{u}) - \sum_{i=1}^N \langle \text{FM}(\tilde{u}), \mathcal{B}_{i+\tau_i} \rangle \mathcal{B}_{i+\tau_i} + \sum_{i=n}^N \langle \text{FM}(\tilde{u}), \mathcal{B}_{i+\tau_i} \rangle \mathcal{B}_{i+\tau_i}, \frac{k_b}{\|k_b\|} \right\rangle \right\|_{\mathcal{H}(\mathcal{M})} \\
1083 &\geq \left\| \left\langle \text{FM}(\tilde{u}) - \sum_{i=1}^N \langle \text{FM}(\tilde{u}), \mathcal{B}_{i+\tau_i} \rangle \mathcal{B}_{i+\tau_i}, \frac{k_b}{\|k_b\|} \right\rangle \right\|_{\mathcal{H}(\mathcal{M})} \\
1084 &\quad - \left\| \left\langle \sum_{i=n}^N \langle \text{FM}(\tilde{u}), \mathcal{B}_{i+\tau_i} \rangle \mathcal{B}_{i+\tau_i}, \frac{k_b}{\|k_b\|} \right\rangle \right\|_{\mathcal{H}(\mathcal{M})} \\
1085 &\geq \left\| \frac{\left(\text{FM}(\tilde{u}) - \sum_{i=1}^N \langle \text{FM}(\tilde{u}), \mathcal{B}_{i+\tau_i} \rangle \mathcal{B}_{i+\tau_i} \right) \Big|_b}{\|k_b\|} \right\|_{\mathcal{H}(\mathcal{M})} \\
1086 &\quad - \sqrt{\sum_{i=n}^N \|\langle \text{FM}(\tilde{u}(x, \cdot)), \mathcal{B}_{i+\tau_i} \rangle\|_{\mathcal{H}(\mathcal{M})}^2} \\
1087 &\geq C - \frac{C}{2} = \frac{C}{2}, \\
1088 \end{aligned} \tag{46}$$

1089 where the third inequality holds due to the reproducing property of RKHS: $\langle f, k_m \rangle = f(m)$.
1090

1091 Meanwhile, there exists $\gamma > 0$ satisfying Equation 9 such that:
1092

$$\begin{aligned}
1093 \left\| \langle u_n, \frac{k_b}{\|k_b\|} \rangle \right\|_{\mathcal{H}(\mathcal{M})} &= \frac{\left\| \langle u_n, k_b - \sum_{i=1}^{n-1} \langle k_b, \mathcal{B}_{i+\tau_i} \rangle \mathcal{B}_{i+\tau_i} \rangle \right\|_{\mathcal{H}(\mathcal{M})}}{\|k_b\|} \\
1094 &\leq \frac{\left\| \langle u_n, k_b - \sum_{i=1}^{n-1} \langle k_b, \mathcal{B}_{i+\tau_i} \rangle \mathcal{B}_{i+\tau_i} \rangle \right\|_{\mathcal{H}(\mathcal{M})}}{\left\| k_b - \sum_{i=1}^{n-1} \langle k_b, \mathcal{B}_{i+\tau_i} \rangle \mathcal{B}_{i+\tau_i} \right\|_{\mathcal{H}(\mathcal{M})}} \\
1095 &= \left\| \langle u_n, \mathcal{B}_{n+\tau_n}^b \rangle \right\|_{\mathcal{H}(\mathcal{M})} \\
1096 &\leq \left\| \frac{1}{\rho_0} \langle u_n, \mathcal{B}_{n+\tau_n} \rangle - \frac{\gamma}{\rho_0} \right\|_{\mathcal{H}(\mathcal{M})} \\
1097 &\leq \frac{1}{\rho_0} \cdot \frac{\rho_0 C}{2} - \frac{\gamma}{\rho_0} \\
1098 &< \frac{C}{2}. \\
1099 \end{aligned} \tag{47}$$

1100 Hence, Equations 46 and 47 lead to a contradiction. Therefore, Equation 42 must hold.
1101

1102 Next, from Theorem 2, there exists a network FM with appropriate hyperparameters θ' such that:
1103

$$\|\tilde{u} - \text{FM}_{\theta'}(\tilde{u})\|_{H(\mathcal{M})} \leq \inf_{\theta} \|\tilde{u} - \text{FM}_{\theta}(\tilde{u})\|_{H(\mathcal{M})} + \frac{\varepsilon}{4}. \tag{48}$$

1104 Let us denote $\text{FM}_{\theta'}$ as FM . Note that \tilde{u} in Equation 48 lies in the Hilbert space $H(\mathcal{M})$, not the
1105 RKHS $\mathcal{H}(\mathcal{M})$. Furthermore, from Lemma 5, there exists a set of hyperparameters $\tilde{\theta}$ such that
1106 $\|\tilde{u} - \text{FM}_{\tilde{\theta}}(\tilde{u})\|_{H(\mathcal{M})} \leq \frac{\varepsilon}{4}$. Therefore, Equation 48 reduces to:
1107

$$\begin{aligned}
1108 \|\tilde{u} - \text{FM}(\tilde{u})\|_{H(\mathcal{M})} &\leq \inf_{\theta} \|\tilde{u} - \text{FM}_{\theta}(\tilde{u})\|_{H(\mathcal{M})} + \frac{\varepsilon}{4} \\
1109 &\leq \|\tilde{u} - \text{FM}_{\tilde{\theta}}(\tilde{u})\|_{H(\mathcal{M})} + \frac{\varepsilon}{4} \\
1110 &\leq \frac{\varepsilon}{4} + \frac{\varepsilon}{4} = \frac{\varepsilon}{2}. \\
1111 \end{aligned} \tag{49}$$

1134 From Lemma 7, for \tilde{u} which is the output of a neural network with width $W_d = \mathcal{O}\left(\varepsilon^{-\frac{d}{k+1}}\right)$, we
 1135 have:

$$1136 \quad \|\tilde{u} - F\|_{H(\mathcal{M})} \leq \frac{\varepsilon}{4}. \quad (50)$$

1138 Putting Equations 42, 49 and 50 together leads to:

$$1139 \quad \|\hat{u}_{N,\theta} - F(p)\|_{H(\mathcal{M})} \leq \|\hat{u}_{N,\theta} - \text{FM}(\tilde{u})\|_{H(\mathcal{M})} + \|\tilde{u} - \text{FM}(\tilde{u})\|_{H(\mathcal{M})} + \|\tilde{u} - F\|_{H(\mathcal{M})} \quad (51)$$

$$1140 \quad \leq \varepsilon$$

1142 for any $p \in \mathcal{P}$. Therefore, taking supremum on LHS and RHS of Equation 51, we have proven
 1143 Theorem 3. \square

1145 D PROOF THAT THE HELMHOLTZ EQUATION SPANS AN RKHS

1147 Let us consider the Helmholtz equation $\Delta_{\mathcal{M}}u + k^2u = 0$ without loss of generality. We first
 1148 introduce some background and preliminaries before proceeding with the proof.

1149 Let $\Delta = \sum_{i=1}^n \frac{\partial^2}{\partial x_i^2}$ be the Euclidean Laplace operator acting on the Sobolev space of weakly twice
 1150 differentiable functions defined on \mathbb{R}^n . Let $k > 0$ be a fixed constant. A function u defined on \mathbb{R}^n
 1151 is called a solution of the Helmholtz equation, if $\Delta u + k^2u = 0$ on \mathbb{R}^n . In other words, u satisfies
 1152 one of the following:

- 1154 • $u \in C^2(\mathbb{R}^n)$ is a classical solution of the above equation on \mathbb{R}^n ; or
- 1155 • $u \in W^2(\mathbb{R}^n)$ is a solution in the weak L^2 -sense, i.e., u is locally square integrable, and
 1156 satisfies $\int_{\mathbb{R}^n} u(x) [\Delta\varphi(x) + k^2\varphi(x)] dx = 0$ for any (test) function $\varphi \in C^\infty(\mathbb{R}^n)$ with
 1157 compact support.

1158 It follows from Axler et al. (2001) that any solution of homogeneous Helmholtz equation is real
 1159 analytic on \mathbb{R}^n . We define the following space:

$$1160 \quad W_{\text{Helm},k}(\mathbb{R}^n) = \{u \in C^\infty(\mathbb{R}^n) \mid \Delta u + k^2u = 0 \text{ on } \mathbb{R}^n\}. \quad (52)$$

1161 Hartman & Wilcox (1961) introduced the concept of Herglotz wave function. The Herglotz wave
 1162 functions consists of all the entire solutions u of the homogeneous Helmholtz equation $\Delta u + k^2u = 0$
 1163 on \mathbb{R}^n with $k > 0$ such that Herglotz boundedness condition:

$$1164 \quad \lim_{R \rightarrow +\infty} \frac{1}{R} \int_{\|x\| < R} |u(x)|^2 dx < +\infty \quad (53)$$

1165 holds. Hartman & Wilcox (1961) characterized the Herglotz wave functions as the entire solutions
 1166 u of the homogeneous Helmholtz equation with far-field pattern in $L^2(\mathbb{S}^{n-1})$. That is, functions u
 1167 defined on \mathbb{R}^n can be written as:

$$1168 \quad u(x) = \int_{\mathbb{S}^{n-1}} e^{ik\langle x, \xi \rangle} g(\xi) d\sigma(\xi), \quad (54)$$

1169 for some $g \in L^2(\mathbb{S}^{n-1})$.

1170 With this, let us consider the Helmholtz equation on the standard n -dimensional unit sphere $\mathbb{S}^n =$
 1171 $\{x \in \mathbb{R}^{n+1} : \|x\| = 1\}$ in \mathbb{R}^{n+1} with canonical spherical Riemannian metric g . Let $\Delta_{\mathbb{S}^n}$ be
 1172 the spherical Laplacian acting on the Sobolev space $W^2(\mathbb{S}^n)$ of real-valued, square-integrable, and
 1173 twice weakly differentiable functions on \mathbb{S}^n . Consider the Helmholtz equation on the Riemannian
 1174 manifold (\mathbb{S}^{n-1}, g) with canonical spherical metric g . Its entire solution can be expressed as:

$$1175 \quad u = W\phi(x) = (2\pi)^{\frac{1-n}{2}} \int_{\mathbb{S}^{n-1}} e^{ikx \cdot \xi} \phi(\xi) d\sigma(\xi), \quad (55)$$

1176 where W is the Fourier extension operator and $\phi \in L^2(\mathbb{S}^{n-1})$ is Herglotz wave function. It has been
 1177 shown that W defined in Equation 55 is an isomorphism of $L^2(\mathbb{S}^{n-1})$ onto the space W^2 consisting
 1178 of all solutions of Helmholtz equation with radial and angular derivatives satisfying:

$$1179 \quad \|u\|^2 = \int_{|x|>1} (|u(x)|^2 + |\frac{\partial u}{\partial r}(x)|^2 + |\frac{\partial u}{\partial \theta}(x)|^2) \frac{dx}{|x|^3} < \infty, \quad (56)$$

(see (Pérez-Esteva & Valenzuela-Díaz, 2017)). In this sense, the space W^2 in \mathbb{R}^2 is a Hilbert space with reproducing kernel (i.e., RKHS).

Meanwhile, to the best of our knowledge, there exists no such formal analysis on Helmholtz equation on any smooth (Riemannian) manifold (\mathcal{M}, g) . For any smooth manifold (\mathcal{M}, g) , the Laplace-Beltrami operator $\Delta_{\mathcal{M}}$, defined in Equation ??, has orthonormal eigenbases on $L^2(\partial\mathcal{M})$ as $\{\psi_{\lambda}\}_{\lambda}$ with corresponding eigenvalues $\lambda \geq 0$. For each ψ_{λ} , let us consider:

$$(\Delta_{\mathcal{M}} + k^2)\phi_{\lambda} = 0 \text{ in } \mathcal{M}, \quad \phi_{\lambda}|_{\partial\mathcal{M}} = \psi_{\lambda}. \quad (57)$$

By elliptic regularity, $\phi_{\lambda} \in H^2(\mathcal{M})$. Furthermore, we extend the Fourier extension operator in Equation 55 to $W_{\mathcal{M}}$ on any smooth manifold \mathcal{M} :

$$W_{\mathcal{M}}f(x) = \int_{\partial\mathcal{M}} \Psi(x, \xi) f(\xi) d\sigma(\xi), \quad \text{where } \Psi(x, \xi) = \sum_{\lambda} \phi_{\lambda}(x) \overline{\psi_{\lambda}(\xi)}. \quad (58)$$

Now, we present the main result in Theorem 4 that $W^2(\mathcal{M})$ is the space of all Herlotz wave functions.

Theorem 4. *The operator $W_{\mathcal{M}} : L^2(\partial\mathcal{M}) \rightarrow W^2(\mathcal{M})$ defined in Equation 58 is a topological isomorphism, where $W^2(\mathcal{M}) = \{u \in H^2(\mathcal{M}) : (\Delta_{\mathcal{M}} + k^2)u = 0\}$.*

Remark. *Theorem 4 implies that $W_{\mathcal{M}}$ is an isomorphism between $L^2(\partial\mathcal{M})$ and $W^2(\mathcal{M})$, the space of H^2 -solutions to the Helmholtz equation $(\Delta_{\mathcal{M}} + k^2)u = 0$. Such an isomorphism $W_{\mathcal{M}}$ implies that $\mathcal{H}(\mathcal{M})$ inherits a Hilbert space or RKHS structure from $L^2(\partial\mathcal{M})$. In other words, $W^2(\mathcal{M})$ is an RKHS.*

To prove Theorem 4, we first introduce and prove a lemma.

Lemma 8. *Let $J_{\nu}(z)$ be the Bessel function of order $\nu \in \mathbb{R}$. For each eigenfunction ψ_j of $\Delta_{\partial\mathcal{M}}$, define $F_j = W_{\mathcal{M}}\psi_j$. Then:*

1. $F_j(x) = (2\pi)^{1/2} i^{\nu(j)} r^{-\frac{n-2}{2}} J_{\nu(j)}(kr) \psi_j(\xi)$, where $x = r\xi$ in normal coordinates near $\partial\mathcal{M}$.

2. The family $\{F_j\}$ is orthogonal in $W^2(\mathcal{M})$, and

$$\|F_j\|_{H^2(\mathcal{M})} = \sqrt{2} + \mathcal{O}\left(\frac{1}{\lambda_j}\right).$$

3. For $f = \sum_j a_j \psi_j \in L^2(\partial\mathcal{M})$ and $u = \sum_j a_j F_j \in W^2(\mathcal{M})$,

$$\|u\|_{H^2(\mathcal{M})} \sim \|f\|_{L^2(\partial\mathcal{M})},$$

with absolute and uniform convergence on compact subsets of \mathcal{M} .

Proof. We prove the three components of Lemma 8 as follows:

1. Helmholtz equation $(\Delta_{\mathcal{M}} + k^2)\phi_j = 0$ can be written as:

$$\left(\partial_r^2 + \frac{n-1}{r} \partial_r + \frac{1}{r^2} \Delta_{\partial\mathcal{M}} + k^2 \right) (r^{-\frac{n-2}{2}} R_j(r) \psi_j(\xi)) = 0. \quad (59)$$

Substituting $\phi_j = r^{-\frac{n-2}{2}} R_j(r) \psi_j(\xi)$ into Equation 59 yields:

$$R_j'' + \frac{1}{r} R_j' + \left(k^2 - \frac{\nu(j)^2}{r^2} \right) R_j = 0, \quad (60)$$

whose solution is $R_j(r) = J_{\nu(j)}(kr)$. By the Funk-Hecke formula (Xu, 2000), we have:

$$F_j(x) = \int_{\partial\mathcal{M}} \Psi(x, \xi) \psi_j(\xi) d\sigma(\xi) = (2\pi)^{1/2} i^{\nu(j)} r^{-\frac{n-2}{2}} J_{\nu(j)}(kr) \psi_j(\xi). \quad (61)$$

1242 2. Since ψ_j and ψ_k are orthonormal eigenbases, ψ_j and ψ_k are orthogonal on $\partial\mathcal{M}$. Therefore,
 1243

$$1244 \quad \langle F_j, F_k \rangle_{H^2(\mathcal{M})} = \int_M (\phi_j \overline{\phi_k} + \nabla \phi_j \cdot \overline{\nabla \phi_k}) dV_g = 0 \quad (62)$$

1245 1246 for any $j \neq k$. Using the asymptotic $J_{\nu(j)}(kr) \sim \frac{(kr/2)^{\nu(j)}}{\Gamma(\nu(j)+1)}$ for $r \rightarrow 0^+$ and oscillatory
 1247 decay for $r \rightarrow \infty$, we have:
 1248

$$1249 \quad \|F_j\|_{H^2(\mathcal{M})}^2 = 2 + \mathcal{O}\left(\frac{1}{\lambda_j}\right),$$

1250 1251 where the error term comes from the next-order Bessel asymptotics.
 1252

1253 3. From Part 2, the map $f \mapsto u$ is bounded:
 1254

$$1255 \quad \|u\|_{H^2(\mathcal{M})}^2 = \sum_j |a_j|^2 \|F_j\|_{H^2(\mathcal{M})}^2 \sim \sum_j |a_j|^2 = \|f\|_{L^2(\partial\mathcal{M})}^2. \quad (63)$$

1256 Next, we prove $|J_{\nu}(kr)| \sim \mathcal{O}(\nu^{-1/2})$ uniformly holds on compact subsets $K \subset \mathcal{M}$.
 1257 According to Watson (1922, §8.4), we have:
 1258

$$1259 \quad J_{\nu}(\nu \sec \beta) \sim \left(\frac{2}{\pi \nu \tan \beta} \right)^{1/2} \left[\cos \left(\nu \tan \beta - \nu \beta - \frac{\pi}{4} \right) \sum_{m=0}^{\infty} \frac{(-1)^m \Gamma(2m + \frac{1}{2})}{\Gamma(\frac{1}{2})} \cdot \right. \\ 1260 \quad \left. \frac{A_{2m}}{(\frac{1}{2} \nu \tan \beta)^{2m}} + \sin \left(\nu \tan \beta - \nu \beta - \frac{\pi}{4} \right) \sum_{m=0}^{\infty} \frac{(-1)^m \Gamma(2m + \frac{3}{2})}{\Gamma(\frac{1}{2})} \cdot \right. \\ 1261 \quad \left. \frac{A_{2m+1}}{(\frac{1}{2} \nu \tan \beta)^{2m+1}} \right], \quad (64)$$

1262 where A_k is defined following $A_0 = 1$, $A_1 = \frac{1}{3} + \frac{5}{24} \cot^2 \beta$, $A_2 = \frac{3}{128} + \frac{77}{576} \cot^2 \beta + \frac{385}{3456} \cot^4 \beta$, and so on.
 1263

1264 Let $z = \sec \beta$, which implies $\tan \beta = \sqrt{z^2 - 1}$ and $\cot \beta = \frac{1}{\sqrt{z^2 - 1}}$. Moreover, η is defined
 1265 as $\eta(z) = \tan \beta - \beta = \sqrt{z^2 - 1} - \sec^{-1} z$. Then, by $\cos \theta = \Re(e^{i\theta})$, $\sin \theta = \Im(e^{i\theta})$,
 1266 we have:
 1267

$$1268 \quad \cos(\nu \eta - \pi/4) \cdot S_0 + \sin(\nu \eta - \pi/4) \cdot S_1 = \Re \left[e^{i(\nu \eta - \pi/4)} (S_0 - iS_1) \right], \quad (65)$$

1269 where $S_0 = \sum_{m=0}^{\infty} \frac{(-1)^m \Gamma(2m + \frac{1}{2})}{\Gamma(\frac{1}{2})} \cdot \frac{A_{2m}}{(\frac{1}{2} \nu \tan \beta)^{2m}}$ and $S_1 = \sum_{m=0}^{\infty} \frac{(-1)^m \Gamma(2m + \frac{3}{2})}{\Gamma(\frac{1}{2})} \cdot \frac{A_{2m+1}}{(\frac{1}{2} \nu \tan \beta)^{2m+1}}$.
 1270

1271 We say that there exists $U_k(p)$ which is a polynomial combination of A_k by comparing
 1272 $\frac{A_{2m}}{(\nu \tan \beta)^{2m}}$ and $\frac{U_k(p)}{\nu^k}$. By $\tan \beta = \sqrt{z^2 - 1}$ and $p = \frac{1}{\sqrt{1+z^2}}$, we have:
 1273

$$1274 \quad \left(\frac{2}{\pi \nu \tan \beta} \right)^{1/2} = \frac{1}{(1+z^2)^{1/4}} \cdot \frac{1}{\sqrt{2\pi\nu}} \cdot \left(\frac{2z^2}{z^2 - 1} \right)^{1/4}. \quad (66)$$

1275 Combining Equation 64, Equation 65, and Equation 66 leads to:
 1276

$$1277 \quad J_{\nu}(\nu z) \sim \frac{\exp(\nu \eta - \frac{\pi}{4})}{(1+z^2)^{1/4} \sqrt{2\pi\nu}} \left[\sum_{k=0}^{\infty} \frac{U_k(p)}{\nu^k} \right]. \quad (67)$$

1278 Next, for $\nu \gg 1$ and $r \in K$ (i.e., $z = \frac{kr}{\nu}$ is bounded), we have:
 1279

$$1280 \quad J_{\nu}(kr) \approx \left(\frac{2}{\pi \nu} \right)^{1/2} \frac{\cos(\nu \eta(z) - \frac{\pi}{4})}{(1+z^2)^{1/4}}. \quad (68)$$

1281 Since $|\cos(\cdot)| \leq 1$ and $(1+z^2)^{1/4}$ has positive lower bound G on K , we have:
 1282

$$1283 \quad |J_{\nu}(kr)| \leq G \left(\frac{2}{\pi \nu} \right)^{1/2} = \mathcal{O}(\nu^{-1/2}). \quad (69)$$

1296
1297
1298
1299
1300

Finally, substituting Equation 69 into 63, we have, for compact subsets $K \subset \mathcal{M}$:

$$\sum_j |a_j| |F_j(x)| \leq \left(\sum_j |a_j|^2 \right)^{1/2} \left(\sum_j |J_{\nu(j)}(kr)|^2 \right)^{1/2} < \infty. \quad (70)$$

1301
1302

This completes the proof. \square

1303
1304

PROOF OF THEOREM 4

1305
1306
1307
1308

Proof. For $f = \sum_j a_j \psi_j \in L^2(\partial\mathcal{M})$, let us define:

$$W_{\mathcal{M}} f = \sum_j a_j F_j, \quad \text{where } F_j = W_{\mathcal{M}} \psi_j. \quad (71)$$

1309

From Part 3 of Lemma 8, the series converges absolutely and uniformly on compact subsets K as:

$$\sum_j |a_j| \|F_j\|_{L^\infty(K)} \leq C \left(\sum_j |a_j|^2 \right)^{1/2} \left(\sum_j \lambda_j^{-1/2} \right)^{1/2} < \infty, \quad (72)$$

1310
1311
1312
1313

where $\|F_j\|_{L^\infty(K)} \leq C \lambda_j^{-\frac{1}{4}}$ comes from Bessel decay (Matviyenko, 1993) and $\lambda_j \sim j^{\frac{2}{n-1}}$ comes from Weyl's law (Liokumovich et al., 2018).

1314
1315
1316
1317
1318
1319

Then, from Part 2 of Lemma 8:

$$\|W_{\mathcal{M}} f\|_{H^2(\mathcal{M})}^2 = \sum_j |a_j|^2 \|F_j\|_{H^2(\mathcal{M})}^2 \sim \sum_j |a_j|^2 = \|f\|_{L^2(\partial\mathcal{M})}^2. \quad (73)$$

1320
1321

Next, we prove the surjectivity of $W_{\mathcal{M}}$. Let $u \in W^2(\mathcal{M})$. On $\partial\mathcal{M}$, we expand u in eigenfunctions using:

$$u(r, \xi) = \sum_j A_j(r) \psi_j(\xi), \quad A_j(r) = \langle u(r, \cdot), \psi_j \rangle_{L^2(\partial\mathcal{M})}. \quad (74)$$

1322
1323
1324
1325
1326
1327

This way, the Helmholtz equation $(\Delta_{\mathcal{M}} + k^2)u = 0$ reduces to an ordinary differential equation:

$$A_j'' + \frac{n-1}{r} A_j' + \left(k^2 - \frac{\lambda_j + (\frac{n-2}{2})^2}{r^2} \right) A_j = 0, \quad (75)$$

1328
1329
1330
1331
1332
1333

whose solution is $A_j(r) = a_j r^{-\frac{n-2}{2}} J_{\nu(j)}(kr)$, where $\nu(j) = \sqrt{\lambda_j + (\frac{n-2}{2})^2}$. Therefore, $u = \sum_j a_j F_j = W_{\mathcal{M}} f$ for $f = \sum_j a_j \psi_j \in L^2(\partial\mathcal{M})$. Finally, the inverse $W_{\mathcal{M}}^{-1} : u \mapsto u|_{\partial\mathcal{M}}$ is bounded by the trace theorem (Adams & Fournier, 2003):

$$\|W_{\mathcal{M}}^{-1} u\|_{L^2(\partial\mathcal{M})} = \|u|_{\partial\mathcal{M}}\|_{L^2(\partial\mathcal{M})} \leq C \|u\|_{H^2(\mathcal{M})}. \quad (76)$$

This completes the proof. \square

1334
1335
1336

E EXPERIMENT DETAILS

1337
1338

In this section, we provide a detailed description of datasets, implementation details, and additional experimental results.

1339
1340

E.1 DATASETS

1341
1342
1343
1344
1345
1346
1347
1348
1349

Helmholtz equation. We generate the dataset using the Helmholtz equation solver `helmhurts-python`, which is available in Marchand (2023). This solver computes the electric field distribution $u(x, y)$ for given $n(x, y)$ and source terms $S(x, y)$, discretized on a uniform grid with resolution $\Delta x = \Delta y = 1$ cm. $S(x, y)$ is constructed by assigning a complex-valued excitation $P \cdot e^{i\phi}$ to all pixels marked as sources (RGB (255,0,0)) in the input image, where P is the transmitter power and $\phi = 0$ denotes a uniform phase alignment. Perfectly matched layers (PMLs) of thickness 12 cells absorb outgoing waves to approximate open boundary conditions. We select randomized physical parameters to generate the full dataset, including transmitter power $P \sim \mathcal{U}(0.5, 2.0)$, frequency $f \sim \mathcal{U}(1.5, 3.0)$ GHz, and wall properties $\eta \sim \mathcal{U}(1.5, 3.0)$, $\kappa \sim \mathcal{U}(0.05, 0.2)$. The resulting field intensities $|u|$ are log-scaled and normalized to $[0, 1]$.

1350 **Navier-Stokes equation.** The dataset is generated by numerically solving the 2D incompressible
 1351 Navier-Stokes equations using a spectral method solver adapted from the `NSSimulation` re-
 1352 pository (lavenderses, 2021) on a torus. The viscosity ν are sampled following $\nu \sim \mathcal{U}(0.001, 0.1)$. For
 1353 the static task, the dataset contains the value of parameters α and the numerical solutions \mathbf{u} . For the
 1354 autoregressive task, the dataset contains the numerical solutions $\mathbf{u}(x, t)$ and $\mathbf{u}(x, t + 1)$.
 1355

1356 **Poisson equation.** Using isogeometric analysis with NURBS basis functions of order $p = 2$ pro-
 1357 posed in (Kamili, 2013), we generate the dataset for this problem by specifying $\alpha \sim (2, 6)$.
 1358

1359 E.2 IMPLEMENTATION DETAILS

1360 We run all experiments in a Dell Precision 7920 Tower equipped with Intel Xeon Gold 6246R CPU
 1361 and NVIDIA Quadro RTX 6000 GPU (with 24GB GDDR6 memory).
 1362

1363 In our implementation, the ground-truth PDE solutions $u(x, \cdot)$ are generated as discrete numerical
 1364 solutions on a grid via finite difference or isogeometric analysis (IGA) depending on the PDE. For
 1365 the Helmholtz and Navier-Stokes equations, the derivatives $\nabla^i u$ are computed by applying finite-
 1366 difference schemes (e.g., central difference) to the discrete ground-truth solutions. For the Poisson
 1367 equation, since the solutions are generated using IGA with NURBS basis functions, we exploit the
 1368 fundamental property of IGA (Hughes et al., 2005; Piegl & Tiller, 1997): the basis functions possess
 1369 high-order smoothness, allowing the derivatives of the ground-truth solution to be computed analyt-
 1370 ically from the NURBS control points and weights, bypassing numerical stability issues. To prevent
 1371 the instability of training stage, we introduce the weights ω_i for higher-order derivatives, which
 1372 are set to 10^{-8} in our experiments. Such a small weight can prevent the higher-order derivatives
 1373 from dominating the loss function in the earlier training stage, thus ensuring stability and guiding
 1374 AFDONet to capture smoothness and analytic information during training.
 1375

1376 For FNO-based solvers (Li et al., 2020; 2023b; Li & Ye, 2025), the number of Fourier modes con-
 1377 sidered in the spectral convolutions is an important hyperparameter. We find that no more than
 1378 16 Fourier modes are enough to solve the three benchmark PDE problems. In fact, increasing the
 1379 number of Fourier modes beyond 16 could lead to worse performance. From Figure 3, we plot the
 1380 average MAE and total computational time of FNO with 8, 12, 16, 32, 64, 128 Fourier modes. As
 1381 a result, in our experiments, we set the number of Fourier modes to be 12 for all FNO and D-FNO
 1382 models. Similar trends happen to other benchmark PDE problems, so we use 12 Fourier modes in
 1383 all benchmark PDE problems.
 1384

1385 Figure 3: Average MAE and total computational time (in seconds) of FNO solver with respect to
 1386 number of Fourier modes (averaged over five random seeds) for solving the Helmholtz equation 12.
 1387

1388 In addition, for AFDONet, increasing the dimension of the latent space helps achieve higher accu-
 1389 racy. However, this also comes with an increase in computational costs. This is illustrated in Table 4
 1390 below taking Navier-Stokes equation. Therefore, to demonstrate the effectiveness of our AFDONet
 1391 solver even in the worst-case scenario, we set the latent space dimension to 10 for all benchmark
 1392 PDE problems.
 1393

1394 The AFDONet loss function and training specifications are listed in Table 5 below.
 1395

1396 For the benchmark solvers, their detailed architectures are as follows:
 1397

1404
 1405 Table 4: Average MAE, relative L^2 error, and computational time (in seconds) of AFDONet (aver-
 1406 eraged over five random seeds) for solving Navier-Stokes equation 13 (autoregressive task) under
 1407 different latent space dimensions.

Latent dimension	MAE	Relative L^2 error	Time (sec)
16	6.40E-04 \pm 9.90E-05	1.11E-03 \pm 1.91E-04	1058.39 \pm 19.30
20	5.35E-04 \pm 1.36E-04	1.40E-03 \pm 1.03E-03	1190.61 \pm 15.67
32	3.77E-04 \pm 1.28E-04	9.60E-04 \pm 8.03E-04	1110.57 \pm 18.38
64	4.62E-04 \pm 1.35E-04	1.22E-03 \pm 8.92E-04	1173.40 \pm 17.22
100	4.05E-04 \pm 1.09E-04	1.06E-03 \pm 9.94E-04	1365.03 \pm 21.89
128	3.89E-04 \pm 1.26E-04	9.99E-04 \pm 8.48E-04	1406.05 \pm 23.98
256	5.03E-04 \pm 1.98E-04	1.27E-03 \pm 1.14E-03	1743.28 \pm 27.64

1416
 1417 Table 5: Specifications of loss function and training for AFDONet solver.

Parameter	Value
Training epochs	100
Loss weights (ω)	10^{-5}
Loss weights (w_i)	10^{-8}
Optimizer	Adam
Learning rate	10^{-3}
Batch size	16
Encoder hidden layers dimension	256
Latent space dimension	10

1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431 • The FNO solver (Li et al., 2020; 2023b) consists of an initial linear projection layer P
 1432 (width is 32) followed by 5 Fourier layers with 12 Fourier modes and GeLU activation
 1433 function. A neural network with two fully connected layers Q (the first layer has 128 neu-
 1434 rons and the second layer has 2 neurons) is used to project back to the target dimension. The
 1435 Adam optimizer (learning rate: 10^{-3}) is used to train the FNO solver based on minimizing
 1436 the MSE loss.

1437 • The D-FNO solver (Li & Ye, 2025) has a similar architecture as the FNO solver, except
 1438 that a reduction layer is introduced between the initial linear projection layer P and the 5
 1439 Fourier layers to decompose the output of P into a series of two one-dimensional vectors.
 1440 The reduction layer does not use traditional neurons. Instead, it projects inputs into a rank-
 1441 16 subspace via factor matrices (see Equation 6 of Li & Ye (2025)). The Fourier layers have
 1442 12 Fourier modes (also suggested by Li & Ye (2025)) and use GeLU activation function.
 1443 After that, an operation called product is used to put the two vectors together. In D-FNO,
 1444 Q has two layers (the first layer has 128 neurons and the second layer has one neuron).
 1445 The Adam optimizer (learning rate: 10^{-3}) is used to train the D-FNO solver based on
 1446 minimizing the MSE loss.

1447 • The WNO solver (Tripura & Chakraborty, 2023) adopts the FNO architecture by replac-
 1448 ing Fourier layers with wavelet integral layers that decompose the inputs using Daubechies
 1449 wavelets and apply learnable linear transformations to the wavelet coefficients before re-
 1450 construction. The structure of Q is the same as that of FNO. GeLU activation function and
 1451 the Adam optimizer (learning rate: 10^{-3}) are used.

1452 • The DeepONet solver (Lu et al., 2019) consists of two subnetworks: a branch network and
 1453 a trunk network. The branch network which handles the high-dimensional input functions
 1454 has three fully-connected layers with 64 neurons per layer. The trunk network which han-
 1455 dles spatial coordinates also has three fully-connected layers with 64 neurons per layer.
 1456 Their outputs are combined via a dot product. ReLU activation function is employed in
 1457 both branch and trunk networks. We use the Adam optimizer (learning rate: 10^{-3}) to
 1458 minimize the MSE loss.

1458 E.3 ADDITIONAL EXPERIMENTAL RESULTS
14591460 VISUALIZATION OF SOLVER PERFORMANCE IN BENCHMARK PDE PROBLEMS
14611462 In Figures 4 through 6, we plot the ground truth and predicted solutions of AFDONet and baseline
1463 methods for the three case studies. The corresponding MAE and relative L^2 error results are listed
1464 in Table 1.1481
1482 Figure 4: Ground truth and predicted solutions (u, v) of the Navier-Stokes equation (static task) on
1483 the torus and heat map.
14841502
1503 Figure 5: Ground truth and predicted solutions $u(x, y)$ of the Helmholtz equation on the planar
1504 manifold.
15051506 AFDONET PERFORMANCE ON NAVIER-STOKES EQUATION WITH RANDOMIZED VORTEX
1507 DATASET1508 We extend the ablation study shown in Table 2 with a new ablation study for the Navier-Stokes
1509 example with randomized vortex field dataset. The initial condition is set by vortex structures via
1510 Gaussian-based stream functions $\psi = A \cdot \exp\left(-\frac{(x-c_x)^2+(y-c_y)^2}{2r^2}\right)$ with randomized parameters
1511 vortex centers $(c_x, c_y) \sim \mathcal{U}(1, 5)^2$, radii $r \sim \mathcal{U}(0.5, 2)$, and strengths $A \sim \mathcal{U}(-2, 2)$.

1522
1523
Figure 6: Ground truth and predicted solutions $u(\phi, z)$ of the Poisson equation on the quarter-
1524
cylindrical surface.

1544
1545
1546
1547
Figure 7: Ground truth and predicted fields (u, v) of the Navier-Stokes equation (for static task) on
1548
both the torus \mathbb{T}^2 and the heatmap for various solvers. Here, the dataset is generated from Gaussian-
1549
based randomized vortex fields (dataset size is 5000) (Pedergnana et al., 2020). Average MAE and
1550
relative L^2 errors and their standard deviations obtained using five random seeds are also reported.

F ADDITIONAL EXPERIMENTS

F.1 EXPERIMENT USING REAL-WORLD NOISY DATASET

1553
1554
1555
1556
1557
1558
1559
1560
To validate AFDONet’s performance on noisy real-world datasets, we perform experiments using the
1561 latex glove DIC (Digital Image Correlation) original dataset (You et al., 2022). The goal is to learn
1562 the mechanical response of a nitrile glove sample directly from experimental data, without assuming
1563 a known constitutive law. The goal is to predict the displacement field at the current loading step.
1564 The input includes the spatial coordinates, the displacement field from the previous step, and the
1565 current boundary displacement. We compare the performance of AFDONet to the current SOTA of
1566 this dataset, IFNO, as well as FNO as follows. To ensure fair comparison, we conduct experiments
1567 using the same settings as IFNO with the number of hidden layers ranging from 3 to 12.

1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
In addition, You et al. (2022) also reported the results of generalized Mooney-Rivlin (GMR) model
1601 in two settings. The relative L^2 errors of GMR model fitting and GMR inverse analysis are 3.30E-
1602 01 and 2.91E-01, respectively. We can observe that our AFDONet consistently outperforms other
1603 models in every L . Finally, the best reported result of IFNO is 3.30E-02 ± 4.63E-04 when $L = 24$
1604 (You et al., 2022). Although we do not conduct the experiment $L = 24$ due to the limited time, our
1605 AFDONet still performs better than the best result of IFNO.

1566

1567 Table 6: Relative L^2 error of AFDONet and other baselines using the latex glove DIC (Digital Image
1568 Correlation) original dataset.

1569 Number of hidden layers	1570 AFDONet	1571 IFNO	1572 FNO
1573 3	1574 $3.26\text{E-02} \pm 3.18\text{E-04}$	1575 $3.43\text{E-02} \pm 4.96\text{E-04}$	1576 $3.40\text{E-02} \pm 4.09\text{E-04}$
1577 6	1578 $2.78\text{E-02} \pm 4.01\text{E-04}$	1579 $3.34\text{E-02} \pm 4.53\text{E-04}$	1580 $3.84\text{E-02} \pm 4.21\text{E-04}$
1581 12	1582 $2.52\text{E-02} \pm 3.91\text{E-04}$	1583 $3.32\text{E-02} \pm 4.41\text{E-04}$	1584 $4.66\text{E-02} \pm 1.47\text{E-03}$

1585

1586 The average training time of AFDONet is ≈ 5.3 seconds per epoch, which is comparable to that of
1587 IFNO (≈ 4.6 seconds) and FNO (≈ 5.7 seconds).

1588

1589

F.2 PROBLEM DEFINED ON AN ARBITRARY MANIFOLD

1590

1591 To demonstrate the effectiveness of our AFDONet on arbitrary manifolds, here we design a new
1592 manifold that cannot be trivially projected onto a Euclidean space. The manifold is the closed unit
1593 ball $\overline{B} = \{z = (z_1, z_2) \in \mathbb{C}^2 : |z_1|^2 + |z_2|^2 \leq 1\}$, with boundary $\partial\overline{B} = S^3$. This is a compact 2-
1594 dimensional complex manifold equipped with the standard complex structure inherited from \mathbb{C}^2 and
1595 the flat Kähler metric $g = \sum_{j=1}^2 dz_j \otimes d\bar{z}_j$. On this manifold, we solve the Schrödinger equation
1596 $(\Delta_A + q(|u|^2))u = 0$, where $\Delta_A = (d + iA)^*(d + iA)$ is the magnetic Laplacian with d the exterior
1597 derivative, $*$ is the Hodge star with respect to the Kähler metric, A is a smooth real-valued 1-form
1598 as the magnetic potential, and q is a smooth complex-valued function as the electric potential. The
1599 results are shown below in Table F.2. Again, our AFDONet achieves significantly higher accuracy
1600 compared to baseline methods.

1601

1602 Table 7: Average MAE and Relative L^2 error of AFDONet and other baselines for solving the
1603 arbitrary manifold problem (values multiplied by 100).

1604 Metric	1605 AFDONet (Ours)	1606 FNO	1607 D-FNO	1608 WNO	1609 DeepONet
1610 MAE	1611 0.025 ± 0.017	1612 4.506 ± 0.927	1613 3.207 ± 0.873	1614 5.884 ± 1.374	1615 5.341 ± 2.482
1616 Rel. L^2	1617 0.332 ± 0.148	1618 55.688 ± 5.415	1619 48.267 ± 4.384	1620 99.99 ± 0.000	1621 57.289 ± 7.378

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660