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Abstract

Experimental methods for estimating the
impacts of text on human evaluation have
been widely used in the social sciences.
However, researchers in experimental set-
tings are usually limited to testing a small
numbers of pre-specified text treatments.
While efforts to mine unstructured texts
for features that causally affect outcomes
have been ongoing in recent years, these
models have primarily focused on the top-
ics or specific words of text, which may
not always be the mechanism of the effect.
In this paper, we extend these efforts and
present a flexible model utilizing convolu-
tional neural networks for discovering clus-
ters of similar phrases in text that are pre-
dictive of human reactions to those texts.
When used in an experimental setting, this
method can identify candidate text treat-
ments and effects under certain assump-
tions. We apply our model to two data
sets. The first concerns censorship of social
media posts and enables direct validation
of our model. The second investigates com-
plaints to the Consumer Financial Protec-
tion Bureau, and demonstrates the model’s
ability to flexibly discover text treatments
with varying textual structures.

1 Introduction

Text impacts outcomes and decisions in many
domains. Researchers have investigated the ef-
fects of campaign messaging on voting (Arce-
neaux and Nickerson, 2010), news story fram-
ing on public opinion (Druckman, 2001), post
content on censorship (King et al., 2014),
clinical notes on diagnoses and treatment
(Sheikhalishahi et al., 2019), and written pro-
files on citizenship decisions (Hainmueller and
Hangartner, 2013), to name a few examples.
Most experimental methods for estimating the
effects of text on human evaluation randomly

assign some subjects to a treatment text that
is edited in a particular way to be different
from a control text. Researchers typically
must confine experiments to a small number
of text treatments to preserve power, rein-
forcing the importance of choosing effective
treatments. These treatments are often cho-
sen subjectively, which may be detrimental to
the study if treatments are ineffective or lack
external validity. Recent literature in com-
putational social science has sought to ran-
domly assign unique texts to respondents and
then discover treatments from these unstruc-
tured texts that have an effect on an out-
come of interest (Fong and Grimmer, 2016;
Pryzant et al., 2018). Our approach builds
on these efforts by utilizing pre-trained contex-
tualized word embeddings to learn influential
phrases of varying lengths, rather than being
constrained to learning document-level sets of
topics or to a set of particular words. Addition-
ally, our model can accommodate the inclusion
of covariates to account for other meta-data
that may influence the outcome.

While this model is motivated by experi-
ments that target causal effects of text, these
effects can only be estimated under rather
stringent assumptions. As a result, we sug-
gest this model to be used to aid researchers in
discovering relevant text treatments to test in
confirmatory analyses, as an alternative to sub-
jectively posing text treatments. To this end
it builds on recent advances in self-explaining
models (Alvarez Melis and Jaakkola, 2018)
and interpretation of model structures (Lyu
et al., 2023).

We demonstrate the ability of our model to
identify influential aspects of text by applying
it to two data sets. The first consists of social
media posts on Weibo, where the outcome of
interest is post censorship. Censorship of these



posts can be tested against an API with ac-
cess to a set of known blacklisted keywords,
enabling clear validation of our model. In our
second application, texts are complaints sub-
mitted to the Consumer Financial Protection
Bureau (CFPB), and the outcome of interest
is whether a complainant received a timely re-
sponse. This application highlights the com-
plexity of human decision making based on
text, and the capacity of our model to learn
predictive text features of various structures.

2 Related work

While much of the related social science work
has focused on learning latent “features” of
a text and using those as a treatment, most
NLP work has focused on improving the in-
terpretability of black-box predictive models.
This paper bridges the gap between these two
by using explainable ML methods to flexibly
discover latent treatments in text and discover
the effects of their inclusion.
Computational social science/causal in-
ference Prior work has generated methods to
both discover treatments and estimate their
effects simultaneously (Fong and Grimmer,
2016; Pryzant et al., 2018; Egami et al., 2018;
Fong and Grimmer, 2021; Feder et al., 2022).
These models have typically focused on esti-
mating either topics or individual words as
treatments. Our model extends this work by
allowing groups of similar phrases — instead
of topics or unique words — to be identified
as treatments. Fong and Grimmer (2016)
apply a supervised Indian buffet process to
both discover features (topics) and estimate
their effect on an outcome in an RCT setting.
Pryzant et al. (2018) approach a similar prob-
lem but use n-gram features instead of topics
and use a neural architecture with a method
for extracting feature importance from the
weights of the network. While their primary
focus is on adjusting for text confounders,
we focus on capturing concepts which can be
flexibly expressed across a variety of differ-
ent length n-grams. Our approach will work
particularly well in instances where the out-
come may be caused by flexibly expressed, but
relatively short concepts instead of particular
words or the full topical content of the text.
Interpretable NLP In recent years many

methods have been proposed to interpret
and explain NLP models, as well as meta-
evaluations of those methods (Lei et al., 2016;
Alvarez Melis and Jaakkola, 2018; Rajagopal
et al., 2021; Alangari et al., 2023; Crothers
et al., 2023; Lyu et al., 2023). These methods
almost all focus on explaining and interpreting
predictions at the level of individual samples.
In contrast, our method is designed to learn
and interpret broader patterns that occur at
the corpus level. In this respect, Rajagopal
et al. (2021) is closest to our work in their
pursuit of learning global influential concepts
across texts, though our approaches differ. For
our purposes, our interpretation methods are
more intuitive in their relative simplicity, and
our model learns “global concepts” adaptively
as convolutional neural network filters, rather
than requiring global concepts to exist as n-
grams in the original training data.

Individual words and tokens are not human-
interpretable or individually persuasive, so like
Alvarez Melis and Jaakkola (2018) we force
the network to have an interpretable final
layer after a representation learning compo-
nent. Their goal is for the representations used
in the linear classification layer to satisfy the
fidelity, diversity, and grounding conditions.
Our goals are different however-rather than
trying to understand why the network made
the prediction it did, we seek representations
of features which scientists can use in follow-
up experiments.

3 Extracting influential text from
latent representations

Our goal is to extract clusters of phrases
that represent latent, generalizable treatments
that affect a particular outcome. To do
this, we imagine that N texts (7;) are ran-
domly assigned to a process through which
they are mapped to an outcome (Y;). Let
1 also index the individual evaluating text 1.
We seek to identify and estimate the effect
of an m-dimensional latent representation of
those texts (Z;) which summarizes clusters of
phrases or concepts that are likely to influence
the outcome in repeated experiments. We re-
fer to Z; as “text treatments” for text 7. For
example, each element of Z; could represent
the presence or absence of a certain phrase or



topic, with Z; € {0,1}". Z; could also con-
tain real-valued elements indicating continu-
ous text features like similarity to a certain
vocabulary or alignment with a concept.

To simulate a sequential experimental set-
up, we follow Egami et al. (2018) in splitting
our sample into training and test sets. We first
train our model, using cross-validation within
the training set for tuning and model selection.
We then use the test data set to interpret the
latent text treatments discovered and estimate
their effects on the outcome under additional
assumptions. Our main contribution concerns
this first stage: a model which identifies a map-
ping between text data and text treatments
(Z;) which predict the outcome of interest.

Fong and Grimmer (2016, 2021) outline the
conditions under which this process identifies
causal effects of the text treatments on the
outcome when treatments are binary. They
suppose that: 1) an individual’s treatment de-
pends only on their assigned text, 2) the la-
tent features captured by the model are suf-
ficient to predict an evaluator’s response, 3)
there is a nonzero probability of each evalu-
ator receiving any of the possible text treat-
ments (Z;), given unmeasured text features!,
4) texts are randomly assigned and 5) that la-
tent treatments are not perfectly collinear. If
these assumptions hold in our setting, we can
also identify treatment effects of the discov-
ered latent features. Following the methodol-
ogy of Fong and Grimmer (2016), these may
be estimated using linear regression under the
additional assumption that the m text treat-
ments do not interact with each other, in ad-
dition to linear modeling assumptions in the
case of continuous treatment variables.? How-
ever, since it is difficult to assess whether these
assumptions hold — particularly assumption 2
— we recommend that when possible, practi-
tioners use our method to suggest potential

'For real-valued treatment variables, this assump-
tion should be modified to require that the probability
density function of the treatment vector is nonzero

®Fong and Grimmer (2016) consider the Average
Marginal Component Specific Effect, which captures
the effect of changing one text treatment while aver-
aging over values of all others. For continuous treat-
ments, the process would identify a similar effect cap-
turing the marginal effect of incrementally increasing
a text treatment. If covariates are included in the neu-
ral network model, researchers may choose to include
them in the regression model as controls as well.

treatments for study in a more controlled ex-
perimental setting.

4 Methodology

We propose a neural network architecture that
utilizes convolutional structures to identify in-
fluential text (Figure 1). As the convolu-
tional layers learn latent text representations,
sample-level covariates may also be incorpo-
rated into the model to provide additional non-
textual information.

4.1 Contextual encoder

We use pre-trained BERT models (Devlin
et al., 2019) to tokenize our input text samples
(T;) and to obtain context-dependent embed-
dings of tokens by extracting the models’ final
hidden states. We denote these embeddings by
€ij € RP, where i indexes each text sample, j
indexes tokens (u; j), and D represents the em-
bedding dimension. With accessibility for so-
cial scientists in mind, we work with reduced-
size models (Jiao et al., 2020), and do not per-
form fine-tuning. Researchers with fewer con-
straints on their computational budgets may
find improved model performance from using
larger models and/or fine-tuning these models
on their outcome of interest. Any model pro-
viding text embeddings could be substituted
for BERT. However, we do recommend us-
ing models that encode context between to-
kens. We perform the embedding step just be-
fore creating a train-test split, but researchers
who choose to fine-tune their embedding mod-
els should reverse these steps to fine-tune and
train only on the training set.

4.2 Model architecture

Once obtained from BERT, sequences of in-
put text embeddings {e; ;}; for each text are
passed to a one dimensional convolutional
layer C, or a series of M such layers in par-
allel (C), each with flexible kernel size K; and
F filters. The number of parallel convolutional
layers is determined by the number of unique
kernel sizes to be considered.

In the text representation learning prob-
lem, each filter learns some latent textual fea-
ture. These features could correspond to cer-
tain vocabulary usage, grammatical structure,
or tone, for example. The number of filters
F per layer can be adjusted, with more filters
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Figure 1: Model architecture

corresponding to learning more latent text fea-
tures. In our implementation all convolutional
layers learn the same number of filters. The
kernel size K determines the size of the filter
window, or the length of phrases considered
by each convolutional layer. A filter f in a
layer C' with K = 5 tests the extent to which
the representation learned by f is present in
five-token phrases of the input text. For each
phrase p1,...,pp with P =U — K + 1 and fil-
ter f, the convolutional operation produces a
new feature g(w-p; +b), where w and b are the
learned weights and bias respectively for filter
f, and g is the sigmoid activation function. We
refer to these features as “filter activations”.
The filter activations a; ; € R? are summa-
rized per text sample by max pooling layers,
which keep only the highest activation across
a text’s phrases per filter. The max-pooled
activations ap ooled ¢ R are then concatenated
across the parallel convolutional layers. If co-
variates are included in the model, those are
concatenated as well. These activations and
covariates x1, ...,z are passed to a final fully
connected layer, where a weighted average of
these values is pushed through an activation
function (in our applications, sigmoid). These
final activations correspond to the model pre-
dictions.

4.3 Training

The model is trained with respect to binary
cross-entropy loss and Adam optimizer. Con-
volutional layer kernels and the final fully con-
nected layer are subject to L2 and L1 regu-
larization, respectively. Convolutional layers
additionally receive custom activity regulariza-
tion which penalizes the maximum correlation
between two filter activations. This penalizes
models that learn redundant filters (as mea-
sured by high correlation) to encourage convo-
lutional layers to identify a larger number of
distinct text features (Appendix A: Figure 2).

Hyper-parameters are determined according
to a five-fold cross validation procedure us-
ing the training set. Because the motivation
of these models is primarily interpretation of
learned features, rather than prediction per-
formance, model selection is more subjective
than simply choosing the highest accuracy pa-
rameter settings. We selected models based
on a combination of accuracy, degree of cor-
relation between filter activations (i.e. feature
redundancy), and the number of “useful” fil-
ters learned. Parameter settings for the mod-
els selected in our applications are reported in
the appendix.

The final model selected is then re-trained
using the entire training set with a randomly
sampled 20% serving as the validation set, and
is assessed using the unseen test set.

4.4 Identifying and testing influential
text features

The filters of the model’s convolutional lay-
ers are trained to learn representations of text
that are predictive of the outcome. To inter-
pret the learned latent representations of the
model and discover text treatments (Z;) for
each text, we utilize three model components:

1. The output filter activations of each text
sample’s phrases for each filter f (a; s);

out

2. The output weights, w €

F-M+L.
RE-M+L

layer

3Some models learn filter weights that produce near-
identical activations across samples. As these filters
do not meaningfully distinguish outcome predictions
between texts, they are not useful for interpretation.
We identify these filters by assessing the range of filter
activations. We omit filters with ranges less than a
threshold ¢ = 0.05 wide.



3. The input text samples (75).

The filter activations represent how strongly
each phrase corresponds with the text rep-
resentation learned by each filter. The fi-
nal output layer weights determine how each
text representation contributes to the ulti-
mate outcome prediction. Finally, the orig-
inal input text samples provide context for
the phrases that activate highly on each fil-
ter. This last component is most subjective
to interpretation. Because input text em-
beddings are context-dependent via the pre-
trained BERT models, each phrases’ embed-
dings contain more information than just the
text tokens that make up the phrase, which
lack the context of the rest of the sample. How-
ever, due to the difficulty of interpreting text
embedding dimensions, the context that hu-
man readers assign to phrases when reading
an entire sample may not align with context
encoded by the embedding models.

To facilitate interpretation of the general
concepts and patterns that each filter has
learned and to assign manual labels to each
filter, we pull phrases from the test sample
which have the highest filter activations for
each filter and refer to the corresponding full
text samples for context. We verify how these
concepts are related to the outcome by the cor-
responding final output layer weights, and by
the relationship between the filter activation
values and the true outcome values.

The objective of this interpretation process
depends on whether the researcher wishes to
directly estimate the effects of the identified
latent features in the test set under assump-
tions described in Section 3, or if they wish
to discover concrete text features to test in a
follow up experiment. In the first scenario,
the max-pooled filter activations (af: (}Ole‘i) may
be considered directly as the sample-level la-
tent text treatments (Z;), with the total num-
ber of filters across convolutional layers corre-
sponding to the dimension m of the treatment
vector. Researchers could also choose to bi-
narize these features, for example by defining
Ziy = l[af"}‘)le‘i > EL’}OOZ@d} where EL]}OOled is the
median of (a}’ if’led). This avoids the more strin-
gent modeling assumptions needed for estimat-
ing effects of continuous treatments, though it
may complicate interpretation. In either case,

this process provides the researcher an under-
standing for what the latent text treatments
represent and therefore the effects that they
are estimating. In the second scenario, we see
model interpretation as a more general tool
to guide the researcher’s process for obtaining
concrete text treatments. Here, a second set
of text treatments, ZZ-, are established which
are not latent in the same sense as Z;, because
researchers control the definition of these treat-
ments. For example, researchers could define
Zi as the inclusion or absence of the manual
labels assigned to each filter as keywords in ex-
perimental texts, or as indicators of different
tones or concepts identified by filters.

4.5 Evaluation methods

In our application of this model to predicting
social media post censorship, we have ground-
truth explanations of which phrases led to cen-
sorship. We show that our trained model and
interpretation methods recover the most com-
monly labeled reasons for censorship. With
our application to the CFPB data set, we com-
pare our findings to those in Egami et al.
(2018), who both discover latent text treat-
ments via topic modeling and test their effects.

5 Experiments

5.1 Weibo post censorship

Dataset and setup For our first applica-
tion, we use a sample of 28,386 Weibo posts
from the Weibo-Cov dataset (Hu et al., 2020).
These are social media posts on the topic of
COVID and were posted in February 2020 on
Weibo.? To obtain the censorship label for
each post, we use the content review API from
Baidu. The API is a classifier that returns the
probability of censorship for each post. The
API only returns a probability of 1 when a so-
cial media post includes words or phrases that
are on Baidu’s blacklist. As the API also re-
turns the flagged keywords and phrases, this
enables us to validate whether our model can
recover keywords and phrases that led to cen-
sorship.

We train our model to predict whether or
not a post was flagged by the API to be cen-

“The creators of this data set anonymized identi-
fiable information in posts to protect the privacy of
individual users.



F wout 5

Top extracted phrases (translated)

Known censored phrase

“[CLS]Wuhan Institute of Virology Party”,“Wuhan Institute

1 14 0.22 of Virology Specialty”,“[CLS]Wuhan Institute of Virology’”,“?  “Wuhan virus”
Created by the Wuhan virus”
“Profiting from national disasters, such people”, “Chinese virus
said that some people”, “Profiting from national disasters, such ~ “Profiting from national
2 13 024 » . . . . 5
as some people”; “Profiting from national disasters, some people  disasters
dare to make money,”
“Secretary of the Provincial Party Committee of a province”,
3 12 025 “Chen Quanjiao of the Poison Institute stated”, “Renowned Sec- “Provincial party secre-
’ ’ retary of the Hubei Provincial Party Committee”, “Remdesi of  tary”
the Poison Institute.”
P . . o w o .
9 091 0.07 Dlag.r}oub anfl S}}II}‘CheOH‘]l Teaching”, “Always .Walgmg for Shin “Shincheonji Church”
cheonji Teaching”, “No guarantee of payment time
10 0.77 0.11 “Jiang Chaoliang is in Wuhan” “Jiang Chaoliang”

Table 1: Frequent censorship rationale is learned by the model. The first column distinguishes filters in

pooled

order of the second column, the weight assigned to max-pooled filter activations a; ;" in the final model

layer. The third column shows the coefficients from regressing the labels on a” ‘}Ole‘i. The fourth column
lists filters’ unique top 4 most associated phrases from the test set. The fifth column associates each filter

with a commonly reported censored phrase.

sored with probability 1. Although this out-
come is not determined by direct human deci-
sion making, it reflects a more general policy
of censorship, and allows us to validate our
model with the outcome explanations. We can
view the keyword and phrase blacklist as a de-
cision maker that is perfectly consistent with
these human-defined preferences. To tokenize
and embed these texts, we use a pre-trained
BERT Chinese language model provided by
the Joint Laboratory of HIT and iFLYTEK
Research, MiniRBT-h288 (Yao et al., 2023).
This model has an embedding dimension of
288 and 12.3M parameters. The embeddings
from the BERT model’s last hidden state are
used as the input features to our model archi-
tecture (see Figure 1). Examples of posts in
this data set, their censor probabilities, and
their censor words (when applicable) with En-
glish translations are shown in Appendix A Ta-
ble 3. Appendix A Table 4 shows the top 10
censor words across all censor-probability-one
samples, their translations, and the proportion
of censored samples corresponding to each.

Results The trained model obtains an accu-
racy score of 0.87 on the test set. This per-
formance indicates that the model has learned
useful representations of Weibo posts from this
time period which are predictive of censorship.

5Model is licensed under Apache License 2.0.

We highlight our interpretation of the most
relevant representations in Table 1, with inter-
pretation of all representations included in Ap-
pendix A Table 7. We find that the two most
commonly censored phrases, “Wuhan virus”
(23.9% of censored posts) and “national crisis”
(4.9% of censored posts) are clearly identified
by the model in the first and second model fil-
ters — the phrases which activate most highly
on these filters contain almost exactly these
phrases. The max-pooled activations for these
filters also contribute the most to the model’s
final prediction of censorship, as seen in the
w column of this table. The most highly-
activating phrases for filters 3 and 9 share in
common two other known censored phrases,
“Provincial party secretary” and “Shincheonji
Church,” and the highest activated phrases for
filter 10 concentrate exactly around the same
phrase, which relates to a fifth known censor
phrase “Jiang Chaoliang.” The complete set of
representation interpretations in Appendix A
demonstrates that there is some amount of re-
dundancy in the keywords learned by filters.
Their differences in sentence structure and con-
text could be illuminating in other settings,
though in this case we know that it is solely
the inclusion of these phrases which affects the
outcome. As a proof-of-concept, we include
the effect estimates we obtain by regressing the
labels on the max-pooled filter activations of



the test sample texts, though assumptions for
identification of a causal effect are not met (for
one, texts are not randomized amongst evalua-
tors). Though the magnitude of the estimated
effects differ from the output layer weights (in
large part because the output layer weights
correspond to a sigmoid rather than linear ac-
tivation), they are in relative agreement about
which text treatments are found to be most in-
fluential for censorship.

Model validation We find that this model
and our interpretation methodology success-
fully recovers the phrases which cause the most
posts to be censored. In a setting without
oracle knowledge of the censored phrases, we
feel confident that researchers would be able
to use this model to determine at least five
of the most common censored phrases with
only access to the posts and the final outcome
variable. We ran additional evaluations which
demonstrated that almost all of the top 10
phrases were learned to be influential by the
model, even if some were less easily identifi-
able in our interpretation process. In these
evaluations, the trained model received two
constructed data sets containing placebo text
data and text data containing one of the top
censored phrases. In one data set, the placebo
texts are fully randomly sampled sequences of
characters while the test texts also include an
embedded censored keyword. In the other,
the placebo texts are movie reviews from an
unrelated data source, and test texts are fake
Weibo posts containing censored phrases gen-
erated by ChatGPT. In both evaluations, texts
with embedded censored phrases obtain much
higher median filter activation values com-
pared to the placebo texts for all but two of the
top 10 censor phrases (Appendix A Figures 3
and 4).

5.2 Consumer Financial Protection
Bureau complaint response

Dataset and setup For our second applica-
tion, we use a dataset from Egami et al. (2018)
of 54,816 consumer complaint narratives sub-
mitted to the Consumer Financial Protection
Bureau® from March of 2015 to February of

5Data is publicly available for download at:
https://www.consumerfinance.gov/data-research/
consumer-complaints/. The CFPB removes personal
information from complaints.

2016. The outcome variable indicates whether
or not the complainant received a timely re-
sponse from the company filed against. Due to
strong imbalance in the outcome variable, we
proceed with a subsample of complaints which
received a timely response (5136 timely and
1712 non-timely responses) combined with a
class-weighted loss function, which we found
to perform best during training in terms of
the F1 score. We also utilize product type in-
formation included in the dataset as an addi-
tional set of covariates, which describes which
financial product the complaint concerns (ex.
mortgage, debt collection). To tokenize and
embed the complaint texts, we use a pre-
trained BERT English language model trained
by Google Research (Turc et al., 2019; Bhar-
gava et al., 2021). To obtain word embeddings,
we use the last hidden states from bert-tiny’,
which has an embedding dimension of 128 and
4M parameters.

Results The trained model obtains an accu-
racy score of 0.73 and an F1 Score of 0.59 on
the test set. Given the limited size of the data
set used, the class imbalance, and the relative
complexity of this learning task, it is not com-
pletely surprising that this model achieves a
lower performance compared to the previous
application. However, we believe that the rep-
resentations learned by the model could pro-
vide meaningful insights to inform a hypothet-
ical researcher seeking to uncover text treat-
ments.

Table 2 summarizes interpretation of the
representations learned by this model. Three
filters which receive a weight of < 0.003 on the
output layer are omitted, as these have little in-
fluence on the model’s predictions. In this ap-
plication, we do not have access to the true rea-
sons that complaints receive or do not receive
timely responses, and can imagine that a vari-
ety of text features could impact this outcome.
We infer that formal or polite language and
references to past attempts for resolution may
be positively associated with timely responses,
and that rehashing conflicts over claims, refer-
encing disputed debt collection, and discussing
frustrating past communications may be nega-
tively associated with timely responses. We
also include effect estimates from regressing

"Model is licensed under Apache License 2.0.
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F wt B Top extracted phrases

Inferred Concept CD plot

“rei mb urse d immediately”, “additionally , ex per Formal laneuage
1 1.6 0.08 ian”, “late fee charged . please”, “contacts lacking leadi guage,
mandatory legal documentation”, “xx , 2015 . please” pleading
“deposit that more than covered”, “connection is Past attempts for
2 14 0.04 dropped and clear”, “been over 30 days since”, “entered . P
every wednesday and there”, “tried on more than xx” resolution -
“that i wrote a check”, “. he claims the address”, “no Conflicting /false
3 -0.92 -0.03 matter what i say”, “. she claimed a reference”, “no laims g
longer need a prep” clarms
“this was a fraudulent debt collector ,”, “i received a
4 -12 -0.05 statement indicating a ”, “i was the victim of identity = Disputed debt col- -
’ ’ theft”, “this battle over a debt that is”, “i owe mon ies lection
for alleged damages”
“voice mail messages stating they have attempted”,
5 .13 013 “was trying to convince my father was”, “of someone Frustrating commu- -
’ ’ who could ’ ve been”, “then started asking why i was nications
been”, “by someone who did not want to”

Table 2: CFPB model interpretation. Columns 1, 2, and 4 correspond to those in Table 1. The third

column shows the coefficient from regressing the label on a

pooled
4

and product type. The fifth column

contains a manual interpretation of the top extracted phrasés. The sixth column displays conditional
density plots for the max-pooled filter activations. The x-axis of these plots represents the activation
value. The y-axis indicates estimated probability of belonging to the positive class (dark gray).

the test set labels against the texts’ corre-
sponding max-pooled filter activations and the
product type covariate as a control. Again, we
believe it is unlikely that the assumptions nec-
essary for causal interpretation of these effects
are met. However, the estimates could still act
a useful tool for a researcher exploring possible
text treatments to test in a follow-up experi-
ment. They align with the final output layer
weights and imply that the inclusion of formal
language/pleading or of references to frustrat-
ing communications may be text treatments
worth investigating further.

Model evaluation The full CFPB data set
was also analyzed in Egami et al. (2018), who
use a topic modeling approach to identify and
test text treatments. The majority of their
identified text treatments align with product
types. Their results imply that the inclusion
of identified “loan” and “detailed complaint”
topics each have the strongest positive effects
on timely response, and that the inclusion of
identified “debt collection” or “threat” (seem-
ingly related to debt collection or credit report-
ing) topics each have a negative effect. These
results supports our finding of a negative as-
sociation between the discussion of disputed
debt collection and timely response, though
the other features that our model identifies

deviate from the topics in Egami et al. (2018).
Another analysis of CFPB data, Pryzant et al.
(2021), finds that perceived politeness in com-
plaints may have a positive effect on reducing
response time, which supports our finding for
the first filter shown in Table 2. The capacity
of our model to detect both of these kinds of
text features - topics and tone - in clusters of
phrases highlights its flexibility at picking up
a variety of different text qualities.

6 Conclusion

We present a new method to discover influ-
ential text features represented by clusters of
phrases of flexible length. Our approach is in-
spired by and builds upon previous work in
computational social science and interpretable
NLP, and provides experimenters with a quan-
titative tool for identifying promising text
treatments to test in follow up experiments.
When researchers are willing to make stronger
identification assumptions discussed in Sec-
tion 3, text treatments identified by using the
model can also be used to estimate causal ef-
fects on the test test directly. Our applica-
tions demonstrate the ability of our model to
learn useful latent text representations and its
capacity to recover known influential text fea-
tures.



Limitations

Small BERT models used out-of-the-box
In this paper, we do not investigate how model
performance could be affected by fine-tuning
the pre-trained BERT models, or by using
larger models to obtain higher dimensional
word embeddings. Future work investigating
how benefits from these changes trade-off with
reduced computational efficiency would be rel-
evant to researchers using this method.

Testing the inclusion of covariates Al-
though including covariates in the final layer
allows us to account for them in model pre-
dictions, the extent to which they allow us
to “control” for document-level features when
learning latent text treatments is unclear. An
analysis of our model’s performance on a set of
texts with known meta-data confounding and
for which effects can be validated would be use-
ful.

Trade-off between experimental costs
and less-interpretable treatments Under
the assumptions discussed in Section 3, re-
searchers may estimate causal effects by di-
rectly testing the identified latent text treat-
ments. This simplifies the experimental
pipeline, but as in Egami et al. (2018) and
Fong and Grimmer (2016), comes with the
drawback of requiring the researcher to some-
what subjectively interpret the identified la-
tent text treatments that are being tested. Al-
ternatively, researchers may use their interpre-
tations of the discovered latent text features
to inspire “manifest” text treatments (ex. spe-
cific keywords, sentence structures) to test in
confirmatory settings. In this case, the text
features being tested would be known and ma-
nipulated by the researcher, allowing clearer
interpretation of effects and weaker assump-
tions. The downside here would be the re-
quirement of researchers to run follow-up ex-
periments.

Incorporating uncertainty in latent
treatments Our paper does not provide guid-
ance for incorporating the uncertainty in-
volved in identifying and estimating the latent
text treatments into causal effect estimates.

Designing experimental texts We gener-
ally recommend using our model to guide the
selection of text treatments for use in follow-

up experiments. Designing experimental texts
to isolate treatments of interest is a non-trivial
task, and is left to the experimenter. In many
cases, it is challenging to imagine altering a
specific part of a text without affecting sur-
rounding text that is not directly manipulated.
This makes it difficult to establish causality
for a specific text feature, rather than for the
aggregate differences between a set of texts.
This is a known challenge of making causal
inferences with text, and relates to the strong
ignorability assumption discussed in Section 3.

Ethics Statement

For any model designed to extract persuasive
concepts, there is a risk that bad actors could
use it to improve their ability to manipulate
others. Many other tools exist which could
presumably be used for this purpose, so we
believe that the benefits of having this model
open source outweigh this risk. An example
of this kind of trade-off can be seen in the
context of the model’ s application to censor-
ship. When governments utilize human cen-
sors, they could potentially use this model to
identify new keywords to add to an automated
censorship blacklist to improve efficiency. On
the other hand, the model can also be used to
reverse engineer the process and reveal censor-
ship policies, as we demonstrate. Acknowledg-
ing the possibility for misuse, we believe that
the opportunities for productive and socially
beneficial application are greater.
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Demonstration of increasing the filter activation correlation penalty
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Figure 2: Correlation grids for filter activations when the correlation penalty is increased from (a) 0 to

(b) 10 to (c) 50 for the censorship model. Darker red indicates a pairwise correlation that is closer to 1,

darker blue indicates a pairwise correlation that is closer to -1, and white indicates a pairwise correlation
close to 0.
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Example posts from the Weibo censorship data set

Weibo post [translation]

Censorship
probability

Censor keywords

EDURT T U 2 T IR TR AR — /R, BAR R —IERIL, EAER
—ZRIDE. FAE QIR EAFIE KK b, B R PRI . [A
letter from the Wuhan Institute of Virology to all employees and graduate
students of the Institute: A little poem, childhood is a rainbow, childhood
is a ray of sunshine. I printed my childhood on a photo and grew up
happily with me.]

PR M RIR X, BT 101 BRIy = T 7t AR AR AR e B T Pk
S BRI FENL, WEIRE AR (tagged usernames omitted) [In
the current epidemic situation, there is profiteering at the expense of
the nation. All the masks sold are substandard products. Anger, anger,
anger! It is claimed that shipments are made without providing a tracking
number, and refunds will be subject to charges. Please investigate and
resolve this issue as soon as possible. (tagged usernames omitted)]

RVEESCGHE S — PN E—TINE DT, 8 3E TR I — TN
Bij4s—TFINE G, 8 TR e IT e K3l ¥ 4 ¥ [Thumbs
up for Zunyi. Zunyi: One hand focuses on epidemic prevention and
control, and the other hand promotes economic development. Zunyi has
comprehensively resumed work and production. Thumbs up for Zunyi.
One hand focuses on epidemic prevention and control, and the other hand
promotes economic development. Zunyi has comprehensively resumed
work and production. Reason for reposting: Reposting Weibo.]

EHET ARG 1 RO AR 00 A B P L R 21 % 0 26 5 4 ARG R E B A
T, BEGEFER—HE, WHAERLL BT LA AR A | 5% K Bl good
good good [The rescue vehicle donated by Han Hong entered Leishen
Mountain. The ambulances donated by Han Hong Charity Foundation
entered Leishen Mountain. They were lined up neatly. Thank you,
Teacher Han Hong and those who donated! ! Reason for forwarding:
good good good|

1.0

1.0

0.5

0.0

R [Wuhan
virus|

Wi it [Profiting
from national disas-
ters|

Table 3: Sample posts from the Weibo post censorship data set. The first column contains sample posts
and their translations into English. The second column is the probability of censorship, and the third
column contains associated censorship keywords (when applicable) as returned by the Baidu APL

Most common censor keywords

Censor keywords Translation %
B R Wuhan virus 23.9
Eshn Profiting from national disasters 4.9
PR Anti-pneumonia 3.7
FIEERS Deputy Governor 3.6
LAEE = Shinzo Abe 3.5
i R Z Al Jiang Chaoliang-Secretary of the Provincial Party Committee 2.7
AER & Y HERF Inaction & local government 2.4
Bl Provincial party secretary 2.3
RS Governor 1.9
R 2 Shincheonji Church 1.9

Table 4: The 10 most common censor keywords in the Weibo post censorship data set. The first two
columns contain words and phrases on Baidu’s blacklist of censor keywords and their translations. The
third column contains the percentage of justifications corresponding to each censor word/phrase.
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Hyper-parameter Value
Number of tokens per sample 150
Number of filters per convolutional layer 8
Kernel sizes of conv. layers 5,7
Conv. layer kernel regularizer penalty 0.001
Conv. layer activity regularizer penalty 3
Output layer kernel regularizer penalty 0.0001
Learning rate 0.0001

Table 5: Hyper-parameter settings for the censorship model used to produce our reported results. This
model has 27681 trainable parameters total. During parameter tuning and the final model training, all
models were trained for 100 epochs with early stopping (patience = 15) and batch sizes of 32.

Tuned hyper-parameter

Values considered in tuning

Number of filters per conv. layer”
Kernel sizes of conv. layers

Conv. layer kernel regularizer penalty
Conv. layer activity regularizer penalty
Output layer kernel regularizer penalty

Learning rate

4,8, 16

5,7,5and 7

0, 0.0001, 0.001
0,1,3

0.0001, 0.001, 0.01
0.00001, 0.0001, 0.001

Table 6: The censorship model parameter tuning process searched models with combinations of the above
hyper-parameter values. Each model utilized 9.3 minutes of CPU time on average during training. The
tuning procedure considered 486 different parameter settings, and with 5-fold cross validation for each
setting utilized a total of 375 CPU hours across 4 cores. Each core was allocated 50GB of memory.
Tuning was performed on a shared-resource computing cluster associated with our institution. *Models
were required to have 8 or 16 total filters across convolutional layers. Combinations with one convolutional
layer with 4 features, and models with two convolutional layers with 16 features each, were omitted from

the tuning procedure.
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Interpretation of all learned filters by the censorship model

out

Top extracted phrases (translated)

Known censored

phrases

1.4

0.22

“[CLS] iU 7 T 467, “ By ik U 7 T %7, “[CLS] iU
BP0 ROURRETRE, . ROURAERTRT [“[CLS|Wuhan Tn-
stitute of Virology Party”,“Wuhan Institute of Virology Spe-
cialty”,“[CLS]Wuhan Institute of Virology’”,“? Created by
the Wuhan virus”, “. Wuhan Institute of Virology”]

“Wuhan virus”

1.3

0.24

CEEIMENAT, AN, “DURRE BT B, I E I e <
MEWFHL B A, 7 EIMERS, AL N7 [“Profiting from national
disasters, such people”, “Chinese virus said that some peo-
ple”, “Profiting from national disasters, such as some peo-
ple”, “Profiting from national disasters, some people dare to
make money,”,“Profiting from natlonal disasters, some peo-

ple”]

“Profiting from national
disasters”

1.2

0.25

NEHIE BAIC” RN R R R AR AL E I
FriY remdesi” [“Secretary of the Provincial Party Commlt—
tee of a province”, “ Chen Quanjiao of the Poison Institute
stated”, “ Renowned Secretary of the Hubei Provincial Party
Committee”, “ Remdesi of the Poison Institute.”]

“Provincial
tary”

party secre-

1.2

0.12

5 15 T 3 5, 1, T B £
[“Party Committee of the Institute of Virology”, “Director
of the Institute of Virology”, “Research of the Institute of
Virology”, “Union of the Institute of Virology”]

“Wuhan virus” (using con-
text of phrases within sam-
ples)

1.2

0.06

BB 6 K K L4 S B BT (I
[“The top 6 responses from the Institute of Virology”, “Di-
rector of the Institute of Virology has been”, "Director of
the Institute of Virology” (positive)]

“Wuhan virus”

1.1

R R EME”, < b S I E, BB, AR 2R, WA A M, A
& Z” [“Those who caused national calamity”, “The one
who caused national calamity”, “granted the flag. Provincial
Party Committee”, ”"During the national crisis”, ”Served as
Hubei Provincial Party Committee”]

“National crisis”

1.1

“ROURTERT” [“Wuhan Institute of Virology”]

“Wuhan virus”

1.0

0.15

CREMEN! 4 A EXENS [“Profiting from national disasters!
7. “Profiting from national disasters”]

0.91

0.07

S SR B KM RRIEAT S ] [7Di-
agnosis and Shincheonji Teaching”, ” Always waiting for Shin-
cheonji Teaching”, "No guarantee of payment time”]

“Shincheonji Church”

10

0.77

0.11

“YE B AER” ["Jiang Chaoliang is in Wuhan”|

“Jiang Chaoliang”

11"

-0.38

2020 FAFRBEM R, i, AL T A
RIGH AR, ? ﬁ%ﬁﬁ?ﬁ%” [“What we need in 2020
is”,“:Thank you for your hard work, hope”,“! Thanks for
your hard work! Hug”,“, it’s too late for anything”,“? ”Per-
sistence and hope”

12*

-0.48

W KB A R T “EE{XJJD{EE' R R AR B
B AR A Z ) 4 [“Purchase protection and
disinfection”, “Come on Wuhan! Forward”, “Railway, bus
and other public places”, “Distance contact and other condi-
tions”, “Increased exchanges, close to the province”]

13*

-0.66

“HRRE, AR, Bl ["Fight the epidemic, we”, "Fight
the epidemic, we”|

14*

-0.80

“ AR BT E,CH TE R BENE” A R A e, R B
[“Reported epidemic prevention”, “Convened epidemic”,
“Conditional infection”, “Occurring epidemic”]
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PR TR 7, B T, ¢ [CLS] B R AR
H BRI [“Come on country! Heart”, ”Come on
15 -1.1 -0.09  country! Add”, "It’s getting cold inside”, ”[CLS] The flow-

ers are blooming in the spring”, "Waiting for the flowers to
bloom in the spring”|

“leban SRIEENIL”, 4 KB L7, “Blds. IHIHEH?,“45K,
20200202, 7,“iF 2%, E1kfEA]” [“leban Leban is open for busi-

ness”, “Today is the start of the epidemic”, “Machine. Tears
at home”,“Today, 20200202,”,“In the past, old friends”]

16 -1.2 -0.04

Table 7: Full results of censorship model filter interpretation. The first column distinguishes filters in

order of the second column, the weight assigned to max-pooled filter activations aj OfOZEd in the final model

layer. The third column shows the coefficient from regressing the label on a;’ OfOled. The fourth column
lists the unique phrases within the top 5 test set phrases that were most associated with each filter. The
fifth column associates filters with one of the top 10 most commonly reported censor words in the data
set (blank if none are applicable). *The associated max pooled filter activations had a range of less than
0.05, and therefore were omitted from interpretation and the regression to estimate /3.
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Censorship model validation - randomized characters

all placebo
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Figure 3: Validation test that the censorship model learns latent features strongly aligned with censor
words. This simulated test data set contains 500 texts which are constructed by randomly sampling
characters according to the probability distribution of characters in the full censorship data set. 10 of the
most frequent censor words in the data set are inserted into 100 of these samples. Filter activation plots
are shown for the samples corresponding to each censor word tested, as well as for the “placebo” fully
random samples and all samples in aggregate for comparison (scatter points). We compare the median
activation of the censor word samples (solid lines) to the median activation of the placebo samples (dotted
lines) on each filter with activation range above 0.05. Vertical lines connect these median values, with
longer lines indicating a larger difference between values. Filters with a positive output layer weight
(predicted as more associated with censorship) are shown in red, with negative output layer weight filters

in gray.
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Censorship model validation - movie reviews vs. ChatGPT posts

BlEK
[Deputy Governor]
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Figure 4: Validation test that the censorship model learns latent features strongly aligned with censor
words. This data set combines 300 randomly sampled texts from the Kaggle Doubon Movie Short
Comment data set, which is unrelated to the censorship data set, and 50 test samples each containing
one of the 5 most frequent censor words generated. These test samples were generated using ChatGPT
3.5, which was prompted to create fake Weibo posts using the censor words. Filter activation plots are
shown for the samples corresponding to each censor word tested, as well as for the “placebo” fully random
samples and all samples in aggregate for comparison (scatter points). We compare the median activation
of the censor word samples (solid lines) to the median activation of the placebo samples (dotted lines)
on each filter with activation range above 0.05. Vertical lines connect these median values, with longer
lines indicating a larger difference between values. Filters with a positive output layer weight (predicted
as more associated with censorship) are shown in red, with negative output layer weight filters in gray.
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Hyper-parameter

Value

Number of tokens per sample 250
Number of filters per convolutional layer 4
Kernel sizes of conv. layers 5,7
Conv. layer kernel regularizer penalty 0.0001
Conv. layer activity regularizer penalty 0
Output layer kernel regularizer penalty 0.01
Learning rate 0.001

Table 8: Hyper-parameter settings for the CFPB model used to produce our reported results. This model
has 6172 trainable parameters total. During tuning and the final model training, all models were trained
for 100 epochs with early stopping (patience = 15) and batch sizes of 32.

Tuned hyper-parameter Values considered in tuning

Number of filters per convolutional layer® 4, 8,16

Kernel sizes of conv. layers 5 7,5and 7

Conv. layer kernel regularizer penalty 0, 0.0001, 0.001, 0.01
Conv. layer activity regularizer penalty 0,1,3,5

Output layer kernel regularizer penalty 0.0001, 0.001, 0.01

Table 9: The CFPB model parameter tuning process searched models with combinations of the above
hyper-parameter values. Records of computational resources used for this parameter tuning process are
no longer available to us. Based on those used to train the final model (7.2 minutes of CPU time), we
estimate that the tuning procedure, which considered 384 different parameter settings with 5-fold cross
validation for each, would have utilized about 230 CPU hours across 3 cores each with 40GB of memory.
Tuning was performed on a shared-resource computing cluster associated with our institution. *Models
were required to have 4, 8 or 16 total filters across convolutional layers. Combinations producing a model
with two convolutional layers with 16 features each were omitted from the tuning procedure.
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