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Abstract

Geometric graph neural networks have showcased exceptional performance in
modelling geometric data. These models rely heavily on equivariant operations,
encompassing vital techniques such as scalarization and the Clebsch-Gordan tensor
product. However, tensor-product-based architectures face substantial computa-
tional challenges as the representation order increases, significantly limiting their
versatility. Moreover, the interpretability of interactions between steerable compo-
nents remains elusive. In contrast, scalarization methods benefit from cost-efficient
invariant scalar operations while still being capable of outperforming certain tensor-
product-based models. To bridge the gap between these approaches, we introduce a
conceptual framework that emphasizes the potential flexibility in designing tensor
product networks. To provide guidance for efficient framework design and gain
deeper insights into steerable components, we conduct a preliminary investigation
by pruning tensor product interactions. This approach enables us to directly as-
sess the redundancy and significance of steerable components, paving the way for
efficient and effective designs.

1 Introduction
Driven by numerous problems in Physics and Chemistry that incorporate geometric data with known
symmetry information, there has been a rising interest in constructing equivariant geometric graph
neural networks (Cohen and Welling, 2016; Kondor, 2018; Cohen et al., 2019; Jing et al., 2021). By
integrating the inductive bias of symmetry into the design of the model, equivariant geometric GNNs
consistently demonstrate superior generalization performance and enhanced data efficiency. The
most common symmetries in atomistic systems are described by the 3D Euclidean group E(3) and its
subgroups such as SE(3), SO(3), and O(3). Among numerous building blocks of E(3)-equivariant
geometric GNNs, scalarization and the Clebsch-Gordan (CG) tensor product have garnered sustained
interest.

Equivariant architectures that employ the CG tensor product typically convolve the input signal with a
learnable kernel basis function such as spherical harmonics (Thomas et al., 2018; Weiler et al., 2018;
Fuchs et al., 2020; Brandstetter et al., 2022; Liao and Smidt, 2023). Such formulation generalizes
convolutional neural networks via stronger weight tying. Despite notable achievements, two essential
problems persist:

• The CG tensor product often entails prohibitive computational costs due to the massive
amount of high-dimensional matrix multiplications.

• The interpretability of steerable components in the tensor product remains a puzzle.

As noted by Passaro and Zitnick (2023), tensor product layers using irreducible representations
up to order L can entail a computational complexity of O(L6). While Passaro and Zitnick (2023)
introduced a computational trick to reduce the cost from O(L6) to O(L3) by realigning the axis of
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embeddings, the cost of O(L3) remains substantial. This cost is further exacerbated by the subsequent
fully connected linear layers mapping across different channels. Moreover, the understanding towards
how steerable components contribute to the learning process remains limited. For instance, questions
persist about whether lower-order representations are more effective than higher-order ones in certain
tasks and whether intra-order interactions are more important than cross-order interactions.

On the other hand, scalarization is characterized by the versatile use of invariant scalar functions in
the update procedure (Schütt et al., 2017; Klicpera et al., 2020b,a; Gasteiger et al., 2021; Satorras
et al., 2021; Liu et al., 2022). It is a common belief that nonlinear message exchanges across steerable
components of different orders yield better results compared to simple message exchanges within
the same order. However, the success of scalarization challenges this assumption. EGNN employs a
simple scalarization approach that multiplies coordinate embeddings by invariant scalar functions
(Satorras et al., 2021). Despite its simple update procedure, EGNN outperforms various tensor
product models across a range of datasets. While this intriguing phenomenon is partly justified by the
universality of invariant scalar functions (Villar et al., 2021), few studies have exploited this result to
re-evaluate the design of tensor product networks.

Since there are situations where steerable features are essential, such as the QH9 dataset (Yu et al.,
2023), we cannot circumvent the problem by solely resorting to scalarization. Therefore, a desirable
approach is to establish an intermediate framework that bridges the gap between scalarization and the
CG tensor product. To this end, our objective is not to propose a deterministic architecture but to lay
the foundation for a more flexible and customizable framework. Leveraging the universal property of
the tensor product, we introduce a conceptual framework to highlight the flexibility in the potential
design space of tensor product networks (Sec. 4). By drawing connections between scalarization
and a typical CG tensor product framework (Sec. 5), we interpret the success of scalarization as
conveying two messages: (1). complex interactions across steerable components of different orders
might be redundant; (2). non-universal approximators with effective inductive bias might outperform
universal approximators with no inductive bias. These insights naturally prompt the consideration of
sparsification at the tensor product layer. However, the challenge of interpreting steerable components
underscores the need for thoughtful guidance in the design of sparsification.

In pursuit of better efficiency and deeper understanding, we employ L1 loss and pruning techniques
as instruments for assessing the redundancy in cross-order interactions and measuring the relative
significance of steerable components. Pruning can be seen as an effort to integrate tensor product
networks towards scalarization. Moreover, the pruning procedure is customizable for every architec-
ture, allowing different insights to be drawn. Our work is the first to investigate the role of steerable
components through pruning and measure the importance of tensor product interactions using sparsity
scores. Our experiment demonstrates that, depending on the settings, 40% to 87% of the tensor
product interactions can be removed without compromising performance, revealing the existence
of redundancy. Additionally, we discover that intra-order interactions with scalar outputs tend to be
more significant than others, offering insights for future design considerations. Our experiment code
is available at https://github.com/NW-JEFF/Tensor-Product-Pruning.

2 Preliminaries
Group representations. A group representation ρ : G → GL(V ) is a homomorphism from a
group G to the space of linear bijections on a vector space V . A representation is irreducible if the
only subrepresentations are itself and its restriction to the vector space of zero. Crucially, for any
representation ρ : SO(3) → GL(Rd), there exists an orthogonal matrix Q ∈ Rd×d and irreducible
representations D(li) : SO(3) → GL(R2li+1) such that

∀R ∈ SO(3), ρ(R) = QT

(⊕
i

D(li)(R)

)
Q,

where d =
∑

i(2li + 1) with li ∈ N and ⊕ denotes the direct sum (block-diagonal concatenation
for matrices). The matrices D(li)(R) ∈ R(2li+1)×(2li+1) are orthogonal and are referred to as the
Wigner-D matrices, indexed with their types (or orders) li.

Steerable components. A vector space V = Rd is called steerable if it is equipped with a
representation of SO(3); elements ṽ ∈ V are referred to as steerable vectors and we denote them with
a tilde for emphasis. Since each D(li) in the direct sum

⊕
i D

(li) acts on independent components of
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Rd, they essentially split V = Rd into
⊕

i Vli =
⊕

i R2li+1. In particular, for ṽ =
⊕

i ṽi ∈
⊕

i Vli ,
ṽi ∈ Vli is called a type-li steerable component of ṽ. We will index the entries of type-l steerable
vectors and D(l) using {−l, ..., l} instead of {1, ..., 2l + 1}.

Equivariance. Let X and Y be vector spaces and G be a group. Given two representations
ρin : G → GL(X ) and ρout : G → GL(Y), a function f : X → Y is G-equivariant if

∀x ∈ X , g ∈ G, f(ρin(g)x) = ρout(g)f(x).

Specially, f is G-invariant if ∀x∈X , g∈G, f(ρin(g)x) = f(x).

Clebsch-Gordan tensor product. Let Vl = R2l+1 denote a type-l steerable vector space. The
Clebsch-Gordan (CG) tensor product is defined by

⊗CG : Vl1 × Vl2 → Vl1 ⊗ Vl2 , (h̃
(l1), h̃(l2)) 7→ C(l2,l1)

(
h̃(l1) ⊗ h̃(l2)

)
,

where Vl1 ⊗ Vl2 denotes the tensor product space with ⊗ being realized as the Kronecker product,
and C(l2,l1) ∈ R(2l2+1)(2l1+1)×(2l2+1)(2l1+1) is referred to as the Clebsch-Gordan (CG) coefficients.
C(l2,l1) is the orthogonal change-of-basis matrix such that

∀R ∈ SO(3),D(l2)(R)⊗D(l1)(R) =
(
C(l2,l1)

)T  l2+l1⊕
J=|l2−l1|

D(J)(R)

C(l2,l1),

As a result, using the relations u ⊗ v = vec(uvT ) and vec(ABC) = (CT ⊗ A)vec(B) for any
vectors u,v and conformable matrices A,B,C, it is easy to show that the CG tensor product satisfies
the following equivariance:(

D(l1)(R)h̃(l1)
)
⊗CG

(
D(l2)(R)h̃(l2)

)
=

 l2+l1⊕
J=|l2−l1|

D(J)(R)

(h̃(l1) ⊗CG h̃(l2)
)
.

The above can be easily adapted from SO(3) to O(3) by noticing that the orthogonal irreducible
representations of O(3) over the difference set O(3)\SO(3) are either identical to the Wigner-D
matrices or the sign-flipped versions of them. For convenience, we will refer to them as the Wigner-D
matrices with even and odd parities, respectively. Accordingly, we append parity p ∈ {o, e} into
type statements of steerable vectors, where o stands for odd and e stands for even. For example, any
vector acted by D(l) with odd parity is of type (l, o). After updating the Wigner-D matrices with
parities, the definition and properties of the CG tensor product remain the same for O(3), except for
one additional rule: the output parity of ⊗CG is determined by the multiplication law given by

e× e → e, o× o → e, e× o → o, o× e → o.

Tensor product layers. In a typical tensor product layer, for every combination of input and output
types (lin1pin1, lin2pin2, loutpout), each multiplicity of channels is associated with a different learnable
weight. The tuple (lin1pin1, lin2pin2, loutpout) is referred to as the path of the interaction. In particular,
we refer to the interaction as intra-order when lin1 = lin2 and cross-order when lin1 ̸= lin2.

3 Related work
Tensor products. Tensor field network (TFN) stands as one of the earliest models that rely on
the CG tensor product to construct SE(3)-equivariant networks (Thomas et al., 2018). Within their
work, tensor products emerge as a means to preserve equivariance between layers operating on point
clouds. Weiler et al. (2018) more explicitly deduce the same kernel parameterization by solving the
equivariance constraint involving tensor products. Beyond pure convolution, SE(3)-Transformer adds
invariant self-attention weights before TFN’s convolution kernel (Fuchs et al., 2020), interpolating
between graph attention networks and TFN. On the other hand, Equiformer integrates the CG tensor
product towards the original Transformer by replacing operations from the original Transformer
with their E(3)-equivariant counterparts (Liao and Smidt, 2023). To allow complicated nonlinear
interactions, SEGNN extends the geometric message passing framework by employing steerable
embeddings and replacing standard MLP with steerable MLP (Brandstetter et al., 2022).
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Our proposed conceptual tensor product framework highlights the potential flexibility in designing the
input and output of the tensor product layers, which unifies the aforementioned designs. Additionally,
we provide interpretation for high-order steerable components, a previously unexplored territory.

Network pruning. Our approach to evaluating the redundancy and relative importance of high-
order steerable components draws inspiration from MLP pruning (Han et al., 2015) and the Lottery
Ticket Hypothesis (LTH) (Frankle and Carbin, 2019). Han et al. (2015) propose to use a three-step
method (train, prune, and retrain) to learn network connections, and LTH states that there exists a
sparse subnetwork in a densely initialized model that can be trained to match full model performance.
While we follow a similar three-step method and confirm the applicability of the Lottery Ticket
Hypothesis in our settings, our primary focus lies in providing guidance for designing effective tensor
product networks.

Numerous strategies have been proposed to enhance efficient learning specifically on GNNs (Ying
et al., 2019; Zhou et al., 2021; Chen et al., 2021; Lutzeyer et al., 2022; Peng et al., 2022; Liu et al.,
2023). Existing strategies involve pruning nodes, edges, channels, weights, or a combination of them,
but none of the them investigates pruning tensor product interactions. In addition, beyond utilizing
pruning to improve efficiency or transferring LTH to another unexplored setting, our primary focus is
to offer interpretations for tensor product interactions.

4 Exploring the design space of tensor products
Now, we lay down a foundational rationale for considering tensor products in the construction of
equivariant layers. The insight is drawn from a basic fact known as the universal property of the
tensor product (Procesi, 2006).

The Universal Property. A tensor product on vector spaces V and W is a bilinear map from
V ×W to a vector space denoted as V ⊗W ,

⊗ : V ×W → V ⊗W, (v, w) 7→ v ⊗ w,

such that for every vector space Z and every bilinear map h : V ×W → Z, there uniquely exists a
linear map ĥ : V ⊗W → Z such that h = ĥ ◦⊗. The tensor product ⊗ and the vector space V ⊗W
uniquely exist up to isomorphism.

𝑉×𝑊 𝑉⨂𝑊

𝑍
ℎ

⨂

'ℎ

Figure 1: Commute diagram illustrating the universal property of the tensor product.

As illustrated in Fig. 1, the tensor product ⊗ on V ×W can be seen as an intermediary such that any
bilinear function from V ×W to Z can be uniquely transferred to some linear function from V ⊗W
to Z. Since any linear function can be seen as a special bilinear function with the other input fixed
(arbitrarily), we can shift our design target from linear equivariant functions to bilinear equivariant
functions. Next, the universal property allows working with tensor products (equivariance guaranteed
via tensor product representation) and linear equivariant functions on the tensor product space. While
this framework seems to complicate matters by taking an unnecessary detour, it does lead to many
added benefits:

• Linear equivariant functions on the tensor product space can sometimes be more convenient
to parameterize than those on the original space. For example, Pearce-Crump (2023) directly
identifies a spanning set of matrices for linear equivariant functions on tensor power spaces
of Rd.

• It enhances flexibility in architecture design by allowing an extra level of freedom in
choosing how the other input interacts within the architecture.

• It unifies existing tensor product designs under one common framework. For instance,
SEGNN’s fully connected tensor product layers adopt the CG tensor product with one input
fixed as the spherical harmonics, followed by fully connected linear mappings at the level
of individual steerable components. Besides, augmenting the linear mapping by non-linear
invariant weights recovers self-attention and radial bases.
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We strive to draw attention to the fact that this conceptual framework can be flexibly adapted to cater
to varying needs. As we will demonstrate in the next section, we may replace spherical harmonics
with a concatenation of steerable features to achieve a balance between efficiency and efficacy.

5 Sparsifying tensor product layers
Consider a graph G = (V, E). Let each node vi ∈ V be associated with a 3D coordinate xi and a
steerable feature f̃i in Rd. The node update procedures of EGNN and TFN can be rephrased as

EGNN: x′
i = xi +

∑
j∈N (i)\{i}

α(||xi − xj ||2)(xi − xj),

TFN: f̃ ′i =
∑

j∈N (i)

Wãij
(||xi − xj ||2)f̃j ,

where α(·) is a scalar function and the mapping f̃i 7→ Wãij (||xi − xj ||2)f̃i represents a CG tensor
product layer parameterized by learnable weights that depend on ||xi − xj ||2: the tensor product
involves f̃i and the spherical harmonics embedding

ãij :=
⊕
l≥0

Ỹ(l)
(

xj−xi

||xj−xi||

)
, where Ỹ(l) =

Y
(l)
−l
...

Y
(l)
l

, Y (l)
m : S2 → R, ∀m ∈ {−l, ..., l}.

The distinction between the two models in the use of f̃j and (xi −xj) can be ignored for our purpose,
as they handle different equivariant targets. Two observations can be made from the above contrast:
(1). Wãij (||xi − xj ||2) is a matrix; (2). the scalar α(||xi − xj ||2) can be equivalently seen as
α(||xi − xj ||2) I, where I is the identity matrix. By comparing the formulation of α(||xi − xj ||2) I
and Wãij

(||xi − xj ||2), we notice that EGNN’s update layer resembles a sparse version of TFN’s
tensor product layers. From this respect, we interpret the phenomenon of EGNN outperforming TFN
as suggesting that complicated cross-order interactions may be redundant.

In addition, DimeNet++ manually extracts relative distances and inter-atomic angles to account for
directional geometric information (Klicpera et al., 2020a), resulting in even better performance when
predicting invariant targets. While propagating solely a manual extraction of scalar features results
in the loss of certain geometric information, DimeNet++ still massively outperforms TFN, which is
theoretically universal (Dym and Maron, 2021). One interpretation is that those manually extracted
features encode a geometric inductive bias. Such a bias might enhance performance when it aligns
with the underlying reality, even if universality is not attained.

These insights directly motivate two strategies designed to boost efficiency:

1. Removing redundant tensor product interactions (which we address in Sec. 6).
2. Redesigning the tensor product layer to incorporate better inductive bias.

To illustrate the second strategy, we will generalize the inductive bias adopted by EGNN by referring
to the conceptual framework outlined in Sec. 4. Note that EGNN only propagates the relative
distance between two nodes within the message function: ||xi − xj ||2 ≡ xT

i xi + xT
j xj − 2xT

i xj .
Transferring to steerable features, this is analogous to using a linear combination of the scalar tuple(
f̃Ti f̃i, f̃

T
j f̃j , f̃

T
i f̃j

)
. Suppose f̃i splits into steerable components {f̃ (l)i }l. We may generalize by

considering the effects of those channels separately:(
{f̃ (l)Ti f̃

(l)
i }l, {f̃ (l)Tj f̃

(l)
j }l, {f̃ (l)Ti f̃

(l)
j }l

)
.

This inductive bias can be seen as an instance of our tensor product network as follows: each tensor
product takes two copies of f̃i ⊕ f̃j as inputs, forms the CG tensor product

(
f̃i ⊕ f̃j

)
⊗CG

(
f̃i ⊕ f̃j

)
,

and linearly maps to
(
{f̃ (l)Ti f̃

(l)
i }l, {f̃ (l)Tj f̃

(l)
j }l, {f̃ (l)Ti f̃

(l)
j }l

)
. Nevertheless, the computational cost

is merely O(L2) (due to the inner product) in contrast to the original cost of O(L6).

One may further augment the learning process by sending the output scalar tuple into a nonlinear
mapping, such as an MLP, to learn cross-order interactions. In this manner, the design differs from the
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original tensor product in that it replaces the spherical harmonics embedding in one of the inputs with
another copy of feature concatenation; it also diverges from EGNN in that cross-order interactions can
be learned. We hope that our conceptual schemes provide new insight that facilitates more flexible
designs.

6 Pruning tensor product interactions
Absorbing insight from MLP pruning (Han et al., 2015) and the Lottery Ticket Hypothesis (LTH)
(Frankle and Carbin, 2019), we detect redundancy in tensor product interactions through a self-
supervised pre-training procedure. We compare the baseline with two schemes for pre-training the
interaction weights:

• L1 loss with one-shot pruning: training with L1 loss and pruning once at the end.
• Global unstructured iterative magnitude pruning (IMP).

Since winning tickets typically occur in the early iterations (Tanaka et al., 2020), we only pre-train
for a small number of epochs, so the pre-training schemes do not impose too much additional cost.

If the performance on the test set does not deteriorate when certain tensor product interactions
are removed, then the corresponding interactions might be redundant. Since the proposed pruning
schemes tend to drive useless weights towards zero, we can measure the importance of each type of
interaction based on their relative sparsity induced by the pre-training procedure. Furthermore, we
can examine the distributions of the learned weights associated with each type of interaction under
varying L1 loss to investigate how they behave in response to different levels of compression.

Analogous to LTH, we also compare the baseline with two schemes for retraining given the pruning
mask from pre-training: random reinitialization, and reusing the initialization during pre-training.
The retraining serves two purposes: (1). verifying that winning tickets can be identified in this setting,
so the conclusions also apply to the full model according to LTH; (2). testing the effectiveness of
pruning as a self-supervised method to learn customized interaction modes from the dataset.

While our proposed schemes are relatively basic, we stress that our objective extends beyond merely
transferring pruning and LTH to another uncharted setting. Instead, we employ pruning as a method
to examine the properties of steerable components, hoping to provide guidance towards effective and
efficient equivariant designs.

7 Experiments
Baseline choices. We have chosen SEGNN and Equiformer as our baseline models due to their
specialized tensor product designs. SEGNN leverages non-linear message exchanges across steerable
components of different orders, which makes it well-suited for evaluating the role of cross-order
interactions. Equiformer utilizes MLP attention and depth-wise tensor product layers, offering
improved efficiency and an additional inductive bias compared to SEGNN’s fully connected tensor
product layers. We will use SEGNN as our primary baseline and consider Equiformer for comparison.

While SEGNN has performed ablation studies regarding dimensions of representations, their experi-
ments only tested against the two band limits controlling the maximum orders used. This reveals
neither whether fully connected interactions are needed nor whether lower orders are more important
than higher orders.

Dataset. We test our experiments on regressing the isotropic polarizability, denoted as α, from the
QM9 dataset (Blum and Reymond, 2009; Montavon et al., 2013), which comprises small molecules
containing up to 29 atoms. Each atom is represented by its 3D position coordinates and one-hot
encoding of its atomic type (H, C, N, O, F). Prediction performance is measured in terms of the mean
absolute error (MAE) between predicted values and true values.

Baseline setup. Important parameter choices in the original implementation of SEGNN include

lh=2, la=3,weight_decay=10−8, epoch=1000, scheduler=MultiStepLR([0.8, 0.9] ∗ epoch),

where la denotes the maximum order in the spherical harmonics embedding and lh is the band limit
for hidden features (lh = 2 means steerable components of types greater than 2 in the hidden features
are discarded). It is important to mention that SEGNN maintains an equitable number of weights in
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Figure 2: Impact of L1 regularization on validation data (left): the number in the legend indicates the
corresponding multiplying factor of the L1 loss. Investigation of the impact of L1 loss on sparsity
and test performance (right).

CG tensor product layers, ensuring that larger values of l do not result in extra weights. This enables
a fair and direct comparison between different orders.

We pre-train the network using epoch = 50. Reproducibility experiments have been done to ensure
that predictions with epoch = 50 are relatively stable with a standard error of 0.0053. For a fair
comparison, other variables are unchanged in our experiments. After full training, the set of model
parameters that leads to the lowest validation error is used to evaluate on the test set.

Pruning implementation. Throughout the experiments, we only apply pruning and L1 loss to
learnable weights of the fully connected tensor product layers (not including biases). L1 loss with
one-shot pruning is implemented by first adding an L1 loss with a multiplying factor (set as a
hyperparameter) and then setting weights below a specified threshold to zero after training. We
disable weight decay during L1 loss training. The global unstructured IMP is implemented at intervals
of x epochs with a maximum of y shots, where diverse choices of x and y are tested; each time,
we prune the same percentage among the remaining unpruned weights. Overall, we find that IMP
produces similar outcomes as L1 loss with one-shot pruning. Since IMP does not offer additional
insights for our objectives, we choose not to present its results.

L1 loss pre-training with one-shot pruning. Fig. 2 (left) allows us to identify key levels of L1
regularization that act as watersheds: L1 loss with a multiplying factor in the range [0.01, 0.05] gives
an approximate upper bound that improves or maintains a competitive performance compared to the
baseline, and multiplying factors greater than 0.05 lead to poorer performance. To identify a proper
pruning threshold, we generate 50 evenly spaced numbers over the interval (0, 0.1) and respectively
set weights below these numbers to zero. We then evaluate the test MAE for each of the pruned
models. Fig. 2 (right) plots the test MAEs against sparsity. By considering both plots, we determine
that L1=0.005 is the optimal level of regularization. Under this setting, the pre-training procedure
induces a sparsity of up to 40% without compromising performance, which reveals the presence of
redundancy.

Scalability. We repeat the same pre-training procedure for larger orders. For lh = 3, la = 4,
we find that 87% of weights can be pruned without compromising performance compared to the
baseline for lh = 3, la = 4. Moreover, we observe that applying pruning to higher-order settings
does not lead to better performance than directly pruning lh = 2, la = 3. Since the total number of
weights is equitable across different choices of orders, our observations imply that redundancy is more
prominent when higher-order components are present. This leads to the speculation that higher-order
components may be less effective at encoding geometric information when the prediction target is a
scalar.

Lotter ticket hypothesis. To check that our conclusions drawn from the pre-training procedure
apply to the full model, we verify LTH by comparing two schemes for retraining the pruned models:
random reinitialization, and reusing the initialization during pre-training. Fig. 3 illustrates two
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Figure 3: Baseline vs. retrained pruned models using two reinitialization schemes. lh = 2, la = 3
(left) are retrained for 250 epochs, whereas lh = 3, la = 4 (right) are retrained for 200 epochs.

phenomena: (1). reusing the initialization from pre-training works better than random reinitialization;
(2). reusing the initialization from pre-training enables the pruned network to converge faster than the
baseline while not losing accuracy. The occurrence of these two phenomena confirms LTH in our
setting, thus justifying the use of pre-training with pruning in diagnosing the full model.

Relative importance of tensor product interactions. We assess the importance of tensor product
interactions (conditional on the L1 loss) by calculating the sparsity of the corresponding path when
the model is pruned at the maximum threshold such that model performance does not deteriorate.
The smaller the sparsity induced by the L1 loss, the more significant the interaction. The relative
importance between any two types of interactions can then be computed by the inverse ratio of their
sparsity scores. Table 1 presents the smallest five sparsity scores at lh = 3, la = 4.

Table 1: Top five sparsity scores for SEGNN in ascending order at lh = 3, la = 4. L1=5×10−3

maintains competitive performance as the baseline, L1=5×10−2 performs slightly worse than the
baseline, and L1=5×10−1 performs significantly worse than the baseline.

L1=5×10−3 L1=5×10−2 L1=5×10−1

Path Sparsity Path Sparsity Path Sparsity

(0e, 0e, 0e) 0.0789 (0e, 3o, 3o) 0.4419 (0e, 3o, 3o) 0.8881
(3o, 3o, 0e) 0.1001 (0e, 2e, 2e) 0.4671 (0e, 2e, 2e) 0.9158
(2e, 2e, 0e) 0.1002 (3o, 3o, 0e) 0.4736 (2e, 4e, 2e) 0.9216
(2e, 0e, 2e) 0.1135 (2e, 2e, 0e) 0.4917 (1o, 4e, 3o) 0.9249
(2e, 4e, 2e) 0.1190 (0e, 0e, 0e) 0.5021 (2e, 3o, 3o) 0.9292

Table 1 highlights an interesting pattern: many paths take the form of (le, le, 0e), indicating the
significance of intra-order interactions with scalar outputs. As the L1 regularization gets stronger,
interactions with higher output orders become more prominent. When the regularization is so
strong that performance seriously deteriorates (L1=5×10−1), scalar-output interactions lose their
leadership. We interpret this observation as suggesting that intra-order interactions with scalar outputs
are naturally more effective than cross-order interactions in encoding important information (at
least when the prediction target is a scalar). As a result, modifying the baseline architecture to
more effectively leverage intra-order interactions (with scalar outputs) could lead to both higher
cost-efficiency and improved performance. This, in turn, motivates the use of designs such as inner
products and self-attention.

Meanwhile, we speculate that different orders of steerable components carry varying information
capacities that suit different compression rates. High-order components carry more information than
low-order ones, but the equivariant constraints render high-order components cost-inefficient, so
trained models naturally prefer low-order ones unless there is a restriction on the number of weights.
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As a result, mild L1 regularization encourages the network to prioritize low-order components,
whereas radical L1 regularization forces the network to resort to high-order ones.

Equiformer. As a comparison, we repeat the experiment on Equiformer, which has a stronger
inductive bias compared to SEGNN. The impact of pruning appears less pronounced for Equiformer,
with a decline in performance observed even with the removal of just 25% of the weights. This is
understandable as Equiformer leverages a more compact design due to depth-wise tensor product
layers. Moreover, Table 2 shows that the sparsity scores of intra-order interactions with scalar outputs
are massively lower than others for all three levels of L1 regularization. Given Equiformer’s heavy
reliance on self-attention, this notable disparity in sparsity scores affirms the indispensable role
of attention in Equiformer’s design. Overall, our diagnosis indicates that Equiformer’s design is
reasonably effective.

Table 2: Top five sparsity scores for Equiformer in ascending order. L1=5×105 and L1=5×10−4 lead
to competitive performance as the baseline, whereas L1=5×10−3 results in slightly worse outcomes.

L1=5×10−5 L1=5×10−4 L1=5×10−3

Path Sparsity Path Sparsity Path Sparsity

(1e, 1e, 0e) 0.0104 (2e, 2e, 0e) 0.0208 (2e, 2e, 0e) 0.1875
(2e, 2e, 0e) 0.0208 (1e, 1e, 0e) 0.0234 (0e, 0e, 0e) 0.2382
(0e, 0e, 0e) 0.0855 (0e, 0e, 0e) 0.0979 (1e, 1e, 0e) 0.2396
(1e, 1e, 1e) 0.1667 (2e, 1e, 1e) 0.2031 (2e, 0e, 2e) 0.4309
(2e, 2e, 1e) 0.1667 (0e, 2e, 2e) 0.2101 (1e, 0e, 1e) 0.4433

8 Conclusion
We proposed a conceptual framework that highlights the flexibility in the design space of tensor
product networks, providing a foundational rationale for considering tensor products in the construc-
tion of equivariant layers. We have also revealed the existence of redundancy within tensor product
interactions in the baseline model. Our attempt to employ a pruning procedure as a tool for examining
redundancy and measuring the relative importance of tensor product interactions serves as an initial
step towards a better understanding of their impact on model performance.

Future work. We hope that our conceptual framework and pruning procedure provide valuable
insights into the role of tensor product interactions, offering customizable guidance for the efficient
and effective design of future tensor product networks. Future directions of work also include
conducting experiments to explore the behaviour of tensor product interactions in different settings,
such as when the prediction target is a vector.
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