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Abstract

We consider the Adversarial Multi-Armed Bandits (MAB) problem with unbounded
losses, where the algorithms have no prior knowledge on the sizes of the losses.
We present UMAB-NN and UMAB-G, two algorithms for non-negative and general un-
bounded loss respectively. For non-negative unbounded losses, UMAB-NN achieves
the first fully adaptive and scale-free regret bound. Building up on that, we further
develop UMAB-G that can learn from arbitrary unbounded losses. Complement-
ing the algorithms is a new lower bound, demonstrating a fundamental trade-off
between adaptivility and minimax optimality in scale-free MAB. Finally, we per-
form extensive empirical evaluations, showing that our algorithms consistently
out-perform all existing algorithms that handle unbounded losses.

1 Introduction

Multi-armed Bandits (MAB) is a popular online learning framework for studying decision-making
under uncertainty [Slivkins et al., 2019, Lattimore and Szepesvári, 2020, Bubeck et al., 2012], with a
wide range of applications such as advertisement [Schwartz et al., 2017], medical treatments [Villar
et al., 2015], and recommendation systems [Mary et al., 2015]. In this paper, we focus on adversarial
MAB (AMAB), where the losses are generated adversarially by the environment [Auer et al., 2002].
Most prior works on AMAB assume that the losses are uniformly bounded, e.g. in [0, 1]. With such
knowledge, the algorithms can set their learning rate (in a general sense) properly. For instance,
in the EXP3 algorithm, the regret analysis relies on the inequality exp(x) ≤ 1 + x + (e − 2)x2 to
transform exponential terms into quadratic terms [Auer et al., 2002], which only holds true if the loss
x can be upper bounded by 1. In many applications, however, such natural loss bounds do not exist.
For example, in quantitative trading, the fluctuation of stock prices can differ wildly across time and
across stocks. In online marketplaces, the price can vary dramatically for different products. If one
must give a uniform bound M for the losses across all actions and time, such a bound will likely be
loose. In such cases, existing algorithms will have a regret that scales with M , which is suboptimal
compared to a regret that depends on the actual size of the losses.

Motivated by the above limitation of existing algorithms, we wish to design AMAB algorithms that
require no prior knowledge on the scale of the losses and adaptively achieves smaller regret when
the losses are small in scale. In addition, instead of a regret bound that depends on the number of
rounds and a (hidden) uniform bound of the losses, we wish to design adaptive algorithms whose
regret scales with the actual loss sequence, which is beneficial when the sequence of loss is sparse or
when its scale varies across time [Wei and Luo, 2018, Bubeck et al., 2018]. In other words, we would
like to ask the following question:

Can we design an algorithm that achieves optimal and adaptive regret guarantee without
any prior knowledge on the losses?
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In the following, we present two algorithms, UMAB-NN and UMAB-G, for Non-Negative and General
unbounded loss, respectively. Our contributions are summarized as follows.

1. We propose UMAB-NN, a scale-free AMAB algorithm that works for unbounded non-negative
losses. The regret guarantee of UMAB-NN adapts to the infinity norm of the loss sequence
while matching the worst-case lower bound of Auer et al. [2002].

2. Building upon UMAB-NN, we then propose UMAB-G, which works for arbitrary unbounded
losses. UMAB-NN achieves improved regret bounds upon the best previous results from Hadiji
and Stoltz [2020], Putta and Agrawal [2022], Huang et al. [2023].

3. Complementing the new adaptive algorithms, We establish a novel lower bound for scale-free
AMAB. We show that, surprisingly, the adaptive regret bound achieved in the unbounded
non-negative loss setting, is unachievable in the unbounded general loss setting, revealing
the fundamental asymmetry between positive and negative losses in AMAB.

4. Last but not least, we evaluate the performance of our algorithms on real-world datasets.
The results show that our algorithms consistently outperform existing methods in a variety
of tasks with distinct loss patterns. We also illustrate the impact of our exploration strategy
and draw comparisons between the two versions of our algorithm.

2 Problem Setup and Related Works

We start with some notations. Let [n] denote the set {1, . . . , n} and [T ] denote the set {1, . . . , T}.
Let ∆n be the probability simplex {p ∈ Rn :

∑
k∈[n] pk = 1; pk ≥ 0,∀k ∈ [n]}. Let 1n and 0n be

all ones and all zeros n-dimensional vector respectively. Let ek denotes the one-hot vector with 1
on the kth entry. For vectors pt and ℓt, we use pt,k and ℓt,k to represent the kth entry of pt and ℓt
respectively. The L1, L2 and L-infinity norms of ℓt are denoted as ∥ℓt∥1=

∑
k∈[n]|ℓt,k|, ∥ℓt∥2=√∑

k∈[n] ℓ
2
t,k, ∥ℓt∥∞= maxk∈[n]|ℓt,k| respectively. We denote by ℓ∞ = maxt∈[T ]∥ℓt∥∞ the

uniform norm bound of the losses. Moreover, we denote by ℓ−∞ = maxt∈[T ],k∈[n]|min(ℓt,k, 0)| the
magnitude of the most negative entry of the losses. Notice that ℓ−∞ ≤ ℓ∞, and ℓ−∞ = 0 if the loss
sequence is non-negative. Both ℓ∞ and ℓ−∞ are unknown to the player through the game.

Adversarial Multi-armed Bandit: We consider the oblivious adversarial setting. In each round
t = 1, . . . , T , the player selects a distribution pt over [n] and the adversary selects a loss vector
ℓt ∈ Rn simultaneously. Then, the player samples action kt ∼ pt and observes loss ℓt,kt

. We
measure the performance of an algorithm in terms of its pseudo-regret:

RT := E
[∑T

t=1
ℓt,kt

− min
k∈[n]

∑T

t=1
ℓt,k

]
. (1)

2.1 Related Works

Scale-free algorithms: Scale-free algorithms are ones whose regret bound scales linearly with
respect to ℓ∞, while requiring no knowledge of ℓ∞ a priori1. Scale-free regret bounds were first
studied in the full information setting, such as experts problems [Freund and Schapire, 1997, De Rooij
et al., 2014, Cesa-Bianchi et al., 2007] and online convex optimization [Mayo et al., 2022, Jacobsen
and Cutkosky, 2023, Cutkosky, 2019]. For experts problems, the AdaHedge algorithm from De Rooij
et al. [2014] achieves the first scale-free regret bound. For online convex optimization, past algorithms
can be categorized into two generic algorithmic frameworks: Mirror Descent (MD) and Follow The
Regularizer Leader (FTRL). The scale-free regret from the MD family is achieved by AdaGrad
proposed by Duchi et al. [2011]. However, the regret bound of Duchi et al. [2011] is only non-trivial
when the Bregman divergence associated with the regularizer can be well bounded. Later, Orabona
and Pál [2018] proposed the AdaFTRL algorithm which achieves the first scale-free regret bound in
the FTRL family and generalizes Duchi et al. [2011]’s results to cases where the Bregman divergence
associated with the regularizer is unbounded. On AMAB, Hadiji and Stoltz [2020] extends the method

1We note that an alternative and more strict interpretation of scale-free algorithms refers to ones that will not
change the sequence of pt’s when losses are multiplied by a positive constant.
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ALGORITHM UNBOUNDED ADAPTIVE REGRET

[HAZAN AND KALE, 2011] NO YES Õ
(√∑T

t=1∥ℓt∥22
)

HADIJI AND STOLTZ [2020] YES NO Õ
(
ℓ∞

√
nT

)
PUTTA AND AGRAWAL [2022] YES NO Õ

(
ℓ∞

√
nT +

√
n
∑T

t=1∥ℓt∥22
)

PUTTA AND AGRAWAL [2022] YES YES Õ
(
ℓ∞

√
n
∑T

t=1∥ℓt∥1 +
√

n
∑T

t=1∥ℓt∥22
)

UMAB-G NON-ADAPTIVE YES NO Õ
(
ℓ−∞

√
nT +

√
n
∑T

t=1∥ℓt∥2∞
)

UMAB-G ADAPTIVE YES YES Õ
(
ℓ∞

√
n
∑T

t=1∥ℓt∥∞ +
√

n
∑T

t=1∥ℓt∥2∞
)

Table 1: Comparison between our results and previous works.

of Duchi et al. [2011] and provides a scale-free regret bound of Õ(ℓ∞
√
nT )2, which is optimal (up

to log terms) in the worst case. However, such worst-case regret bounds can be overly pessimistic:
a single outlier loss ℓoutlier can result in an additional regret on the order of O(∥ℓoutlier∥∞

√
nT ).

To address it, Putta and Agrawal [2022] presents scale-free bounds that adapt to the individual
size of losses across time. Unfortunately, the worst-case guarantee of Putta and Agrawal [2022]
is Õ(ℓ∞n

√
T ), which scales linearly to the number of actions. Our paper closes this gap: our

algorithms achieve an adaptive regret better than Putta and Agrawal [2022], as well as an optimal
worst-case regret that matches with Hadiji and Stoltz [2020].

Adaptive algorithms: Adaptive algorithms refer to algorithms which, instead of scaling solely on T
in the regret, adapts to a “measure of hardness” of the sequence of losses. Such algorithm perform
better than the worst-case regret if the sequence of loss is “benign”. In the last two decades, such
algorithms have been widely studied in the settings of expert problems and online convex optimization
[Hazan et al., 2007, Streeter and McMahan, 2010, Duchi et al., 2011, De Rooij et al., 2014, Orabona
and Pál, 2015, 2018]. For MAB, several works established adaptive regret bounds based on different
“measure of hardness”. For example, Allenberg et al. [2006], Foster et al. [2016], Pogodin and
Lattimore [2020], Ito [2021] derive the first-order regret (a.k.a. small-loss regret), which depends on
the cumulative loss mink∈[n]

∑
t∈[T ]|ℓt,k|, but under the assumption that ℓt,k ∈ [0, 1],∀t, k. Hazan

and Kale [2011], Bubeck et al. [2018], Wei and Luo [2018], Ito [2021] propose bounds that depend
on the empirical variance of the losses, i.e.,

∑
t∈[T ]∥ℓt∥22. Path-length bounds are also studied [Wei

and Luo, 2018, Bubeck et al., 2019, Zimmert and Seldin, 2021, Ito, 2021], which depends on the
fluctuation of loss sequence

∑
t∈[T ]∥ℓt − ℓt−1∥1. We remark that all above results require the

assumption that losses are bounded within [0, 1], which we remove in this paper.

3 Algorithm and Analysis

We now present our two algorithms UMAB-NN and UMAB-G. UMAB-NN works in the setting where
losses are Non-Negative, i.e., ℓt ∈ Rn

+. Remarkably, UMAB-NN is a strictly scale-free algorithm: the
algorithm will not change its sequence of action distributions if the sequence of losses is multiplied
by a positive constant, which immediately implies scale-free regret. Our main algorithm, UMAB-G,
builds upon UMAB-NN but can work with potentially negative losses, i.e., ℓt ∈ Rn. In particular, We
will present two versions of the algorithm: UMAB-G with non-adaptive and adaptive exploration rates.
UMAB-G Non-Adaptive achieves the optimal worst-case guarantee Õ(ℓ∞

√
nT ), while achieving

partial adaptability to the non-negative part of the losses. UMAB-G Adaptive achieves an adaptive

regret of Õ
(
ℓ∞

√
n
∑T

t=1∥ℓt∥∞
)

, improving upon the best known adaptive regret of Putta and

2Throughout the paper we use O(·) to suppress constant factors and Õ(·) to suppress factors that are
poly-logarithmic in T, n, ℓ∞.
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Algorithm 1 UMAB-NN: Unbounded AMAB for Non-Negative loss
1: Input: Log-barriers regularization Ψ, η1 = ∞
2: for t = 1 to T do
3: Compute the action distribution pt = argminp∈∆n

(∑t−1
s=1⟨ℓ̂s,p⟩+

1
ηt
Ψ(p)

)
.

4: Sample and play action kt ∼ pt. Receive loss ℓt,kt
.

5: Construct loss estimator ℓ̂t such that ℓ̂t,k = 1(k=kt)
pt,k

ℓt,k for all k ∈ [n].

6: Update learning rate ηt+1 = 2
√

n∑t
s=1 ℓ2s,ks

.

7: end for

Agrawal [2022] by an order of
√
n3. A summary of the comparisons to prior works can be found in

Table 2.14.

Both algorithms we propose are based on the Follow-the-Regularized-Leader (FTRL) framework.
Thus, let us prepare our discussion by briefly introducing FTRL. In the full-information setting, the
classic adaptive FTRL framework uses a regularizer Ψ and time-varying learning rates η1, . . . , ηT+1,
with certain regularity constraints (see, e.g., Orabona and Pál [2015]). The update rule takes the form
of

p1 = arg min
p∈∆n

1

η1
Ψ(p), pt = arg min

p∈∆n

( t−1∑
s=1

⟨ℓs,p⟩+
1

ηt
Ψ(p)

)
, (2)

where ℓs is the observed loss at round s and ηt is the adaptive learning rate depending on the
losses ℓ1, . . . , ℓt−1. In the bandit setting, we cannot observe the complete loss vector ℓt. The
classic approach is to construct an unbiased loss estimator through the importance-weighted
(IW) sampling method introduced by Auer et al. [2002], i.e., construct ℓ̂t ∈ Rn such that
ℓ̂t,k = ℓt,k1(k = kt)/pt,k for all k ∈ [n], where 1(k = kt) denotes the indicator function. Notice
that E[ℓ̂t] =

∑n
k=1 ℓtpt,kek/pt,k = ℓt. Using ℓ̂t, we are able to conceptually reduce the bandit

setting to the full information setting.

3.1 Non-negative loss

Let’s start with the setting where the loss sequence is non-negative but can be arbitrarily large, i.e.,
ℓt,k ≥ 0 for every t ∈ [T ] and k ∈ [n]. UMAB-NN (Algorithm 1) is a natural adaptation of the classic
FTRL algorithm with log-barrier regularizer. The log-barrier regularizer is defined as

Ψ(pt) =

n∑
k=1

(
log

( 1

pt,k

)
− log

( 1

n

))
.

Notice that Ψ(p) ≥ 0 for all p ∈ ∆n. Such regularizers are commonly used for studying adaptive
regret in the AMAB setting Wei and Luo [2018], Putta and Agrawal [2022], Bubeck et al. [2019].
In each round, UMAB-NN calculates an action distribution pt through the update rule, then plays
action kt sampled from pt. After receiving the loss ℓt,kt

, UMAB-NN constructs the unbiased IW
estimator ℓ̂t and updates the learning rate ηt. The novelty comes in our design of learning rate (line
5). Different from the learning rate in Orabona and Pál [2018], we use ℓ2t,kt

instead of ∥ℓ̂t∥22. This
is because ∥ℓ̂t∥22 is of order 1/p2t,kt

. If one uses the one in Orabona and Pál [2018] instead, i.e.

ηt+1 = O(
√
n/

∑t
s=1∥ℓ̂s∥22), the learning rate will be too small since 1/p2t,kt

cannot be bounded.
Based on this observation, UMAB-NN adapts the learning rate to the sum of the square of the partial

loss, i.e., ηt+1 = O(
√
n/

∑t
s=1 ℓ

2
s,ks

), which can be bounded by O(ℓ∞
√
n/T ).

3Notice that the regret in Putta and Agrawal [2022] scales with ||ℓt||22 which can be n times larger than
||ℓt||2∞.

4We remark that a recent work Huang et al. [2023] also claims to achieve adaptive regret for unbounded loss,
but their proof is wrong, which is confirmed by the authors. More details are provided in Appendix B.2.
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We remark that Algorithm 1 is strictly scale-free. If all losses are multiplied by a constant c, then in
line 2, both terms on the right hand side will be multiplied by c, resulting in the same pt being picked
by the algorithm. Our main result is the following regret bound for Algorithm 1.
Theorem 3.1. For any ℓ1, . . . , ℓT ∈ Rn

+, the expected regret of Algorithm 1 is upper bounded by

RT ≤ Õ


√√√√n

T∑
t=1

∥ℓt∥2∞

 .

Notice that Theorem 3.1 is adaptive to each individual loss in the loss sequence. Furthermore, the
worst case regret is bounded by Õ(ℓ∞

√
nT ), which matches the lower bound established in Auer

et al. [2002]. In this regard, UMAB-NN achieves both optimal adaptive rate and optimal minimax rate
for unbounded non-negative losses. Next, we briefly highlight the key steps in proving Theorem 3.1,
which also provide intuition for our further improvement in the next section.

Proof highlights of Theorem 3.1: Since ℓ̂t is an unbiased estimator of ℓt for every t ∈ [T ] and
comparator p† ∈ ∆n, we have

E
[ T∑

t=1

ℓt,kt
−

T∑
t=1

⟨ℓt,p†⟩
]
= E

[ T∑
t=1

⟨ℓ̂t,pt − p†⟩
]
.

It suffices to focus on bounding
∑T

t=1⟨ℓ̂t,pt − p†⟩. We start with the standard analysis of an
FTRL-type algorithm.

Lemma 3.2. (Orabona [2019] Lemma 7.1) For any ℓ̂1, . . . , ℓ̂T ∈ Rn, using the update rule of
(2) along with the non-increasing sequence of learning rates η1, . . . , ηT+1, for every comparator
p† ∈ ∆n, we have

T∑
t=1

⟨ℓ̂t,pt − p†⟩ ≤ Ψ(p†)

ηT+1
+

T∑
t=1

(
⟨ℓ̂t,pt − pt+1⟩+ Ft(pt)− Ft(pt+1)

)
,

where function Ft is defined as Ft(p) =
∑t−1

s=1⟨ℓ̂s,p⟩+
1
ηt
Ψ(p).

For the sake of completeness, the proof of Lemma 3.2 is provided in the appendix. Lemma 3.2
decomposes the regret into two terms. The first term depends on the regularizer and the comparator.
Intuitively, Ψ(p†) will appear to be infinity if p† is the best fixed action (some entries of p† are
zeros). The problem can be easily solved by comparing with some close neighbor of the best action,
i.e., mixing a uniform distribution with the best fixed action. Therefore, it suffices to focus on the
terms ⟨ℓ̂t,pt − pt+1⟩+ Ft(pt)− Ft(pt+1). The following key lemma gives an upper bound using
the notions of local norms.
Lemma 3.3. For any ℓ̂1, . . . , ℓ̂T ∈ Rn, using the update rule of (2), denote by ∥x∥A=

√
x⊤Ax,

there is

⟨ℓ̂t,pt − pt+1⟩+ Ft(pt)− Ft(pt+1) ≤
1

2
ηt∥ℓ̂t∥2(∇2Ψ(ξt))−1 , (3)

where ξt is a point between pt and pt+1. Moreover, it suffices to set ξt as pt when ℓ̂t ∈ Rn
+.

Note that (3) holds for general losses and will be useful in the next section. When ℓ̂t ∈ Rn
+, we can

further bound (3) by min( 12ηtℓ
2
t,kt

, |ℓt,kt |), since

⟨ℓ̂t,pt − pt+1⟩+ Ft(pt)− Ft(pt+1) ≤ ⟨ℓ̂t,pt⟩ = |ℓt,kt |, (4)
which implies

T∑
t=1

⟨ℓ̂t,pt − p†⟩ ≤ Ψ(p†)

ηT+1
+

T∑
t=1

min
(1
2
ηtℓ

2
t,kt

, |ℓt,kt
|
)
. (5)

The right hand side of (5) takes a similar form as in scale-free online convex optimization [Orabona
and Pál, 2018], but the upper bound depends on ℓt,kt

instead of ∥ℓt∥2. Using a learning rate as in

Algorithm 1, the second term on the right hand side of (5) can be bounded by O(
√
n
∑T

t=1 ℓ
2
t,kt

)

based on Orabona and Pál [2018], which suffices to complete the proof.

5



Algorithm 2 UMAB-G: Unbounded AMAB for General Loss
1: Input: Log-barriers regularization Ψ, learning rate η1 = 1/4, exploration rate ρ1 = 1/2n2,

clipping threshold C1 = −1
2: for t = 1 to T do
3: Compute the action distribution pt = argminp∈∆n

(∑t−1
s=1⟨ℓ̂′s,p⟩+

1
ηt
Ψ(p)

)
.

4: Calculate p′
t by Algorithm 3 with rate ρt.

5: Sample and play action kt ∼ p′
t. Receive loss ℓt,kt

.

6: Construct ℓ̂′t such that ℓ̂′t,k =
1(k=kt)ℓ

′
t,k

p′
t,k

for all ∀k ∈ [n], where ℓ′t,kt
= max(2Ct, ℓt,kt

).

7: Update clipping threshold Ct+1 = min(Ct, ℓ
′
t,kt

).
8: Update learning rate ηt+1 = 1

4

√
n

nC2
t+1+

∑t
s=1 ℓ′2s,ks

.

9: Update exploration rate
1. (Non-Adaptive): ρt+1 = 1

2n2+
√
nT

.

2. (Adaptive): ρt+1 = 1

2n2+2
√∑t

s=1|⟨ℓ̂s,ct⟩|
.

10: end for

Algorithm 3 Extra Exploration on Action Distribution
1: Input: Distribution pt. Exploration rate ρt ≤ 1/2n2

2: Define k⋆t ∈ argmaxk′∈[n] pt,k′ .
3: Construct a vector ct ∈ Rn such that for every k ∈ [n], there is

ct,k =


1, if pt,k < ρt
−
∑

k′∈[n]/{k} ct,k′ if k = k⋆t
0, else.

4: Construct extra exploration distribution p′
t = pt + ρtct.

3.2 General loss

Next, we move on to study the general loss setting, i.e., ℓ1, . . . , ℓT ∈ Rn. Let us first explain why
Algorithm 1 cannot work when the losses become negative. Recall that Lemma 3.3 requires bounding
⟨ℓ̂t,pt − pt+1⟩+ Ft(pt)− Ft(pt+1) by ηt∥ℓ̂t∥2(∇2Ψ(ξt))−1/2. However, notice that

∥ℓ̂t∥2(∇2Ψ(ξt))−1=

n∑
k=1

ℓ̂2t,k
∇2

k,kΨ(ξt)
=

n∑
k=1

ℓ2t,k1(k = kt)

p2t,k
ξ2t,k =

ℓ2t,kt

p2t,kt

ξ2t,kt
, (6)

where ξt,kt
is some value between pt,kt

and pt+1,kt
. Given pt+1,kt

might significantly exceed
pt,kt

, the size of ξt,kt
/pt,kt

cannot be confined. In this case, ℓ2t,kt
ξ2t,kt

/p2t,kt
is potentially of order

O(1/p2t,kt
), which is too large for the analysis. Additionally, −⟨ℓ̂t,pt+1⟩ could potentially be

positive and cannot be well bounded due to the same reason, which implies that (4) will not go
through. Thus, inequality (5) no longer holds under the condition of general loss. Inspired by such
observations, it naturally follows to consider bounding the magnitude of pt+1,kt

/pt,kt
. Unfortunately,

without imposing additional restrictions on the losses, using the update (2) directly cannot bound
pt+1,kt

/pt,kt
. For example, given arbitrary pt, ηt+1, and kt, we can always find a sufficiently small

ℓt,kt
< 0 that makes pt+1,kt

≥ 1/2 through (2). In this case, if pt,kt
is close to zero, pt+1,kt

/pt,kt

could be extremely large.

To address this issue, we propose UMAB-G (Algorithm 2). There are two key algorithmic innovations
in UMAB-G. First, we use truncated losses to update the action distribution. Instead of directly taking
ℓ̂t as the input loss, we clip it by a threshold Ct that depends on previous received losses ℓ̂1, . . . , ℓ̂t−1.
The truncation ensures that every input loss is “not too negative” for the update of action, and thus
the magnitude of pt+1,kt/pt,kt can be well bounded. Second, we add extra exploration to ensure
that the probability pt,k would not be overly small. Intuitively, for AMAB with general losses, we
need to ensure that each arm has a certain probability to be pulled, so that we can perceive the
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change of loss norm in time to tune the learning rate. Instead of the commonly used scheme of
mixing with a uniform distribution Hadiji and Stoltz [2020], Putta and Agrawal [2022], we develop a
data-dependent mixing strategy (Algorithm 3) that reduces the regret caused by the extra exploration.
Below, we present the results for two exploration schemes distinguished by whether the exploration
rate is adaptive. The theoretical guarantee of Algorithm 2 is presented below.
Theorem 3.4. For any ℓ1, . . . , ℓT ∈ Rn, with the non-adaptive and adaptive exploration rate, the
expected regret of Algorithm 2 is upper bounded by

Non-Adaptive: RT ≤ Õ
(
ℓ∞n2 +

√
n
∑

t
∥ℓt∥2∞ + ℓ−∞

√
nT

)
, (7)

Adaptive: RT ≤ Õ
(
ℓ∞n2 +

√
n
∑

t
∥ℓt∥2∞ + ℓ∞

√
n
∑

t
∥ℓt∥∞ +

√
n
∑

t
∥ℓt∥∞

)
(8)

Notice that the non-adaptive regret in (7) achieves “semi-adaptivity” to the loss sequence. If the loss
sequence is non-negative, the right hand side of (7) reduces the form in Theorem 3.1. Moreover, the
worst case bound of (7) is Õ(ℓ∞

√
nT ) for large T , which is optimal up to log factors Auer et al.

[2002]. For the adaptive exploration rate, our result improves upon the previous result of Putta and
Agrawal [2022] by a factor of

√
n and achieves the optimal dependency on n and T .

Theorem 3.4 indicates that the two exploration schemes each have their own strengths and weaknesses
under different loss sequence. Specifically, adaptive exploration rate is better when

∑T
t=1∥ℓt∥∞≤ T ,

whereas non-adaptive exploration rate is better when
∑T

t=1∥ℓt∥∞> T . This is later verified by our
experiments.

Proof highlights of Theorem 3.4 Recall Algorithm 2 that ℓ̂t is the unbiased estimator and ℓ̂′t is
the clipped biased estimator. By Algorithm 2 and the proof of Theorem 3.1, it suffices to bound the
expectation of

∑T
t=1⟨ℓ̂t,p′

t − p†⟩. We first decompose the regret into three terms as follows.
T∑

t=1

⟨ℓ̂t,p′
t − p†⟩ =

T∑
t=1

⟨ℓ̂′t,pt − p†⟩︸ ︷︷ ︸
1

+

T∑
t=1

⟨ℓ̂′t,p′
t − pt⟩︸ ︷︷ ︸

2

+

T∑
t=1

⟨ℓ̂t − ℓ̂′t,p
′
t − p†⟩︸ ︷︷ ︸

3

.

Here, term 1 is the regret of the corresponding FTRL algorithm with truncated loss ℓ̂′1, . . . , ℓ̂
′
T .

Term 2 measures the error incurred by extra exploration, i.e., using p′
t instead of pt. Term 3

corresponds to the error of using the truncated loss ℓ̂′t instead of ℓt. In the rest of the proof, we bound
these three terms respectively.

Bounding 1 : By Lemma 3.2 and Lemma 3.3, we have
T∑

t=1

⟨ℓ̂′t,pt − p†⟩ ≤ Ψ(p†)

ηT+1
+

1

2

T∑
t=1

ηt∥ℓ̂′t∥2(∇2Ψ(ξt))−1=
Ψ(p†)

ηT+1
+

1

2

T∑
t=1

ηtℓ
′2
t,kt

p2t,kt

p′2t,kt

ξ2t,kt

p2t,kt

.

The key step is to bound the magnitude of pt,kt/p
′
t,kt

and pt+1,kt/pt,kt (since ξt,kt is always between
pt,kt and pt+1,kt ) for ℓt,kt ≤ 0. This in turn is guaranteed by our design of loss truncation and extra
exploration, which is illustrated in the following lemma.
Lemma 3.5. Given any action sequence k1, . . . , kT , if ℓt,kt

≤ 0. there is pt,kt
≤ 2p′t,kt

and
pt+1,kt

≤ 6pt,kt
for every t ∈ [T ].

Lemma 3.5 ensures that both pt,kt/p
′
t,kt

and pt+1,kt/pt,kt can be bounded by constants. With these
two ratio bounded, we can immediately reduce the right-hand-side to the form of (5). Using a similar
proof as in Section 3.1, we can bound 1 .

Bounding 2 : By the definition of p′
t, we first note that

∑T
t=1⟨ℓ̂′t,p′

t−pt⟩ =
∑T

t=1 ρt⟨ℓ̂′t, ct⟩, where
ρt is the exploration rate and ct is an offset on pt to prevent some entries in action distribution from
being too small. The key of our extra exploration algorithm is to upper bound ⟨ℓ̂′t, ct⟩ by O(ℓ∞

√
nT ),

in contrast to O(ℓ∞n3/2
√
T ) as in Putta and Agrawal [2022]. This reduces the variance of our

exploration rate, leading to an improved regret. The details are provided in Lemma 3.6 as follows.
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(a) Stock Market Data
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(b) Amazon Sales Data
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(c) Model Selection

Figure 1: Real Data Experiments.

Lemma 3.6. With the non-adaptive and adaptive exploration rates as in Algorithm 3, we have

Non-Adaptive: E
[

2
]
≤ 2

√√√√n

T∑
t=1

∥ℓt∥2∞,

Adaptive: E
[

2
]
≤ 2n2ℓ∞ + 2

√√√√1 + 4n

T∑
t=1

∥ℓt∥∞ + 2ℓ∞

√√√√n

T∑
t=1

∥ℓt∥∞

Bounding 3 : Notice that

T∑
t=1

⟨ℓ̂t − ℓ̂′t,p
′
t − p†⟩ ≤

T∑
t=1

∥ℓ̂t − ℓ̂′t∥1∥p′
t − p†∥∞≤

T∑
t=1

∥ℓ̂t − ℓ̂′t∥1.

The key idea of bounding 3 is to show that the number of distinct (ℓ̂t, ℓ̂′t) pairs and ∥ℓ̂t∥∞ can be
bounded by O(log ℓ∞) due to the double tricks, which is shown in Lemma 3.7.
Lemma 3.7. Given any action sequence k1, . . . , kT , with the non-adaptive and adaptive exploration
rates as in Algorithm 3, we have

Non-Adaptive: E
[

3
]
≤ ℓ−∞

(
2n2 +

√
nT

)
log2(1 + ℓ∞),

Adaptive: E
[

3
]
≤ ℓ−∞

(
2n2 + 3

√√√√n

T∑
t=1

∥ℓt∥∞
)
log2(1 + ℓ∞).

Summing the bounds for 1 , 2 , 3 gives Theorem 3.4.

4 Lower bound for Scale-free Adversarial Multi-armed Bandit

Recall that UMAB-NN simutaneously achieves the optimal minimax regret rate Õ(ℓ∞
√
nT ) and fully

adaptive regret rate Õ(
√
n
∑T

t=1∥ℓt∥2∞), while the adaptive regret rate of UMAB-G is worse by a
factor of

√
ℓ∞ in comparison. Then, a natural question is, whether there exists an algorithm that can

achieve full adaptability and minimax optimality in the unbounded general loss setting.

Unfortunately and perhaps surprisingly, we give a negative answer to this question. In the following,
we present a new lower bound for scale-free AMAB, which shows that the optimal worst case regret
and fully adaptive regret are mutually exclusive, and the regret bounds achieved by UMAB-G are nearly
tight.
Theorem 4.1. Let A be any scale-free AMAB algorithm such that the regret of A is minimax optimal,
i.e., for any loss sequence ℓ1, . . . , ℓT ∈ Rn, the regret of A is bounded by RA(ℓ1:T ) ≤ Õ(ℓ∞

√
nT ).

Then, there exists a loss sequence ℓ′1, . . . , ℓ
′
T that satisfies

√∑T
t=1∥ℓ′t∥2∞ ≪ ℓ′∞

√
T , but the regret

of A satisfies RA(ℓ′1:T ) ≥ Ω(ℓ′∞
√
nT ).
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To the best of our knowledge, this is the first lower bound that demonstrate the trade-off between
minimax regret and adaptive regret in MAB. Our results also demonstrate a fundamental gap between
optimizing positive and negative losses in MAB, and can be of independent interest.

5 Experiments

We now complement our theoretical results and evaluate the performance of our algorithms UMAB-G
(non-adaptive) and UMAB-G-A (adaptive). We compare to all existing scale-free/unbounded AMAB
algorithms, including SF-MAB Putta and Agrawal [2022], SF-MAB-A Putta and Agrawal [2022], AHB
Hadiji and Stoltz [2020], and banker-OMD Huang et al. [2023]. The figures show the average regret
and std across 500 trails. Additional ablation studies comparing UMAB-G with UMAB-G-A are deferred
to Appendix A.

Stock Trading: In out first experiment, we consider an application to the stock market. Here we
consider n = 10 stocks and T = 1258 rounds (daily price for 5-years). For every stock, its loss is
the normalized price difference, i.e., the difference between two consecutive days for 100 shares.
Stock prices are generally chaotic and the fluctuation can vary greatly among stocks and across
time. The regret trajectories of the different algorithms are illustrated in Figure 1(a). Note that the
regret of UMAB-G and UMAB-G-A is significantly smaller than that of other algorithms, especially in
later rounds. This is because 1). Compared to Putta and Agrawal [2022], our algorithms tune the
learning and exploration rate more carefully, resulting in a saving of O(

√
n) term in theory and better

empirical performance in practice. 2). Compared to Huang et al. [2023], our exploration rate design
ensures that the algorithms can perceive the changes in loss scale and adapt learning rate in time. 3).
Compared to Hadiji and Stoltz [2020], our exploration design leads to smaller regret than mixing
with uniform distribution.

Amazon Sales: Next, we design an experiment using Amazon sales data. Similar to the above, we
consider n = 10 Amazon stores and T = 1258 rounds. We assume that in each round, each store
randomly discloses the weekly sales of one of its departments. The loss is defined by the negative
of the weekly sales. We generate 10 rounds of loss using one week’s data. Notice that the losses
we considered in this setting are all negative. The simulation results are shown in Figure 1(b). As
expected, our algorithms outperform all other competitors. Compared to the stock market example,
the fluctuation of regret trajectories of Amazon sales data is more stable for all the algorithms. This is
because changes in Amazon store sales are more gradual than those in stocks: since all the algorithms
we consider in the experiment are based on the FTRL/OMD framework, such a loss sequence will
induce a stable action distribution, thereby resulting in the smoothness of the regret curve.

Model Selection: In the last setting, we explore an application to the model selection problem.
We assume that we have access to n = 10 linear regression meta-algorithms (SGD with different
learning rate). Similarly to the above, we set the number of rounds T = 1258. In each round t, the
meta-algorithms output the training loss error based on a dataset of size t. Notice that since the size
of the data set varies in each round, the optimal meta-algorithm will also change. In this scenario, the
regret measures whether a model selection algorithm can promptly detect the change in the optimal
meta-algorithm. Moreover, the prediction error can be very large when the data set size is small. The
results are shown in Figure 1(c). Again, the regrets of our algorithms are strictly smaller than all
baselines. Compared to the first two experiments, the regret trajectories are smoother because of the
stochastic nature of the loss sequence as t increases.

6 Conclusion

We propose algorithms that achieve the optimal adaptive and minimax regrets in AMAB with
unbounded losses, and prove that minimax optimality and full adaptivity are mutually exclusive.
Real data experiments validate the superior performance of our algorithms compared to all existing
algorithms for unbounded losses. Future work include extending our algorithmic tools to more
challenging settings such as contextual bandit and reinforcement learning.
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Figure 2: Impact of Extra Exploration with Non-Adaptive/Adaptive Rates.

A Ablation Studies

In this section, we perform experimental evaluations on the design choices that we’ve made for our
algorithms that improve their theoretical performances, and test whether these design choices also
help in practice.

Impact of extra exploration We demonstrate the importance of extra exploration for unbounded
loss. Consider a problem with two arms n = 2 and set T = 1258. We design the following loss
sequence:

ℓt =


[0,−0.5]⊤, if 1 ≤ t < 100

[−10, 0]⊤, if 100 ≤ t < 150

[−0.05, 0]⊤, if 150 ≤ t < 1258

(9)

The intuition is to try deceive the algorithms into taking the second arm as the “superior option" in
the initial rounds which reduces the frequency of algorithms pulling the first arm, and thus hindering
algorithms ability to detect the changes of the optimal arm. In particular, considering the loss can be
unbounded, failing to detect the changes is costly. In this case, the regret trajectories are provided in
Figure 2(a), where the comparison is between UMAB-G-A and our algorithm with no extra exploration.
It suffices to note that the algorithm with extra exploration performs much better than the one without
extra exploration. This is consistent with the intuition of our design: extra exploration ensures that
each arm has a probability of being pulled, so that the algorithm can always perceive the changes in
the losses and adjust its learning rate in relatively few rounds.

Comparison between UMAB-G and UMAB-G-A In the last part we investigate the difference between
our algorithms with non-adaptive and adaptive exploration rates. Intuitively, the adaptive exploration
rate is larger than the non-adaptive rate because it is of order O(1/

√
t) instead of O(1/

√
T ) (assuming

ℓ∞ ≪ T ). This makes adaptive exploration perform better in the adversary settings, e.g. as shown in
Figure 2(b), where we use the same loss sequence in (9). However, if the loss sequence is benign,
e.g. there exists one arm that is consistently better than the others, non-adaptive exploration will be
better since it sacrifices less in extra exploration. An example is illustrated in Figure 2(c), where we
use stochastic loss with expectation [1, 0]⊤. In summary, adaptive and non-adaptive have their own
advantages under different loss sequences in practice.

B Additional Discussion about closely related works

B.1 Detailed comparison to Putta and Agrawal [2022]

In this subsection, we provide a detailed comparison between our work and Putta and Agrawal [2022]
since it is the most closely related work to ours. Both works are based on FTRL-type algorithms
design, and both consider non-adaptive and adaptive extra exploration. The key idea of Putta and
Agrawal [2022] is to bound (3) by O(ℓ2t,kt

/pt,k), resulting in an expectation regret O(∥ℓt∥2). In
our work, we refine the analysis of (3), improving the bound to O(ℓ2t,kt

), where the expectation is
bounded by O(∥ℓt∥2∞). Considering the worst case scenario where ∥ℓt∥22= n∥ℓt∥2∞, our algorithm
saves

√
n in the regret.
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Furthermore, Putta and Agrawal [2022] choose a uniform distribution for extra exploration. This
approach ensures an exploration error ( 2 in this paper) of O(ℓ∞

√
nT ) in non-adaptive case.

However, for adaptive case, mixing a uniform distribution results in a large variance in the analysis of
the exploration error. The proof idea of Putta and Agrawal [2022] can be summarized as (under our
notations definition)

⟨ℓ̂′t, ct⟩ ≤ ∥ℓ̂′t∥∞∥ct∥1≤ ℓ∞
√
nT · n = ℓ∞n3/2

√
T ,

which is suboptimal in n. In this study, we design to a new exploration strategy, as described in
Algorithm 3. By Lemma D.4, we bound ⟨ℓ̂′t, ct⟩ by O(ℓ∞(

√
nT + n2)), which is optimal in n for

large enough T . In summary, the algorithms presented in this article offer a O(
√
n) improvement of

the regret over Putta and Agrawal [2022], in both non-adaptive and adaptive settings, thanks to both
our novel exploration strategy and tighter analysis.

B.2 The error in Banker-OMD Huang et al. [2023]

Huang et al. [2023] shared a similar clipping (skipping) idea with us. In Lemma 4.2 of Huang et al.
[2023], the authors control the regret of the general case by the regret of the non-negative case directly
(Theorem 4.2 of Huang et al. [2023]). In this case, the authors bounded the clipping error (i.e., 3 in
this paper) by

⟨ℓ̂t,pt − p†⟩ ≤ ⟨ℓ̂t,pt⟩ ≤ ℓ∞.

However, notice that the above only holds true if ℓ̂t ≥ 0. When ℓ̂t < 0, −⟨ℓ̂t,p†⟩ is positive and on
the order of 1/pt,kt

, which can be arbitrarily unbounded. In this case, their regret will always include
a O(1/pt,kt

) term and thus be unbounded. We have confirmed this with the authors of Huang et al.
[2023], and indeed they have made the mistake in their proof. So their current analysis for the general
loss setting does not work.

One may think that the issue can be solved by analyzing the regret using ℓt instead of ℓ̂t, i.e.,

E[⟨ℓt,pt − p†⟩] = E[1¬clip⟨ℓt,pt − p†⟩] + E[1¬clip⟨ℓt,pt − p†⟩]
where 1¬clip(t) denotes the probability of the clipping happening at round t. Using the proof of
Huang et al. [2023], it suffices to show the second term can be bounded by O(ℓ∞ log ℓ∞). It might
be intuitive to think that the first term can also be bounded by using ℓ̂′t to estimate 1¬clip(t)ℓt, i.e.,
ℓ̂′t,k = 1¬clip(t,k)ℓt,k/pt,k. However, we note that

E[⟨ℓ̂′t,pt − p†⟩] =
∑
k

pt,k

(
1¬clip(t,k)ℓt,k

pt,k
pt,k −

1¬clip(t,k)ℓt,k

pt,k
1(k = k∗)

)
=

∑
k

1¬clip(t,k)ℓt,kxt,k −
∑
k

1¬clip(t,k)ℓt,k1(k = k∗)

=
∑
k

1¬clip(t,k)ℓt,kxt,k − 1¬clip(t,k⋆)ℓt,k⋆

̸=
∑
k

xt,k

(
1¬clip(t,k)(ℓt,k − ℓt,k⋆)

)
= E[1clip(t)⟨ℓt, xt − y⟩],

which implies that ℓ̂′t is not an unbiased estimator of 1¬clip(t)ℓt, so this route does not work. Therefore,
as far as we can see, there doesn’t exist a clear way of fixing the proof in Huang et al. [2023] to make
their results match ours.

In our paper, we avoid issue by adding extra exploration to upper bound ∥ℓ̂t∥∞. We suspect such
explicit exploration is inevitable for no-regret learning under the unbounded losses Bubeck et al.
[2012]. Besides this issue, our differences and improvements compared to Huang et al. [2023] mainly
include: (1). Our results reveal an asymmetry between positive and negative losses in the AMAB
problem. In particular, there is no clipping in our algorithm UMAB-NN, which greatly simplifies the
algorithms in Huang et al. [2023]. (2). The space complicity of our algorithms is O(n) because the
algorithm only needs to maintain a constant number of Rn vectors. In contrast, the space complexity
of Huang et al. [2023] is O(T 2) due to the necessity of keeping a weight matrix of size T × T .
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C Proof of Theorem 3.1

C.1 Main proof and statement of technical lemmas

Recall (1), the expected regret can be denoted by

E
[ T∑

t=1

ℓt,kt
− min

k∈[n]

T∑
t=1

ℓt,k

]
=

T∑
t=1

⟨ℓt,pt − p⋆⟩ = E
[ T∑

t=1

⟨ℓ̂t,pt − p†⟩
]
+

T∑
t=1

⟨ℓt,p† − p⋆⟩,

where p⋆ denote the best fixed strategy. In particular, we consider

p† =
(
1− 1

T

)
p⋆ +

1n

nT
.

where 1n is the all-ones vector. It is obvious that p† ∈ ∆n. In this case, there is

⟨ℓt,p† − p⋆⟩ ≤ ⟨ℓt,
1n

nT
− 1

T
p⋆⟩ ≤ 1

nT
⟨ℓt,1n⟩ ≤

1

nT
∥ℓt∥1≤

ℓ∞
T

,

where the second inequality is due to ℓt ≥ 0 by assumption. Thus we have
∑T

t=1⟨ℓt,p† −p⋆⟩ ≤ ℓ∞.
It suffices to focus on

∑T
t=1⟨ℓt,pt − p⋆⟩. Recall (5), there is

T∑
t=1

⟨ℓ̂t,pt − p†⟩ ≤ Ψ(p†)

ηT+1
+

T∑
t=1

min
(1
2
ηtℓ

2
t,kt

, |ℓt,kt
|
)

≤ n log(nT )

ηT+1
+

T∑
t=1

min
(1
2
ηtℓ

2
t,kt

, |ℓt,kt
|
)
.

where the second inequality is because all entries of p† are no smaller than 1/nT by definition.

It remains to bound
∑T

t=1 min
(

1
2ηtℓ

2
t,kt

, |ℓt,kt
|
)

. The proof relies on a technical lemma from
Orabona and Pál [2018].
Lemma C.1. (Orabona and Pál [2018] Lemma 3) Let a1, . . . , aT ≥ 0. Then

T∑
t=1

min
( a2t√∑t−1

s=1 a
2
s

, at

)
≤ 3.5

√√√√ T∑
t=1

a2t + 3.5max
t∈[T ]

at

Using Lemma C.1 and η0, . . . , ηT as in Algorithm 1, we have
T∑

t=1

⟨ℓ̂t,pt − p†⟩ ≤ n log(nT )

ηT+1
+

T∑
t=1

min
(1
2
ηtℓ

2
t,kt

, |ℓt,kt
|
)

≤ 1

2

√√√√n

T∑
t=1

ℓ2t,kt
log(nT ) +

T∑
t=1

min
(√ n∑t−1

s=1 ℓ
2
s,ks

ℓ2t,kt
, |ℓt,kt |

)

≤ 1

2

√√√√n

T∑
t=1

ℓ2t,kt
log(nT ) +

√
n

T∑
t=1

min
( ℓ2s,kt√∑t−1

s=1 ℓ
2
s,ks

, |ℓt,kt
|
)

≤ 1

2

√√√√n

T∑
t=1

ℓ2t,kt
log(nT ) + 3.5

√
n
(√√√√ T∑

t=1

ℓ2t,kt
+max

t∈[T ]
|ℓt,kt

|
)

≤ 4

√√√√n

T∑
t=1

ℓ2t,kt
log(nT ) + 3.5

√
nℓ∞

≤ 4

√√√√n

T∑
t=1

∥ℓt∥2∞ log(nT ) + 3.5
√
nℓ∞.
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Note that the right hand side of the above is deterministic. Thus

E
[ T∑

t=1

ℓt,kt − min
k∈[n]

T∑
t=1

ℓt,k

]
≤ 4

√√√√n

T∑
t=1

∥ℓt∥2∞ log(nT ) + 3.5
√
nℓ∞ + ℓ∞

≤ Õ
(√√√√n

T∑
t=1

∥ℓt∥2∞
)

completes the proof.

C.2 Proof of technical Lemmas

C.2.1 Proof of Lemma 3.2

For notations simplicity, we denote by

Ψt(p) =
1

ηt
Ψ(p).

We first note

T∑
t=1

⟨ℓ̂t,pt − p†⟩ = −FT+1(p
†) + ΨT+1(p

†) +

T∑
t=1

⟨ℓ̂t,pt⟩

= −FT+1(p
†) + ΨT+1(p

†)− F1(p1) + FT+1(pT+1)

+

T∑
t=1

(Ft(pt)− Ft+1(pt+1)) +

T∑
t=1

⟨ℓ̂t,pt⟩

= −FT+1(p
†) + ΨT+1(p

†)− F1(p1) + FT+1(pT+1)

+

T∑
t=1

(
Ft(pt) + ⟨ℓ̂t,pt⟩ − Ft+1(pt+1)

)
By definition, there is

FT+1(pT+1)− FT+1(p
†) = min

p∈∆n

FT+1(p)− FT+1(p
†) ≤ 0

ΨT+1(p
†)− F1(p1) = ΨT+1(p

†)− min
p∈∆n

Ψ1(p) ≤ ΨT+1(p
†).

Thus, we obtain

T∑
t=1

⟨ℓ̂t,pt − p†⟩ ≤ ΨT+1(p
†) +

T∑
t=1

(
Ft(pt) + ⟨ℓ̂t,pt⟩ − Ft+1(pt+1)

)
Furthermore, we note that

Ft(pt) + ⟨ℓ̂t,pt⟩ − Ft+1(pt+1) =

t∑
s=1

⟨ℓ̂s,pt − pt+1⟩+
1

ηt
Ψ(pt)−

1

ηt+1
Ψ(pt)

≤
t∑

s=1

⟨ℓ̂s,pt − pt+1⟩+
1

ηt
Ψ(pt)−

1

ηt
Ψ(pt)

= ⟨ℓ̂t,pt − pt+1⟩+ Ft(pt)− Ft(pt+1),

where the first inequality is due to the assumption ηt+1 ≤ ηt. Combining the above concludes the
proof.
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C.2.2 Proof of Lemma 3.3

We first prove inequality (3). By Taylor’s expansion,

Ft(pt+1)− Ft(pt) = ⟨∇Ft(pt),pt+1 − pt⟩+
1

2
∥pt+1 − pt∥2∇2Ft(ξt)

.

where ξt = αpt + (1− α)pt+1 for some α ∈ [0, 1]. By definition,

pt = arg min
p∈∆n

Ft(p).

By KKT conditions, there exists some λt ∈ R such that

pt = argmin
p∈R

(
Ft(p) + λt(1−

n∑
k=1

pt,k)
)
.

By the optimality of pt, we have

∇Ft(pt) + λt1n = 0,

which implies

⟨∇Ft(p),pt+1 − pt⟩ = ⟨−λt1n,pt+1 − pt⟩ = 0.

Thus, there is

Ft(pt+1)− Ft(pt) =
1

2
∥pt+1 − pt∥2∇2Ft(ξt)

.

Using the above,

⟨ℓ̂t,pt − pt+1⟩+ Ft(pt)− Ft(pt+1) = ⟨ℓ̂t,pt − pt+1⟩ −
1

2
∥pt+1 − pt∥2∇2Ft(ξt)

≤ max
p∈R

(
⟨ℓ̂t,p⟩ −

1

2
∥p∥2∇2Ft(ξt)

)
≤ 1

2
∥ℓ̂t∥2(∇2Ft(ξt))−1=

1

2
ηt∥ℓ̂t∥2(∇2Ψ(ξt))−1 ,

where the second inequality is because ∇2Ψ(ξt) is a diagonal matrix and the second equality is due
to ∇2Ft(ξt) = ∇2Ψ(ξt)/ηt. Thus the proof of (3) is complete.

Now we prove

⟨ℓ̂t,pt − pt+1⟩+ Ft(pt)− Ft(pt+1) ≤
1

2
ηt∥ℓ̂t∥2(∇2Ψ(pt))−1

if ℓ̂t ∈ Rn
+. Recall

∥ℓ̂t∥2(∇2Ψ(ξt))−1=

n∑
k=1

ℓ̂2t,k
∇2

k,kΨ(ξt)
=

n∑
k=1

ℓ2t,k1(k = kt)

p2t,k
ξ2t,k =

ℓ2t,kt

p2t,kt

ξ2t,kt

and ξt is between pt and pt+1, we prove case by case.

1. (pt,kt
− pt+1,kt

< 0): In this case, we have

⟨ℓ̂t,pt − pt+1⟩+ Ft(pt)− Ft(pt+1) ≤ ⟨ℓ̂t,pt − pt+1⟩
= ℓ̂t,kt

(pt,kt
− pt+1,kt

)

≤ 0 ≤ 1

2
∥ℓ̂t∥2(∇2Ψ(pt))−1 .

The first inequality is due to pt minimizing Ft.
2. (pt,kt − pt+1,kt ≥ 0): In this case, we have ξt,kt ≤ pt,kt , and thus

∥ℓ̂t∥2(∇2Ψ(ξt))−1≤ ℓ2t,kt
= ∥ℓ̂t∥2(∇2Ψ(pt))−1

completes the proof.
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C.2.3 Proof of Lemma C.1

The proof refers to Lemma 3 in Orabona and Pál [2018]. Without loss of generality, we can assume
at > 0, otherwise we can remove all at = 0 without affecting either side of the inequality. Let
Mt = maxs∈[t] as and M0 = 0. We aim to prove for any α > 1

min
( a2t√∑t−1

s=1 a
2
s

, at

)
≤ 2

√
1 + α2

(√√√√ t∑
s=1

a2s −

√√√√t−1∑
s=1

a2s

)
+

α

α− 1
(Mt −Mt−1).

from which Lemma C.1 follows by summing over t = 1, . . . , T and choosing α =
√
2. The proof is

based on case analysis.

1. (a2t ≤ α2
∑t−1

s=1 a
2
s)

min
( a2t√∑t−1

s=1 a
2
s

, at

)
≤ a2t√∑t−1

s=1 a
2
s

=
a2t√

1
1+α2 (α2

∑t−1
s=1 a

2
s +

∑t−1
s=1 a

2
s)

≤ a2t (1 + α2)√
a2t +

∑t−1
s=1 a

2
s

≤ 2
√
1 + α2

(√√√√ t∑
s=1

a2s −

√√√√t−1∑
s=1

a2s

)
where the last inequality is by x2/

√
x2 + y2 ≤ 2(

√
x2 + y2 −

√
y2).

2. (a2t > α2
∑t−1

s=1 a
2
s)

min
( a2t√∑t−1

s=1 a
2
s

, at

)
≤ at =

αat − at
α− 1

≤ α

α− 1

(
at −

√√√√t−1∑
s=1

a2s

)
≤ α

α− 1
(Mt −Mt−1),

where we use at = Mt and Mt−1 ≤
√∑t−1

s=1 a
2
s.

D Proof of Theorem 3.4

D.1 Main proof and statement of technical lemmas

By Lemma 3.3, we have

⟨ℓ̂′t,pt − pt+1⟩+ Ft(pt)− Ft(pt+1) ≤ min
(1
2
ηtℓ

′2
t,kt

, |ℓ′t,kt
|
)
.

if ℓt,kt
≥ 0. Alternatively, when ℓt,kt

< 0, by Lemma 3.3 and 3.5 and inequality (6), we have

⟨ℓ̂′t,pt − pt+1⟩+ Ft(pt)− Ft(pt+1) ≤
1

2
ηt∥ℓ̂′t∥2(∇2Ψ(ξt))−1=

1

2
ηt

ℓ′
2
t,kt

p′2t,kt

ξ2t,kt

≤ 1

2
ηtℓ

′2
t,kt

p2t,kt

p′2t,kt

max(p2t,kt
, p2t+1,kt

)

p2t,kt

≤ 72ηtℓ
′2
t,kt

.

Moreover, we further note by Lemma 3.5,

⟨ℓ̂′t,pt − pt+1⟩+ Ft(pt)− Ft(pt+1) ≤ ⟨ℓ̂′t,pt − pt+1⟩

≤
∣∣∣ℓ′t,kt

pt,kt

∣∣∣∣∣∣ pt,kt

p′t,kt

∣∣∣|pt,kt
− pt+1,kt

|

≤
∣∣∣ℓ′t,kt

pt,kt

∣∣∣∣∣∣ pt,kt

p′t,kt

∣∣∣|5pt,kt |≤ 10|ℓ′t,kt |.
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Combining the above we have

⟨ℓ̂′t,pt − pt+1⟩+ Ft(pt)− Ft(pt+1) ≤ 18min
(
4ηtℓ

′2
t,kt

, |ℓ′t,kt
|
)

for any ℓt ∈ Rn. Using a similar proof as in Theorem 3.1, we have

T∑
t=1

⟨ℓ̂′t,pt − p†⟩ ≤ n log(nT )

ηT+1
+ 18min

(
4ηtℓ

′2
t,kt

, |ℓ′t,k|
)

≤ 4

√√√√2n2ℓ2∞ + n

T∑
t=1

ℓ′2t,kt
log(nT ) + 18

√
nmin

( ℓ′
2
t,kt√∑t−1

s=1 ℓ
′2
s,ks

, |ℓ′t,k|
)

≤ 4

√√√√2n2ℓ2∞ + n

T∑
t=1

ℓ′2t,kt
log(nT ) + 63

√
n
(√√√√ T∑

t=1

ℓ′2t,kt
+max

t∈[T ]
|ℓ′t,k|

)

≤ 67

√√√√2n2ℓ2∞ + n

T∑
t=1

ℓ′2t,kt
log(nT ) + 63

√
nmax

t∈[T ]
|ℓ′t,k|

≤ 67

√√√√2n2ℓ2∞ + n

T∑
t=1

∥ℓt∥2∞ log(nT ) + 63
√
nℓ∞.

The last inequality is because |ℓ′t,kt |≤ |ℓt,kt |. In short, we can bound

E
[ T∑

t=1

⟨ℓ̂′t,pt − p†⟩
]
≤ Õ

(√√√√n2ℓ2∞ + n

T∑
t=1

∥ℓt∥2∞
)
. (10)

Now we summarize all the results.

E
[ T∑

t=1

ℓt,kt − min
k∈[n]

T∑
t=1

ℓt,k

]
=E

[ T∑
t=1

⟨ℓ̂t,p′
t − p⋆⟩

]
≤E

[ T∑
t=1

⟨ℓ̂t,p′
t − p†⟩

]
+ ℓ∞

≤E
[ T∑
t=1

⟨ℓ̂′t,pt − p†⟩
]
+ E

[ T∑
t=1

⟨ℓ̂′t,p′
t − pt⟩

]
+ E

[ T∑
t=1

⟨ℓ̂t − ℓ̂′t,p
′
t − p†⟩

]
+ ℓ∞.

Based on Lemma 3.6 and 3.7 and inequality (10), we have

1. (Non-Adaptive):

E
[ T∑

t=1

ℓt,kt
− min

k∈[n]

T∑
t=1

ℓt,k

]

≤Õ
(√√√√n2ℓ2∞ + n

T∑
t=1

∥ℓt∥2∞
)
+ Õ

(√√√√n

T∑
t=1

∥ℓt∥2∞
)
+ Õ

(
ℓ−∞(n2 +

√
nT )

)

=Õ
(
ℓ∞n2 +

√√√√n

T∑
t=1

∥ℓt∥2∞ + ℓ−∞
√
nT

)
.
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2. (Adaptive):

E
[ T∑

t=1

ℓt,kt
− min

k∈[n]

T∑
t=1

ℓt,k

]

≤Õ
(√√√√n2ℓ2∞ + n

T∑
t=1

∥ℓt∥2∞
)
+ Õ

(
ℓ∞

(
n2 +

√√√√n

T∑
t=1

∥ℓt∥∞
)
+

√√√√n

T∑
t=1

∥ℓt∥∞
)

+ Õ
(
ℓ−∞

(
n2 +

√√√√n

T∑
t=1

∥ℓt∥∞
))

=Õ
(
ℓ∞n2 +

√√√√n

T∑
t=1

∥ℓt∥2∞ + ℓ∞

√√√√n

T∑
t=1

∥ℓt∥∞ +

√√√√n

T∑
t=1

∥ℓt∥∞
)
.

D.2 Proof of technical Lemmas

D.2.1 Proof of Lemma 3.5

The first inequality pt,kt ≤ 2p′t,kt
can be easily verified. Recall p′

t = pt + ρtct and k⋆t ∈
argmaxk′∈[n] pt,k′ as in Algorithm 3, it suffices to focus on the case kt = k⋆t , otherwise pt,kt

≤ p′t,kt
.

When kt = k⋆t , we note that

p′t,kt
= pt,kt + ρtct,kt ≥ pt,kt −

1

2n2
n = pt,kt −

1

2n
.

The first inequality is due to ρt ≤ 1/2n2 and ct,kt ≥ −n by definition. Moreover, there is

pt,kt ∈ arg max
k′∈[n]

pt,k′ ≥ 1

n
.

Thus

pt,kt
≤ pt,kt

+ pt,kt
− 1

n
= 2

(
pt,kt

− 1

2n

)
= 2p′t,kt

completes the proof.

The proof of the second inequality relies on the following two technical lemmas.
Lemma D.1. Given any L ∈ Rn and k ∈ [n], consider

x = arg min
p∈∆n

(
⟨L,p⟩+ 1

η
Ψ(p)

)
x̃ = arg min

p∈∆n

(
⟨L+

l

xk
ek,p⟩+

1

η
Ψ(p)

)
where xk is the kth entry of x. If

− 1

2η
≤ l ≤ 0,

then
x̃k ≤ 2xk.

Lemma D.2. Given any L ∈ Rn, consider

x = arg min
p∈∆n

(
⟨L,p⟩+ 1

η
Ψ(p)

)
x′ = arg min

p∈∆n

(
⟨L,p⟩+ 1

η′
Ψ(p)

)
,

if
η′ ≤ η ≤ Cη′,

for some C > 0, then
x′
k ≤ Cxk, ∀k ∈ [n].
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Now we use Lemma D.1 and D.2 to bound the magnitude of pt+1,kt/pt,kt . Recall the update rule of
action distribution

pt = arg min
p∈∆n

(
⟨
t−1∑
s=1

ℓ̂′s,p⟩+
1

ηt
Ψ(p)

)
,

pt+1 = arg min
p∈∆n

(
⟨ℓ̂′t +

t−1∑
s=1

ℓ̂′s,p⟩+
1

ηt+1
Ψ(p)

)
.

Define the intermediate distribution

p̃t = arg min
p∈∆n

(
⟨ℓ̂′t +

t−1∑
s=1

ℓ̂′s,p⟩+
1

ηt
Ψ(p)

)
.

Notice that ℓ̂′t = ℓ′t,kt
1kt/pt,kt . Denote by L =

∑t−1
s=1 ℓ̂

′
s, by Lemma D.1, p̃t,kt/pt,kt ≤ 2 if

−1/2ηt ≤ ℓ′t,kt
≤ 0. Moreover, by Lemma D.2, pt+1,kt

/pt,kt
≤ 3 if ηt+1 ≤ ηt ≤ 3ηt+1.

Combining these two results leads to pt+1,kt
/pt,kt

≤ 6, which completes the proof. Therefore, it
remains to show that the two conditions hold.

We first prove −1/2ηt ≤ ℓ′t,kt
≤ 0. Recall

ηt =
1

4

√
n

nC2
t +

∑t−1
s=1 ℓ

′2
s,ks

.

We have

ℓ′
2
t,kt

≤ 4C2
t ≤ 4

(nC2
t +

∑t−1
s=1 ℓ

′2
s,ks

n

)
≤ 1

4η2t
,

where the first inequality is by the assumption ℓt,kt ≤ 0, which implies ℓ′t,kt
≤ 0, and the clipping

rule (line 5 of Algorithm 2).

Then we show ηt+1 ≤ ηt ≤ 3ηt+1. Since ηt+1 ≤ ηt is trivial, it suffices to prove ηt ≤ 3ηt+1. Notice
that

C2
t+1 = max

(
C2

t , ℓ
′2
t,kt

)
≤ max

(
C2

t , 4C
2
t

)
= 4C2

t .

Thus,

ηt =
1

4

√
n

nC2
t +

∑t−1
s=1 ℓ

′2
s,ks

=
3

4

√
n

9nC2
t + 9

∑t−1
s=1 ℓ

′2
s,ks

≤ 3

4

√
n

4nC2
t + 4nC2

t +
∑t−1

s=1 ℓ
′2
s,ks

≤ 3

4

√
n

nC2
t+1 + ℓ′2t,kt

+
∑t−1

s=1 ℓ
′2
s,ks

= 3ηt+1.

completes the proof.

20



D.2.2 Proof of Lemma 3.6

Non-Adaptive exploration:

E
[ T∑

t=1

⟨ℓ̂′t,p′
t − pt⟩

]
= E

[ T∑
t=1

ρt⟨ℓ̂′t, ct⟩
]

≤ E
[ T∑

t=1

ρt⟨|ℓ̂t|, |ct|⟩
]

=

T∑
t=1

ρt⟨|ℓt|, |ct|⟩

≤ 2n

T∑
t=1

∥ℓt∥∞
n2 +

√
nT

≤ 2
√
n

∑T
t=1∥ℓt∥∞√

T

≤ 2

√√√√n

T∑
t=1

∥ℓt∥2∞.

The first inequality is due to that ℓ̂′t is the truncation of ℓ̂t, thus |ℓ̂′t|≤ |ℓ̂t|. The last inequality is by
Cauchy–Schwartz inequality.

Adaptive exploration: We first introduce two auxiliary lemmas.
Lemma D.3. Let a1, . . . , aT ≥ 0. Then

T∑
t=1

at√
2
∑t−1

s=1 as + 1
≤ 2

√√√√ T∑
t=1

at + 1 +max
t∈[T ]

(at).

Lemma D.4. Given any action sequence k1, . . . , kT , with the adaptive exploration rate as in
Algorithm 2, there is

|⟨ℓ̂′t, ct⟩|≤ ℓ∞

(
2n2 +

√√√√2

T∑
t=1

|⟨ℓ̂′t, ct⟩|
)
.

The detailed proof of Lemma D.3 and D.4 would be provided later. Now we can prove Lemma 3.6.

T∑
t=1

⟨ℓ̂′t,p′
t − pt⟩ ≤

T∑
t=1

ρt|⟨ℓ̂′t, ct⟩|

≤
T∑

t=1

|⟨ℓ̂′t, ct⟩|√
1 + 2

∑t−1
s=1|⟨ℓ̂′s, cs⟩|

≤ 2

√√√√1 + 2

T∑
t=1

|⟨ℓ̂′t, ct⟩|+max
t∈[T ]

(
|⟨ℓ̂′t, ct⟩|

)

≤ 2

√√√√1 + 2

T∑
t=1

|⟨ℓ̂′t, ct⟩|+ ℓ∞

(
2n2 +

√√√√2

T∑
t=1

|⟨ℓ̂′t, ct⟩|
)
.

where the second inequality is due to ρt = 1/(2n2 +
√
2
∑t−1

s=1|⟨ℓ̂′s, cs⟩|) ≤

1/(
√
1 + 2

∑t−1
s=1|⟨ℓ̂′s, cs⟩|, the third inequality is by Lemma D.3 with at = |⟨ℓ̂′t, ct⟩|. The last
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inequality is by Lemma D.4. Taking expectation on the both sides, there is

E
[ T∑

t=1

⟨ℓ̂′t,p′
t − pt⟩

]
≤ E

[
2

√√√√1 + 2

T∑
t=1

|⟨ℓ̂′t, ct⟩|
]
+ E

[
ℓ∞

(
2n2 +

√√√√2

T∑
t=1

|⟨ℓ̂′t, ct⟩|
)]

≤ 2n2ℓ∞ + 2

√√√√1 + 2E
[ T∑

t=1

|⟨ℓ̂′t, ct⟩|
]
+ ℓ∞

√√√√2E
[ T∑

t=1

|⟨ℓ̂′t, ct⟩|
]

≤ 2n2ℓ∞ + 2

√√√√1 + 2

T∑
t=1

⟨E
[
|ℓ̂′t|

]
, |ct|⟩+ ℓ∞

√√√√2

T∑
t=1

⟨E
[
|ℓ̂′t|

]
, |ct|⟩

≤ 2n2ℓ∞ + 2

√√√√1 + 2

T∑
t=1

⟨|ℓt|, |ct|⟩+ ℓ∞

√√√√2

T∑
t=1

⟨|ℓt|, |ct|⟩

≤ 2n2ℓ∞ + 2

√√√√1 + 4n

T∑
t=1

∥ℓt∥∞ + 2ℓ∞

√√√√n

T∑
t=1

∥ℓt∥∞.

The second inequality is by using Jensen’s inequality. The fourth inequality is because E
[
|ℓ̂′t|

]
= |ℓ′t|

and the magnitude of the truncation loss is not more than that of the original loss, i.e., |ℓ′t|≤ |ℓt|. The
last inequality is due to ⟨|ℓt|, |ct|⟩ ≤ ∥ℓt∥∞∥ct∥1≤ 2n∥ℓt∥∞. The whole proof is completed.

D.2.3 Proof of Lemma 3.7

Recall
T∑

t=1

⟨ℓ̂t − ℓ̂′t,p
′
t − p†⟩ ≤

T∑
t=1

∥ℓ̂t − ℓ̂′t∥1≤
T∑

t=1

∥ℓ̂t∥11(ℓ̂t ̸= ℓ̂′t).

where the last inequality is due to ∥ℓ̂t − ℓ̂′t∥1≤ ∥ℓ̂t∥1 by the clipping property. We note that the
clipping occurs only if ℓ̂t ≤ 0 and ℓ̂t,kt

≤ ℓt,kt
/ρt for every t ∈ [T ] by extra exploration. Thus,

T∑
t=1

∥ℓ̂t∥11(ℓ̂t ̸= ℓ̂′t) ≤
T∑

t=1

|min(ℓt,kt
, 0)|

ρt
1(ℓ̂t ̸= ℓ̂′t) ≤

ℓ−∞
ρT+1

T∑
t=1

1(ℓ̂t ̸= ℓ̂′t).

It suffices to prove
∑T

t=1 1(ℓ̂t ̸= ℓ̂′t) ≤ log2(1 + ℓ∞). Notice that ℓ̂t ̸= ℓ̂′t will happen if and only if

ℓt,kt
≤ 2Ct.

In this case, we have

Ct+1 = 2Ct.

Now we need to get an upper bound on the size of CT . In Algorithm 2, Ct will be updated (i.e.,
Ct ̸= Ct+1) if and only if the received loss ℓt,kt

< Ct. When Ct is updated, we can note that
Ct+1 ≥ ℓt,kt

holds, which also means |Ct+1|≤ |ℓt,kt
|. Thus, we have

|CT |≤ max
t∈[T ]

(1, |ℓt,kt
|) ≤ 1 + ℓ∞.

Since |Ct| is non-decreasing with t, it suffices to say that ℓt,kt
̸= ℓ′t,kt

(k1:t−1) will happen at most
log2(1 + ℓ∞) times. This completes the proof.

D.2.4 Proof of Lemma D.1

We first note that for every α ∈ R,

arg min
p∈∆n

(
⟨L,p⟩+ 1

η
Ψ(p)

)
= arg min

p∈∆n

(
⟨L+ α1n,p⟩+

1

η
Ψ(p)

)
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Thus, without loss of generality, we can assume that L = [L1, . . . , Ln]
⊤ satisfies

n∑
k=1

1

ηLk
= 1; Lk ≥ 0, ∀k ∈ [n].

Notice that under such conditions, there is

arg min
p∈∆n

(
⟨L,p⟩+ 1

η
Ψ(p)

)
= arg min

p∈Rn

(
⟨L,p⟩+ 1

η
Ψ(p)

)
by KKT conditions.

Now we start the proof. By the optimality of x, there is

ηLk +
1

xk
= 0, ∀k ∈ [n].

Then we have

l

xk
≥ − 1

2ηxk
= −Lk

2
,

thus

Lk +
l

xk
≥ L1

2
.

By the optimality of x′, there exists Lagrangian multiplier λ′ such that

ηLk − η
l

xk
+ λ′ − 1

x′
k

= 0,

ηLk′ + λ′ − 1

x′
k′

= 0, ∀k′ ∈ [n]\{k}.

and satisfies ∑
k′∈[n]\{k}

1

ηLk′ + λ′ +
1

ηLk + η l
xk

+ λ′
= 1.

Using the above, we note that

x′
k =

1

ηLk + η l
xk

+ λ′
≤ 1

ηLk

2 + λ′
.

It suffices to prove that λ′ ≥ 0. Define function

f(λ′) =
∑

k′∈[n]\{k}

1

ηLk′ + λ′ +
1

ηLk + η l
xk

+ λ′
,

we note that ∑
k′∈[n]\{k}

1

ηLk′
+

1

ηLk + η l
xk

≥
n∑

k=1

1

ηLk
= 1,

due to l ≤ 0, which implies f(0) ≥ 1, Since f decreases with λ′, it suffices to conclude λ′ ≥ 0.
Thus,

x′
k ≤ 1

ηLk

2 + λ′
≤ 2

ηLk
= 2xk.

completes the proof.
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D.2.5 Proof of Lemma D.2

Similar to the proof of Lemma D.1, it suffices to choose L = [L1, . . . , Ln]
⊤ such that

ηLk − 1

xk
= 0, ∀k ∈ [n].

By the optimality of x′, there exists Lagrangian multiplier λ′ such that

η′Lk + λ′ − 1

x′
k

= 0, ∀k ∈ [n],

n∑
k=1

1

η′Lk + λ′ = 1.

Similar to the above, it suffices to show that λ′ ≥ 0 considering η′ ≤ η. Thus,

x′
k =

1

η′Lk + λ′ ≤
1

η′Lk
≤ C

ηLk
= Cxk.

This completes the proof.

D.2.6 Proof of Lemma D.3

We denote by

ht = min
(

max
s∈[t−1]

(as), at

)
, bt = at − ht.

It suffices to say that

T∑
t=1

bt = max
t∈[T ]

(at).

The proof can be completed as follows.

T∑
t=1

at√
2
∑t−1

s=1 as + 1
≤

T∑
t=1

at√∑t−1
s=1 as +maxs∈[t−1](as) + 1

=

T∑
t=1

ht + bt√∑t−1
s=1 as +maxs∈[t−1](as) + 1

≤
T∑

t=1

ht√∑t
s=1 hs + 1

+

T∑
t=1

bt

≤ 2

√√√√ T∑
t=1

ht + 1 +max
t∈[T ]

(at)

≤ 2

√√√√ T∑
t=1

at + 1 +max
t∈[T ]

(at)
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D.2.7 Proof of Lemma D.4

|⟨ℓ̂′t, ct⟩| ≤
n∑

k=1

|ℓt,k|1(k = kt)

pt,k + ρtct,k
|ct,k|

≤ ℓ∞
1(k⋆t = kt)

pt,k⋆
t
+ ρtct,k⋆

t

|ct,k⋆
t
|+ℓ∞

∑
k∈[n]\{k⋆

t }

1(k = kt)

pt,k + ρtct,k
|ct,k|

≤ ℓ∞
1(k⋆t = kt)

1/n− 1/2n
n+ ℓ∞

∑
k∈[n]\{k⋆

t }

1(k = kt)

ρt

≤ ℓ∞ max(2n2, 1/ρt)

≤ ℓ∞ max(2n2, 1/ρT+1) = ℓ∞

(
2n2 +

√√√√2

T∑
t=1

|⟨ℓ̂′t, ct⟩|
)
,

where the first inequality is by the definition of ℓ̂′t and p′
t, the second inequality is by the definition

of ℓ∞. The third inequality is due to 1). pt,k⋆
t

is one of the largest entries in pt, which implies
pt,k⋆

t
≥ 1/n. 2). ct,k⋆

t
≥ −n and ρt ≤ 1/2n2 for all t ∈ [T ]. 3). pt,k + ρtct,k ≥ ρt for all

k ∈ [n]\{k⋆t } by Algorithm 3. The last inequality is because ρt is nonincreasing.

E Proof of Theorem 4.1

It suffices to focus on the case n = 2. Consider an environment E0 with loss sequence ℓ1, . . . , ℓT , in
which ℓt,1 = 0 and ℓt,2 = 1 for all t ∈ [T ]. By assumption, we should have RA(ℓ1:T ) ≤ Õ(

√
T ) = r.

In this case, we can find an interval I ∈ [T ] with |I|= T/r such that E[
∑

t∈I 1{kt = 2}] ≤ 1/2.
Indeed, otherwise, let [T ] = I1∪, . . . ,∪Ir be a partition of interval [T ] into disjoint and consecutive
intervals of size T/r, we will have

RA(ℓ1:T ) = E

[
T∑

t=1

1{kt = 2}

]
=

2
√
2T∑

j=1

E

∑
t∈Ij

1{kt = 2}

 >
√
2T .

which contradicts to the assumption.

Given the above, with probability at least 1/2, algorithm A will not pull the arm 2 within the interval
I when it runs against E0. We define such an event by e. Now, consider a new environment E1 with
loss sequence ℓ′1, . . . , ℓ

′
T , in which ℓ′t,1 = ℓt,1 for t ∈ [T ], ℓ′t,2 = ℓt,2 for t ∈ [T ] \ I, and ℓ′t,2 = −L

for t ∈ I. By the argument above, with probability at least 1/2, algorithm A operates the same on
E0 and E1. In this case, we note that

E
[
RA(ℓ′1:T )|e

]
≥ L|I|−T

and

E
[
RA(ℓ′1:T )|¬e

]
≥ −T.

Thus we finally have

E
[
RA(ℓ′1:T )

]
≥ L|I|

2
− T =

LT

2r
− T

Take L = Ω(
√
T ), we have E

[
RA(ℓ′1:T )

]
≥ Ω(L

√
T ). We further notice that√√√√ T∑

t=1

∥ℓ′t∥2∞ ≤
√
L2

√
T + T ≪ L

√
T .

This completes the proof.
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