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Abstract

Experimental methods for estimating the001
impacts of text on human evaluation have002
been widely used in the social sciences.003
However, researchers in experimental set-004
tings are usually limited to testing a small005
numbers of pre-specified text treatments.006
While efforts to mine unstructured texts007
for features that causally affect outcomes008
have been ongoing in recent years, these009
models have primarily focused on the top-010
ics or specific words of text, which may011
not always be the mechanism of the effect.012
In this paper, we extend these efforts and013
present a flexible model utilizing convolu-014
tional neural networks for discovering clus-015
ters of similar phrases in text that are pre-016
dictive of human reactions to those texts.017
When used in an experimental setting, this018
method can identify candidate text treat-019
ments and effects under certain assump-020
tions. We apply our model to two data021
sets. The first concerns censorship of social022
media posts and enables direct validation023
of our model. The second investigates com-024
plaints to the Consumer Financial Protec-025
tion Bureau, and demonstrates the model’s026
ability to flexibly discover text treatments027
with varying textual structures.028

1 Introduction029

Text impacts outcomes and decisions in many030

domains. Researchers have investigated the ef-031

fects of campaign messaging on voting (Arce-032

neaux and Nickerson, 2010), news story fram-033

ing on public opinion (Druckman, 2001), post034

content on censorship (King et al., 2014),035

clinical notes on diagnoses and treatment036

(Sheikhalishahi et al., 2019), and written pro-037

files on citizenship decisions (Hainmueller and038

Hangartner, 2013), to name a few examples.039

Most experimental methods for estimating the040

effects of text on human evaluation randomly041

assign some subjects to a treatment text that 042

is edited in a particular way to be different 043

from a control text. Researchers typically 044

must confine experiments to a small number 045

of text treatments to preserve power, rein- 046

forcing the importance of choosing effective 047

treatments. These treatments are often cho- 048

sen subjectively, which may be detrimental to 049

the study if treatments are ineffective or lack 050

external validity. Recent literature in com- 051

putational social science has sought to ran- 052

domly assign unique texts to respondents and 053

then discover treatments from these unstruc- 054

tured texts that have an effect on an out- 055

come of interest (Fong and Grimmer, 2016; 056

Pryzant et al., 2018). Our approach builds 057

on these efforts by utilizing pre-trained contex- 058

tualized word embeddings to learn influential 059

phrases of varying lengths, rather than being 060

constrained to learning document-level sets of 061

topics or to a set of particular words. Addition- 062

ally, our model can accommodate the inclusion 063

of covariates to account for other meta-data 064

that may influence the outcome. 065

While this model is motivated by experi- 066

ments that target causal effects of text, these 067

effects can only be estimated under rather 068

stringent assumptions. As a result, we sug- 069

gest this model to be used to aid researchers in 070

discovering relevant text treatments to test in 071

confirmatory analyses, as an alternative to sub- 072

jectively posing text treatments. To this end 073

it builds on recent advances in self-explaining 074

models (Alvarez Melis and Jaakkola, 2018) 075

and interpretation of model structures (Lyu 076

et al., 2023). 077

We demonstrate the ability of our model to 078

identify influential aspects of text by applying 079

it to two data sets. The first consists of social 080

media posts on Weibo, where the outcome of 081

interest is post censorship. Censorship of these 082
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posts can be tested against an API with ac-083

cess to a set of known blacklisted keywords,084

enabling clear validation of our model. In our085

second application, texts are complaints sub-086

mitted to the Consumer Financial Protection087

Bureau (CFPB), and the outcome of interest088

is whether a complainant received a timely re-089

sponse. This application highlights the com-090

plexity of human decision making based on091

text, and the capacity of our model to learn092

predictive text features of various structures.093

2 Related work094

While much of the related social science work095

has focused on learning latent “features” of096

a text and using those as a treatment, most097

NLP work has focused on improving the in-098

terpretability of black-box predictive models.099

This paper bridges the gap between these two100

by using explainable ML methods to flexibly101

discover latent treatments in text and discover102

the effects of their inclusion.103

Computational social science/causal in-104

ference Prior work has generated methods to105

both discover treatments and estimate their106

effects simultaneously (Fong and Grimmer,107

2016; Pryzant et al., 2018; Egami et al., 2018;108

Fong and Grimmer, 2021; Feder et al., 2022).109

These models have typically focused on esti-110

mating either topics or individual words as111

treatments. Our model extends this work by112

allowing groups of similar phrases – instead113

of topics or unique words – to be identified114

as treatments. Fong and Grimmer (2016)115

apply a supervised Indian buffet process to116

both discover features (topics) and estimate117

their effect on an outcome in an RCT setting.118

Pryzant et al. (2018) approach a similar prob-119

lem but use n-gram features instead of topics120

and use a neural architecture with a method121

for extracting feature importance from the122

weights of the network. While their primary123

focus is on adjusting for text confounders,124

we focus on capturing concepts which can be125

flexibly expressed across a variety of differ-126

ent length n-grams. Our approach will work127

particularly well in instances where the out-128

come may be caused by flexibly expressed, but129

relatively short concepts instead of particular130

words or the full topical content of the text.131

Interpretable NLP In recent years many132

methods have been proposed to interpret 133

and explain NLP models, as well as meta- 134

evaluations of those methods (Lei et al., 2016; 135

Alvarez Melis and Jaakkola, 2018; Rajagopal 136

et al., 2021; Alangari et al., 2023; Crothers 137

et al., 2023; Lyu et al., 2023). These methods 138

almost all focus on explaining and interpreting 139

predictions at the level of individual samples. 140

In contrast, our method is designed to learn 141

and interpret broader patterns that occur at 142

the corpus level. In this respect, Rajagopal 143

et al. (2021) is closest to our work in their 144

pursuit of learning global influential concepts 145

across texts, though our approaches differ. For 146

our purposes, our interpretation methods are 147

more intuitive in their relative simplicity, and 148

our model learns “global concepts” adaptively 149

as convolutional neural network filters, rather 150

than requiring global concepts to exist as n- 151

grams in the original training data. 152

Individual words and tokens are not human- 153

interpretable or individually persuasive, so like 154

Alvarez Melis and Jaakkola (2018) we force 155

the network to have an interpretable final 156

layer after a representation learning compo- 157

nent. Their goal is for the representations used 158

in the linear classification layer to satisfy the 159

fidelity, diversity, and grounding conditions. 160

Our goals are different however–rather than 161

trying to understand why the network made 162

the prediction it did, we seek representations 163

of features which scientists can use in follow- 164

up experiments. 165

3 Extracting influential text from 166

latent representations 167

Our goal is to extract clusters of phrases 168

that represent latent, generalizable treatments 169

that affect a particular outcome. To do 170

this, we imagine that N texts (Ti) are ran- 171

domly assigned to a process through which 172

they are mapped to an outcome (Yi). Let 173

i also index the individual evaluating text i. 174

We seek to identify and estimate the effect 175

of an m-dimensional latent representation of 176

those texts (Zi) which summarizes clusters of 177

phrases or concepts that are likely to influence 178

the outcome in repeated experiments. We re- 179

fer to Zi as “text treatments” for text i. For 180

example, each element of Zi could represent 181

the presence or absence of a certain phrase or 182
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topic, with Zi ∈ {0, 1}m. Zi could also con-183

tain real-valued elements indicating continu-184

ous text features like similarity to a certain185

vocabulary or alignment with a concept.186

To simulate a sequential experimental set-187

up, we follow Egami et al. (2018) in splitting188

our sample into training and test sets. We first189

train our model, using cross-validation within190

the training set for tuning and model selection.191

We then use the test data set to interpret the192

latent text treatments discovered and estimate193

their effects on the outcome under additional194

assumptions. Our main contribution concerns195

this first stage: a model which identifies a map-196

ping between text data and text treatments197

(Zi) which predict the outcome of interest.198

Fong and Grimmer (2016, 2021) outline the199

conditions under which this process identifies200

causal effects of the text treatments on the201

outcome when treatments are binary. They202

suppose that: 1) an individual’s treatment de-203

pends only on their assigned text, 2) the la-204

tent features captured by the model are suf-205

ficient to predict an evaluator’s response, 3)206

there is a nonzero probability of each evalu-207

ator receiving any of the possible text treat-208

ments (Zi), given unmeasured text features1,209

4) texts are randomly assigned and 5) that la-210

tent treatments are not perfectly collinear. If211

these assumptions hold in our setting, we can212

also identify treatment effects of the discov-213

ered latent features. Following the methodol-214

ogy of Fong and Grimmer (2016), these may215

be estimated using linear regression under the216

additional assumption that the m text treat-217

ments do not interact with each other, in ad-218

dition to linear modeling assumptions in the219

case of continuous treatment variables.2 How-220

ever, since it is difficult to assess whether these221

assumptions hold – particularly assumption 2222

– we recommend that when possible, practi-223

tioners use our method to suggest potential224

1For real-valued treatment variables, this assump-
tion should be modified to require that the probability
density function of the treatment vector is nonzero

2Fong and Grimmer (2016) consider the Average
Marginal Component Specific Effect, which captures
the effect of changing one text treatment while aver-
aging over values of all others. For continuous treat-
ments, the process would identify a similar effect cap-
turing the marginal effect of incrementally increasing
a text treatment. If covariates are included in the neu-
ral network model, researchers may choose to include
them in the regression model as controls as well.

treatments for study in a more controlled ex- 225

perimental setting. 226

4 Methodology 227

We propose a neural network architecture that 228

utilizes convolutional structures to identify in- 229

fluential text (Figure 1). As the convolu- 230

tional layers learn latent text representations, 231

sample-level covariates may also be incorpo- 232

rated into the model to provide additional non- 233

textual information. 234

4.1 Contextual encoder 235

We use pre-trained BERT models (Devlin 236

et al., 2019) to tokenize our input text samples 237

(Ti) and to obtain context-dependent embed- 238

dings of tokens by extracting the models’ final 239

hidden states. We denote these embeddings by 240

ei,j ∈ RD, where i indexes each text sample, j 241

indexes tokens (ui,j), and D represents the em- 242

bedding dimension. With accessibility for so- 243

cial scientists in mind, we work with reduced- 244

size models (Jiao et al., 2020), and do not per- 245

form fine-tuning. Researchers with fewer con- 246

straints on their computational budgets may 247

find improved model performance from using 248

larger models and/or fine-tuning these models 249

on their outcome of interest. Any model pro- 250

viding text embeddings could be substituted 251

for BERT. However, we do recommend us- 252

ing models that encode context between to- 253

kens. We perform the embedding step just be- 254

fore creating a train-test split, but researchers 255

who choose to fine-tune their embedding mod- 256

els should reverse these steps to fine-tune and 257

train only on the training set. 258

4.2 Model architecture 259

Once obtained from BERT, sequences of in- 260

put text embeddings {ei,j}j for each text are 261

passed to a one dimensional convolutional 262

layer C, or a series of M such layers in par- 263

allel (Cl), each with flexible kernel size Kl and 264

F filters. The number of parallel convolutional 265

layers is determined by the number of unique 266

kernel sizes to be considered. 267

In the text representation learning prob- 268

lem, each filter learns some latent textual fea- 269

ture. These features could correspond to cer- 270

tain vocabulary usage, grammatical structure, 271

or tone, for example. The number of filters 272

F per layer can be adjusted, with more filters 273
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Figure 1: Model architecture

corresponding to learning more latent text fea-274

tures. In our implementation all convolutional275

layers learn the same number of filters. The276

kernel size K determines the size of the filter277

window, or the length of phrases considered278

by each convolutional layer. A filter f in a279

layer C with K = 5 tests the extent to which280

the representation learned by f is present in281

five-token phrases of the input text. For each282

phrase p1, . . . , pP with P = U −K + 1 and fil-283

ter f , the convolutional operation produces a284

new feature g(w ·pi+b), where w and b are the285

learned weights and bias respectively for filter286

f , and g is the sigmoid activation function. We287

refer to these features as “filter activations”.288

The filter activations ai,f ∈ RP are summa-289

rized per text sample by max pooling layers,290

which keep only the highest activation across291

a text’s phrases per filter. The max-pooled292

activations apooledi,f ∈ R are then concatenated293

across the parallel convolutional layers. If co-294

variates are included in the model, those are295

concatenated as well. These activations and296

covariates x1, . . . , xL are passed to a final fully297

connected layer, where a weighted average of298

these values is pushed through an activation299

function (in our applications, sigmoid). These300

final activations correspond to the model pre-301

dictions.302

4.3 Training 303

The model is trained with respect to binary 304

cross-entropy loss and Adam optimizer. Con- 305

volutional layer kernels and the final fully con- 306

nected layer are subject to L2 and L1 regu- 307

larization, respectively. Convolutional layers 308

additionally receive custom activity regulariza- 309

tion which penalizes the maximum correlation 310

between two filter activations. This penalizes 311

models that learn redundant filters (as mea- 312

sured by high correlation) to encourage convo- 313

lutional layers to identify a larger number of 314

distinct text features (Appendix A: Figure 2). 315

Hyper-parameters are determined according 316

to a five-fold cross validation procedure us- 317

ing the training set. Because the motivation 318

of these models is primarily interpretation of 319

learned features, rather than prediction per- 320

formance, model selection is more subjective 321

than simply choosing the highest accuracy pa- 322

rameter settings. We selected models based 323

on a combination of accuracy, degree of cor- 324

relation between filter activations (i.e. feature 325

redundancy), and the number of “useful”3 fil- 326

ters learned. Parameter settings for the mod- 327

els selected in our applications are reported in 328

the appendix. 329

The final model selected is then re-trained 330

using the entire training set with a randomly 331

sampled 20% serving as the validation set, and 332

is assessed using the unseen test set. 333

4.4 Identifying and testing influential 334

text features 335

The filters of the model’s convolutional lay- 336

ers are trained to learn representations of text 337

that are predictive of the outcome. To inter- 338

pret the learned latent representations of the 339

model and discover text treatments (Zi) for 340

each text, we utilize three model components: 341

1. The output filter activations of each text 342

sample’s phrases for each filter f (ai,f ); 343

2. The output layer weights, wout ∈ 344

RF ·M+L; 345

3Some models learn filter weights that produce near-
identical activations across samples. As these filters
do not meaningfully distinguish outcome predictions
between texts, they are not useful for interpretation.
We identify these filters by assessing the range of filter
activations. We omit filters with ranges less than a
threshold t = 0.05 wide.
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3. The input text samples (Ti).346

The filter activations represent how strongly347

each phrase corresponds with the text rep-348

resentation learned by each filter. The fi-349

nal output layer weights determine how each350

text representation contributes to the ulti-351

mate outcome prediction. Finally, the orig-352

inal input text samples provide context for353

the phrases that activate highly on each fil-354

ter. This last component is most subjective355

to interpretation. Because input text em-356

beddings are context-dependent via the pre-357

trained BERT models, each phrases’ embed-358

dings contain more information than just the359

text tokens that make up the phrase, which360

lack the context of the rest of the sample. How-361

ever, due to the difficulty of interpreting text362

embedding dimensions, the context that hu-363

man readers assign to phrases when reading364

an entire sample may not align with context365

encoded by the embedding models.366

To facilitate interpretation of the general367

concepts and patterns that each filter has368

learned and to assign manual labels to each369

filter, we pull phrases from the test sample370

which have the highest filter activations for371

each filter and refer to the corresponding full372

text samples for context. We verify how these373

concepts are related to the outcome by the cor-374

responding final output layer weights, and by375

the relationship between the filter activation376

values and the true outcome values.377

The objective of this interpretation process378

depends on whether the researcher wishes to379

directly estimate the effects of the identified380

latent features in the test set under assump-381

tions described in Section 3, or if they wish382

to discover concrete text features to test in a383

follow up experiment. In the first scenario,384

the max-pooled filter activations (apooledi,f ) may385

be considered directly as the sample-level la-386

tent text treatments (Zi), with the total num-387

ber of filters across convolutional layers corre-388

sponding to the dimension m of the treatment389

vector. Researchers could also choose to bi-390

narize these features, for example by defining391

Zi,f = 1[apooledi,f > āpooledf ] where āpooledf is the392

median of (apooledi,f ). This avoids the more strin-393

gent modeling assumptions needed for estimat-394

ing effects of continuous treatments, though it395

may complicate interpretation. In either case,396

this process provides the researcher an under- 397

standing for what the latent text treatments 398

represent and therefore the effects that they 399

are estimating. In the second scenario, we see 400

model interpretation as a more general tool 401

to guide the researcher’s process for obtaining 402

concrete text treatments. Here, a second set 403

of text treatments, Z̃i, are established which 404

are not latent in the same sense as Zi, because 405

researchers control the definition of these treat- 406

ments. For example, researchers could define 407

Z̃i as the inclusion or absence of the manual 408

labels assigned to each filter as keywords in ex- 409

perimental texts, or as indicators of different 410

tones or concepts identified by filters. 411

4.5 Evaluation methods 412

In our application of this model to predicting 413

social media post censorship, we have ground- 414

truth explanations of which phrases led to cen- 415

sorship. We show that our trained model and 416

interpretation methods recover the most com- 417

monly labeled reasons for censorship. With 418

our application to the CFPB data set, we com- 419

pare our findings to those in Egami et al. 420

(2018), who both discover latent text treat- 421

ments via topic modeling and test their effects. 422

5 Experiments 423

5.1 Weibo post censorship 424

Dataset and setup For our first applica- 425

tion, we use a sample of 28,386 Weibo posts 426

from the Weibo-Cov dataset (Hu et al., 2020). 427

These are social media posts on the topic of 428

COVID and were posted in February 2020 on 429

Weibo.4 To obtain the censorship label for 430

each post, we use the content review API from 431

Baidu. The API is a classifier that returns the 432

probability of censorship for each post. The 433

API only returns a probability of 1 when a so- 434

cial media post includes words or phrases that 435

are on Baidu’s blacklist. As the API also re- 436

turns the flagged keywords and phrases, this 437

enables us to validate whether our model can 438

recover keywords and phrases that led to cen- 439

sorship. 440

We train our model to predict whether or 441

not a post was flagged by the API to be cen- 442

4The creators of this data set anonymized identi-
fiable information in posts to protect the privacy of
individual users.
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F wout β Top extracted phrases (translated) Known censored phrase

1 1.4 0.22
“[CLS]Wuhan Institute of Virology Party”,“Wuhan Institute
of Virology Specialty”,“[CLS]Wuhan Institute of Virology’”,“?
Created by the Wuhan virus”

“Wuhan virus”

2 1.3 0.24
“Profiting from national disasters, such people”, “Chinese virus
said that some people”, “Profiting from national disasters, such
as some people”, “Profiting from national disasters, some people
dare to make money,”

“Profiting from national
disasters”

3 1.2 0.25
“Secretary of the Provincial Party Committee of a province”,
“Chen Quanjiao of the Poison Institute stated”, “Renowned Sec-
retary of the Hubei Provincial Party Committee”, “Remdesi of
the Poison Institute.”

“Provincial party secre-
tary”

9 0.91 0.07 “Diagnosis and Shincheonji Teaching”, “Always waiting for Shin-
cheonji Teaching”, “No guarantee of payment time” “Shincheonji Church”

10 0.77 0.11 “Jiang Chaoliang is in Wuhan” “Jiang Chaoliang”

Table 1: Frequent censorship rationale is learned by the model. The first column distinguishes filters in
order of the second column, the weight assigned to max-pooled filter activations apooledi,f in the final model
layer. The third column shows the coefficients from regressing the labels on apooledi,f . The fourth column
lists filters’ unique top 4 most associated phrases from the test set. The fifth column associates each filter
with a commonly reported censored phrase.

sored with probability 1. Although this out-443

come is not determined by direct human deci-444

sion making, it reflects a more general policy445

of censorship, and allows us to validate our446

model with the outcome explanations. We can447

view the keyword and phrase blacklist as a de-448

cision maker that is perfectly consistent with449

these human-defined preferences. To tokenize450

and embed these texts, we use a pre-trained451

BERT Chinese language model provided by452

the Joint Laboratory of HIT and iFLYTEK453

Research, MiniRBT-h288 (Yao et al., 2023).5454

This model has an embedding dimension of455

288 and 12.3M parameters. The embeddings456

from the BERT model’s last hidden state are457

used as the input features to our model archi-458

tecture (see Figure 1). Examples of posts in459

this data set, their censor probabilities, and460

their censor words (when applicable) with En-461

glish translations are shown in Appendix A Ta-462

ble 3. Appendix A Table 4 shows the top 10463

censor words across all censor-probability-one464

samples, their translations, and the proportion465

of censored samples corresponding to each.466

Results The trained model obtains an accu-467

racy score of 0.87 on the test set. This per-468

formance indicates that the model has learned469

useful representations of Weibo posts from this470

time period which are predictive of censorship.471

5Model is licensed under Apache License 2.0.

We highlight our interpretation of the most 472

relevant representations in Table 1, with inter- 473

pretation of all representations included in Ap- 474

pendix A Table 7. We find that the two most 475

commonly censored phrases, “Wuhan virus” 476

(23.9% of censored posts) and “national crisis” 477

(4.9% of censored posts) are clearly identified 478

by the model in the first and second model fil- 479

ters – the phrases which activate most highly 480

on these filters contain almost exactly these 481

phrases. The max-pooled activations for these 482

filters also contribute the most to the model’s 483

final prediction of censorship, as seen in the 484

wout column of this table. The most highly- 485

activating phrases for filters 3 and 9 share in 486

common two other known censored phrases, 487

“Provincial party secretary” and “Shincheonji 488

Church,” and the highest activated phrases for 489

filter 10 concentrate exactly around the same 490

phrase, which relates to a fifth known censor 491

phrase “Jiang Chaoliang.” The complete set of 492

representation interpretations in Appendix A 493

demonstrates that there is some amount of re- 494

dundancy in the keywords learned by filters. 495

Their differences in sentence structure and con- 496

text could be illuminating in other settings, 497

though in this case we know that it is solely 498

the inclusion of these phrases which affects the 499

outcome. As a proof-of-concept, we include 500

the effect estimates we obtain by regressing the 501

labels on the max-pooled filter activations of 502
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the test sample texts, though assumptions for503

identification of a causal effect are not met (for504

one, texts are not randomized amongst evalua-505

tors). Though the magnitude of the estimated506

effects differ from the output layer weights (in507

large part because the output layer weights508

correspond to a sigmoid rather than linear ac-509

tivation), they are in relative agreement about510

which text treatments are found to be most in-511

fluential for censorship.512

Model validation We find that this model513

and our interpretation methodology success-514

fully recovers the phrases which cause the most515

posts to be censored. In a setting without516

oracle knowledge of the censored phrases, we517

feel confident that researchers would be able518

to use this model to determine at least five519

of the most common censored phrases with520

only access to the posts and the final outcome521

variable. We ran additional evaluations which522

demonstrated that almost all of the top 10523

phrases were learned to be influential by the524

model, even if some were less easily identifi-525

able in our interpretation process. In these526

evaluations, the trained model received two527

constructed data sets containing placebo text528

data and text data containing one of the top529

censored phrases. In one data set, the placebo530

texts are fully randomly sampled sequences of531

characters while the test texts also include an532

embedded censored keyword. In the other,533

the placebo texts are movie reviews from an534

unrelated data source, and test texts are fake535

Weibo posts containing censored phrases gen-536

erated by ChatGPT. In both evaluations, texts537

with embedded censored phrases obtain much538

higher median filter activation values com-539

pared to the placebo texts for all but two of the540

top 10 censor phrases (Appendix A Figures 3541

and 4).542

5.2 Consumer Financial Protection543

Bureau complaint response544

Dataset and setup For our second applica-545

tion, we use a dataset from Egami et al. (2018)546

of 54,816 consumer complaint narratives sub-547

mitted to the Consumer Financial Protection548

Bureau6 from March of 2015 to February of549

6Data is publicly available for download at:
https://www.consumerfinance.gov/data-research/
consumer-complaints/. The CFPB removes personal
information from complaints.

2016. The outcome variable indicates whether 550

or not the complainant received a timely re- 551

sponse from the company filed against. Due to 552

strong imbalance in the outcome variable, we 553

proceed with a subsample of complaints which 554

received a timely response (5136 timely and 555

1712 non-timely responses) combined with a 556

class-weighted loss function, which we found 557

to perform best during training in terms of 558

the F1 score. We also utilize product type in- 559

formation included in the dataset as an addi- 560

tional set of covariates, which describes which 561

financial product the complaint concerns (ex. 562

mortgage, debt collection). To tokenize and 563

embed the complaint texts, we use a pre- 564

trained BERT English language model trained 565

by Google Research (Turc et al., 2019; Bhar- 566

gava et al., 2021). To obtain word embeddings, 567

we use the last hidden states from bert-tiny7, 568

which has an embedding dimension of 128 and 569

4M parameters. 570

Results The trained model obtains an accu- 571

racy score of 0.73 and an F1 Score of 0.59 on 572

the test set. Given the limited size of the data 573

set used, the class imbalance, and the relative 574

complexity of this learning task, it is not com- 575

pletely surprising that this model achieves a 576

lower performance compared to the previous 577

application. However, we believe that the rep- 578

resentations learned by the model could pro- 579

vide meaningful insights to inform a hypothet- 580

ical researcher seeking to uncover text treat- 581

ments. 582

Table 2 summarizes interpretation of the 583

representations learned by this model. Three 584

filters which receive a weight of < 0.003 on the 585

output layer are omitted, as these have little in- 586

fluence on the model’s predictions. In this ap- 587

plication, we do not have access to the true rea- 588

sons that complaints receive or do not receive 589

timely responses, and can imagine that a vari- 590

ety of text features could impact this outcome. 591

We infer that formal or polite language and 592

references to past attempts for resolution may 593

be positively associated with timely responses, 594

and that rehashing conflicts over claims, refer- 595

encing disputed debt collection, and discussing 596

frustrating past communications may be nega- 597

tively associated with timely responses. We 598

also include effect estimates from regressing 599

7Model is licensed under Apache License 2.0.
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F wout β Top extracted phrases Inferred Concept CD plot

1 1.6 0.08
“rei mb urse d immediately”, “additionally , ex per
ian”, “late fee charged . please”, “contacts lacking
mandatory legal documentation”, “xx , 2015 . please”

Formal language,
pleading

2 1.4 0.04
“deposit that more than covered”, “connection is
dropped and clear”, “been over 30 days since”, “entered
every wednesday and there”, “tried on more than xx”

Past attempts for
resolution

3 -0.92 -0.03
“that i wrote a check”, “. he claims the address”, “no
matter what i say”, “. she claimed a reference”, “no
longer need a prep”

Conflicting/false
claims

4 -1.2 -0.05
“this was a fraudulent debt collector ,”, “i received a
statement indicating a ”, “i was the victim of identity
theft”, “this battle over a debt that is”, “i owe mon ies
for alleged damages”

Disputed debt col-
lection

5 -1.3 -0.13
“voice mail messages stating they have attempted”,
“was trying to convince my father was”, “of someone
who could ’ ve been”, “then started asking why i was
been”, “by someone who did not want to”

Frustrating commu-
nications

Table 2: CFPB model interpretation. Columns 1, 2, and 4 correspond to those in Table 1. The third
column shows the coefficient from regressing the label on apooledi,f and product type. The fifth column
contains a manual interpretation of the top extracted phrases. The sixth column displays conditional
density plots for the max-pooled filter activations. The x-axis of these plots represents the activation
value. The y-axis indicates estimated probability of belonging to the positive class (dark gray).

the test set labels against the texts’ corre-600

sponding max-pooled filter activations and the601

product type covariate as a control. Again, we602

believe it is unlikely that the assumptions nec-603

essary for causal interpretation of these effects604

are met. However, the estimates could still act605

a useful tool for a researcher exploring possible606

text treatments to test in a follow-up experi-607

ment. They align with the final output layer608

weights and imply that the inclusion of formal609

language/pleading or of references to frustrat-610

ing communications may be text treatments611

worth investigating further.612

Model evaluation The full CFPB data set613

was also analyzed in Egami et al. (2018), who614

use a topic modeling approach to identify and615

test text treatments. The majority of their616

identified text treatments align with product617

types. Their results imply that the inclusion618

of identified “loan” and “detailed complaint”619

topics each have the strongest positive effects620

on timely response, and that the inclusion of621

identified “debt collection” or “threat” (seem-622

ingly related to debt collection or credit report-623

ing) topics each have a negative effect. These624

results supports our finding of a negative as-625

sociation between the discussion of disputed626

debt collection and timely response, though627

the other features that our model identifies628

deviate from the topics in Egami et al. (2018). 629

Another analysis of CFPB data, Pryzant et al. 630

(2021), finds that perceived politeness in com- 631

plaints may have a positive effect on reducing 632

response time, which supports our finding for 633

the first filter shown in Table 2. The capacity 634

of our model to detect both of these kinds of 635

text features - topics and tone - in clusters of 636

phrases highlights its flexibility at picking up 637

a variety of different text qualities. 638

6 Conclusion 639

We present a new method to discover influ- 640

ential text features represented by clusters of 641

phrases of flexible length. Our approach is in- 642

spired by and builds upon previous work in 643

computational social science and interpretable 644

NLP, and provides experimenters with a quan- 645

titative tool for identifying promising text 646

treatments to test in follow up experiments. 647

When researchers are willing to make stronger 648

identification assumptions discussed in Sec- 649

tion 3, text treatments identified by using the 650

model can also be used to estimate causal ef- 651

fects on the test test directly. Our applica- 652

tions demonstrate the ability of our model to 653

learn useful latent text representations and its 654

capacity to recover known influential text fea- 655

tures. 656
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Limitations657

Small BERT models used out-of-the-box658

In this paper, we do not investigate how model659

performance could be affected by fine-tuning660

the pre-trained BERT models, or by using661

larger models to obtain higher dimensional662

word embeddings. Future work investigating663

how benefits from these changes trade-off with664

reduced computational efficiency would be rel-665

evant to researchers using this method.666

Testing the inclusion of covariates Al-667

though including covariates in the final layer668

allows us to account for them in model pre-669

dictions, the extent to which they allow us670

to “control” for document-level features when671

learning latent text treatments is unclear. An672

analysis of our model’s performance on a set of673

texts with known meta-data confounding and674

for which effects can be validated would be use-675

ful.676

Trade-off between experimental costs677

and less-interpretable treatments Under678

the assumptions discussed in Section 3, re-679

searchers may estimate causal effects by di-680

rectly testing the identified latent text treat-681

ments. This simplifies the experimental682

pipeline, but as in Egami et al. (2018) and683

Fong and Grimmer (2016), comes with the684

drawback of requiring the researcher to some-685

what subjectively interpret the identified la-686

tent text treatments that are being tested. Al-687

ternatively, researchers may use their interpre-688

tations of the discovered latent text features689

to inspire “manifest” text treatments (ex. spe-690

cific keywords, sentence structures) to test in691

confirmatory settings. In this case, the text692

features being tested would be known and ma-693

nipulated by the researcher, allowing clearer694

interpretation of effects and weaker assump-695

tions. The downside here would be the re-696

quirement of researchers to run follow-up ex-697

periments.698

Incorporating uncertainty in latent699

treatments Our paper does not provide guid-700

ance for incorporating the uncertainty in-701

volved in identifying and estimating the latent702

text treatments into causal effect estimates.703

Designing experimental texts We gener-704

ally recommend using our model to guide the705

selection of text treatments for use in follow-706

up experiments. Designing experimental texts 707

to isolate treatments of interest is a non-trivial 708

task, and is left to the experimenter. In many 709

cases, it is challenging to imagine altering a 710

specific part of a text without affecting sur- 711

rounding text that is not directly manipulated. 712

This makes it difficult to establish causality 713

for a specific text feature, rather than for the 714

aggregate differences between a set of texts. 715

This is a known challenge of making causal 716

inferences with text, and relates to the strong 717

ignorability assumption discussed in Section 3. 718

Ethics Statement 719

For any model designed to extract persuasive 720

concepts, there is a risk that bad actors could 721

use it to improve their ability to manipulate 722

others. Many other tools exist which could 723

presumably be used for this purpose, so we 724

believe that the benefits of having this model 725

open source outweigh this risk. An example 726

of this kind of trade-off can be seen in the 727

context of the model’s application to censor- 728

ship. When governments utilize human cen- 729

sors, they could potentially use this model to 730

identify new keywords to add to an automated 731

censorship blacklist to improve efficiency. On 732

the other hand, the model can also be used to 733

reverse engineer the process and reveal censor- 734

ship policies, as we demonstrate. Acknowledg- 735

ing the possibility for misuse, we believe that 736

the opportunities for productive and socially 737

beneficial application are greater. 738
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Demonstration of increasing the filter activation correlation penalty

Figure 2: Correlation grids for filter activations when the correlation penalty is increased from (a) 0 to
(b) 10 to (c) 50 for the censorship model. Darker red indicates a pairwise correlation that is closer to 1,
darker blue indicates a pairwise correlation that is closer to -1, and white indicates a pairwise correlation
close to 0.
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Example posts from the Weibo censorship data set

Weibo post [translation] Censorship
probability Censor keywords

武汉病毒所致信全所职工和研究生一首小诗，童年是一道彩虹，童年是
一缕阳光。我把色我的童年印在一张张照片上，陪伴着我快乐地成长。[A
letter from the Wuhan Institute of Virology to all employees and graduate
students of the Institute: A little poem, childhood is a rainbow, childhood
is a ray of sunshine. I printed my childhood on a photo and grew up
happily with me.]

1.0 武汉病毒 [Wuhan
virus]

疫情当前大发国难财，所售口罩均为三无产品怒怒怒说发货没有快递单
号，退款均需扣费，请尽快查处怒怒怒 (tagged usernames omitted) [In
the current epidemic situation, there is profiteering at the expense of
the nation. All the masks sold are substandard products. Anger, anger,
anger! It is claimed that shipments are made without providing a tracking
number, and refunds will be subject to charges. Please investigate and
resolve this issue as soon as possible. (tagged usernames omitted)]

1.0
国难财 [Profiting
from national disas-
ters]

点赞遵义遵义：一手抓防控一手抓经济，遵义复工复产全面铺开一手抓
防控一手抓经济，遵义复工复产全面铺开转发理由: 转发微博 [Thumbs
up for Zunyi. Zunyi: One hand focuses on epidemic prevention and
control, and the other hand promotes economic development. Zunyi has
comprehensively resumed work and production. Thumbs up for Zunyi.
One hand focuses on epidemic prevention and control, and the other hand
promotes economic development. Zunyi has comprehensively resumed
work and production. Reason for reposting: Reposting Weibo.]

0.5

韩红捐赠的救援车进入雷神山韩红爱心慈善基金会捐赠的救护车进入雷神
山了，整整齐齐的一排，谢谢韩红老师以及捐款的人嗷！！转发理由: good
good good [The rescue vehicle donated by Han Hong entered Leishen
Mountain. The ambulances donated by Han Hong Charity Foundation
entered Leishen Mountain. They were lined up neatly. Thank you,
Teacher Han Hong and those who donated! ! Reason for forwarding:
good good good]

0.0

Table 3: Sample posts from the Weibo post censorship data set. The first column contains sample posts
and their translations into English. The second column is the probability of censorship, and the third
column contains associated censorship keywords (when applicable) as returned by the Baidu API.

Most common censor keywords

Censor keywords Translation %
武汉病毒 Wuhan virus 23.9
国难财 Profiting from national disasters 4.9
抗肺炎 Anti-pneumonia 3.7
副省长 Deputy Governor 3.6
安倍晋三 Shinzo Abe 3.5
蒋超良-省委书记 Jiang Chaoliang-Secretary of the Provincial Party Committee 2.7
不作为 & 当地政府 Inaction & local government 2.4
省委书记 Provincial party secretary 2.3
省长 Governor 1.9
新天地教会 Shincheonji Church 1.9

Table 4: The 10 most common censor keywords in the Weibo post censorship data set. The first two
columns contain words and phrases on Baidu’s blacklist of censor keywords and their translations. The
third column contains the percentage of justifications corresponding to each censor word/phrase.
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Hyper-parameter Value
Number of tokens per sample 150
Number of filters per convolutional layer 8
Kernel sizes of conv. layers 5, 7
Conv. layer kernel regularizer penalty 0.001
Conv. layer activity regularizer penalty 3
Output layer kernel regularizer penalty 0.0001
Learning rate 0.0001

Table 5: Hyper-parameter settings for the censorship model used to produce our reported results. This
model has 27 681 trainable parameters total. During parameter tuning and the final model training, all
models were trained for 100 epochs with early stopping (patience = 15) and batch sizes of 32.

Tuned hyper-parameter Values considered in tuning
Number of filters per conv. layer∗ 4, 8, 16
Kernel sizes of conv. layers 5, 7, 5 and 7
Conv. layer kernel regularizer penalty 0, 0.0001, 0.001
Conv. layer activity regularizer penalty 0, 1, 3
Output layer kernel regularizer penalty 0.0001, 0.001, 0.01
Learning rate 0.00001, 0.0001, 0.001

Table 6: The censorship model parameter tuning process searched models with combinations of the above
hyper-parameter values. Each model utilized 9.3 minutes of CPU time on average during training. The
tuning procedure considered 486 different parameter settings, and with 5-fold cross validation for each
setting utilized a total of 375 CPU hours across 4 cores. Each core was allocated 50GB of memory.
Tuning was performed on a shared-resource computing cluster associated with our institution. ∗Models
were required to have 8 or 16 total filters across convolutional layers. Combinations with one convolutional
layer with 4 features, and models with two convolutional layers with 16 features each, were omitted from
the tuning procedure.

854
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Interpretation of all learned filters by the censorship model855

F wout β Top extracted phrases (translated) Known censored
phrases

1 1.4 0.22

“[CLS] 武汉病毒所党”,“验武汉病毒所专”,“[CLS] 武汉病毒
所’”,“？武汉病毒所辟”,“。武汉病毒所所” [“[CLS]Wuhan In-
stitute of Virology Party”,“Wuhan Institute of Virology Spe-
cialty”,“[CLS]Wuhan Institute of Virology’”,“? Created by
the Wuhan virus”, “. Wuhan Institute of Virology”]

“Wuhan virus”

2 1.3 0.24

“国难财”，如此人”,“汉病毒所说某中”,“国难财比如某些”,“国
难财也敢发，”,“国难财, 有些人” [“Profiting from national
disasters, such people”, “Chinese virus said that some peo-
ple”, “Profiting from national disasters, such as some peo-
ple”, “Profiting from national disasters, some people dare to
make money,”,“Profiting from national disasters, some peo-
ple”]

“Profiting from national
disasters”

3 1.2 0.25

“个省的省委书记”,“毒所陈全姣声明”,“任湖北省委书记”,“毒
所的 remdesi” [“Secretary of the Provincial Party Commit-
tee of a province”, “ Chen Quanjiao of the Poison Institute
stated”, “ Renowned Secretary of the Hubei Provincial Party
Committee”, “ Remdesi of the Poison Institute.”]

“Provincial party secre-
tary”

4 1.2 0.12
“病毒所党委”,“病毒所所长”,“病毒所研究”,“病毒所联合”
[“Party Committee of the Institute of Virology”, “Director
of the Institute of Virology”, “Research of the Institute of
Virology”, “Union of the Institute of Virology”]

“Wuhan virus” (using con-
text of phrases within sam-
ples)

5 1.2 0.06
“病毒所回应 6 大”,“病毒所所长已经”,“病毒所所长”（正”
[“The top 6 responses from the Institute of Virology”, “Di-
rector of the Institute of Virology has been”, ”Director of
the Institute of Virology” (positive)]

“Wuhan virus”

6 1.1 0.11

“那些发国难”,“上是发国难”,“授旗。省委”,“期间发国难”,“任
湖北省委” [“Those who caused national calamity”, “The one
who caused national calamity”, “granted the flag. Provincial
Party Committee”, ”During the national crisis”, ”Served as
Hubei Provincial Party Committee”]

“National crisis”

7 1.1 0.11 “武汉病毒所” [“Wuhan Institute of Virology”] “Wuhan virus”

8 1.0 0.15 “发国难财！”,“发国难财” [“Profiting from national disasters!
”,“Profiting from national disasters”]

9 0.91 0.07
“确诊与新天地教”,“一直等新天地教”,“不保证打款时间” [”Di-
agnosis and Shincheonji Teaching”, ”Always waiting for Shin-
cheonji Teaching”, ”No guarantee of payment time”]

“Shincheonji Church”

10 0.77 0.11 “蒋超良在武” [”Jiang Chaoliang is in Wuhan”] “Jiang Chaoliang”

11∗ -0.38 -

“2020 我们需要的是”,“: 辛苦啦，希望”,“！辛苦了！抱抱”,“，
东西都来不及”,“？有坚持有希望” [“What we need in 2020
is”,“:Thank you for your hard work, hope”,“! Thanks for
your hard work! Hug”,“, it’s too late for anything”,“? ”Per-
sistence and hope”

12∗ -0.48 -

“购买防护及消毒”,“武汉加油！转发”,“铁、公交等公共”,“距
离接触等条件”,“交往增多，临省” [“Purchase protection and
disinfection”, “Come on Wuhan! Forward”, “Railway, bus
and other public places”, “Distance contact and other condi-
tions”, “Increased exchanges, close to the province”]

13∗ -0.66 - “战疫，我们”,“疫情，我们” [”Fight the epidemic, we”, ”Fight
the epidemic, we”]

14∗ -0.80 -
“上报的防疫”,“召开的疫情”,“条件的传染”,“其来的疫情”
[“Reported epidemic prevention”, “Convened epidemic”,
“Conditional infection”, “Occurring epidemic”]
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15 -1.1 -0.09

“国加油！心”,“国加油！加”,“子里凉凉了”,“[CLS] 春暖花
开”,“待春暖花开” [“Come on country! Heart”, ”Come on
country! Add”, ”It’s getting cold inside”, ”[CLS] The flow-
ers are blooming in the spring”, ”Waiting for the flowers to
bloom in the spring”]

16 -1.2 -0.04
“leban乐班营业”,“今天是疫情开工”,“机器。泪泪家里”,“今天，
20200202，”,“过去，老伙伴们” [“leban Leban is open for busi-
ness”, “Today is the start of the epidemic”, “Machine. Tears
at home”,“Today, 20200202,”,“In the past, old friends”]

Table 7: Full results of censorship model filter interpretation. The first column distinguishes filters in
order of the second column, the weight assigned to max-pooled filter activations apooledi,f in the final model
layer. The third column shows the coefficient from regressing the label on apooledi,f . The fourth column
lists the unique phrases within the top 5 test set phrases that were most associated with each filter. The
fifth column associates filters with one of the top 10 most commonly reported censor words in the data
set (blank if none are applicable). ∗The associated max pooled filter activations had a range of less than
0.05, and therefore were omitted from interpretation and the regression to estimate β.
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Censorship model validation - randomized characters856

Figure 3: Validation test that the censorship model learns latent features strongly aligned with censor
words. This simulated test data set contains 500 texts which are constructed by randomly sampling
characters according to the probability distribution of characters in the full censorship data set. 10 of the
most frequent censor words in the data set are inserted into 100 of these samples. Filter activation plots
are shown for the samples corresponding to each censor word tested, as well as for the “placebo” fully
random samples and all samples in aggregate for comparison (scatter points). We compare the median
activation of the censor word samples (solid lines) to the median activation of the placebo samples (dotted
lines) on each filter with activation range above 0.05. Vertical lines connect these median values, with
longer lines indicating a larger difference between values. Filters with a positive output layer weight
(predicted as more associated with censorship) are shown in red, with negative output layer weight filters
in gray.
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Censorship model validation - movie reviews vs. ChatGPT posts 857

Figure 4: Validation test that the censorship model learns latent features strongly aligned with censor
words. This data set combines 300 randomly sampled texts from the Kaggle Doubon Movie Short
Comment data set, which is unrelated to the censorship data set, and 50 test samples each containing
one of the 5 most frequent censor words generated. These test samples were generated using ChatGPT
3.5, which was prompted to create fake Weibo posts using the censor words. Filter activation plots are
shown for the samples corresponding to each censor word tested, as well as for the “placebo” fully random
samples and all samples in aggregate for comparison (scatter points). We compare the median activation
of the censor word samples (solid lines) to the median activation of the placebo samples (dotted lines)
on each filter with activation range above 0.05. Vertical lines connect these median values, with longer
lines indicating a larger difference between values. Filters with a positive output layer weight (predicted
as more associated with censorship) are shown in red, with negative output layer weight filters in gray.
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Hyper-parameter Value
Number of tokens per sample 250
Number of filters per convolutional layer 4
Kernel sizes of conv. layers 5, 7
Conv. layer kernel regularizer penalty 0.0001
Conv. layer activity regularizer penalty 0
Output layer kernel regularizer penalty 0.01
Learning rate 0.001

Table 8: Hyper-parameter settings for the CFPB model used to produce our reported results. This model
has 6172 trainable parameters total. During tuning and the final model training, all models were trained
for 100 epochs with early stopping (patience = 15) and batch sizes of 32.

Tuned hyper-parameter Values considered in tuning
Number of filters per convolutional layer∗ 4, 8, 16
Kernel sizes of conv. layers 5, 7, 5 and 7
Conv. layer kernel regularizer penalty 0, 0.0001, 0.001, 0.01
Conv. layer activity regularizer penalty 0, 1, 3, 5
Output layer kernel regularizer penalty 0.0001, 0.001, 0.01

Table 9: The CFPB model parameter tuning process searched models with combinations of the above
hyper-parameter values. Records of computational resources used for this parameter tuning process are
no longer available to us. Based on those used to train the final model (7.2 minutes of CPU time), we
estimate that the tuning procedure, which considered 384 different parameter settings with 5-fold cross
validation for each, would have utilized about 230 CPU hours across 3 cores each with 40GB of memory.
Tuning was performed on a shared-resource computing cluster associated with our institution. ∗Models
were required to have 4, 8 or 16 total filters across convolutional layers. Combinations producing a model
with two convolutional layers with 16 features each were omitted from the tuning procedure.
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