
Self-Consistency Preference Optimization

Archiki Prasad 1 2 Weizhe Yuan 1 3 Richard Yuanzhe Pang 1 Jing Xu 1 Maryam Fazel-Zarandi 1 Mohit Bansal 2

Sainbayar Sukhbaatar 1 Jason Weston 1 3 Jane Yu 1

Abstract

Self-alignment, whereby models learn to improve
themselves without human annotation, is a rapidly
growing research area. However, existing tech-
niques often fail to improve complex reason-
ing tasks due to the difficulty of assigning cor-
rect rewards. An orthogonal approach that is
known to improve correctness is self-consistency,
a method applied at inference time based on mul-
tiple sampling in order to find the most consis-
tent answer. In this work, we extend the self-
consistency concept to help train models. We
thus introduce self-consistency preference opti-
mization (SCPO), which iteratively trains con-
sistent answers to be preferred over inconsistent
ones on unsupervised new problems. We show
SCPO leads to large improvements over conven-
tional reward model training on reasoning tasks
such as GSM8K and MATH, closing the gap with
supervised training with gold answers or prefer-
ences, and that combining SCPO with standard
supervised learning improves results even further.
On ZebraLogic, SCPO finetunes Llama-3 8B to
be superior to Llama-3 70B, Gemma-2 27B, and
Claude-3 Haiku.

1. Introduction
Training large language models (LLMs) on human-
annotated data has improved their performance on a wide
array of tasks (Bai et al., 2022; Touvron et al., 2023). How-
ever, the size and quality of human data remains a major
bottleneck as the data collection process is often resource-
intensive in terms of cost, time, and expertise. To address
this challenge, recent works focus on iteratively training
from model-generated data via self-training (Yuan et al.,
2024; Chen et al., 2024b). Notably, Yuan et al. (2024)

1Meta FAIR 2UNC Chapel Hill 3New York University. Corre-
spondence to: Archiki Prasad <archiki@cs.unc.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

propose a “self-rewarding” training pipeline for instruction-
following, comprising two steps: (i) using the LLM to gener-
ate new queries and self-evaluating the generated responses
for each query; and (ii) building preference pairs and train-
ing the LLM using iterative direct preference optimization
loss (DPO; Rafailov et al., 2024; Xu et al., 2023). However,
Huang et al. (2024) demonstrate that LLMs struggle at eval-
uating the correctness of their own responses on complex
problem-solving tasks which have an unambiguous correct
answer, thereby rendering Yuan et al.’s self-evaluation ap-
proach ineffective. Using an external reward model (RM)
to rank responses can have similar problems; even if such
models are trained on reasoning tasks they may still suffer
on out-of-distribution problems (Casper et al., 2023; Zhang
et al., 2024; Mahan et al., 2024).

To address this, we introduce Self-consistency Preference
Optimization (SCPO). SCPO is an approach to self-train
LLMs for complex problem-solving tasks without access
to gold solutions or final answers in the training data. Our
approach leverages the concept of self-consistency (Wang
et al., 2023), an inference-time only approach that improves
performance on reasoning tasks by generating multiple so-
lutions using the LLM and choosing the most frequent final
answer. More consistent answers are more likely to be cor-
rect because mistakes made by the model are often random,
so incorrect solutions are unlikely to lead to the same answer
multiple times (Fischler & Bolles, 1981; Chen et al., 2023).
In SCPO, the self-consistency concept is instead applied
during unsupervised self-training. The method consists of
(i) selecting model-generated queries, (ii) annotating prefer-
ence pairs using the most self-consistent response (winner)
and least self-consistent response (loser), and (iii) optimizing
a loss function that is weighted for each instance depending
on the model’s confidence in the preference pair. Addition-
ally, we propose a semi-supervised variant of SCPO that
jointly trains LLMs on labeled and unlabeled instances, tak-
ing advantage of human annotations whenever available.
Unlike self-consistency applied during inference, SCPO
does not increase inference-time compute, but they can also
be combined together for better performance.

In our experiments using Llama-3 8B models (Dubey et al.,
2024), we show that even without access to any gold an-
swers during training, two iterations of unsupervised SCPO

1



Self-Consistency Preference Optimization

Model at
Iteration t

Generating New Problems

Q: Rachel has $120 to spend on a new bike that
costs $80, and she has to pay a 5% sales tax on
the bike. If she also wants to buy a helmet that
costs $15, how much money will she have left?

A: Let's think step by step ...
Then ... So, the answer is 21.

Generate problems

Sample k
responses

Add to train data
if max(votes) 

Training w/ ScPO Loss

Compute

pair's weight

Building Preference Pairs

Seed + Generated
Problems

Q: Rachel has $120 ... costs
$15, ...  will she have left?

A: Let's think step by step ...
Then ... So, the answer is 21.

Chosen Rejected

Sample k
responses

 Votes([C]) - Votes([R])

k

ScPO Loss = 
[DPO + NLL] 

Self-consistency Preference Optimization (ScPO)
Optimize with ScPO loss ( ) to obtain  and iterate

Chosen Rejected

Figure 1. Self-consistency Preference Optimization (SCPO). Given a query, we sample multiple responses from the current model Mt

and count the frequency of each answer (i.e., votes). We select the highest and lowest votes as chosen and rejected responses (middle), and
use these preference pairs to train the model with weighted LSCPO loss (right). We employ a similar pipeline for generating new queries
from the model itself (left), filtering out data where self-consistency is low.

improves zero-shot accuracy of the base model by 22.74%
and 5.26% (absolute) on GSM8K (Cobbe et al., 2021)
and MATH (Hendrycks et al., 2021) respectively, closely
matching the performance (< 1% difference) of the super-
vised baseline from Pang et al. (2024). Moreover, when
supplied with the gold labels in the training set and addi-
tional model-generated problems, semi-supervised SCPO
improves GSM8K accuracy over the supervised baseline by
2.35%. On challenging logical puzzles in ZebraLogic (Dziri
et al., 2024) – where only test puzzles (without solutions)
are publicly available – training Llama-3 8B with SCPO
improves puzzle accuracy by 6.5%, outperforming larger
LLMs such as Llama-3 70B, Gemma-2 27B (Team et al.,
2024), and Claude-3 Haiku (Anthropic, 2024).

2. Self-consistency Preference Optimization
As depicted in Figure 1, SCPO is an unsupervised iterative
training method that starts with a base language model. Each
iteration makes use of existing training problems/queries
(without labels) as well as newly generated problems. The
self-consistency metric is used in both generating new prob-
lems and building preference pairs. We describe each step
of SCPO’s iterative training setup below. All prompts for so-
lution generation and new problem generation can be found
in Appendix D.

Initialization. SCPO assumes access to an initial base
model M0 and a small amount of (seed) high-quality unla-
beled queries, which are typically complex reasoning prob-
lems. The model will be trained and updated at each training
iteration resulting in models M1,M2, · · · ,MT , where T is
the total number of iterations. Instead of gold labels (an-

swers) for responses, SCPO uses the consistency of the
model Mt, as measured by a real-valued vote function V(·)
defined below, to rate and rank the quality of each response.
Our vote function is based on self-consistency (Wang et al.,
2023) of the model. In fact, SCPO can also be used with
any measure of model consistency such as internal consis-
tency (Liang et al., 2024) or universal consistency (Chen
et al., 2024a).

Generating New Problems. Following other self-
alignment methods (Yuan et al., 2024; Yu et al., 2024), we
use few-shot prompting to self-generate additional problems
from the model. Using the seed set, multiple example prob-
lems are chosen at random and placed in context to generate
a new problem. Note that some prior works are constrained
to simultaneously generating both a new query along with its
corresponding correct answer (Yu et al., 2024). In contrast,
with SCPO, we do not rely on accurately generating the
corresponding answer, allowing the model to generate more
diverse problems as long as the problems are well-formed
and at least some are answerable. While the model may
generate some unanswerable queries, these can be filtered
out using the vote function V(·). Specifically, we filter out
query x if none of the responses generated by Mt have vote
≥ τ (shown in Figure 1; left). At each iteration t, we aug-
ment the seed queries with the problems generated from Mt

to obtain the training problems for the next iteration Dt+1.

Building Self-Consistency Preference Pairs. For each
problem x in the training data Dt, we use temperature-
based sampling with the current model Mt to generate k
responses ȳx = {y1, y2, · · · , yk} sampled from Mt(·|x) in-
cluding any rationales, e.g., chain-of-thought (Wei et al.,

2



Self-Consistency Preference Optimization

2022), followed by the final answer. Following Wang
et al. (2023), the vote function V(·) extracts the final an-
swer corresponding to each response y ∈ ȳx via ans(·)
and returns the relative frequency of the final answer, i.e.,
V(y)=

∑k
m=1 1(ans(ym)=ans(y)). As illustrated in Fig-

ure 1 (middle), using the vote function, we create preference
pairs Dpairs

t by selecting the most consistent response as the
chosen (winning) response and selecting the least consistent
one as the rejected (losing) response, provided that the vote
of the chosen response is greater than a threshold τ .1 In
other words,

Dpairs
t = {(x, y+, y−) | x ∈ Dt, y

+=argmax
y∈ȳx

V(y),

y−=arg min
y∈ȳx

V(y), and V(y+) ≥ τ}.

SCPO Loss Function. SCPO operates under the assump-
tion that when multiple responses sampled for problem x
map to the same answer, then the predicted answer is likely
to be correct, the same assumption as in Wang et al. (2023).
Consequently, we use consistency via a vote function V(·)
as a proxy to create preference pairs. However, at the same
time, the number of votes attained by a response can also
reflect the model’s confidence in the response (Xiong et al.,
2024; Kabra et al., 2024), implying that pairs where the
vote margin – the difference in votes attained by the chosen
vs. the rejected response – is larger, are of higher quality
and vice-versa (refer to Appendix A). We model this in
SCPO’s training by using an instance-level weight w(x) to
the loss, i.e., for the preference pair (x, y+, y−) ∈ Dpairs

t ,
w(x)=

(
V(y+) − V(y−)

)
/k, where k is the total number

of responses generated for each question (total number of
votes cast).2 We thus use the following loss function:

LSCPO(y
+, y−|x) =

−w(x) log σ
(
β log

Mθ(y
+ |x)

Mt(y+ | x)
− β log

Mθ(y
− |x)

Mt(y− | x)

)
︸ ︷︷ ︸

Weighted DPO Loss

− αw(x)

|y+|
logMθ(y

+ |x)︸ ︷︷ ︸
Weighted NLL Loss

.

The loss includes a DPO and NLL term similar to the re-
cently introduced supervised IRPO (Pang et al., 2024) loss,
but in our case we have an unsupervised objective and use
our introduced weighted loss. Here σ(·) denotes the sigmoid
function, and α, β are hyperparameters of the loss function,
and θ represents the LLM parameters being trained in the
current iteration. At the tth iteration, we use the initialized

1By design, several responses can share a final answer (but for
example, their chain-of-thought may be different). So, we cluster
the responses by final answer and pick a response at random.

2This normalization ensures that weights w(x) ∈ [0, 1].

model Mt as the reference model in the DPO loss (Rafailov
et al., 2024). After training on this loss, the trained model is
used to initialize the next iteration, i.e., Mt+1 ←Mθ.

Iterative Training. Starting with an initial seed model
M0, we train a series of models M1,M2, i.e. for T =
2 iterations (we justify this choice in Appendix B). Each
model Mt+1 is trained using LSCPO on Dpairs

t , the data
generated by the tth model, defined as follows:

• M0: Seed LLM, initialized with a pretrained LLM (need
not be instruction-finetuned).

• M1: Initialized with M0 to generate Dpairs
0 from D0 (+

new problems) and trained using LSCPO.

• M2: Initialized with M1 to generate Dpairs
1 from D1 (+

new problems) and trained using LSCPO.

This approach is similar to the Self-Rewarding LM training
loop (Yuan et al., 2024) except for the fact that we use the
model’s self-consistency to score responses instead of using
the same model as a judge to verify its own correctness,
which Huang et al. (2024) show is often challenging. In
contrast to other iterative bootstrapping techniques for rea-
soning (Zelikman et al., 2022; Pang et al., 2024), SCPO does
not require access to gold labels such as gold responses or
final answers, allowing SCPO to scale beyond the problems
from an existing training dataset.

Semi-Supervised Training with SCPO. Although SCPO
does not require access to gold labels, we can easily incorpo-
rate datasets with gold labels in conjunction with unlabeled
datasets during SCPO training. To this end, we alter the pref-
erence pair creation strategy described in that case. When
gold labels are available for a query xgold, we sample k
responses, and create pairs such that the chosen response
y+ is correct and the rejected response y− is incorrect (dis-
carding queries where such pairs cannot be created). Since
we already know these pairs are of high quality, we set the
weight of annotated instances w(xgold) = 1. For queries
that do not have gold labels, we use our self-consistency
criterion for pair creation and compute the weighted loss for
those examples as before. A special case is that if all data is
labeled, the loss reduces to the IRPO loss.

3. Experimental Setup
Datasets and Metrics. We evaluate the effectiveness of
SCPO on a range of math and logical reasoning datasets:

• GSM8K (Cobbe et al., 2021) contains a train/test split
of 7.5K/1.3K grade school math word problems. For the
purpose of this work, we split the train set into a train/dev
split with 6.7K/0.8K problems respectively. We use the
dev split for hyperparameter tuning and checkpoint se-

3



Self-Consistency Preference Optimization

lection. The overall data split becomes 6.7K/0.8K/1.3K
in the train/dev/test set, respectively. We report perfor-
mance based on exact match accuracy of the final numeric
answer on the test set.

• MATH (Hendrycks et al., 2021) is a dataset of chal-
lenging high-school math competitions that contains a
train/test split of 7.5K/5K problems, respectively. Similar
to GSM8K, we reserve 10% of samples from the train set
to create a held-out dev set for model selection and hyper-
parameter tuning, resulting in our final train/dev/test splits
with 6.7K/0.8K/5K problems, respectively. We report the
accuracy of the final answer on the test set.

• ZebraLogic (Dziri et al., 2024) is a logical reasoning
benchmark. It is a test set of 1K logic grid puzzles (or
Einstein’s puzzles) designed as a constraint satisfaction
problem (Prosser, 1993). Each puzzle is comprised of n
houses with m unique features, resulting in an n×m table.
Given a list of clues, solving the puzzle requires deducing
the correct (unique) assignment of values in the table, i.e.,
a unique value for each feature and house. Evaluation
metrics for this dataset are: puzzle accuracy (overall, easy,
and hard puzzles) as well as cell accuracy.

Base Models. For GSM8K and MATH, we use Llama-3
Base 8B (Dubey et al., 2024) as the seed model M0. We
note that the instruction-tuned version may have already
been fine-tuned on the gold data from these tasks, so new
experimental settings cannot be reliably tested in that case.
For ZebraLogic, we use Llama-3 Instruct 8B (Dubey et al.,
2024) as the seed model.

Preference Training Data. We use the Llama-3 Instruct
8B model to generate additional problems (queries). For
GSM8K and MATH, we prompt the model to generate a
problem similar to 4-shot examples of problems from the
train set. Note that the prompt only requires valid human-
written problems and not their corresponding answers. We
filter out problems where maxi≤k V(yi) < 0.5k (or, τ =
0.5k) where k is the number of responses sampled or votes
cast for each query. That is, where less than half of the
votes go towards the majority answer, which we found to
be a good threshold based on the dev set accuracy (see
Section 5). Since M1 models tend to be more consistent
than M0 (cf. Section 5), for M2 training data, we increase
the filtering threshold τ to 0.7k and 0.6k on GSM8K and
MATH, respectively. For ZebraLogic, we prompt the model
to rephrase or perturb features of a puzzle from the dataset
in a one-shot manner. Then, we use the underlying model
Mt to generate k=16 responses for each question and filter
out questions where none of the responses accrue τ = 2
or more votes (exactly matching solutions) for M1 and set
τ = 0.5k for training M2.

Baselines. We compare models trained with SCPO in un-
supervised (denoted as SCPOUnsup.) and semi-supervised
(denoted as SCPOSemi-Sup.) settings against the following:

• Seed model (Zero-shot CoT). We compare against
the seed model (M0) using zero-shot chain-of-thought
prompting (Kojima et al., 2022) generated with greedy
decoding and report results with or without inference-time
self-consistency (SC; Wang et al., 2023).

• Supervised Training with Gold Answers (IRPOGold).
We use a strong supervised preference optimization
method for reasoning tasks (Pang et al., 2024), to serve
as an upper-bound on performance for unsupervised train-
ing as this uses gold data from the train set, which we
compare to unsupervised and semi-supervised SCPO. For
each query x, preference pairs are constructed such that
chosen responses are correct and rejected responses are
incorrect with w(x)=1.

• Unsupervised Training with External RM (IRPORM).
We propose a new variant of IRPO that we also ex-
pect to be a strong baseline. Given the plethora of
publicly-available reward models (RMs; Lambert et al.,
2024), in the absence of gold labels, off-the-shelf RMs
can be used to score a set of responses ȳ ∼ Mt(·|x)
and create preference pairs such that chosen and re-
jected responses have the maximum and minimum re-
ward, respectively, i.e., y+=argmaxy∈ȳ RM(y|x) and
y− = argminy∈ȳ RM(y|x) with w(x) = 1. We use the
strongly performing ArmoRM-Llama3-8B model (Wang
et al., 2024a) as a reward model.3

• Language Models Self-Improved (LMSI). Following
Huang et al. (2023), we implement LMSI, another un-
supervised baseline that uses LLM self-consistency to
generate target CoT solutions for problems and iteratively
trains the LLM via supervised finetuning, i.e., the NLL
loss, differing from SCPO’s weighted preference-based
loss. Similar to SCPO, we generate additional reasoning
problems using the LLM followed by consistency-based
filtering (detailed in Section 2).

Hyperparameters. When generating multiple response
or new problems from the LLM, we sample with temper-
ature of 0.7 and top-p = 0.9. For GSM8K and MATH,
we set k=8. With every iteration of training, the models
become more consistent due to the training objective (see
Section 5), thereby, making picking the rejected response
harder, i.e., none of the responses are incorrect or all the
responses share the same final answer. Therefore, to sample
rejected responses, we further generate 8 responses sam-

3Wang et al. (2024a) use training splits of GSM8K and MATH
to train ArmoRM, rendering these datasets highly in-distribution
for the RM while ZebraLogic is out-of-distribution (further dis-
cussed in Section 5).

4



Self-Consistency Preference Optimization

Table 1. GSM8K zero-shot accuracy after training Llama-3
Base 8B with SCPO and baselines, using greedy or 8-way self-
consistency (SC)-based inference. The best performance is in
bold, and second-best is underlined. We list train set sizes for
each method: “Seed” corresponds to seed problems in the train set,
whereas “Gen.” indicates additional problems generated by the
model (without answers). IRPOGold, and SCPOSemi-Sup., high-
lighted in green , use the gold answers to create preference pairs
(when available, indicated with †).

Method Iter. Train Data (K) Test Acc. (%)

# Seed / Gen. Greedy SC

/
Seed model (zero-shot) M0 - / - 41.17 51.80
IRPORM M1 5.5 / - 48.67 69.98

M2 4.4 / - 50.11 61.25
LMSI M1 5.3 / - 53.53 63.91

M2 1.1 / 5.2 56.71 62.55
SCPOUnsup. M1 5.3 / - 61.03 71.49

M2 1.4 / 5.1 63.91 71.11

/
IRPOGold M1 4.4† / - 61.41 72.93

M2 5.7† / - 64.29 72.56
SCPOSemi-Sup. M1 4.4† / 1.9 63.61 74.30

M2 5.7† / 4.5 66.64 74.75

without access to gold labels

with access to gold labels

pled with a higher temperature of 1.2 to encourage more
diverse answers. On ZebraLogic, due to the complex nature
of the response (an n ×m table), we find that sampling a
response that gets multiple votes is relatively infrequent, so
we set k= 16 for this task. All models are trained for 10
epochs with a learning rate of 5e-6 (cosine scheduling), and
effective batch size of 16. Lastly, we set DPO loss term
hyperparameter β = 0.5 and NLL regularization coefficient
α = 1. When a dev set is available (e.g., GSM8K and
MATH), we use accuracy on the dev set for checkpoint se-
lection (at every epoch). For ZebraLogic, which is similarly
challenging to MATH and does not have a train or dev set,
for each iteration, we train for the same number of epochs
that performed best during MATH training.

4. Main Results
4.1. Math Reasoning

SCPO outperforms unsupervised baselines. Comparing
methods on GSM8K, in Table 1, we observe that training
with only one iteration of SCPO outperforms the zero-shot
seed model and IRPORM, by 22.74% and 12.36%, respec-
tively, using greedy decoding. Similarly, on MATH (cf. Ta-
ble 2), two iterations of SCPOUnsup. yields an improvement
of 5.26% and 1.64% respectively compared to the same
two baselines. We further note that while IRPORM is not
given direct access to the gold labels, it uses the ArmoRM,
which has been trained on human-annotated step-level data

Table 2. MATH zero-shot accuracy after training Llama-3 Base
8B with SCPO and baselines, using greedy or 8-way self-
consistency (SC)-based inference. “Seed” corresponds to seed
queries in the train set, “Gen.” are additional model-generated
problems (without answers). IRPOGold and SCPOSemi-Sup., high-
lighted in green , use gold answers to train (indicated with †).

Method Iter. Train Data (K) Test Acc. (%)

# Seed / Gen. Greedy SC

/
Seed model (zero-shot) M0 - / - 14.46 18.20
IRPORM M1 6.4 / - 18.06 24.20

M2 6.5 / - 18.08 22.64
LMSI M1 0.6 / 1.2 16.78 22.92

M2 1.1 / 2.0 16.96 20.20
SCPOUnsup. M1 0.6 / 1.2 17.36 25.70

M2 1.2 / 2.5 19.72 24.58

/
IRPOGold M1 2.7† / - 18.64 26.88

M2 3.0† / - 20.32 26.88
SCPOSemi-Sup. M1 2.7† / 1.2 19.88 27.35

M2 3.0† / 2.2 20.48 26.92

without access to gold labels

with access to gold labels

based on MATH’s train set (Lightman et al., 2024; Wang
et al., 2024a). Hence, SCPO’s improvement over IRPORM

would likely be larger if the RM had not used in-domain
gold labels during training. Overall, we find SCPO has the
ability to outperform RMs, especially in out-of-distribution
settings. Lastly, in comparison to LMSI, another iterative
and unsupervised baseline, two iterations of SCPOUnsup.

outperform that of LMSI by 7.20% and 2.76% on GSM8K
and MATH, respectively, when using greedy decoding. This
highlights the importance of a weighted preference objective
in training LLMs effectively using self-consistency.

Iterations of SCPO improve reasoning. From Tables 1
and 2, we observe that two iterations of SCPO consistently
improves the LLM’s performance when using greedy de-
coding in both unsupervised and semi-supervised settings
compared to one iteration. On GSM8K, greedy test accu-
racy improves by 2.88%, and 3.03% when using SCPO
for unsupervised and semi-supervised training, respectively.
Similarly, on MATH, in Table 2, we find that M2 models
with SCPO outperforms their M1 counterparts by up to
2.36% in greedy accuracy. This can be explained by models
becoming more accurate and consistent after one round of
SCPO training (shown in Section 5). Consequently, this
allows us to bootstrap from additional problems in the origi-
nal and generated training data, for which the M0 model did
not have a consistent response. However, we find that the
accuracy computed using 8-way self-consistency (SC) satu-
rates after the first iteration, sometimes even resulting in a
slight decrease compared to M1. This may happen because
now that the model is trained to be more consistent there is

5



Self-Consistency Preference Optimization

Table 3. ZebraLogic test performance after unsupervised training of Llama-3 Instruct 8B with SCPO, compared to baselines. “Seed”
corresponds to original puzzles in the test set, whereas “Gen.” indicates additional puzzles generated. ∗Taken from the Leaderboard.

Method Train Data (K) Puzzle Acc. (%) Cell Acc.

# Seed / Gen. Overall Easy Hard (%)

Llama-3 Instruct 70B - / - 17.2 52.1 3.6 42.9
Gemma-2 27B IT∗ - / - 16.3 50.7 2.9 41.2
Claude-3 Haiku∗ - / - 14.3 47.9 1.2 37.9

M0 (Llama-3 Instruct 8B) - / - 11.6 40.0 0.4 39.1

M1 w/ IRPORM 1.0 / - 11.3 37.9 1.0 42.1
M1 w/ LMSI 0.4 / 2.0 16.2 51.1 2.6 45.8
M2 w/ LMSI 0.4 / 2.0 16.8 53.6 2.5 46.9

M1 w/ SCPOUnsup. 0.4 / 2.0 17.0 54.3 2.5 47.6
M2 w/ SCPOUnsup. 0.5 / 2.2 18.1 58.2 2.5 45.2

less benefit from applying self-consistency at inference time
(see analysis in Section 5). We find that a third iteration of
training also shows minimal gains, however if we utilize the
(unlabeled) problems from the test set to build preference
pairs, we find that we can obtain additional performance
boosts on top of M2, as discussed in Appendix B.

Unsupervised SCPO is comparable to IRPO training
with gold labels. We can compare the unsupervised train-
ing of SCPO with the supervised training using gold la-
bels of IRPO in Tables 1 and 2. The results show that
SCPOUnsup. without using any gold labels can yield com-
parable accuracy to IRPOGold on GSM8K and MATH with
< 1% gap in greedy performance and < 2% gap in accuracy
using 8-way self-consistency after two iterations of train-
ing (M2). This comparable performance of SCPOUnsup.

is likely due to high correlation (0.8 across the datasets)
between the vote shares and accuracy on the test set, as
further discussed in Appendix A. Note that on tasks that are
challenging for the seed model M0, such as MATH, we can
only bootstrap a small set of examples from the original set
of training problem as compared to IRPO (i.e., only around
a quarter of examples obtain a clear majority answer). How-
ever, we can offset this gap in training data by generating
new problems using few-shot prompting (cf. Section 2) and
creating preference pairs using our self-consistency method.
This yields improvements during the second iteration.

Semi-supervised training with SCPO outperforms IRPO.
Lastly, in Tables 1 and 2, we evaluate the semi-supervised
version of SCPO combined with using gold labels. We find
that on GSM8K, SCPOSemi-Sup. improves the greedy accu-
racy by 2.35% and SC accuracy by 2.19% in comparison to
IRPOGold. Similar trends hold on the MATH dataset, where
one iteration of SCPOSemi-Sup. outperforms IRPOGold by
1.24% using greedy decoding. These results show the utility
of using SCPO to bootstrap from model-generated problems
even with access to a labeled training set.

In Appendix C, we repeat the math reasoning experiments
with Llama-3.1 Base 8B and find that while the absolute per-
formance increases, the relative trends among the baselines
remain the same – with two iterations of SCPOSemi-Sup.
improving the greedy test accuracy of the seed model by
25.32% and 8.66% on GSM8K and MATH, respectively.

4.2. ZebraLogic: A Challenging Logical Reasoning Task

SCPO outperforms unsupervised baselines. Table 3 re-
ports performance on ZebraLogic of SCPO and various
baselines, using greedy decoding. We observe large im-
provements over the seed model, Llama-3 Instruct 8B (M0)
with one iteration of unsupervised SCPO (M1), improving
performance by 5.4% and 8.5% in overall puzzle accuracy
(exact match of tables) and cell accuracy (match of each
cell in the table), respectively. In contrast, unsupervised
training of IRPORM yields only mild gains over the seed
model by 3% in cell accuracy and even a slight drop in
puzzle accuracy (11.6% to 11.3%). This can be attributed
to ZebraLogic puzzles being out-of-distribution for the Ar-
moRM (cf. Section 5), thus trailing behind one iteration of
SCPO by 5.7% in puzzle accuracy and 5.5% in cell accu-
racy. Moreover, two iterations of SCPO outperform that of
LMSI by 4.6% on easy puzzles and 1.3% on overall accu-
racy. Taken together, training with SCPO for two iterations
improves the performance of the seed model by 8 positions
on the leaderboard (from 38th to 30th) with a 6.5% boost
in puzzle accuracy and, to the best of our knowledge, is the
best 8B-scale LLM on ZebraLogic.

8B LLM trained with SCPO outperforms larger models.
Comparison of SCPO-trained models to other models in
Table 3 demonstrates that SCPO-training after two iterations
(M2) outperforms significantly larger models such as Llama-
3 Instruct 70B, Gemma-2 27B, and Claude-3 Haiku by 0.9%,
1.8%, and 3.8% in overall puzzle accuracy, respectively.
Additionally, we find that models trained using SCPO also
yield the highest cell accuracy. We attribute these gains over

6

https://huggingface.co/spaces/allenai/ZebraLogic


Self-Consistency Preference Optimization

Table 4. Ablation comparing unweighted loss (w(x) = 1) to the
proposed weighted loss used in SCPO. SCPO outperforms the
unweighted loss in all cases.

Method Train (K) Test Acc. (%)

# Seed / Gen. Greedy SC (8-way)

G
SM

8K

M1 w/ w(x)=1 5.3 / - 58.53 69.07
M2 w/ w(x)=1 1.4 / 5.1 62.62 69.90

M1 w/ SCPOUnsup. 5.3 / - 61.03 71.49
M2 w/ SCPOUnsup. 1.4 / 5.1 63.91 71.11

M
A

T
H

M1 w/ w(x)=1 0.6 / 1.2 15.92 25.34
M2 w/ w(x)=1 1.2 / 2.5 18.74 25.58

M1 w/ SCPOUnsup. 0.6 / 1.2 17.36 25.70
M2 w/ SCPOUnsup. 1.2 / 2.5 19.72 24.58

larger models to the substantial improvement in solving easy
puzzles with SCPO (up to 10.3%).

5. Ablations and Analysis
Importance of weighted SCPO loss. While the results in
Section 4 are obtained using the weighted LSCPO loss that
is a function of consistency, here we compare SCPO using
an unweighted loss. More specifically, we train using the
same preference dataset created based on self-consistency of
responses, but with w(x)=1 in the LSCPO loss. In Table 4,
we observe that across datasets and iterations, the weighted
loss consistently outperforms the unweighted version. The
improvement in accuracy is even more pronounced for the
first iteration of training M1, yielding an improvement of
2.5% in accuracy on GSM8K and 1.44% on MATH with
greedy inference. Even in the second iteration, M2 models
trained with SCPO outperform their unweighted counter-
parts by roughly 1% on both GSM8K and MATH. This
indicates that it is better to take the amount of votes into
account when optimizing for consistency, as this indicates
confidence in the chosen and rejected labeling.

Models become more consistent across iterations. In
Figure 2, we analyze how the degree of model consistency
varies across iterations. To this end, we measure the vote
share V(y+)/k of the most consistent response, i.e., chosen
response in self-consistency of models trained using unsu-
pervised SCPO. From Figure 2, we conclude that SCPO
training increases the consistency of models with each train-
ing iteration across different tasks. We suspect this finding
stems from three contributing factors: (i) with increasing
iterations models become more accurate (Section 4); (ii) ad-
ditional rounds of preference-optimization decreases model
diversity (Kirk et al., 2024); and (iii) training with SCPO
effectively distills the SC distribution into the model’s single-
sample distribution. Additionally, we find that models are
more consistent on tasks with higher test accuracy, i.e., on

Table 5. Impact of using different thresholds on majority vote to
filter training data on MATH. Margin (%) denotes the difference
in accuracy of the chosen and rejected response.

Setting Margin # Train Test Acc.

M0 - - 14.46
M1 (τ = 0.1k) 18% 6.7K 15.44
M1 (τ = 0.3k) 44% 2.4K 16.34
M1 (τ = 0.5k) 57% 1.8K 17.36
M1 (τ = 0.7k) 68% 0.7K 14.76

GSM8K the LLM is most consistent and accurate whereas
on ZebraLogic it is the least consistent and accurate.

Impact of consistency-based filtering on construct-
ing preferences. In Section 3, when generating self-
consistency preference data for GSM8K and MATH, we
filter out instances where fewer than half of the votes go
towards the majority answer, i.e., τ = 0.5k. The choice
of this threshold presents a trade-off between the number
of preference pairs available for training and the quality
of the training data, and affects the difference (margin) in
accuracy of the chosen and the rejected response. Assuming
access to the gold answers to measure quality of preference
data, in Table 5, we analyze this trade-off on MATH. As
the vote threshold increases from τ = 0.1k to τ = 0.7k,
the quality of training preference pairs increases, with the
accuracy margin increasing from 18% to 68%. On the other
hand, the size of the training data decreases from 6.7K pairs
to fewer that 700 pairs. Interestingly, Table 5 shows that as
we vary the threshold, the performance of the trained model
increases till τ =0.5k and then decreases. In other words,
from τ=0.1k to τ=0.5k the quality of the preference data
(or the accuracy margin) takes precedence over the quantity,
improving downstream performance by 1.92%. However,
when we set τ=0.7k, we end up with fewer than 700 pairs
to train which we suspect is insufficient (in terms of both
data size and diversity) to train a model with 8B parameters.

GSM8K MATH ZebraLogic
0

10
20
30
40
50
60
70

M
aj

or
ity

 V
ot

e 
Sh

ar
e 

(%
) M0

M1
M2

Figure 2. Vote share (%) of the most consistent response: V(y+)/k
increases with iterations across all datasets.

7



Self-Consistency Preference Optimization

SC

Armo

7.8% 25.9% 66.3%

19.1% 80.3%

GSM8K

SC

Armo

11.8% 38.3% 49.8%

32.4% 66.6%

MATH

SC

Armo

16.0% 17.8% 66.2%

40.5% 53.9%

ZebraLogic

Metric(Correct) < Metric(Wrong)
Tied Metrics

Metric(Correct) > Metric(Wrong)

Figure 3. Comparing the quality of metrics: self-consistency (SC)
and ArmoRM to distinguish between correct and incorrect re-
sponses on all datasets.

Comparison of self-consistency to RMs. Our results in
Section 4 show that models trained with unsupervised SCPO
outperform models trained with IRPO using ArmoRM to
build preference pairs. To study this further, we conduct
additional analysis by measuring the ability of the two meth-
ods to distinguish between correct and incorrect responses,
comparing the methods to gold labels in Figure 3. We find
that ArmoRM consistently has more incorrect orderings of
pairwise preferences (the chosen is incorrect and the rejected
is correct) than SCPO across all three datasets (shown in
red). This added noise in training may be a major factor as
to why IRPORM performs poorly compared to SCPOUnsup.
On the other hand, self-consistency results in a greater num-
ber of ties, i.e., when the chosen and rejected answers get
the same number of votes; these are ignored in SCPO’s loss
since w(x)=0. Lastly, we find in the out-of-distribution set-
ting of ZebraLogic, self-consistency outperforms ArmoRM
with 12.3% more correct orderings of pairwise preferences
(shown in green in Figure 3).

6. Related Work
Iterative Training of LLMs. Iterative training or self-
training has shown meaningful improvements in a number
of domains such as safety (Bai et al., 2022), multilingual
reasoning (She et al., 2024), and evaluation (Wang et al.,
2024b). Because LLMs often struggle with both generating
and validating solutions to complex reasoning tasks, prior
works on training LLMs for complex problem-solving tasks
largely rely on human-annotated (gold) final answers (Ze-
likman et al., 2022; Chen et al., 2024b; Pang et al., 2024) or
access to an external reward model that performs well on
the underlying task (Singh et al., 2024; Dong et al., 2023).
However, both these classes of approaches suffer from their
own shortcomings. Firstly, manually annotating or verifying
the final answer requires working through the solution step-
by-step, making it especially resource-intensive for complex
multi-step problems. Training strong reward models for
such reasoning and problem-solving tasks also often re-

quires human judgements of LLM generations (Cobbe et al.,
2021; Uesato et al., 2022; Lightman et al., 2024), making it
similarly expensive. Our work focuses on the setting with-
out access to gold solutions or final answers, which remains
largely unaddressed. While other works such as She et al.
(2024); Yuan et al. (2024); Rosset et al. (2024); Tran et al.
(2023) geared towards general instruction following tasks
(as opposed to reasoning tasks specifically) circumvent the
need for human-annotated labels in the dataset by using the
model itself to score the responses, these works demonstrate
only modest gains in the context of reasoning tasks.

Consistency in LLMs. Self-consistency (Wang et al.,
2023) relies upon the intuition that sampling several re-
sponses, some of which lead to the same answer, lends
higher certainty that the consistent answer is the correct one.
Application of self-consistency at inference time has enabled
performance improvements in a number of domains like
math (Wang et al., 2023), code generation (Shi et al., 2022;
Li et al., 2022; Chen et al., 2018), and even open-ended tasks
like summarization and question answering (Chen et al.,
2024a). In this work, we explore using self-consistency at
training time for reasoning tasks, constructing preference
pairs according to the self-consistent final answer. While
Huang et al. (2023) also use self-consistency to finetune
models without access to gold labels via NLL loss, we em-
ploy a preference optimization loss function that is weighted
according to the consistency of an answer. Intuitively, the
consistency of an answer is a reflection of the model con-
fidence, and several prior works have demonstrated that
leveraging model uncertainty can lead to faster convergence
and improved performance (Gal & Ghahramani, 2016; Kr-
ishnan & Tickoo, 2020; Corbière et al., 2019). Concurrently
with this work, Jiao et al. (2025) propose training models
on “pseudo-feedback” from test cases, wherein they employ
self-consistency to construct the test cases itself. However,
we note that our work additionally shows the utility of self-
consistency in generating new problems to augment the seed
data (Section 4) as well as in our weighted loss function
(Table 4 in Section 5).

7. Conclusion
In this paper, we introduced Self-Consistency Preference
Optimization (SCPO). SCPO leverages the concept of self-
consistency, usually employed only at inference time, to
improve the self-training of large language models. By
iteratively optimizing to prefer consistent answers to in-
consistent ones, SCPO achieves significant improvements
over traditional reward model training without the need for
additional gold labels. Our experiments demonstrate the
efficacy of SCPO on various reasoning tasks, including
GSM8K, MATH, and ZebraLogic, where in the latter it
outperforms several larger state-of-the-art language models.

8



Self-Consistency Preference Optimization

We also showed that SCPO works well in semi-supervised
setups with access to some gold labels, in addition to un-
labeled inputs – improving performance further. These
results highlight the potential of SCPO to improve self-
alignment across reasoning tasks – a domain that prior self-
alignment methods still struggle with. Future work could
extend SCPO to tasks where a single final answer cannot
be easily parsed (e.g., summarization) through universal
self-consistency (Chen et al., 2024a). While we explore
consistency according to several models (Llama-3 and 3.1
8B, Base and Instruct), future work could also investigate
consistency according to a suite of other models and tasks.

Acknowledgements
We sincerely thank Ilia Kulikov, other members of the RAM
team at FAIR, as well as the anonymous reviewers for their
valuable feedback on the paper. Part of this work was done
during an internship at Meta FAIR and was partially sup-
ported at UNC by NSF-CAREER Award 1846185, NSF-AI
Engage Institute DRL-2112635, DARPA Machine Com-
monsense (MCS) Grant N66001-19-2-4031. The views
contained in this article are those of the authors and not of
the funding agencies.

Impact Statement
This work presents a new training algorithm that uses self-
consistency for training large language models on math and
logical reasoning tasks without the need for gold labels. The
outputs produced by models trained with SCPO may exhibit
undesirable behavior similar to the base model and have the
same potential for misuse as other fine-tuned LLMs (Wei-
dinger et al., 2021). Hence, more studies are needed to
evaluate and mitigate such biases in LLMs.

References
Anthropic. The claude 3 model family: Opus, sonnet, haiku.

2024.

Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., Das-
Sarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T.,
et al. Training a helpful and harmless assistant with rein-
forcement learning from human feedback. arXiv preprint
arXiv:2204.05862, 2022.

Casper, S., Davies, X., Shi, C., Gilbert, T. K., Scheurer, J.,
Rando, J., Freedman, R., Korbak, T., Lindner, D., Freire,
P., et al. Open problems and fundamental limitations
of reinforcement learning from human feedback. arXiv
preprint arXiv:2307.15217, 2023.

Chen, B., Zhang, F., Nguyen, A., Zan, D., Lin, Z., Lou,
J.-G., and Chen, W. Codet: Code generation with gener-

ated tests. In The Eleventh International Conference on
Learning Representations, 2023.

Chen, X., Liu, C., and Song, D. Execution-guided neu-
ral program synthesis. In International Conference on
Learning Representations, 2018.

Chen, X., Aksitov, R., Alon, U., Ren, J., Xiao, K., Yin, P.,
Prakash, S., Sutton, C., Wang, X., and Zhou, D. Universal
self-consistency for large language models. In ICML 2024
Workshop on In-Context Learning, 2024a. URL https:
//openreview.net/forum?id=LjsjHF7nAN.

Chen, Z., Deng, Y., Yuan, H., Ji, K., and Gu, Q. Self-
play fine-tuning converts weak language models to strong
language models. In Forty-first International Confer-
ence on Machine Learning, 2024b. URL https://
openreview.net/forum?id=O4cHTxW9BS.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., et al. Training verifiers to solve math word problems.
arXiv preprint arXiv:2110.14168, 2021.

Corbière, C., Thome, N., Bar-Hen, A., Cord, M., and Pérez,
P. Addressing failure prediction by learning model con-
fidence. Advances in Neural Information Processing
Systems, 32, 2019.

Dong, H., Xiong, W., Goyal, D., Zhang, Y., Chow, W.,
Pan, R., Diao, S., Zhang, J., Shum, K., and Zhang, T.
RAFT: Reward ranked finetuning for generative founda-
tion model alignment. Transactions on Machine Learn-
ing Research, 2023. ISSN 2835-8856. URL https:
//openreview.net/forum?id=m7p5O7zblY.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle,
A., Letman, A., Mathur, A., Schelten, A., Yang, A., Fan,
A., et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Dziri, N., Lu, X., Sclar, M., Li, X. L., Jiang, L., Lin, B. Y.,
Welleck, S., West, P., Bhagavatula, C., Le Bras, R., et al.
Faith and fate: Limits of transformers on compositionality.
Advances in Neural Information Processing Systems, 36,
2024.

Fischler, M. A. and Bolles, R. C. Random sample consensus:
a paradigm for model fitting with applications to image
analysis and automated cartography. Communications of
the ACM, 24(6):381–395, 1981.

Gal, Y. and Ghahramani, Z. Dropout as a bayesian ap-
proximation: Representing model uncertainty in deep
learning. In Balcan, M. F. and Weinberger, K. Q. (eds.),
Proceedings of The 33rd International Conference on Ma-
chine Learning, volume 48 of Proceedings of Machine
Learning Research, pp. 1050–1059, New York, New

9

https://openreview.net/forum?id=LjsjHF7nAN
https://openreview.net/forum?id=LjsjHF7nAN
https://openreview.net/forum?id=O4cHTxW9BS
https://openreview.net/forum?id=O4cHTxW9BS
https://openreview.net/forum?id=m7p5O7zblY
https://openreview.net/forum?id=m7p5O7zblY


Self-Consistency Preference Optimization

York, USA, 20–22 Jun 2016. PMLR. URL https://
proceedings.mlr.press/v48/gal16.html.

Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart,
S., Tang, E., Song, D., and Steinhardt, J. Measuring
mathematical problem solving with the math dataset. In
Thirty-fifth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track, 2021.

Huang, J., Gu, S., Hou, L., Wu, Y., Wang, X., Yu, H., and
Han, J. Large language models can self-improve. In
Bouamor, H., Pino, J., and Bali, K. (eds.), Proceedings
of the 2023 Conference on Empirical Methods in Nat-
ural Language Processing, pp. 1051–1068, December
2023. URL https://aclanthology.org/2023.
emnlp-main.67.

Huang, J., Chen, X., Mishra, S., Zheng, H. S., Yu,
A. W., Song, X., and Zhou, D. Large language mod-
els cannot self-correct reasoning yet. In The Twelfth
International Conference on Learning Representations,
2024. URL https://openreview.net/forum?
id=IkmD3fKBPQ.

Jiao, F., Guo, G., Zhang, X., Chen, N. F., Joty, S., and Wei,
F. Preference optimization for reasoning with pseudo
feedback. In International Conference on Learning Rep-
resentations, 2025.

Kabra, A., Rangreji, S., Mathur, Y., Madaan, A., Liu, E., and
Neubig, G. Program-aided reasoners (better) know what
they know. In Proceedings of the 2024 Conference of
the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies
(Volume 1: Long Papers), pp. 2262–2278, 2024.

Kirk, R., Mediratta, I., Nalmpantis, C., Luketina, J., Ham-
bro, E., Grefenstette, E., and Raileanu, R. Understanding
the effects of rlhf on llm generalisation and diversity. In
The Twelfth International Conference on Learning Repre-
sentations, 2024.

Kojima, T., Gu, S. S., Reid, M., Matsuo, Y., and Iwasawa,
Y. Large language models are zero-shot reasoners. Ad-
vances in neural information processing systems, 35:
22199–22213, 2022.

Krishnan, R. and Tickoo, O. Improving model calibration
with accuracy versus uncertainty optimization. Advances
in Neural Information Processing Systems, 33:18237–
18248, 2020.

Lambert, N., Pyatkin, V., Morrison, J., Miranda, L., Lin,
B. Y., Chandu, K., Dziri, N., Kumar, S., Zick, T., Choi,
Y., et al. Rewardbench: Evaluating reward models for
language modeling. arXiv preprint arXiv:2403.13787,
2024.

Li, Y., Choi, D., Chung, J., Kushman, N., Schrittwieser, J.,
Leblond, R., Eccles, T., Keeling, J., Gimeno, F., Dal Lago,
A., et al. Competition-level code generation with alpha-
code. Science, 378(6624):1092–1097, 2022.

Liang, X., Song, S., Zheng, Z., Wang, H., Yu, Q., Li, X.,
Li, R.-H., Xiong, F., and Li, Z. Internal consistency and
self-feedback in large language models: A survey. arXiv
preprint arXiv:2407.14507, 2024.

Lightman, H., Kosaraju, V., Burda, Y., Edwards, H., Baker,
B., Lee, T., Leike, J., Schulman, J., Sutskever, I., and
Cobbe, K. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations,
2024.

Mahan, D., Van Phung, D., Rafailov, R., Blagden, C.,
Lile, N., Castricato, L., Fränken, J.-P., Finn, C., and
Albalak, A. Generative reward models. arXiv preprint
arXiv:2410.12832, 2024.

Pang, R. Y., Yuan, W., He, H., Cho, K., Sukhbaatar, S., and
Weston, J. Iterative reasoning preference optimization.
Advances in Neural Information Processing Systems, 37:
116617–116637, 2024.

Prosser, P. Hybrid algorithms for the constraint satisfac-
tion problem. Computational intelligence, 9(3):268–299,
1993.

Rafailov, R., Sharma, A., Mitchell, E., Manning, C. D., Er-
mon, S., and Finn, C. Direct preference optimization:
Your language model is secretly a reward model. Ad-
vances in Neural Information Processing Systems, 36,
2024.

Rosset, C., Cheng, C.-A., Mitra, A., Santacroce, M., Awadal-
lah, A., and Xie, T. Direct nash optimization: Teaching
language models to self-improve with general preferences.
arXiv preprint arXiv:2404.03715, 2024.

She, S., Zou, W., Huang, S., Zhu, W., Liu, X., Geng, X.,
and Chen, J. Mapo: Advancing multilingual reasoning
through multilingual-alignment-as-preference optimiza-
tion. In Proceedings of the 62nd Annual Meeting of
the Association for Computational Linguistics (Volume 1:
Long Papers), pp. 10015–10027, 2024.

Shi, F., Fried, D., Ghazvininejad, M., Zettlemoyer, L., and
Wang, S. I. Natural language to code translation with
execution. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing, pp.
3533–3546, 2022.

Singh, A., Co-Reyes, J. D., Agarwal, R., Anand, A., Patil,
P., Garcia, X., Liu, P. J., Harrison, J., Lee, J., Xu, K.,
Parisi, A. T., Kumar, A., Alemi, A. A., Rizkowsky, A.,
Nova, A., Adlam, B., Bohnet, B., Elsayed, G. F., Sedghi,

10

https://proceedings.mlr.press/v48/gal16.html
https://proceedings.mlr.press/v48/gal16.html
https://aclanthology.org/2023.emnlp-main.67
https://aclanthology.org/2023.emnlp-main.67
https://openreview.net/forum?id=IkmD3fKBPQ
https://openreview.net/forum?id=IkmD3fKBPQ


Self-Consistency Preference Optimization

H., Mordatch, I., Simpson, I., Gur, I., Snoek, J., Pen-
nington, J., Hron, J., Kenealy, K., Swersky, K., Mahajan,
K., Culp, L. A., Xiao, L., Bileschi, M., Constant, N.,
Novak, R., Liu, R., Warkentin, T., Bansal, Y., Dyer, E.,
Neyshabur, B., Sohl-Dickstein, J., and Fiedel, N. Beyond
human data: Scaling self-training for problem-solving
with language models. Transactions on Machine Learn-
ing Research, 2024. ISSN 2835-8856. URL https://
openreview.net/forum?id=lNAyUngGFK. Ex-
pert Certification.

Somers, R. H. A new asymmetric measure of association
for ordinal variables. American sociological review, pp.
799–811, 1962.

Team, G., Riviere, M., Pathak, S., Sessa, P. G., Hardin,
C., Bhupatiraju, S., Hussenot, L., Mesnard, T., Shahri-
ari, B., Ramé, A., et al. Gemma 2: Improving open
language models at a practical size. arXiv preprint
arXiv:2408.00118, 2024.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., Bikel, D., Blecher, L., Ferrer, C. C., Chen,
M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W.,
Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn,
A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez,
V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P. S.,
Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y.,
Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Moly-
bog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R.,
Saladi, K., Schelten, A., Silva, R., Smith, E. M., Subra-
manian, R., Tan, X. E., Tang, B., Taylor, R., Williams,
A., Kuan, J. X., Xu, P., Yan, Z., Zarov, I., Zhang, Y.,
Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Sto-
jnic, R., Edunov, S., and Scialom, T. Llama 2: Open
foundation and fine-tuned chat models, 2023. URL
https://arxiv.org/abs/2307.09288.

Tran, H., Glaze, C., and Hancock, B. Iterative DPO align-
ment. Technical report, Snorkel AI, 2023.

Uesato, J., Kushman, N., Kumar, R., Song, F., Siegel, N.,
Wang, L., Creswell, A., Irving, G., and Higgins, I. Solv-
ing math word problems with process-and outcome-based
feedback. arXiv preprint arXiv:2211.14275, 2022.

Wang, H., Xiong, W., Xie, T., Zhao, H., and Zhang, T. Inter-
pretable preferences via multi-objective reward modeling
and mixture-of-experts. In Findings of the Association
for Computational Linguistics: EMNLP 2024, pp. 10582–
10592, 2024a.

Wang, T., Kulikov, I., Golovneva, O., Yu, P., Yuan, W.,
Dwivedi-Yu, J., Pang, R. Y., Fazel-Zarandi, M., Weston,
J., and Li, X. Self-taught evaluators. arXiv preprint
arXiv:2408.02666, 2024b.

Wang, X., Wei, J., Schuurmans, D., Le, Q. V., Chi,
E. H., Narang, S., Chowdhery, A., and Zhou, D. Self-
consistency improves chain of thought reasoning in lan-
guage models. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https:
//openreview.net/forum?id=1PL1NIMMrw.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi,
E., Le, Q. V., Zhou, D., et al. Chain-of-thought prompting
elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837,
2022.

Weidinger, L., Mellor, J., Rauh, M., Griffin, C., Uesato,
J., Huang, P.-S., Cheng, M., Glaese, M., Balle, B.,
Kasirzadeh, A., et al. Ethical and social risks of harm
from language models. arXiv preprint arXiv:2112.04359,
2021. URL https://arxiv.org/abs/2112.
04359.

Xiong, M., Hu, Z., Lu, X., LI, Y., Fu, J., He, J., and Hooi, B.
Can LLMs express their uncertainty? an empirical evalu-
ation of confidence elicitation in LLMs. In The Twelfth
International Conference on Learning Representations,
2024.

Xu, J., Lee, A., Sukhbaatar, S., and Weston, J. Some
things are more cringe than others: Preference opti-
mization with the pairwise cringe loss. arXiv preprint
arXiv:2312.16682, 2023.

Yu, L., Jiang, W., Shi, H., YU, J., Liu, Z., Zhang, Y., Kwok,
J., Li, Z., Weller, A., and Liu, W. MetaMath: Bootstrap
your own mathematical questions for large language mod-
els. In The Twelfth International Conference on Learning
Representations, 2024.

Yuan, W., Pang, R. Y., Cho, K., Li, X., Sukhbaatar, S.,
Xu, J., and Weston, J. E. Self-rewarding language mod-
els. In Forty-first International Conference on Machine
Learning, 2024. URL https://openreview.net/
forum?id=0NphYCmgua.

Zelikman, E., Wu, Y., Mu, J., and Goodman, N. STaR: Boot-
strapping reasoning with reasoning. Advances in Neural
Information Processing Systems, 35:15476–15488, 2022.

Zhang, L., Hosseini, A., Bansal, H., Kazemi, M., Ku-
mar, A., and Agarwal, R. Generative verifiers: Re-
ward modeling as next-token prediction. arXiv preprint
arXiv:2408.15240, 2024.

A. Relationship between Consistency and
Accuracy

Level of consistency or vote share correlates with accu-
racy. We observe that the degree of consistency, or vote

11

https://openreview.net/forum?id=lNAyUngGFK
https://openreview.net/forum?id=lNAyUngGFK
https://arxiv.org/abs/2307.09288
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://arxiv.org/abs/2112.04359
https://arxiv.org/abs/2112.04359
https://openreview.net/forum?id=0NphYCmgua
https://openreview.net/forum?id=0NphYCmgua


Self-Consistency Preference Optimization

share, is positively and strongly correlated with accuracy.
This relationship is evidenced in Table 6 by a high rank
order correlation for all three datasets, as determined by
Somer’s D (Somers, 1962), which measures the degree of
association between two possibly dependent variables. This
association is lowest for MATH, likely because the chal-
lenging nature of this task makes it difficult for the model
to produce consistent answers.

Table 6. Somers’ D computed between Acc(y) and V(y) for y ∈
{y+, y−} on test set.

Dataset Somers’ D

GSM8K 0.80
MATH 0.68
ZebraLogic 0.92

Furthermore, we measure the impact of the number of sam-
ples used to measure self-consistency (k) on its Somer’s D
correlation with correctness in Table 7. The results indi-
cate that (i) lower values of k (e.g. k = 2/4) have lower
correlation with correctness or accuracy which we find is
because of fewer instances where any answer gets multiple
votes; (ii) while larger values of k = 16 yield slightly higher
correlations, we prioritize computational efficiency in the
data generation phase, and use a sufficiently large value of
k = 8 in addition to filtering and a weighted loss in SCPO.

B. Transduction During Inference
Bootstrapping preference pairs from test queries further
boosts performance. In our primary experiments, we re-
port results for two rounds of iterative training. However,
as shown in Table 10, introducing a third round of SCPO
yields only marginal improvements, with gains of less than
1% over the second round. To address this saturation, we
explore generating new problems and building preference
pairs using the queries from test split as exemplars instead
of the train split. This strategy results in more substan-
tial improvements (+1.44% for GSM8K), as it enables the
model to better adapt to the unique characteristics of the
test set. For MATH, we see more substantial improvements
when using SC accuracy, resulting in an improvement bump
of 1.26%. We note that ZebraLogic is excluded from this
analysis, as it only provides test samples.

C. Results on Math Reasoning with Llama-3.1
We now repeat the math reasoning experiments in Sec-
tion 4.1 with Llama-3.1 Base 8B and find that while the ab-
solute performance increases, the relative trends among the
baselines remain the same – with SCPOUnsup. as the most
performant unsupervised technique and SCPOSemi-Sup.
yielding the overall highest accuracy on GSM8K and
MATH. In Tables 8 and 9, we observe that two iterations

Table 7. Somers’ D computed between Acc(y) and V(y) for y ∈
{y+, y−}, i.e., the most and least consistent responses, on test set
for different values of k.

Dataset / Somer’s D k = 2 k = 4 k = 8 k = 16

GSM-8K 0.39 0.65 0.80 0.89
ZebraLogic 0.66 0.82 0.92 0.93

Table 8. GSM8K zero-shot accuracy after training Llama-3.1
Base 8B with SCPO and baselines, using greedy or self-
consistency (SC)-based inference.

Method Iter. Train Data (K) Test Acc. (%)

# Seed / Gen. Greedy SC (8-way)

/
Seed model (zero-shot) M0 - / - 43.14 59.59
IRPORM M1 6.5 / - 58.60 73.01

M2 6.7 / - 60.04 72.19
LMSI M1 6.7 / 5.7 48.75 65.71

M2 6.3 / 4.8 52.39 60.42
SCPOUnsup. M1 6.7 / 5.7 61.64 71.95

M2 5.5 / 4.9 64.22 75.13

/
IRPOGold M1 5.6† / - 60.05 76.04

M2 5.8† / - 65.50 79.61
SCPOSemi-Sup. M1 5.6† / 5.4 65.60 79.08

M2 5.2† / 4.9 68.46 79.75

without access to gold labels

with access to gold labels

Table 9. MATH zero-shot accuracy after training Llama-3.1 Base
8B with SCPO and baselines, using greedy or self-consistency
(SC)-based inference.

Method Iter., Train Data (K) Test Acc. (%)

# Seed / Gen. Greedy SC (8-way)

/
Seed model (zero-shot) M0 - / - 15.70 24.62
IRPORM M1 6.2 / - 20.68 27.32

M2 6.6 / - 20.74 25.88
LMSI M1 0.9 / 0.9 16.26 24.38

M2 1.0 / 1.3 15.94 22.60
SCPOUnsup. M1 0.9 / 0.9 19.38 27.74

M2 1.4 / 1.7 23.20 30.10

/
IRPOGold M1 2.7† / - 22.40 31.64

M2 3.2† / - 22.86 32.30
SCPOSemi-Sup. M1 2.7† / 0.9 22.98 32.18

M2 3.2† / 2.2 24.36 32.64

without access to gold labels

with access to gold labels

of SCPOSemi-Sup. improve the greedy test accuracy of the
seed model by 25.32% and 8.66% on GSM8K and MATH,
respectively; while two iterations of SCPOUnsup. boost the
greedy accuracy of the seed model by 21.08% on GSM8K
and 7.5% on MATH dataset.

12



Self-Consistency Preference Optimization

Table 10. Training M3 by bootrapping from questions in the train and test set. On GSM8K, we bootstrap 8.7K, 5.8K pairs using train, and
test problems, respectively. On MATH, we build 4.4K, and 4.2K preference pairs using train and test problems, respectively.

Method GSM8K Acc. MATH Acc.

Greedy SC (8-way) Greedy SC (8-way)

M0 41.17 58.80 14.46 18.20

M1 w/ SCPOUnsup. 61.03 71.49 17.36 25.70
M2 w/ SCPOUnsup. 63.91 71.11 19.72 24.58

M3 w/ SCPOUnsup. 64.21 70.81 19.76 24.66
M3 w/ SCPOUnsup. on test queries 65.35 70.96 20.00 25.84

D. Prompts
We provide all task-specific prompts used for both generating new problems and for generating candidate solutions.

Response Generation: ZebraLogic

Example Puzzle:
There are 3 houses, numbered 1 to 3 from left to right, as seen from across the street. Each house is occupied by a
different person. Each house has a unique attribute for each of the following characteristics:
- Each person has a unique name: ‘Peter’, ‘Eric’, ‘Arnold’.
- Each person has a unique favorite drink: ‘tea’, ‘water’, ‘milk’

## Clues:
1. Peter is in the second house.
2. Arnold is directly left of the one who only drinks water.
3. The one who only drinks water is directly left of the person who likes milk.

Answer to the Example Puzzle:
{
“reasoning”: “Given Clue 1, we know Peter is in House 2. According to Clue 2, Arnold is directly left of the one who
only drinks water. The person in House 3 cannot be on the left of anyone, so Arnold must be in House 1. Thus, Peter
drinks water, and Eric lives in House 3. Then, according to Clue 3, Eric drinks milk. Therefore, Arnold drinks tea.”,
“solution”: { “House 1”: { “Name”: “Arnold”, “Drink”: “tea” },
“House 2”: { “Name”: “Peter”, “Drink”: “water” },
“House 3”: { “Name”: “Eric”, “Drink”: “milk” } }
}

Puzzle to Solve: {puzzle}
Prompt: Now please solve the above puzzle. Present your reasoning and solution in the following json format:
{json template}

Response Generation: GSM8K

Prompt: Answer the following question step-by-step. When you are ready, place the final answer in a new line as
#### < number >.
Q: {question}
A: Let’s think step by step.

13



Self-Consistency Preference Optimization

Response Generation: MATH

Prompt: Answer the following question step-by-step. When you are ready, place the final answer in a new line as:
The final answer is $\boxed{< your answer>}$
Q: {question}
A: Let’s think step by step.

Query Generation: ZebraLogic

Example Puzzle:
Attributes to Change: [“Name”, “Drink”]
“‘ There are 3 houses, numbered 1 to 3 from left to right, as seen from across the street. Each house is occupied by a
different person. Each house has a unique attribute for each of the following characteristics:
- Each person has a unique name: ‘Peter’, ‘Eric’, ‘Arnold’.
- Each person has a unique favorite drink: ‘tea’, ‘water’, ‘milk’

## Clues:
1. Peter is in the second house.
2. Arnold is directly left of the one who only drinks water.
3. The one who only drinks water is directly left of the person who likes milk.
”’
Answer:
Let’s change the “Name” and “Drink” attributes of the given puzzle to create a new puzzle. There are 3 names
and drinks involved Mentions of “Name” changes from ‘Peter’, ‘Eric’, ‘Arnold’ to mentions of “Name”: ‘Molly’,
‘Shannon’, ‘Kelly’ respectively. Instead of “Drink” as the attribute, let’s their “Food” preferences as the attribute.
So mentions of “Drink” changes from ‘tea’, ‘water’, ‘milk’ to mentions of ”Food”: ‘pizza’, ‘burgers’, ‘fries‘’
respectively. Now, changing the language of the puzzle and clues we get,

New Attribute Map: {”Name”: ”Name”, ”Drink”: ”Food”}
Puzzle:
”’ There are 3 houses, numbered 1 to 3 from left to right, as seen from across the street. Each house is occupied by a
different person. Each house has a unique attribute for each of the following characteristics:
- Each person has a unique name: ‘Molly’, ‘Shannon’, ‘Kelly’.
- Each person has a unique favorite food: ‘pizza’, ‘burgers’, ‘fries’

## Clues:
1. Molly is in the second house.
2. Kelly is directly left of the one who only eats burgers.
3. The one who only eats burgers is directly left of the person who likes fries.
“‘
Puzzle to rephrase:
Attributes to Change: {attributes dict}
“‘ {input puzzle} ”’

Prompt: Rephrase the above puzzle by changing only the attributes above. ALWAYS mention the “New
Attribute Map” and enclose the new puzzle within “‘ ”’. Aside from these attributes keep the logic of the puzzle as
similar as possible. Similar to the example above, give your reasoning before rephrasing the puzzle.

14



Self-Consistency Preference Optimization

Query Generation: GSM8K and MATH

Q: {few-shot question 1}
Q: {few-shot question 2}
Q: {few-shot question 3}
Q: {few-shot question 4}

Prompt: Based on the examples above, generate ONE solvable math word problem with similar diffi-
culty. Note that all the information needed to solve the problem should be included in the question. Output the
question and nothing else.
Q:

15


