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ABSTRACT

Class-Incremental Learning (CIL) aims to endow models with the ability to con-
tinuously adapt to evolving data streams. Recent advances in pre-trained vision-
language models (e.g., CLIP) provide a powerful foundation for this task. How-
ever, existing approaches often rely on simplistic templates, such as “a photo of
a [CLASS]”, which overlook the hierarchical nature of visual concepts. For ex-
ample, recognizing “cat” versus “car” depends on coarse-grained cues, while
distinguishing “cat” from “lion” requires fine-grained details. Similarly, the cur-
rent feature mapping in CLIP relies solely on the representation from the last layer,
neglecting the hierarchical information contained in earlier layers. In this work,
we introduce HiErarchical Representation MAtchiNg (HERMAN) for CLIP-based
CIL. Our approach leverages LLMs to recursively generate discriminative tex-
tual descriptors, thereby augmenting the semantic space with explicit hierarchical
cues. These descriptors are matched to different levels of the semantic hierar-
chy and adaptively routed based on task-specific requirements, enabling precise
discrimination while alleviating catastrophic forgetting in incremental tasks. Ex-
tensive experiments on multiple benchmarks demonstrate that our method consis-
tently achieves state-of-the-art performance.

1 INTRODUCTION

Deep learning (Hinton et al., 2006; Deng et al., 2009; LeCun et al., 2015; He et al., 2015; Good-
fellow et al., 2016) has achieved remarkable progress across domains. However, real-world data
streams pose unique challenges, particularly due to the need for continuous adaptation to new infor-
mation. Class-Incremental Learning (CIL) (Zhao et al., 2020; Masana et al., 2022; Yu et al., 2024a;
Dohare et al., 2024; Wang et al., 2024; Lai et al., 2025) addresses this by gradually incorporating
new categories, but a major obstacle is catastrophic forgetting (Serra et al., 2018; Ramasesh et al.,
2021; Shi et al., 2021), where learning new classes diminishes previously acquired knowledge of old
classes. Early approaches often train models from scratch (Li & Hoiem, 2018; Rebuffi et al., 2017b;
Yan et al., 2021), whereas recent work leverages pre-trained models (PTMs) (Wang et al., 2022c;b;
Smith et al., 2023; Huang et al., 2024) such as CLIP (Radford et al., 2021). By leveraging rich
prior knowledge from large-scale training, PTMs provide stronger initialization and support more
effective continual adaptation, making them well-suited for real-world incremental learning.

As a representative PTM, CLIP (Radford et al., 2021) aligns images with textual descriptors and has
demonstrated impressive zero-shot generalization. However, the commonly used fixed templates
such as “a photo of a [CLASS]” capture only coarse semantics and fail to encode richer hierarchical
textual information (Menon & Vondrick, 2023; Khattak et al., 2023; Liu et al., 2024). Coarse-grained
descriptors, such as “animal” versus “vehicle”, are sufficient to distinguish semantically distant
categories like “cat” and “car”. In contrast, separating semantically similar categories such as
“cat” and “lion” requires fine-grained descriptors, such as “soft and finely textured fur” and “thick
and elongated whiskers”. Relying solely on class names neglects these discriminative cues, which
in turn limits cross-modal alignment. Even when learnable prompt tuning is employed, prompts are
still modeled as single-level representations without explicit control over semantic hierarchy.

Similarly, the hierarchical structure of visual representations in CLIP is often overlooked (Mani-
parambil et al., 2023; Novack et al., 2023; Pratt et al., 2023). Most existing feature mapping strate-
gies rely exclusively on the representation from the last layer, which emphasizes global semantics
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but ignores the progressively refined information encoded in intermediate layers. These intermediate
features naturally capture multiple levels of abstraction, from low-level textures to high-level object
semantics, and thus provide complementary signals that are crucial for robust CIL.

However, even with hierarchical textual and visual representations, a key challenge remains: differ-
ent hierarchies contribute unequally during inference. Coarse-grained semantics, such as “animal”,
help with discriminating semantically distant categories. Fine-grained cues, like “thick and elon-
gated whiskers”, are crucial for distinguishing closely related categories. Uniformly treating all
levels risks impairing critical details or overemphasizing irrelevant cues (Wu et al., 2024a; Dai et al.,
2024; Lin et al., 2025). To address this, it is crucial to design a mechanism that can dynamically
exploit hierarchical representations (Tu et al., 2023). This enables more accurate visual-textual
alignment. Moreover, as tasks arrive continually, an additional strategy is required to facilitate the
acquisition of new knowledge, stabilize the routing process, and alleviate catastrophic forgetting.

Learning with hierarchical representations presents a promising avenue for strengthening CLIP in
CIL. Nevertheless, two key challenges remain: 1) how to obtain and organize hierarchical repre-
sentations. Such hierarchical semantics are essential because they capture both coarse-grained cues
and fine-grained attributes, thereby improving recognition accuracy and reducing the risk of for-
getting; 2) how to dynamically route and balance the contributions of hierarchical representations.
Fine-grained routing control allows the model to emphasize the most informative cues for each task,
improving adaptability while mitigating catastrophic forgetting in CIL.

To tackle these challenges, we propose HiErarchical Representation MAtchiNg (HERMAN) for
CLIP-based CIL. Our framework first leverages LLMs (OpenAI, 2025; Yang et al., 2025) to re-
cursively generate discriminative textual descriptors at multiple hierarchical levels and explicitly
match them to corresponding visual features. This alignment constructs a structured semantic space
where both coarse- and fine-grained cues are faithfully associated with their visual counterparts. In
addition to this enriched space, we introduce an adaptive routing mechanism that dynamically al-
locates weights across the semantic hierarchy, enabling the model to emphasize the most relevant
features for each input. To further stabilize routing and avoid catastrophic forgetting, the router is
updated through a projection that preserves informative subspaces of prior knowledge while allow-
ing compact adaptation to new categories. By jointly enriching, matching, and adaptively routing
hierarchical semantics, HERMAN enhances the discriminative power of CLIP in CIL, mitigates for-
getting, and achieves consistent gains across standard benchmarks.

2 RELATED WORK

Pre-Trained Model-Based CIL. Early approaches to class-incremental learning (CIL) (Rebuffi
et al., 2017b; Li & Hoiem, 2018; De Lange et al., 2021; Yan et al., 2021; Masana et al., 2022)
typically trained models from scratch, which often led to limited generalization and severe for-
getting when adapting to new tasks. To overcome these drawbacks, recent studies have shifted
towards leveraging large-scale pre-trained models (PTMs), whose rich prior knowledge provides
a stronger foundation for continual learning (Wang & Huang, 2024; Seo et al., 2024; Yu et al.,
2025; van de Ven, 2025). A common strategy is to freeze the pre-trained backbone and introduce
lightweight modules, such as prompts (Wang et al., 2022b;c;a; Zhou et al., 2022; Smith et al., 2023)
and adapters (Rebuffi et al., 2017a; Chen et al., 2022; Yu et al., 2024a). For example, L2P (Wang
et al., 2022c) and DualPrompt (Wang et al., 2022b) maintain a pool of visual prompts (Jia et al.,
2022) and dynamically select instance-specific prompts for each input when fine-tuning a pre-trained
Vision Transformer. Other methods design more sophisticated prompt strategies, such as combining
or generating prompts through attention mechanisms (Smith et al., 2023; Wang et al., 2023a; Li &
Zhou, 2025) or generative networks (Jung et al., 2023). Prototype-based methods further exploit
PTM features by directly constructing classifiers via class prototypes (Snell et al., 2017; Zhou et al.,
2025a; McDonnell et al., 2023). When CLIP is adopted as initialization, multi-modal prompts are
explored to better align vision and language representations (Wang et al., 2022a; Liang et al., 2022;
Wang et al., 2023b). Beyond prompts, MOE-Adapter (Yu et al., 2024a) extends lightweight module
selection with a mixture-of-experts design (Masoudnia & Ebrahimpour, 2014), while RAPF (Huang
et al., 2024) enhances adapters through decomposed parameter fusion to mitigate forgetting.
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Textual descriptors for CLIP. PTMs, such as CLIP (Radford et al., 2021), align images and
texts in a shared embedding space, achieving strong zero-shot recognition and retrieval. However,
their performance in specialized domains, such as healthcare, remains limited due to the need for
fine-grained visual cues and domain-specific semantics. To address this, a variety of lightweight
adaptation strategies have been proposed, with text prompting attracting particular attention. Exist-
ing approaches can be broadly categorized into two main types: soft prompting and hard prompting.
Soft prompting (Zhou et al., 2022; Wu et al., 2024b; Fu et al., 2024; Tian et al., 2024; Zhang et al.,
2024) introduces learnable tokens into the textual input, enabling parameter-efficient adaptation
while keeping the pre-trained backbone frozen. In contrast, hard prompting (Wen et al., 2023; Yu
et al., 2024b) directly inserts natural language phrases into predefined templates, requiring no addi-
tional training and offering better interpretability. However, both soft and hard prompting still fall
short in capturing the hierarchical representations that are crucial for CIL. Motivated by this limi-
tation, we propose to extend hard prompting by introducing hierarchical textual descriptors. These
descriptors serve as semantically rich anchors that transcend conventional flat templates, allowing
models to more effectively capture and enhance recognition in hierarchical representation spaces.

3 PRELIMINARIES

3.1 PROBLEM SETUP: CLASS-INCREMENTAL LEARNING

CIL aims to continually extend a unified classifier as novel classes arrive in a sequence of tasks (Re-
buffi et al., 2017b). Let the training stream be {D1, D2, . . . , DT }, where each incremental task
Dt = {(xi, yi)}nt

i=1 contains nt labeled instances. Each input xi ∈ X belongs to a class yi ∈ Yt,
where Yt is the label set of task t. We assume disjoint label spaces across tasks, i.e., Yt ∩ Yt′ = ∅
for t ̸= t′. Following the exemplar-free protocol (Zhu et al., 2021; Wang et al., 2022b;c), the learner
cannot store or replay samples from past tasks. When learning the t-th task, only Dt is accessible.
The objective is then to build a unified classifier over all classes observed so far, Yt = Y1 ∪ · · · ∪Yt,
by finding a function f : X → Yt that minimizes the empirical risk:

f⋆ = argmin
f∈H

E(x,y)∼D1∪···∪Dt
I
(
y ̸= f(x)

)
, (1)

where H denotes the hypothesis space and I(·) is the indicator function.

3.2 CLIP-BASED CLASSIFICATION

Following Zhou et al. (2025b), we assume a pre-trained CLIP is available for classification. Given
an input image x ∈ RH×W×C , the vision encoder gv(·) first partitions it into a sequence of flattened
2D patches xe ∈ R(L−1)×D, where (L − 1) denotes the number of patch tokens and D is the
embedding dimension. A learnable [CLS] token xcls ∈ RD is prepended to obtain the sequence
xp = [xcls;xe], which is processed by B layers. The representation at the b-th layer is:

xb = [xb
cls;x

b
1; . . . ;x

b
L−1] ∈ RL×D, (2)

where xb
cls ∈ RD is the class token and xb

l is the patch token.

For each class i ∈ Yt, we utilize a templated prompt ci (e.g., “a photo of a [CLASS]”) and obtain
its textual embedding ei = gt(ci) via the text encoder (Radford et al., 2021). Classification is
performed by measuring the similarity between the final-layer [CLS] token xB

cls and these textual
embeddings. The probability of class i is then obtained as a Softmax over the cosine similarities:

fyi(x) =
exp

(
cos(xB

cls, ei)
)∑|Yt|

j=1 exp
(
cos(xB

cls, ej)
) =

exp
(
cos(gv(x), gt(ci))

)∑|Yt|
j=1 exp

(
cos(gv(x), gt(cj))

) , (3)

where cos(·, ·) denotes cosine similarity. In this formulation, CLIP performs classification by align-
ing visual embeddings with textual prompts, which can be seamlessly extended to CIL by enlarging
the label space Yt as new categories arrive (Huang et al., 2024; Yu et al., 2024a).

Discussions. As shown in Eq. 3, classification depends only on the final-layer visual embedding
aligned with a simple templated prompt. However, the hierarchical representations generated by the
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vision encoder gv(·) in Eq. 2 are overlooked. These intermediate embeddings encode hierarchical
semantics that can further enhance the final representation. Likewise, textual representations should
not be constrained to fixed templates; instead, they should also exhibit hierarchical structures. By
incorporating hierarchical visual and textual representations, it becomes possible to perform cross-
modal alignment in a hierarchical view. Furthermore, an effective mechanism is required to dy-
namically exploit such hierarchical information while continually updating representations without
incurring catastrophic forgetting.

4 HERMAN: HIERARCHICAL REPRESENTATION MATCHING

To address the observed challenges, we introduce hierarchical textual descriptors that mirror the
multi-level structure encoded in intermediate visual representations. These descriptors are aligned
with visual features at corresponding hierarchical levels, providing auxiliary supervision through-
out the hierarchy and strengthening vision–language alignment. In addition to this enriched space,
we further employ an adaptive routing mechanism that regulates the contributions of different hier-
archical levels for each input. To stabilize routing and alleviate catastrophic forgetting, the router
is updated through a projection that preserves informative subspaces of prior knowledge while en-
abling compact adaptation to new categories.

4.1 OBTAINING HIERARCHICAL REPRESENTATIONS

In visual recognition, the semantic information required for discrimination is not uniform across cat-
egories. Coarse-grained descriptors, such as “animal” versus “vehicle”, are sufficient to separate
semantically distant classes like “cat” and “car”. In contrast, distinguishing semantically simi-
lar categories such as “cat” and “lion” requires fine-grained descriptors, such as “soft and finely
textured fur” or “thick and elongated whiskers”. Conventional CLIP, however, relies on a single
fixed prompt aligned with the final-layer representation, overlooking such hierarchical cues. To ad-
dress this, we introduce hierarchical textual descriptors that range from coarse to fine-grained levels,
aligning them with intermediate visual features to provide richer supervision.

To capture semantic information at different levels of abstraction, we construct a set of natu-
ral language descriptors for each class that spans from coarse-grained cues to fine-grained de-
tails. Concretely, for each class i ∈ Yt, we recursively generate a collection of M descriptors
Ti = {ti,1, . . . , ti,M} with the aid of LLMs. These descriptions are designed to progress from
high-level category cues to increasingly detailed characteristics. To illustrate, we take the class
“Aston Martin Virage Convertible 2012” from StanfordCars (Krause et al., 2013) as an example:

Q: What hierarchical visual features characterize [CLASS]i in an image?

A: There are several useful visual features to tell there is a [CLASS]i in an image:

– sports car
– sculpted side panels with recessed door handles
– contrasting textures of glossy paint, metallic rims, and matte grille details

At the coarsest level, the descriptors emphasize only the overall identity of the object, while interme-
diate ones highlight representative architectural elements, and the finest-grained descriptors capture
rich contextual details by combining multiple attributes together. Once generated, these descriptors
are mapped into a shared embedding space through the CLIP text encoder gt(·):

zi,m = gt(ti,m) ∈ RD, m = 1, . . . ,M, (4)

which yields a set of textual embeddings that capture different levels of semantic abstraction, form-
ing a hierarchical textual space that grounds the model for subsequent alignment with visual features.

To enable such alignment, the vision encoder gv(·) processes an input image x through B layers,
producing intermediate representations as defined in Eq. 2. At each layer b, we extract the [CLS]
token xb

cls ∈ RD, which serves as the summary of visual information at the corresponding hierarchi-
cal level of representation, and match it with the textual embedding zi,m associated with class i. In
other words, the collection of hierarchical visual embeddings {xb

cls}Bb=1 is jointly aligned with the
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Figure 1: Illustration of HERMAN. The model leverages LLMs to generate hierarchical textual de-
scriptors and explicitly matches them with intermediate visual features of CLIP. An adaptive routing
mechanism then balances contributions across different hierarchical levels, while a projection-based
update stabilizes routing to alleviate catastrophic forgetting in continual learning.

set of hierarchical textual descriptors {zi,m}Mm=1, establishing cross-modal alignment across multi-
ple hierarchical representations. We therefore compute the cosine similarity sbi,m between xb

cls and
zi,m, which provides a quantitative measure of their alignment in the shared hierarchy space:

sbi,m = cos
(
xb

cls, zi,m
)
. (5)

However, simply using all descriptors directly may introduce redundancy and noise. To mitigate
this, we retain only the Top-K descriptors and normalize their weights. The aligned descriptors are
then aggregated to form the united hierarchical textual embeddings for class i at layer b:

hb
i =

∑
k

αb
i,k zi,k, where αb

i,k = Softmax
(
TopK({sbi,k}Kk=1)

)
. (6)

In Eq. 6, hb
i represents a compact textual representation corresponding to xb

cls. By grounding in-
termediate visual features in their most relevant textual descriptors, the model benefits from hierar-
chical supervision that extends beyond the final-layer alignment in Eq. 3. As illustrated in Fig. 1,
this design enforces cross-modal alignment of hierarchical visual-textual representations, thereby
preserving semantic coherence across levels, from coarse-grained cues to fine-grained details.

4.2 ADAPTIVE HIERARCHY ROUTING

While such hierarchical alignment establishes meaningful correspondences between intermediate
visual and textual representations, an open question remains: how should these hierarchical rep-
resentations be integrated to form the final prediction? A naı̈ve strategy would be to average the
representations across different layers, but this overlooks the fact that the relative importance of hi-
erarchical levels can vary across tasks and inputs, with certain representations being more decisive
for discrimination than others. To overcome this limitation, we introduce an adaptive routing mech-
anism that dynamically regulates the contributions of different hierarchical levels. Crucially, this
routing must remain flexible as new tasks arrive, while also preserving knowledge from previously
learned tasks to mitigate catastrophic forgetting.

Specifically, to adaptively regulate the relative contributions of hierarchical representations, we em-
ploy a router implemented as a lightweight linear layer Wr ∈ RB×D. Conditioned on the final-
layer visual representation xB

cls, the router dynamically generates a set of non-negative weights
βi = {β1

i , . . . , β
B
i } for the B unified hierarchical textual embeddings of class i, and the final

representation is subsequently obtained as their convex combination:

h̃i =

B∑
b=1

βb
i h

b
i , where βi = Softmax

(
Wrx

B
cls

)
. (7)
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Therefore, the model can adaptively exploit different hierarchies depending on the input, thereby
enhancing discrimination. Nonetheless, continually updating the router may overwrite routing pat-
terns established for previous tasks, leading to catastrophic forgetting. To mitigate this, we update
the router under a projection constraint that retains knowledge-rich subspaces, thus stabilizing learn-
ing across tasks. Specifically, after each incremental task, the weight of Wr is decomposed as:

Wr = UΣV⊤, (8)
where U ∈ RB×B and V ∈ RD×D contain the left and right singular vectors, and Σ =
diag(σ1, . . . , σB) with σb ≥ 0. We select the smallest rank B′ that preserves at least a propor-
tion δ of the cumulative energy and form the projection matrix onto the retained subspace:

Pold = U[:,1:B′]U
⊤
[:,1:B′] ∈ RB×B , where B′ = min

{
r

∣∣∣∣∣
∑r

b=1 σ
2
b∑B

b=1 σ
2
b

≥ δ

}
, δ ∈ (0, 1]. (9)

where Pold serves as an orthogonal projector encoding the routing pattern subspace accumulated
for old tasks. During parameter updates, let Wnew ∈ RB×D denote the router weight obtained by
optimizing on the current task. We project Wnew into components within and outside the preserved
subspace and compute the projected update with Pold:

Wproj = ρPold Wnew + (1− ρ) (I−Pold)Wnew, (10)

where I ∈ RB×B is the identity matrix and ρ ∈ [0, 1] balances stability and plasticity. In Eq. 10,
the first term preserves and reinforces directions already captured by previous tasks, as it retains
the component of Wnew lying in the preserved subspace, whereas the second term instead extracts
the component in the orthogonal complement, allowing the router to capture novel information
and adapt to new tasks without disrupting prior knowledge. We then initialize the next task with
Wproj, which stabilizes routing dynamics across tasks and enables the model to flexibly integrate
new knowledge while maintaining long-term consistency in continual learning.

4.3 CROSS-MODAL MATCHING

While the router integrates hierarchical textual representations, it remains essential to establish a
joint space where visual and textual features can be directly compared and contrasted. To this
end, we introduce an adapter Wa ∈ RD×D that projects xB

cls into the joint space, yielding qi =
Wax

B
cls for cross-modal alignment. To enhance textual supervision, we mix the aggregated textual

embedding h̃i with the templated embedding ei = gt(ti) through a convex interpolation controlled
by λ ∈ [0, 1]. Building on this, we reformulate the prediction of class i in Eq. 3 using the adapted
visual embedding and the mixed textual embedding, which yields the following contrastive loss:

L = ℓ(fyi
(x), yi), where fyi

(x) =
exp

(
cos(qi, (λh̃i + (1− λ)ei)/τ

)
)∑|Yt|

j=1 exp
(
cos(qi, (λh̃j + (1− λ)ej)/τ

)
)
. (11)

To further mitigate forgetting, we adopt feature-level generative replay: rather than reconstructing
raw images, we model the distribution of xB

cls for each class i as a Gaussian N (µi,Σi) estimated
from the empirical mean and covariance (Zhu et al., 2021). For intermediate layers, only the diagonal
covariance is retained to reduce memory cost. During incremental training, pseudo-features sampled
from these Gaussians act as compact surrogates for past classes, alleviating catastrophic forgetting.

Summary of HERMAN. We enhance CLIP-based CIL by introducing LLM-generated hierarchical
textual descriptors, which are encoded into embeddings (Eq. 4), aligned with intermediate visual
features (Eq. 5), and further aggregated into unified hierarchical representations (Eq. 6). A router
convexly combines these embeddings (Eq. 7) and is updated with a projection constraint to effec-
tively mitigate forgetting (Eq. 10). During training, the model is jointly optimized with Eq. 11.
During inference, final predictions are obtained by matching visual embeddings against the mixed
textual embeddings of all previously seen classes using the same formulation.

5 EXPERIMENTS

In this section, we evaluate HERMAN on nine benchmark datasets and compare it with state-of-
the-art approaches. In addition, we conduct ablation studies and parameter sensitivity analysis, and
provide visualizations to further validate the robustness and interpretability of our framework.
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Table 1: Average and last performance comparison of different methods. The best performance is
shown in bold. All methods are initialized with the same pre-trained CLIP for a fair comparison.

Method
Aircraft Cars CIFAR100

B0 Inc10 B50 Inc10 B0 Inc10 B50 Inc10 B0 Inc10 B50 Inc10
Ā AB Ā AB Ā AB Ā AB Ā AB Ā AB

Finetune 3.16 0.96 1.72 1.05 3.14 1.10 1.54 1.13 7.84 4.44 5.30 2.46
SimpleCIL (Zhou et al., 2025a) 59.24 48.09 53.05 48.09 92.04 86.85 88.96 86.85 84.15 76.63 80.20 76.63
CoOp (Zhou et al., 2022) 14.54 7.14 13.05 7.77 36.46 21.65 37.40 20.87 47.00 24.24 41.23 24.12
ZS-CLIP (Radford et al., 2021) 26.66 17.22 21.70 17.22 82.60 76.37 78.32 76.37 81.81 71.38 76.49 71.38
L2P (Wang et al., 2022c) 47.19 28.29 44.07 32.13 76.63 61.82 76.37 65.64 82.74 73.03 81.14 73.61
DualPrompt (Wang et al., 2022b) 44.30 25.83 46.07 33.57 76.26 62.94 76.88 67.55 81.63 72.44 80.12 72.57
CODA-Prompt (Smith et al., 2023) 45.98 27.69 45.14 32.28 80.21 66.47 75.06 64.19 82.43 73.43 78.69 71.58
RAPF (Huang et al., 2024) 50.38 23.61 40.47 25.44 82.79 71.22 77.21 69.97 86.14 78.04 82.17 77.93
PROOF (Zhou et al., 2025b) 63.81 56.14 59.47 57.10 90.74 86.51 88.00 85.58 86.77 79.11 83.32 79.73
HERMAN 66.70 58.84 60.41 58.18 92.49 89.13 89.68 89.00 89.02 83.21 85.91 82.98

Method
Food UCF CUB

B0 Inc10 B50 Inc10 B0 Inc10 B50 Inc10 B0 Inc20 B100 Inc20
Ā AB Ā AB Ā AB Ā AB Ā AB Ā AB

Finetune 3.49 1.71 2.14 1.52 4.51 1.59 1.21 0.80 2.06 0.64 0.56 0.47
SimpleCIL (Zhou et al., 2025a) 87.89 81.65 84.73 81.65 90.44 85.68 88.12 85.68 83.81 77.52 79.75 77.52
CoOp (Zhou et al., 2022) 36.01 14.18 33.13 18.67 47.85 33.46 42.02 24.74 27.61 8.57 24.03 10.14
ZS-CLIP (Radford et al., 2021) 87.86 81.92 84.75 81.92 75.50 67.64 71.44 67.64 74.38 63.06 67.96 63.06
L2P (Wang et al., 2022c) 85.66 77.33 80.42 73.13 86.34 76.43 83.95 76.62 70.87 57.93 75.64 66.12
DualPrompt (Wang et al., 2022b) 84.92 77.29 80.00 72.75 85.21 75.82 84.31 76.35 69.89 57.46 74.40 64.84
CODA-Prompt (Smith et al., 2023) 86.18 78.78 80.98 74.13 87.76 80.14 83.04 75.03 73.12 62.98 73.95 62.21
RAPF (Huang et al., 2024) 88.57 81.15 85.53 81.17 92.28 80.33 90.31 81.55 79.09 62.77 72.82 62.93
PROOF (Zhou et al., 2025b) 90.04 84.73 87.52 84.74 94.58 91.10 93.58 90.91 82.31 76.64 79.20 76.37
HERMAN 90.93 86.18 88.53 86.26 97.69 95.72 96.63 95.83 84.71 78.37 80.52 77.95

Method
ImageNet-R ObjectNet SUN

B0 Inc20 B100 Inc20 B0 Inc20 B100 Inc20 B0 Inc30 B150 Inc30
Ā AB Ā AB Ā AB Ā AB Ā AB Ā AB

Finetune 1.37 0.43 1.01 0.88 1.34 0.47 0.69 0.54 4.51 1.59 0.78 0.72
SimpleCIL (Zhou et al., 2025a) 81.06 74.48 76.84 74.48 52.06 40.13 45.11 40.13 82.13 75.58 78.62 75.58
CoOp (Zhou et al., 2022) 60.73 37.52 54.20 39.77 21.24 6.29 16.21 6.82 45.93 23.11 39.33 24.89
ZS-CLIP (Radford et al., 2021) 83.37 77.17 79.57 77.17 38.43 26.43 31.12 26.43 79.42 72.11 74.95 72.11
L2P (Wang et al., 2022c) 75.97 66.52 72.82 66.77 51.40 39.39 48.91 42.83 82.82 74.54 79.57 73.10
DualPrompt (Wang et al., 2022b) 76.21 66.65 73.22 67.58 52.62 40.72 49.08 42.92 82.46 74.40 79.37 73.02
CODA-Prompt (Smith et al., 2023) 77.69 68.95 73.71 68.05 46.49 34.13 40.57 34.13 83.34 75.71 80.38 74.17
RAPF (Huang et al., 2024) 83.56 76.63 79.61 75.92 53.78 34.97 45.37 35.74 85.23 78.21 81.91 78.62
PROOF (Zhou et al., 2025b) 83.84 78.40 81.20 78.92 56.07 43.69 48.90 43.62 83.89 77.25 80.15 76.54
HERMAN 84.98 80.73 82.04 80.70 56.79 44.21 49.78 44.34 86.76 80.76 83.51 80.85
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Figure 2: Incremental performance of different methods. We report the performance gap after the
last incremental stage of HERMAN and the runner-up method at the end of the line. All methods
utilize the same CLIP pre-trained weights. More figures are shown in the appendix.

5.1 IMPLEMENTATION DETAILS

Dataset. We follow (Zhou et al., 2025b; 2022; Wang et al., 2022c) to evaluate the perfor-
mance on nine benchmark datasets that have domain gap to CLIP’s pre-training dataset, i.e., CI-
FAR100 (Krizhevsky, 2009), CUB200 (Wah et al., 2011), ObjectNet (Barbu et al., 2019), ImageNet-
R (Hendrycks et al., 2021), FGVCAircraft (Maji et al., 2013), StanfordCars (Krause et al., 2013),
Food101 (Bossard et al., 2014), SUN397 (Xiao et al., 2010) and UCF101 (Soomro et al., 2012).

Dataset Split. Following (Rebuffi et al., 2017b; Wang et al., 2022c), we use ‘B-m Inc-n’ to split the
classes in CIL. m indicates the number of classes in the first stage, and n represents that of every
following stage. The dataset split is adapted following Zhou et al. (2025b). We follow (Rebuffi et al.,
2017b) to randomly shuffle the class order with random seed 1993 for all experiments.
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Table 2: Results when all methods use the same textual descriptors generated by different LLMs.

Method Textual Descriptors Aircraft B0 Inc10 CIFAR B0 Inc10 UCF B0 Inc10 CUB B0 Inc20
Ā AB Ā AB Ā AB Ā AB

ZS-CLIP (Radford et al., 2021) GPT-5 Generated 31.33 22.69 84.07 75.50 80.58 71.55 79.97 68.43
RAPF (Huang et al., 2024) GPT-5 Generated 55.71 32.96 88.35 81.31 94.52 86.69 82.48 65.95
HERMAN GPT-5 Generated 66.70 58.84 89.02 83.21 97.69 95.72 84.71 78.37
ZS-CLIP (Radford et al., 2021) QWEN-Plus Generated 31.25 22.54 84.24 75.68 80.63 71.55 79.89 68.31
RAPF (Huang et al., 2024) QWEN-Plus Generated 55.75 32.92 88.41 81.32 94.49 86.60 83.13 65.02
HERMAN QWEN-Plus Generated 66.60 58.30 89.02 83.17 94.34 90.60 84.87 79.86
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Figure 3: Ablation study, parameter sensitivity and similarity analysis.

Comparison Methods. We first compare to SOTA pre-trained model-based CIL algorithms, e.g.,
L2P (Wang et al., 2022c), DualPrompt (Wang et al., 2022b), CODA-Prompt (Smith et al., 2023) and
SimpleCIL (Zhou et al., 2025a). Besides, we also compare to SOTA CLIP-based CIL algorithms,
e.g., CoOp (Zhou et al., 2022), RAPF (Huang et al., 2024) and PROOF (Zhou et al., 2025b). As a
baseline, we include a variant that fine-tunes CLIP on incremental tasks, denoted as Finetune. All
methods are deployed with the same CLIP as initialization.

Training Details. The experiments are conducted on NVIDIA 4090 GPUs using PyTorch (Paszke
et al., 2019). Following (Huang et al., 2024; Zhou et al., 2025b), all compared methods adopt CLIP
with ViT-B/16 pre-trained on LAION-400M (Radford et al., 2021) for fair comparison. For vision-
only approaches that cannot utilize textual prompts (e.g., L2P, DualPrompt, CODA-Prompt), we
initialize them with CLIP’s visual branch. In HERMAN, we use an SGD optimizer with a batch size
of 64 for 20 epochs, with the learning rate decaying from 0.05 according to the schedule. We set
Top-k = 5, λ = 0.5 for embedding combination, and ρ = 0.9, δ = 0.9 for the update of the weight
of the router. GPT-5 (OpenAI, 2025) is employed to generate textual descriptors.

Evaluation Metrics. Following Rebuffi et al. (2017b); Zhou et al. (2025b), we use At to represent
the model’s accuracy after the t-th task. Specifically, we adopt AT (the performance after the last
task) and Ā = 1

T

∑T
t=1 At (average performance along incremental tasks) as measurements.

5.2 BENCHMARK COMPARISON AND FURTHER ANALYSIS

Benchmark Comparison. We first compare HERMAN with state-of-the-art methods on benchmark
datasets, as reported in Tab. 1 and Fig. 2. HERMAN consistently outperforms existing approaches by
1%–5%. The Finetune baseline performs the worst, reflecting its severe forgetting of fine-grained
class features. Visual prompt-based methods (e.g., L2P, DualPrompt, CODA-Prompt) are limited by
their inability to leverage textual semantics, while the textual prompt tuning method CoOp suffers
from forgetting of learned prompts, leading to suboptimal results. Notably, HERMAN even surpasses
the exemplar-based method PROOF, further demonstrating its effectiveness. This advantage stems
from hierarchical representation matching, which aligns multi-level textual descriptors with visual
features, enabling stronger cross-modal alignment and more stable knowledge retention.

Robustness for Textual Descriptors. We investigate how HERMAN performs using different LLM-
generated textual descriptors. Specifically, we apply the same prompt for GPT-5 (OpenAI, 2025)
and QWEN-Plus (Yang et al., 2025) to generate textual descriptors, and report the results in Tab. 2.
Remarkably, even with the same prompt, HERMAN consistently outperforms the other methods.
This demonstrates that HERMAN not only benefits from hierarchical representations but also exhibits
robustness in leveraging textual descriptors generated by different LLMs.
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(a) Matching with 4 layers (b) Matching with 8 layers (c) Matching with 12 layers

Figure 4: We visualize 5 classes of the first task in light colors. In this case, visual and textual
embeddings are represented by circles and squares. For the second task, 5 classes are shown in
vivid colors, with visual and textual embeddings represented by triangles and stars, respectively. All
embeddings are visualized after the completion of all learning tasks.

Ablation Study. We conduct ablation experiments on CIFAR100 B0 Inc10 to evaluate the contri-
bution of each component in HERMAN, with results shown in Fig. 3a. ‘ZS-CLIP’ serves as the
baseline and performs the worst due to distributional shifts. ‘w/ Descriptors’ introduces LLM-
generated textual descriptors (Eq. 4) and significantly boosts performance, showing the benefit of
richer features. ‘w/ Router’ adds a router without constraints (Eq. 6) but provides little or no im-
provement. Finally, ‘w/ Projection’, the full HERMAN model with projection-constrained router
updates (Eq. 9), achieves the best results, confirming the effectiveness of each component.

Parameter Robustness. We evaluate robustness on CIFAR100 B0 Inc10 by varying two parame-
ters: the number of top-K textual descriptors and the mixing factor λ between templated and unified
embeddings. Specifically, we set K ∈ {1, 3, 5, 10, 20} and λ ∈ {0.40, 0.45, 0.50, 0.55, 0.60}. The
average performance Ā is shown in Fig. 3b. Results indicate that too few descriptors fail to cap-
ture sufficient hierarchical information, while too many introduce noise. In contrast, λ shows stable
performance across values. Overall, HERMAN exhibits strong robustness to these hyperparameter
choices, and we recommend K = 5 and λ = 0.5 as default settings.

Update Router without Forgetting. We conduct experiments on CIFAR100 B50 Inc10 to inves-
tigate the role of Pold in maintaining the routing pattern subspace learned from earlier tasks. The
cosine similarity between the visual and textual embeddings of the first-task classes is averaged,
as shown in Fig. 3c. ‘ZS-CLIP’ freezes the model without adaptation, yielding no similarity im-
provement. ‘w/o Projection’, which updates the router without projecting Pold, initially adapts
to downstream tasks but quickly deteriorates due to the lack of constraints to retain prior routing
patterns. In contrast, ‘HERMAN’ leverages the projection mechanism during router updates and
sustains the highest cosine similarity as tasks are added incrementally, highlighting the effectiveness
of the projection constraint in mitigating catastrophic forgetting.

Effect of Hierarchical Representations Matching. We investigate the impact of hierarchical in-
formation on cross-modal alignment using CIFAR100 B0 Inc10 with t-SNE (Maaten & Hinton,
2008), as shown in Fig. 4. Alignment is performed with textual descriptors extracted from 4 to 12
intermediate layers. As more layers are incorporated, embeddings of visual and textual modalities
cluster more tightly and their gap progressively narrows, indicating stronger alignment. This trend
demonstrates that richer hierarchical information consistently enhances cross-modal matching.

6 CONCLUSION

We present HERMAN, a hierarchical representation matching method for CLIP-based CIL. By en-
riching the semantic space with LLM-generated descriptors, aligning them with hierarchical visual
representations, and introducing an adaptive routing mechanism with projection-based updates, our
method effectively enhances discrimination and mitigates catastrophic forgetting. Extensive experi-
ments across multiple benchmarks validate the robustness and effectiveness of our method.

Limitations and Future Work. Our method relies on LLMs to generate textual descriptors for
hierarchical representation matching, which may be less effective in scenarios where LLMs fail to
generalize. Future directions include leveraging not only the class token but also patch-level tokens
to capture richer visual–textual correspondences.
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Figure 5: Parameter sensitivity analysis and incremental performance of different methods. We
report the performance gap on Aircraft after the last incremental stage of HERMAN and the runner-
up method at the end of the line. All methods utilize the same CLIP pre-trained weights.

APPENDIX

A USE OF LLMS

In this work, large language models (LLMs), such as ChatGPT, were used solely as general-purpose
assistive tools. Specifically, LLMs were employed to help polish the writing style, rephrase sen-
tences for improved clarity, and check grammar consistency. They were not involved in research
ideation, the design of the proposed method, the execution of experiments, or the analysis of results.
All technical contributions, including problem formulation, methodological design, experimental
implementation, and result analysis, were conceived and carried out entirely by the authors.

B FURTHER PARAMETER SENSITIVITY ANALYSIS

We further evaluate the robustness of HERMAN with respect to the balance factor δ in the projection
step and the mixing coefficient ρ in Eq. 9 and Eq. 10. Experiments are conducted on CIFAR100 B0
Inc10, with results summarized in Fig. 5a. As shown, varying δ across {0.75, 0.80, 0.85, 0.90, 0.95}
and ρ across {0.75, 0.80, 0.85, 0.90, 0.95} leads to only minor fluctuations in performance, all re-
maining within a narrow band around the reported average accuracy. This demonstrates that the
model is not overly sensitive to either parameter: δ effectively controls the proportion of preserved
subspace without destabilizing learning, while ρ balances stability and plasticity in a consistent
manner. Overall, HERMAN shows strong robustness under different choices of δ and ρ, with default
settings δ = 0.9 and ρ = 0.9 adopted throughout the main experiments.

C EXTENDED BENCHMARK RESULTS

To provide a more comprehensive evaluation, we report incremental performance on nine bench-
mark datasets in Figs. 5b, 5c and 6 to 13. For each dataset, we explicitly highlight the performance
gap between HERMAN and the runner-up method at the final incremental stage using arrows and
annotations in the figures. As observed, HERMAN consistently achieves higher accuracy on the
last task, outperforming the second-best method by margins ranging from 0.43% to 4.62%. These
consistent gains across diverse datasets, including fine-grained recognition tasks such as Aircraft,
Cars, and CUB, large-scale benchmarks such as ImageNet-R and ObjectNet, and more heteroge-
neous domains such as SUN and UCF, demonstrate the broad applicability of our approach. The
improvements confirm that hierarchical representation matching strengthens cross-modal alignment
and enhances robustness against forgetting, enabling the model to retain fine-grained knowledge
while flexibly adapting to new categories in continual learning.
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Figure 6: Incremental performance of different methods. We report the performance gap on Cars
after the last incremental stage of HERMAN and the runner-up method at the end of the line. All
methods utilize the same CLIP pre-trained weights.
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Figure 7: Incremental performance of different methods. We report the performance gap on CI-
FAR100 after the last incremental stage of HERMAN and the runner-up method at the end of the
line. All methods utilize the same CLIP pre-trained weights.
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Figure 8: Incremental performance of different methods. We report the performance gap on Food101
after the last incremental stage of HERMAN and the runner-up method at the end of the line. All
methods utilize the same CLIP pre-trained weights.
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(a) UCF Base0 Inc10
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Figure 9: Incremental performance of different methods. We report the performance gap on UCF
after the last incremental stage of HERMAN and the runner-up method at the end of the line. All
methods utilize the same CLIP pre-trained weights.
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(a) CUB Base0 Inc20
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Figure 10: Incremental performance of different methods. We report the performance gap on CUB
after the last incremental stage of HERMAN and the runner-up method at the end of the line. All
methods utilize the same CLIP pre-trained weights.
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(a) ImageNet-R Base0 Inc20
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Figure 11: Incremental performance of different methods. We report the performance gap on
ImageNet-R after the last incremental stage of HERMAN and the runner-up method at the end of
the line. All methods utilize the same CLIP pre-trained weights.
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(a) ObjectNet Base0 Inc20
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(b) ObjectNet Base100 Inc20

Figure 12: Incremental performance of different methods. We report the performance gap on Ob-
jectNet after the last incremental stage of HERMAN and the runner-up method at the end of the line.
All methods utilize the same CLIP pre-trained weights.
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(a) SUN Base0 Inc30
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Figure 13: Incremental performance of different methods. We report the performance gap on SUN
after the last incremental stage of HERMAN and the runner-up method at the end of the line. All
methods utilize the same CLIP pre-trained weights.
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