
MASAI: Modular Architecture for Software-engineering AI Agents

Anonymous EMNLP submission

Abstract

A common method to solve complex prob-001
lems in software engineering, is to divide the002
problem into multiple sub-problems. Inspired003
by this, we propose a Modular Architecture004
for Software-engineering AI (MASAI) agents,005
where different LLM-powered sub-agents are006
instantiated with well-defined objectives and007
strategies tuned to achieve those objectives.008
Our modular architecture offers several ad-009
vantages: (1) employing and tuning different010
problem-solving strategies across sub-agents,011
(2) enabling sub-agents to gather information012
from different sources scattered throughout a013
repository, and (3) avoiding unnecessarily long014
trajectories which inflate costs and add extrane-015
ous context. MASAI enabled us to achieve the016
highest performance (28.33% resolution rate)017
on the popular and highly challenging SWE-018
bench Lite dataset consisting of 300 GitHub019
issues from 11 Python repositories. We con-020
duct a comprehensive evaluation of MASAI021
relative to other agentic methods and analyze022
the effects of our design decisions and their023
contribution to the success of MASAI.024

1 Introduction025

Software engineering is a challenging activity026

which requires exercising various skills such as027

coding, reasoning, testing, and debugging. The028

ever growing demand for software calls for better029

support to software engineers. Recent advances in030

AI offer much promise in this direction.031

Large language models (LLMs) have shown032

remarkable ability to code (Chen et al. (2021);033

Roziere et al. (2023); CodeGemma Team (2024),034

inter alia), reason (Kojima et al., 2022) and035

plan (Huang et al., 2022). Iterative reasoning, struc-036

tured as chains (Wei et al., 2022) or trees (Yao et al.,037

2024) of thought, further enhance their ability to038

solve complex problems that require many inter-039

related steps of reasoning. When combined with040

tools or environment actions (Yao et al., 2023; Patil041

Figure 1: Comparison of MASAI with existing methods.
Resolution rate refers to the percentage of issues in
SWE-bench Lite that are resolved.

et al., 2023; Schick et al., 2024) and feedback from 042

the environment (Zhou et al., 2023; Shinn et al., 043

2024), they enable autonomous agents capable of 044

achieving specific goals (Zhang et al., 2023). 045

As the problem complexity increases, it becomes 046

difficult to devise a single, over-arching strategy 047

that works across the board. Indeed, when faced 048

with a complex coding problem, software engineers 049

break it down into sub-problems and use different 050

strategies to deal with them separately. Inspired 051

by this, we propose a Modular Architecture of 052

Software-engineering AI (MASAI) agents, where 053

different LLM-powered sub-agents are instantiated 054

with well-defined objectives and strategies tuned to 055

achieve those objectives. 056

Our modular architecture consists of 5 differ- 057

ent sub-agents: Test Template Generator which 058

generates a template test case and instructions on 059

how to run it, Issue Reproducer which writes a 060

test case to reproduce the issue, Edit Localizer 061

which finds files to be edited, Fixer which fixes 062

the issue by generating multiple possible patches, 063

and finally Ranker which ranks the patches based 064

on the generated test. When combined, all these 065

1

individual sub-agents work in tandem to resolve066

complex real-world software engineering issues.067

Our approach offers several advantages: (1) em-068

ploying and tuning different problem-solving strate-069

gies across sub-agents (e.g., ReAct or CoT), (2) en-070

abling sub-agents to gather information from differ-071

ent sources scattered throughout a repository (e.g.,072

from a README or a test file), and (3) avoiding073

unnecessarily long trajectories which inflate infer-074

ence costs and pass extraneous context which could075

degrade performance (Shi et al., 2023).076

We evaluate MASAI on the popular and highly077

challenging SWE-bench Lite dataset (Jimenez078

et al., 2024) of 300 GitHub issues from 11 Python079

repositories. Due to its practical relevance and chal-080

lenging nature, SWE-bench Lite has attracted sig-081

nificant efforts from academia, industry and start-082

ups. As shown in Figure 1, with the highest reso-083

lution rate of 28.33%, MASAI achieves state-of-084

the-art results on SWE-bench Lite. The field of AI085

agents, and specifically software-engineering AI086

agents, is nascent and rapidly evolving. In fact, all087

the existing methods in Figure 1 have been devel-088

oped within the past three months. Nevertheless,089

we do compare against them thoroughly.090

AI agents for software engineering would en-091

counter many common sub-problems, such as au-092

tonomously understanding testing infrastructure093

and code organization of a repository, writing new094

tests, localizing bugs, editing large files without095

introducing syntactic/semantic errors, synthesizing096

fixes and writing new code. We believe that it is097

crucial to understand how different strategies per-098

form on these sub-problems. Therefore we conduct099

a thorough investigation into the performance of100

MASAI and existing methods on SWE-bench Lite,101

and present the impact of key design decisions.102

In summary, our contributions are:103

(1) Propose a modular architecture, MASAI, that104

allows optimized design of sub-agents separately105

while combining them to solving larger, end-to-end106

software engineering tasks.107

(2) Show the effectiveness of MASAI by achieving108

the highest resolution rate on SWE-bench Lite.109

(3) Conduct a thorough investigation into key de-110

sign decisions of MASAI and the existing methods111

which can help inform future research and develop-112

ment in this rapidly evolving space.113

(4) Contribute our results to the SWE-bench Lite114

leaderboard (MASAI) for validation. For repro-115

ducibility, we provide our prompts in the Appendix116

and detailed logs as supplementary material.117

2 MASAI Agent Architecture 118

Solving a problem in a code repository requires un- 119

derstanding the problem description and the code- 120

base, gathering the necessary information scattered 121

across multiple files, locating the root cause, fixing 122

it and verifying the fix. Instead of treating this as 123

one long chain of reasoning and actions, we pro- 124

pose modularizing the problem into sub-problems 125

and delegating them to different sub-agents. 126

2.1 Agent Specification and Composition 127

A MASAI agent is a composition of several MA- 128

SAI sub-agents. A MASAI sub-agent is specified 129

by a tuple ⟨Input, Strategy,Output⟩ where 130

(1) Input to the sub-agent comprises of the code 131

repository, information obtained from other sub- 132

agents as necessary, a set of allowed actions and 133

task instructions. 134

(2) Strategy is the problem-solving strategy to be 135

followed by the sub-agent in using the LLM to 136

solve its given sub-problem. This could be vanilla 137

completion, CoT (Wei et al., 2022), ReAct (Yao 138

et al., 2023), RAG (Lewis et al., 2020), etc.; 139

(3) Output is the specification of the content that 140

the sub-agent must return upon completion as well 141

the format it must be presented in. 142

Compared to multi-agent frameworks (Wu et al., 143

2023; Qian et al., 2023; Hong et al., 2024), the 144

MASAI architecture is simpler, in that, the sub- 145

agents are given modular objectives that do not 146

require explicit one-to-one or group conversations 147

between sub-agents. The sub-agents are composed 148

by passing the output from one sub-agent to the 149

input of another sub-agent. 150

2.2 Action Space 151

All the sub-agents are presented with a set of ac- 152

tions which allows them to interact with the envi- 153

ronment. The actions we use in this work are: 154

(1) READ(file, class, function): Query and 155

read a specific function, class or file. All three at- 156

tributes are not necessary; the agent can specify 157

only a function and a file or even a single file. If 158

there exists only one exactly matching code seg- 159

ment with these attributes, then that code is re- 160

turned. If there are multiple matches, all their 161

names are returned and the query can be refined 162

if necessary. The READ action returns a lazy rep- 163

resentation that aims to keep the output concise. 164

When reading a file, only signatures of the top level 165

definitions are presented; when reading a class, the 166

2

GaussianMixture predict and
fit_predict disagree when
n_init>1.

When n_init is specified in
GaussianMixture, results of
fit_predict(X) and predict(X)
are often different.

...

No exceptions

Traceback

Arrays are not equal

scikit-learn
Fixer CoT

Issue Description

Locations to Edit

Possible
Patches

Ranker CoT

Possible Patches

Reproduction Test

Test Command

Edit Localizer React

Issue Description

Repository State

Locations
to Edit

Localization Trace
sklearn/mixture/ ...

 _gaussian_mixture.py →

 gaussian_mixture.py →

 base.py

Test Template Generator React

Repository State Sample Test

Test Command

sklearn/tests/test_standalone.py

def test_simple_addition

 assert
def test_simple_subtraction

assert

():

 1 + 1 == 2

():

 2 - 1 == 1

 sklearn/tests/test_standalone.pypytest

Issue Reproducer React

Issue Description

Repository State

Sample Test

Test Command

Reproduction Test

Test Command

sklearn/tests/
test_gaussian_mixture_n_init.py

():

 ...

 ()

from
from

sklearn.mixture import GaussianMixture

 numpy.testing import assert_array_equal

def test_gaussian_mixture_n_init

 assert_array_equal c1, c2
pytest sklearn/tests/
test_gaussian_mixture_n_init.py

Proposed

Patch

Figure 2: Overview of MASAI applied to the task of repository-level issue resolution on an example issue 13142
from scikit-learn. MASAI takes a repository and an issue description as input, and produces a single patch. The
5 sub-agents (shown in thick boxes) tackle different sub-problems. The information flow between them is shown by
directed edges. The sub-agents are marked with the solution strategy and input–output pairs.

signature of the class (class name and member sig-167

natures) are presented and when reading a function,168

its complete body is presented.169

(2) EDIT(file, class, function): Marks a170

code segment for editing. Just like READ, this marks171

a code segment only when a unique match exists.172

Otherwise, the set of partial matches are returned173

which may be refined further.174

(3) ADD(file): Marks a file for code addition. The175

file must exist for the action to succeed.176

(4) WRITE(file, contents): Writes the specified177

content to a file. The specified file can be new or a178

file that the agent has created earlier.179

(5) LIST(folder): Lists folder contents if it exists.180

(6) COMMAND(command): Executes the command in181

a shell with timeout and truncation of large results.182

(7) DONE: Used by the agent to signal that it has183

completed its assigned objective.184

2.3 Agent Instantiation185

In this work, we focus on the general task of re-186

solving repository-level issues, as exemplified by187

the SWE-bench Lite dataset. A problem statement188

consists of an issue description and a repository.189

The agent is required to produce a patch so that the190

issue is resolved. Issue resolution is checked by191

ensuring that the relevant, held-out test cases pass.192

Below, we refer to ReAct (Yao et al., 2023)193

which is a problem-solving strategy that alternates194

between generating an action to take using an LLM195

followed by executing the action and using the re- 196

sulting observations as input for the subsequent 197

action generation. Chain of Thought (CoT) (Wei 198

et al., 2022) generates solutions to a problem us- 199

ing an LLM while asking it to generate specific 200

intermediate reasoning steps. 201

We instantiate 5 sub-agents to collectively re- 202

solve repository-level issues. Figure 2 shows the 203

overall architecture of our MASAI agent on a con- 204

crete example, along with the information flow 205

between the sub-agents (shown by the solid edges). 206

We describe each of the sub-agents below with de- 207

tailed prompts in Appendix A. 208

(1) Test Template Generator: Discovers how to 209

write and run a new test by analyzing the testing 210

setup specific to the repository. 211

• Input: The repository state (within its execution 212

environment) is provided. READ, LIST, COMMAND, 213

WRITE and DONE actions are provided. 214

• Strategy: ReAct. 215

• Output: The code for a template test case (which 216

is issue independent) for the repository along 217

with the command to run it. This is used to aid 218

the Issue Reproducer sub-agent described next. 219

Test Template Generator is instructed to explore 220

the documentation and existing tests within the 221

repository to complete its objective and to keep 222

trying until it comes up with a template and a com- 223

mand that passes without exceptions. Test Tem- 224

3

plate Generator evaluates the output of its ReAct225

loop to determine whether the generated test passes226

without exceptions. It retries upto a specified limit227

or until it finds a template that works.228

(2) Issue Reproducer: Writes a test that repro-229

duces the behaviour reported in the given issue.230

• Input: In addition to the repository state and is-231

sue description, the sample test file and the com-232

mand to run it, generated by the Test Template233

Generator, are provided. Actions available are234

READ, LIST, COMMAND, WRITE and DONE.235

• Strategy: ReAct.236

• Output: The code for a test case which repro-237

duces the issue and would show a change in sta-238

tus (pass vs. fail) when the issue is fixed. It also239

outputs the shell command to run the test.240

(3) Edit Localizer: Navigates the repository and241

identifies code locations (files, classes, functions)242

that need to be edited to resolve the issue.243

• Input: The repository state and the issue descrip-244

tion are provided. Available actions are READ,245

LIST, EDIT, ADD, COMMAND and DONE.246

• Strategy: ReAct.247

• Output: List of code locations (specified through248

the EDIT and ADD commands) to edit.249

If no locations have been marked at the end of the250

ReAct loop, then the Edit Localizer selects a set of251

locations from all of the ones it has read so far.252

(4) Fixer: Suggests multiple potential patches to253

the code locations marked by Edit Localizer that254

may resolve the issue.255

• Input: Issue description along with contents of256

the code locations required to be edited. No257

actions are given to this sub-agent.258

• Strategy: CoT.259

• Output: Multiple possible candidate patches to260

the provided suspicious code.261

When prompting the LLM for a possible patch,262

Fixer asks for the edit in the form of a minimal263

rewrite instead of rewriting the full sections. Simi-264

lar to Deligiannis et al. (2023), the content of the265

locations to edit are provided by Fixer with line266

numbers. For each edit, the Fixer expects the LLM267

to output the original version of the code snippet268

(pre) followed by the edited version of this snippet269

(post). Both these snippets are expected to have270

a line number for each line. Fixer then searches271

for the pre snippet using line numbers in the target272

file to replace with the post version. If an exact 273

match is not found, it uses fuzzy matching to find 274

the closest matching span for the pre snippet. After 275

replacing with the post span, it computes the diff 276

of the target file with its contents before the edit. 277

Syntactically incorrect edits are rejected and the 278

resultant patches are used downstream. 279

(5) Ranker: Ranks the candidate patches from the 280

Fixer, using the test generated by Issue Reproducer. 281

• Input: Issue description, candidate patches from 282

Fixer, and the reproduction test (as well as the 283

command to run it) from Issue Reproducer. No 284

environment actions are allowed. 285

• Strategy: CoT. 286

• Output: Ranking of the candidate patches in the 287

order of likelihood to resolve the issue. 288

For each of the patches, Ranker first runs the 289

test on each of the patches and then asks the LLM 290

to determine whether the application of that patch 291

to the repository has caused the provided test to 292

change status (go from failing to passing or vice 293

versa) given the test results. Based on the output 294

of this, the LLM is then asked to rank the patches. 295

The top ranked patch is selected as the issue reso- 296

lution. If the Issue Reproducer sub-agent could not 297

generate a test, then the Ranker ranks the patches 298

using only the issue description. 299

3 Experimental Setup 300

Dataset: As stated earlier, we perform experiments 301

on SWE-bench Lite (Jimenez et al., 2024) (MIT 302

license). The objective is to produce a patch given 303

a repository and an issue description, so that the 304

repository after the patch is applied, passes the 305

issue-specific tests (that are never revealed to the 306

agent). 307

Metrics: We report three metrics: (1) Resolution 308

rate, the percentage of issues successfully resolved 309

(i.e., pass the issue-specific tests); (2) Localization 310

rate, the percentage of issues where the patch pro- 311

posed by a method fully covers the ground-truth 312

patch files, i.e., where recall is 100% at the file 313

level; and (3) Application rate, the percentage of 314

issues where the patch proposed by a method suc- 315

cessfully applies on the repository (i.e., the Linux 316

command patch does not raise an error). 317

Competing methods: We compare with all the 318

existing methods that are also evaluated on SWE- 319

bench Lite (with logs here): 320

(1) SWE-agent (Yang et al., 2024a): Utilizes a sin- 321

gle ReAct loop along with specialized environment 322

4

https://github.com/swe-bench/experiments/tree/main/evaluation/lite

interface with multiple tools. Uses GPT-4 (1106).323

(2) AutoCodeRover (Zhang et al., 2024) (ACR):324

Uses ReAct loops for localization and for generat-325

ing patches. Uses specialized tools for searching326

specific code elements (class, method) within other327

code elements and presenting them as signatures328

whenever appropriate. Uses GPT-4 (0125).329

(3) OpenDevin (OpenDevin): Uses the CodeAct330

(Wang et al., 2024a) framework where the agent (a331

single ReAct loop) can execute any bash command332

along with using various helper commands. The333

version of OpenDevin with highest reported per-334

formance v1.3 gpt4o makes use of hints text335

in SWE-bench Lite, conversation transcript of de-336

velopers on an issue in GitHub. While we include337

results from this version, we compare in detail with338

the highest performing version that does not use339

hints, v1.5 gpt4o nohints.340

(4) Aider (Aider): Uses static analysis to provide341

a compact view of the repository and, in turn, to342

determine the file(s) to edit. Uses ReAct loop for343

editing the identified file(s) until a valid patch that344

passes pre-existing tests is obtained. Uses GPT-4o345

and Claude 3 Opus on alternate runs.346

(5) CodeR (Chen et al., 2024): A multi-agent so-347

lution which reproduces and resolves the issue it-348

eratively. Uses BM25 along with test coverage349

statistics for fault localization. Uses GPT-4 (1106).350

(6) Moatless (Moatless Tools): Uses a ReAct loop351

to localize and another to fix the code. Leverages352

semantic search to query for relevant code chunks.353

(7) RAG: Uses BM25 to retrieve relevant files354

which are used to prompt an LLM to generate355

a patch. We compare with the best-performing356

RAG model from the SWE-bench Lite leader-357

board (SWE-bench): RAG + Claude 3 Opus.358

(8) Along with the above, commercial offer-359

ings Amazon Q-Developer (Amazon), Bytedance360

MarsCode (Bytedance), OpenCGS Starship361

(OpenCGS) and IBM Research Agent-101 (IBM)362

have also reported results on SWE-bench Lite.363

While we report metrics for these, we are unable364

to conduct further comparisons with them due to365

non-availability of detailed logs or any information366

about their approaches. We do not compare with367

Devin (Devin) as it reports performance a subset368

of SWE-bench different from SWE-bench Lite.369

Implementation: We evaluate MASAI by set-370

ting up a fresh development environment with all371

the requirements and providing the issue descrip-372

tion. MASAI generates a single patch which is then373

evaluated using the SWE-bench Lite testing har-374

ness. The tree-sitter==0.21.1 package is used 375

to implement the lazy representation part of the 376

READ function. We use the GPT-4o model through- 377

out our pipeline. For Test Template Generator, we 378

start with a temperature of 0 and increase by 0.2 for 379

each attempt. For Issue Reproducer, Edit Localizer, 380

and Ranker, we use a temperature of 0; for Fixer, 381

we use 0.5 and sample 5 candidate patches. We 382

limit the ReAct loops of the Test Template Gen- 383

erator, Issue Reproducer, and Edit Localizer to 25 384

steps and limit Test Template Generator to 3 re- 385

tries. After the ranker selects the patch, we run an 386

auto-import tool to add missing imports. We dis- 387

card any edits to pre-existing tests which the agent 388

might have made. The per-issue cost for MASAI 389

is $1.96 on average. We estimate the total cost of 390

our experiments to be <10k USD. 391

4 Results 392

We first present comprehensive results on the SWE- 393

bench Lite dataset. Then we provide supporting 394

empirical observations and examples that bring out 395

the effectiveness of our design choices. 396

4.1 RQ1: Performance on software 397

engineering tasks in SWE-bench Lite 398

We present our main results in Table 1. Multiple 399

remarks are in order. 400

(1) Our method, MASAI, achieves the highest reso- 401

lution rate of 28.33% on the dataset, thereby estab- 402

lishing a state-of-the-art on the benchmark leader- 403

board alongside CodeR (MASAI). 404

(2) Standard RAG baseline (first row) performs 405

substantially poor on the dataset, as has also been 406

established in recent works (Jimenez et al., 2024; 407

Chen et al., 2024); which is a strong indication of 408

the complexity of the SWE-bench Lite dataset. 409

(3) MASAI localizes the issue (at a file-level) in 410

75% of the cases; the best method in terms of lo- 411

calization rate, OpenCGS Starship, at nearly 91%, 412

however achieves only 23.67% resolution rate. 413

(4) The (edit) application rate is generally high for 414

all LLM-based agents; MASAI’s patches, in partic- 415

ular, successfully apply in over 95% of the cases. 416

4.2 RQ2: Assumptions by different methods 417

High autonomy and less dependence on exter- 418

nal signals (e.g., expert hints) is desirable from 419

software-engineering agents. In the standard SWE- 420

bench Lite setup, all agents are provided the issue 421

description along with the repository. However, 422

5

Method Resolv. Locl. Appl.
rate (%) rate (%) rate (%)

RAG 4.33 48.00 51.67
SWE-agent 18.00 61.00 93.67
ACR 19.00 62.33 80.00
Q-Dev 20.33 71.67 97.33
MarsCode 22.00 67.00 83.67
Moatless 23.33 73.00 97.00
Starship 23.67 90.67 99.00
OpenDevin 25.00 77.00 90.00

– hints 16.00 63.00 81.33
Aider 26.33 69.67 96.67
Agent-101 26.67 72.67 97.33
CodeR 28.33 66.67 74.00

MASAI 28.33 75.00 95.33

Table 1: Performance of baseline and competing meth-
ods on SWE-bench Lite (best in bold). Our proposed
method, MASAI, achieves the best resolution rate (%
issues resolved). Row “– hints” indicates executing
OpenDevin without using hints text in the dataset.

we observe that different methods make different423

assumptions about available auxiliary information.424

• All methods apart from RAG and Moatless re-425

quire that for each task, an environment be set426

up with the appropriate requirements installed427

beforehand so that code can be executed.428

• OpenDevin avails hints text provided by429

SWE-bench Lite as discussed in Section 3.430

• Aider, when running pre-existing tests, uses pre-431

determined test commands consist of (1) the test-432

ing framework used to run tests in the task reposi-433

tory and (2) specific unit tests that target the code434

pertaining to the issue at hand. The former as-435

sumes information about the repository-specific436

testing framework which is not present in the437

standard SWE-bench Lite setup. In the case of438

the latter, providing output from only the target439

test (and not the whole test suite) during ReAct440

steps, inadvertently provides additional informa-441

tion about which part of the repository is relevant442

to the issue.443

• CodeR uses coverage-based code ranking (Wong444

et al., 2016) for fault localization. As in Aider,445

this would require repository-specific commands446

to run pre-existing tests, and instrumentation of447

the full repository to get coverage information.448

MASAI aims for high autonomy by avoiding de-449

pendence on additional inputs, only relying on the450

original setup proposed by Jimenez et al. (2024). 451

SWE-agent and AutoCodeRover operate at a simi- 452

lar level of autonomy to MASAI. Results in Table 1 453

show that MASAI outperforms all other approaches 454

without making additional assumptions. 455

4.3 RQ3: How does MASAI perform effective 456

fault localization from issue description? 457

Localization requires multi-step reasoning to iden- 458

tify the root cause of the error from issue descrip- 459

tions which are often vague and usually only de- 460

scribe the problem being observed. We observe that 461

(1) the choice of ReAct as the strategy, (2) the speci- 462

ficity of its objective (to only identify files to edit) 463

and (3) the designs of tools available enables the 464

Edit Localizer to perform the required multi-step 465

reasoning in a flexible and robust manner. Note that 466

(1) and (2) are results of the modularity of MASAI. 467

SWE-agent and OpenDevin, methods that do not 468

employ a separate localization sub-agent, achieve 469

61% and 63% localization rates respectively, com- 470

pared to 75% achieved by MASAI’s Edit Localizer. 471

We observe the advantages of using a ReAct sub- 472

agent, by comparing with Aider which uses a single 473

step CoT approach. In the 27 issues solved by MA- 474

SAI but not by Aider, Aider failed to localize in 10 475

(37%) issues whereas among the 21 issues solved 476

by Aider but not by MASAI, MASAI only failed to 477

localize in 3 (14%) issues. This shows that better 478

localization plays a role in superior resolution rate. 479

Comparing the average search steps (as proxy for 480

complexity) required for problems that both Aider 481

and MASAI solved (10.9) and those that only MA- 482

SAI solved (12.8), we further see that MASAI’s 483

ReAct based Edit Localizer has the flexibility to 484

scale to more complex localization challenges. 485

[Example 1]: MASAI performs multi-step 486

reasoning required for localization in the task 487

scikit-learn scikit-learn-13142 (described 488

in Fig. 2). Edit Localizer finds the class mentioned 489

in the issue and then traces symbols and inheritance 490

links to identify the root cause. 491

[Example 2]: The ability of the READ action to re- 492

turn approximate matches (Section 2) helps in the 493

issue astropy astropy-14995. When the LLM 494

asks for a non-existent NDDataRef.multiply 495

method in a file, the action responds with an ap- 496

proximate match NDArithmeticMixin.multiply 497

in a different file. Then the sub-agent traces 3 callee 498

links to get to the actual faulty function. 499

[Example 3]: Access to basic shell com- 500

mands helps the Edit Localizer in the issue 501

6

https://github.com/scikit-learn/scikit-learn/issues/13070
https://github.com/astropy/astropy/issues/14978

Selection Strategy 1 Sample 5 Samples

Oracle 23.33% 35.00%
Random - 22.28%
LLM w/o test - 23.33%
LLM w/ test (Ranker) - 28.33%

Table 2: Resolution rates of MASAI on SWE-bench
Lite, with different number of Fixer samples (i.e., candi-
date patches), using different sample selection strategies
(rows, discussed in Section 4.4).

matplotlib matplotlib-25332. grep is used502

to look for occurrences of an attribute within a503

large file which helps identify the faulty function.504

Neither Aider nor CodeR localized faulty func-505

tions correctly in any of the 3 examples. Open-506

Devin localized Example 2; SWE-agent Examples507

2 and 3. Links to the agent logs are in Appendix B.508

4.4 RQ4: How does MASAI’s sampling and509

ranking compare to iterative repair?510

We observe that sampling multiple repair patches511

from the Fixer significantly increases the possibility512

of generating a correct patch, as reported in Table513

2 (Oracle selection 23.33% at 1 sample vs 35%514

at 5 samples). However the LLM alone is unable515

to select amongst theses patches (LLM w/o test).516

This can be overcome by using the output from the517

generated issue-reproduction test on each patch for518

ranking the patches (LLM w/ test (Ranker)).519

MASAI exploits the above observations through520

its modularity by (1) leveraging a CoT sampling521

strategy for Fixer and (2) instantiating independent522

sub-agents for test generation and repair. Other523

methods rely on an iterative approach to extract524

multiple edits from the LLM asking it to iteratively525

fix any mistakes it has made.526

We evaluate the benefits of our approach empiri-527

cally in Table 3. By controlling for localization, we528

are comparing the effectiveness of completing the529

repair. MASAI is substantially more effective at530

this than most methods, barring CodeR and Aider.531

As as example, consider the issue532

django django-14787 where CodeR, Aider,533

OpenDevin and MASAI all correctly localize534

the issue, but only MASAI solves it correctly.535

While iterative methods sample one candidate and536

keep refining it without success, MASAI’s Fixer537

sub-agent generates 5 samples out of which only538

one is correct – demonstrating the importance539

for diverse sampling. MASAI’s Ranker correctly540

Method Both Method MASAI
locl. resolv. resolv.

RAG 126 12 52 (+ 31.7%)
ACR 166 51 73 (+ 13.2%)
Q-Dev 191 55 75 (+ 10.5%)
SWE-agent 166 48 65 (+ 10.2%)
Starship 220 62 81 (+ 8.6%)
OpenDevin 187 60 74 (+ 7.5%)

– hints 164 39 67 (+ 17.1%)
Moatless 193 62 75 (+ 6.7%)
MarsCode 182 59 71 (+ 6.6%)
Agent-101 193 69 72 (+ 1.6%)
Aider 189 71 71 (=)
CodeR 174 77 72 (- 0.3%)

Table 3: Number of issues resolved by a method
(Method resolv.) named in the rows and by MASAI
(MASAI resolv.) among the issues that are successfully
localized by both MASAI and the method (“Both locl.”
column, out of 300). Row-wise max. in bold.

ranks these by utilizing outputs from running the 541

generated reproduction test. Aider submits patch 542

which passes pre-existing tests but is actually 543

incorrect, showing the importance of the generated 544

reproduction test to eliminate false positives. 545

4.5 RQ5: How does MASAI perform effective 546

issue reproduction? 547

As discussed in the previous RQ, the ability to gen- 548

erate tests that reproduce the stated issue is critical 549

to select Fixer samples. Often repositories employ 550

uncommon testing frameworks, that makes this task 551

hard. Consider the issue django django-14672. 552

This repository proved hard to write tests for since 553

it uses a custom testing framework, which involved 554

having all new test classes derive from a certain 555

base class to run. OpenDevin was unable to repro- 556

duce the test; in its attempt to install pytest, it ran 557

out of budget and failed to solve this issue. 558

To remedy this, we decompose test reproduction 559

into two steps: (1) Test Template Generator reads 560

documentation/existing tests to generate a sample 561

test template and instructions to run; (2) Issue Re- 562

producer then uses the template as an example to 563

create an issue specific test . This improves the 564

overall capability of reproducing tests in MASAI, 565

as seen in our logs (see Supplementary Material) 566

for the above example — Test Template Generator 567

first goes through the repository, creates a template 568

file demonstrating an example test case as well as 569

7

https://github.com/matplotlib/matplotlib/issues/25329
https://code.djangoproject.com/ticket/33043
https://code.djangoproject.com/ticket/32947

the correct command to run it; the Issue Reproducer570

subsequently reproduces the issue correctly, with-571

out running into problems that OpenDevin faced.572

4.6 RQ6: How does MASAI generate edits573

that can be applied successfully?574

The representation used to encode edits can have575

a large impact on the performance. As discussed576

in Section 2, MASAI prompts the LLM for edits,577

in the form of a minimal rewrite — to reproduce578

the current state of the code snippet it wants to579

edit, followed by the edited version of this snippet.580

Recall that we also employ fuzzy matching to581

find the relevant span in the file, by searching for582

the snippet that best fuzzily matches with the one583

provided by the model. This mitigates copying or584

line counting mistakes by the LLM, significantly585

reducing the number of syntax errors introduced586

when editing. Our edit representation and fuzzing587

matching together yield 96.33% edit application588

rate (Table 1) which is among the highest.589

5 Related Work590

We have already discussed competing methods591

evaluated on SWE-bench Lite, in Sections 3 and592

4. We now highlight other related work on LLM-593

powered agents.594

Software-engineering agents: Language Agent595

Tree Search (Zhou et al., 2023) synergizes reason-596

ing, planning, and acting abilities of LLMs. Their597

strategy relies on determining partial or full ter-598

mination of the search (e.g., by running provided599

golden test cases for successful code generation as600

in HumanEval (Chen et al., 2021)) and backtrack-601

ing if necessary; this is often infeasible in complex602

software engineering tasks we tackle in this pa-603

per. CodePlan (Bairi et al., 2023) combines LLMs604

with static analysis-backed planning for repository-605

level software engineering tasks such as package606

migration. It relies on compiler feedback and de-607

pendency graphs to guide the localization of edits;608

unlike in our general setting, where the agents are609

more autonomous, and are equipped to discover lo-610

calization strategies. AlphaCodium (Ridnik et al.,611

2024) differs from MASAI in that (1) it uses pub-612

lic and AI-generated test cases for filtering; (2) is613

evaluated in the generation (NL2Code) setting.614

Conversational and multi-agent frameworks:615

In this line of work (Guo et al., 2024; Yang et al.,616

2024b), (1) the focus is often on the high level617

aspects of agent design such as conversation pro- 618

tocols. AutoGen (Wu et al., 2023) and Agent- 619

Verse (Chen et al., 2023) provide abstractions for 620

agent interactions and conversational programming 621

for design of multi-agent systems; similarly, Dy- 622

namic agent networks (Liu et al., 2023) focuses on 623

inference-time agent selection and agent team opti- 624

mization; and (2) the frameworks are typically in- 625

stantiated on standard RL or relatively simpler code 626

generation datasets. For instance, AutoDev (Tu- 627

fano et al., 2024) can execute actions like file 628

editing, retrieval, testing, but is evaluated on the 629

HumanEval (Chen et al., 2021) NL2Code dataset. 630

Similarly, MetaGPT (Hong et al., 2024) and Chat- 631

Dev (Qian et al., 2023), dialogue-based cooperative 632

agent frameworks, are instantiated on generation 633

tasks involving a few hundred lines of code. 634

In contrast, we focus on designing a modularized 635

agent architecture for solving complex, real-world 636

software engineering tasks, as exemplified by the 637

SWE-bench Lite dataset. 638

Divide-and-Conquer approaches: In this line 639

of work, the given complex task is broken down 640

into multiple sub-goals that are solved individ- 641

ually, and then the solution for the task is syn- 642

thesized. Multi-level Compositional Reasoning 643

(MCR) Agent (Bhambri et al., 2023) uses com- 644

positional reasoning for instruction following in 645

environments with partial observability and requir- 646

ing long-horizon planning, such as in robotic nav- 647

igation. Compositional T2I (Wang et al., 2024b) 648

agent uses divide-and-conquer strategy for gener- 649

ating images from complex textual descriptions. 650

SwiftSage (Lin et al., 2024) agent, inspired by 651

the dual-process theory of human cognition for 652

solving tasks, e.g., closed-world scientific exper- 653

iments (Wang et al., 2022), uses finetuned SLM 654

policy (“Swift”) to decide and execute fast actions, 655

and an LLM (“Sage”) for deliberate planning of 656

sub-goals and for backtracking when necessary. 657

6 Conclusions 658

As divide-and-conquer helps humans overcome 659

complexity, similar approaches to modularize tasks 660

into sub-tasks can help AI agents as well. In this 661

work, we presented a modular architecture, MA- 662

SAI, for software-engineering agents. Encouraged 663

by the effectiveness of MASAI on SWE-bench Lite, 664

we plan to extend it to a larger range of software- 665

engineering tasks, which will also involve building 666

realistic and diverse datasets. 667

8

7 Limitations668

Our evaluation is centered on the widely-used669

SWE-bench Lite dataset for evaluating software-670

engineering AI agents. It allowed us to do head-671

to-head comparison with many agents. However,672

the breadth of issues covered in SWE-bench Lite is673

limited to those that can be validated using tests. In674

future, we expect us and the community to expand675

the scope to more diverse issues.676

There are a number of LLMs that support code677

understanding and generation. The modularity of678

MASAI permits use of different language mod-679

els in different sub-agents. Due to the time and680

cost constraints, we have instantiated all sub-agents681

with GPT-4o. The cost-performance tradeoff of682

using different LLMs and possibly, even small lan-683

guage models (SLMs) is an interesting research684

problem. The competing methods that we com-685

pared against do employ different LLMs, but this686

still leaves out direct comparison of different LLMs687

on a fixed solution strategy.688

The issue descriptions in SWE-bench Lite are689

all in English. This leaves out issues from a large690

segment of non-English speaking developers. The691

increasing support for the diverse world languages692

by LLMs should enable multi-lingual evaluation693

even in the software engineering domain, which is694

a problem that we are excited about.695

8 Broader Concerns696

Agentic frameworks with the ability to use tools697

like shell commands can lead to unintended side-698

effects on the user’s system. Appropriate guardrails699

and sandboxing can mitigate such problems.700

Our approach contributes towards the develop-701

ment of tools to autonomously perform software702

development tasks. This raises various security703

concerns. The tool may not always follow best704

practices when writing or editing code, leading to705

introduction of security vulnerabilities and bugs.706

Therefore, it is important for code changes sug-707

gested by the tool to be reviewed by expert devel-708

opers before being deployed to real world systems.709

As mentioned in the Section 7, the dataset we710

evaluate on (SWE-bench Lite) as well as the model711

we use (GPT-4o) are primarily in English. This712

limits the usability of our tool to software engineers713

proficient in English. Further work is necessary714

in developing methods for non-English speaking715

developers in order to prevent this population from716

being marginalized.717

References 718

Aider. https://aider.chat/2024/06/02/ 719
main-swe-bench.html. 720

Amazon. https://aws.amazon.com/q/developer/. 721

Ramakrishna Bairi, Atharv Sonwane, Aditya Kanade, 722
Arun Iyer, Suresh Parthasarathy, Sriram Rajamani, 723
B Ashok, Shashank Shet, et al. 2023. CodePlan: 724
Repository-level coding using LLMs and planning. 725
arXiv preprint arXiv:2309.12499. 726

Suvaansh Bhambri, Byeonghwi Kim, and Jonghyun 727
Choi. 2023. Multi-level compositional reasoning 728
for interactive instruction following. In Proceedings 729
of the AAAI Conference on Artificial Intelligence, 730
volume 37, pages 223–231. 731

Bytedance. https://www.marscode.com/. 732

Dong Chen, Shaoxin Lin, Muhan Zeng, Daoguang Zan, 733
Jian-Gang Wang, Anton Cheshkov, Jun Sun, Hao Yu, 734
Guoliang Dong, Artem Aliev, et al. 2024. CodeR: Is- 735
sue resolving with multi-agent and task graphs. arXiv 736
preprint arXiv:2406.01304. 737

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming 738
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka- 739
plan, Harri Edwards, Yuri Burda, Nicholas Joseph, 740
Greg Brockman, Alex Ray, Raul Puri, Gretchen 741
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas- 742
try, Pamela Mishkin, Brooke Chan, Scott Gray, 743
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz 744
Kaiser, Mohammad Bavarian, Clemens Winter, 745
Philippe Tillet, Felipe Petroski Such, Dave Cum- 746
mings, Matthias Plappert, Fotios Chantzis, Eliza- 747
beth Barnes, Ariel Herbert-Voss, William Hebgen 748
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie 749
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, 750
William Saunders, Christopher Hesse, Andrew N. 751
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan 752
Morikawa, Alec Radford, Matthew Knight, Miles 753
Brundage, Mira Murati, Katie Mayer, Peter Welinder, 754
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya 755
Sutskever, and Wojciech Zaremba. 2021. Evaluating 756
large language models trained on code. 757

Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang, 758
Chenfei Yuan, Chen Qian, Chi-Min Chan, Yujia 759
Qin, Yaxi Lu, Ruobing Xie, et al. 2023. Agent- 760
verse: Facilitating multi-agent collaboration and ex- 761
ploring emergent behaviors in agents. arXiv preprint 762
arXiv:2308.10848. 763

CodeGemma Team. 2024. CodeGemma: Open Code 764
Models Based on Gemma. 765

Pantazis Deligiannis, Akash Lal, Nikita Mehrotra, and 766
Aseem Rastogi. 2023. Fixing rust compilation errors 767
using llms. arXiv preprint arXiv:2308.05177. 768

Devin. Introducing Devin, the first AI software 769
engineer. https://www.cognition.ai/blog/ 770
introducing-devin. 771

9

https://aider.chat/2024/06/02/main-swe-bench.html
https://aider.chat/2024/06/02/main-swe-bench.html
https://aider.chat/2024/06/02/main-swe-bench.html
https://aws.amazon.com/q/developer/
https://www.marscode.com/
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://www.cognition.ai/blog/introducing-devin
https://www.cognition.ai/blog/introducing-devin
https://www.cognition.ai/blog/introducing-devin

Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang,772
Shichao Pei, Nitesh V Chawla, Olaf Wiest, and Xi-773
angliang Zhang. 2024. Large language model based774
multi-agents: A survey of progress and challenges.775
arXiv preprint arXiv:2402.01680.776

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu777
Zheng, Yuheng Cheng, Jinlin Wang, Ceyao Zhang,778
Zili Wang, Steven Ka Shing Yau, Zijuan Lin, et al.779
2024. MetaGPT: Meta programming for Multi-780
Agent Collaborative Framework. In The Twelfth In-781
ternational Conference on Learning Representations.782

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and783
Igor Mordatch. 2022. Language models as zero-shot784
planners: Extracting actionable knowledge for em-785
bodied agents. In International Conference on Ma-786
chine Learning, pages 9118–9147. PMLR.787

IBM. https://github.com/swe-bench/788
experiments/tree/main/evaluation/lite/789
20240612 IBM Research Agent101.790

Carlos E Jimenez, John Yang, Alexander Wettig,791
Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R792
Narasimhan. 2024. SWE-bench: Can Language793
Models Resolve Real-world Github Issues? In The794
Twelfth International Conference on Learning Repre-795
sentations.796

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-797
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-798
guage models are zero-shot reasoners. Advances in799
neural information processing systems, 35:22199–800
22213.801

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio802
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-803
rich Küttler, Mike Lewis, Wen-tau Yih, Tim804
Rocktäschel, et al. 2020. Retrieval-augmented gen-805
eration for knowledge-intensive nlp tasks. Advances806
in Neural Information Processing Systems, 33:9459–807
9474.808

Bill Yuchen Lin, Yicheng Fu, Karina Yang, Faeze Brah-809
man, Shiyu Huang, Chandra Bhagavatula, Prithviraj810
Ammanabrolu, Yejin Choi, and Xiang Ren. 2024.811
Swiftsage: A generative agent with fast and slow812
thinking for complex interactive tasks. Advances in813
Neural Information Processing Systems, 36.814

Zijun Liu, Yanzhe Zhang, Peng Li, Yang Liu, and Diyi815
Yang. 2023. Dynamic LLM-agent network: An816
LLM-agent collaboration framework with agent team817
optimization. arXiv preprint arXiv:2310.02170.818

MASAI. https://github.com/swe-bench/819
experiments/pull/20.820

Moatless Tools. https://github.com/aorwall/821
moatless-tools.822

OpenCGS. https://opencsg.com/product?class=823
StarShip.824

OpenDevin. https://opendevin.github.io/825
OpenDevin/.826

Shishir G. Patil, Tianjun Zhang, Xin Wang, and 827
Joseph E. Gonzalez. 2023. Gorilla: Large language 828
model connected with massive apis. arXiv preprint 829
arXiv:2305.15334. 830

Chen Qian, Xin Cong, Wei Liu, Cheng Yang, Weize 831
Chen, Yusheng Su, Yufan Dang, Jiahao Li, Juyuan 832
Xu, Dahai Li, et al. 2023. Communicative 833
agents for software development. arXiv preprint 834
arXiv:2307.07924. 835

Tal Ridnik, Dedy Kredo, and Itamar Friedman. 2024. 836
Code generation with alphacodium: From prompt 837
engineering to flow engineering. arXiv preprint 838
arXiv:2401.08500. 839

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten 840
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, 841
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023. 842
Code llama: Open foundation models for code. arXiv 843
preprint arXiv:2308.12950. 844

Timo Schick, Jane Dwivedi-Yu, Roberto Dessı̀, Roberta 845
Raileanu, Maria Lomeli, Eric Hambro, Luke Zettle- 846
moyer, Nicola Cancedda, and Thomas Scialom. 2024. 847
Toolformer: Language models can teach themselves 848
to use tools. Advances in Neural Information Pro- 849
cessing Systems, 36. 850

Freda Shi, Xinyun Chen, Kanishka Misra, Nathan 851
Scales, David Dohan, Ed H. Chi, Nathanael Schärli, 852
and Denny Zhou. 2023. Large language models can 853
be easily distracted by irrelevant context. In ICML, 854
volume 202 of Proceedings of Machine Learning 855
Research, pages 31210–31227. PMLR. 856

Noah Shinn, Federico Cassano, Ashwin Gopinath, 857
Karthik Narasimhan, and Shunyu Yao. 2024. Re- 858
flexion: Language agents with verbal reinforcement 859
learning. Advances in Neural Information Process- 860
ing Systems, 36. 861

SWE-bench. https://www.swebench.com/. 862

Michele Tufano, Anisha Agarwal, Jinu Jang, 863
Roshanak Zilouchian Moghaddam, and Neel 864
Sundaresan. 2024. AutoDev: Automated AI-Driven 865
Development. arXiv preprint arXiv:2403.08299. 866

Ruoyao Wang, Peter Jansen, Marc-Alexandre Côté, and 867
Prithviraj Ammanabrolu. 2022. Scienceworld: Is 868
your agent smarter than a 5th grader? Preprint, 869
arXiv:2203.07540. 870

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, 871
Yunzhu Li, Hao Peng, and Heng Ji. 2024a. Exe- 872
cutable code actions elicit better LLM agents. arXiv 873
preprint arXiv:2402.01030. 874

Zhenyu Wang, Enze Xie, Aoxue Li, Zhongdao Wang, 875
Xihui Liu, and Zhenguo Li. 2024b. Divide and con- 876
quer: Language models can plan and self-correct 877
for compositional text-to-image generation. arXiv 878
e-prints, pages arXiv–2401. 879

10

https://github.com/swe-bench/experiments/tree/main/evaluation/lite/20240612_IBM_Research_Agent101
https://github.com/swe-bench/experiments/tree/main/evaluation/lite/20240612_IBM_Research_Agent101
https://github.com/swe-bench/experiments/tree/main/evaluation/lite/20240612_IBM_Research_Agent101
https://github.com/swe-bench/experiments/tree/main/evaluation/lite/20240612_IBM_Research_Agent101
https://github.com/swe-bench/experiments/tree/main/evaluation/lite/20240612_IBM_Research_Agent101
https://github.com/swe-bench/experiments/pull/20
https://github.com/swe-bench/experiments/pull/20
https://github.com/swe-bench/experiments/pull/20
https://github.com/aorwall/moatless-tools
https://github.com/aorwall/moatless-tools
https://github.com/aorwall/moatless-tools
https://opencsg.com/product?class=StarShip
https://opencsg.com/product?class=StarShip
https://opencsg.com/product?class=StarShip
https://opendevin.github.io/OpenDevin/
https://opendevin.github.io/OpenDevin/
https://opendevin.github.io/OpenDevin/
https://www.swebench.com/
https://arxiv.org/abs/2203.07540
https://arxiv.org/abs/2203.07540
https://arxiv.org/abs/2203.07540

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten880
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,881
et al. 2022. Chain-of-thought prompting elicits rea-882
soning in large language models. Advances in neural883
information processing systems, 35:24824–24837.884

W Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and885
Franz Wotawa. 2016. A survey on software fault886
localization. IEEE Transactions on Software Engi-887
neering, 42(8):707–740.888

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu,889
Shaokun Zhang, Erkang Zhu, Beibin Li, Li Jiang,890
Xiaoyun Zhang, and Chi Wang. 2023. Auto-891
gen: Enabling next-gen LLM applications via multi-892
agent conversation framework. arXiv preprint893
arXiv:2308.08155.894

John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian895
Lieret, Shunyu Yao, Karthik Narasimhan, and Ofir896
Press. 2024a. SWE-agent: Agent computer inter-897
faces enable software engineering language models.898

Ke Yang, Jiateng Liu, John Wu, Chaoqi Yang, Yi R899
Fung, Sha Li, Zixuan Huang, Xu Cao, Xingyao900
Wang, Yiquan Wang, et al. 2024b. If LLM is the901
wizard, then code is the wand: A survey on how902
code empowers large language models to serve as903
intelligent agents. arXiv e-prints, pages arXiv–2401.904

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,905
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.906
2024. Tree of thoughts: Deliberate problem solving907
with large language models. Advances in Neural908
Information Processing Systems, 36.909

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak910
Shafran, Karthik Narasimhan, and Yuan Cao. 2023.911
ReAct: Synergizing reasoning and acting in language912
models. In International Conference on Learning913
Representations (ICLR).914

Yuntong Zhang, Haifeng Ruan, Zhiyu Fan, and Ab-915
hik Roychoudhury. 2024. AutoCodeRover: Au-916
tonomous program improvement. arXiv preprint917
arXiv:2404.05427.918

Zhuosheng Zhang, Yao Yao, Aston Zhang, Xiangru919
Tang, Xinbei Ma, Zhiwei He, Yiming Wang, Mark920
Gerstein, Rui Wang, Gongshen Liu, et al. 2023. Ig-921
niting language intelligence: The hitchhiker’s guide922
from chain-of-thought reasoning to language agents.923
arXiv preprint arXiv:2311.11797.924

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman,925
Haohan Wang, and Yu-Xiong Wang. 2023. Lan-926
guage agent tree search unifies reasoning acting927
and planning in language models. arXiv preprint928
arXiv:2310.04406.929

11

A Prompts used in MASAI sub-agents930

Test Template Generator Sub-agent Prompt931

You are an expert developer who can reproduce GitHub issues.

Your goal is to generate a report on how to write a standalone test(using an example already present
in the repository) and run it.

Here is the structure of the repository:
{{repo_structure}}
{% if testing_docs %}

Here are some relevant files and guidelines for testing in this repository:

{{ testing_docs }}
{% else %}
{% endif %}
You can perform the following actions while trying to figure this out:

1. LIST: List all the files in a folder
2. READ: Read the code of a function, class or file
3. WRITE: Write to a new file in the repository.
4. COMMAND: Run a shell command in the repository
5. DONE: Once you have resolved the issue, respond with the DONE action

You should specify which action to execute in the following format:

If you want to READ a function ’ABC’ in class ’PQR’ in file ’XYZ’, respond as

<reasoning>...</reasoning>
<action>READ</action>
<file>XYZ</file>
<class>PQR</class>
<function>ABC</function>.

It’s okay if you don’t know all the three attributes. Even 2 attributes like function name and class
name is okay.

If you don’t know the location of a file, you can LIST or ’ls’ a folder FGH by saying:

<reasoning>...</reasoning>
<action>LIST</action>
<folder>FGH</folder>

As an example, if you want to READ the function get_symbolic_name from class ASTNode, then respond:

<reasoning>The function get_symbolic_name appears to be faulty when run with the verbose=False flag
and doesn’t log the stacktrace. Reading it might give more hints as to where the underlying problem
would be.</reasoning>
<action>READ</action>
<class>ASTNode</class>
<function>get_symbolic_name</function>

Note that reading a file will not give the full functions inside the file. To read the full body of a
function, specify the name of the function explicitly.

Or, if you want to LIST a folder src/templates, respond:

<action>LIST</action>
<folder>src/templates</folder>

You need to write a testing script to reproduce this issue.

To write a script, you can use the WRITE action

932

12

<reasoning>...</reasoning>
<action>WRITE</action>
<file>XYZ</file>
<contents>
...
</contents>
Write perfectly correct code in the contents. Do not use ... in the code.
However, remember that WRITE will overwrite a file if it already exists.

For examples to write a script in the tests/ directory of the project to call a simple function from a
repository, you could
<reasoning>Test whether function apply_operators works as expected</reasoning>
<action>WRITE</action>
<file>tests/my_script.py</file>
<contents>
from src.main import Generator

generator = Generator(name=’start’)
generator.apply_operators(’+’, ’*’)
</contents>

You can also execute shell actions using the COMMAND action like so
<reasoning>...</reasoning>
<action>COMMAND</action>
<command>XYZ</command>

For example if you want to run tests/my_script.py in the root directory of the repository, then
respond as
<reasoning>...</reasoning>
<action>COMMAND</action>
<file>python tests/my_script.py</file>

You can also make use of various shell utilities like grep, cat, etc... to debug the issue. For
example

<reasoning>...</reasoning>
<action>COMMAND</action>
<command>grep -r "get_symbolic_name" .</command>

<reasoning>...</reasoning>
<action>COMMAND</action>
<command>ls src/utils</command>

The COMMAND action can also be used to execute arbitrary executables present in either the PATH or the
repo.

You can read the documentation to figure out how the test files look like. If you figure that out, try
to integrate the test into the framework. Then, figure out how to run the tests and run them to
verify that the test case runs properly.
Only output one action at a time. Do not edit/overwrite any existing files.

Also, if a bash command is not available, try to find the right testing framework instead of assuming
its presence. A non-working report is NOT ACCEPTABLE. Keep trying if it doesn’t work.

You can accomplish this task by doing the following activities one by one:

1. Find the folder/files which contains the tests.
2. You should read documentation such as README/docs/testing guides and figure out how tests are run.
This step is really important as there are custom functions to run tests in every repository.
3. READ an existing test file.
4. Run the existing test file using the commands discovered previously. This is a very important step.
5. WRITE a new standalone test to a new file. Try to make sure it is as simple as possible.
6. Run the test using the COMMAND action and verify that is works.
7. Keep trying to edit your scripts unless your test works PERFECTLY.

Ensure that the test you have written passes without any errors.
Once, you are done, use the DONE action like so along with a report of how to run the test.

933

13

<report>
<file>file_name</file>
<code>
...
</code>
<command>
....
</command>
</report>
<action>DONE</action>

For instance, if the repo requires pytest to be used on a file called tests/new_test.py to test the
capitalize function, then you can say:

<report>
<file>tests/new_test.py</file>
<code>
def test_dummy():

assert True == True
</code>
<command>
pytest tests/new_test.py
</command>
</report>
<action>DONE</action>

If the test that you write doesn’t emit any output, you can add print statements in the middle to make
sure that it is actually executing.
Do not attempt to install any packages or load an environment. The current environment is sufficient
and contains all the necessary packages.

934

Issue Reproducer Sub-agent Prompt935

You are an expert developer who can reproduce GitHub issues.

<issue>
{{ problem_statement }}
</issue>

Your goal is to generate a report on how to write a test to reproduce the bug/feature request present
in the issue and run it.

Here is the structure of the repository:
{{ repo_structure }}

{% if reproduction_report %}
Here is an example of how tests can be generated and run in the repository:

Example:
{{ reproduction_report }}

Instructions:
The command in <command>...</command> denotes how to run the test and <code>...</code> denotes the
example test.
{% endif %}

You can perform the following actions while trying to figure this out:

1. LIST: List all the files in a folder
2. READ: Read the code of a function, class or file
3. WRITE: Write to a new file in the repository.
4. COMMAND: Run a shell command in the repository
5. DONE: Once you have resolved the issue, respond with the DONE action

You should specify which action to execute in the following format:

936

14

If you want to READ a function ’ABC’ in class ’PQR’ in file ’XYZ’, respond as

<reasoning>...</reasoning>
<action>READ</action>
<file>XYZ</file>
<class>PQR</class>
<function>ABC</function>.

It’s okay if you don’t know all the three attributes. Even 2 attributes like function name and class
name is okay.

If you don’t know the location of a file, you can LIST or ’ls’ a folder FGH by saying:

<reasoning>...</reasoning>
<action>LIST</action>
<folder>FGH</folder>

As an example, if you want to READ the function get_symbolic_name from class ASTNode, then respond:

<reasoning>The function get_symbolic_name appears to be faulty when run with the verbose=False flag
and doesn’t log the stacktrace. Reading it might give more hints as to where the underlying problem
would be.</reasoning>
<action>READ</action>
<class>ASTNode</class>
<function>get_symbolic_name</function>

Note that if you read a file, it will list function in their folded form. To read a specific function,
you need to specify the function parameter while doing a READ.

Or, if you want to LIST a folder src/templates, respond:

<action>LIST</action>
<folder>src/templates</folder>

You need to write a testing script to reproduce this issue.

To write a script, you can use the WRITE action
<reasoning>...</reasoning>
<action>WRITE</action>
<file>XYZ</file>
<contents>
...
</contents>
Write perfectly correct code in the contents. Do not use ... in the code.
However, remember that WRITE will overwrite a file if it already exists.

For examples to write a script in the tests/ directory of the project to call a simple function from a
repository, you could
<reasoning>Test whether function apply_operators works as expected</reasoning>
<action>WRITE</action>
<file>tests/my_script.py</file>
<contents>
from src.main import Generator

generator = Generator(name=’start’)
generator.apply_operators(’+’, ’*’)
</contents>

You can also execute shell actions using the COMMAND action like so
<reasoning>...</reasoning>
<action>COMMAND</action>
<command>XYZ</command>

For example if you want to run tests/my_script.py in the root directory of the respository, then
respond as

937

15

<reasoning>...</reasoning>
<action>COMMAND</action>
<file>python tests/my_script.py</file>

You can also make use of various shell utilities like grep, cat, etc... to debug the issue. For
example

<reasoning>...</reasoning>
<action>COMMAND</action>
<command>grep -r "get_symbolic_name" .</command>

<reasoning>...</reasoning>
<action>COMMAND</action>
<command>ls src/utils</command>

The COMMAND action can also be used to execute arbitrary executables present in either the PATH or the
repo.

You should take a look at how tests are generated. You can also read other existing test files to see
how to instrument the test case to reproduce this issue.
Only output one action at a time. Do not edit/overwrite any existing files. Always write your test in
a new file.

Also, if a bash command is not available, you can install it using pip. The non-working test is NOT
ACCEPTABLE. Keep trying if it doesn’t work.

{% if reproduction_report %}
You can accomplish this task by doing the following activities one by one:
1. Read the example on how to write the test{% if reproduction_report %}(see the #Example){% endif %}.
2. Write a test to replicate the issue.
3. Execute the test until it is able to replicate the issue.
4. If you’re stuck about how to execute, read other test files.
{% endif %}
Once, you are done, use the DONE action like so along with a report of how to run the test.

<report>
<file>new_file_name</file>
<code>
...
</code>
<command>
....
</command>
</report>
<action>DONE</action>

For instance, if the repo requires pytest to be used on a file called tests/issue_reproduction.py to
test the capitalize function, then you can say:

<report>
<file>tests/issue_reproduction.py</file>
<code>
Code for a test case that replicates the issue. It should pass when the repository is fixed.
</code>
<command>
pytest tests/issue_reproduction.py
</command>
</report>
<action>DONE</action>

For reference, use the ### Example above. Start by writing the test for this issue and then try to get
it running. Use the <command>...</command> to run the tests. Do not try to use other commands.
Do not explore the testing framework. Only if you are stuck, you should see some of the already
written tests to get a reference. Do not write on any files other than the test files. Don’t try to
solve the issue yourself. Only write the test.

938

16

Edit Localizer Sub-agent Prompt 939

940You are an expert developer who can understand issues raised on a repository. You task is to find the
root cause of the issue and identify which parts of the resposoitory require edits to resolve the
issue.
Search the repository by going through code that may be related to the issue. Explore all the
necessary code needed to fix the issue and look up all possible files, classes and functions that are
used and can be used to fix the issue. Also search for other potential functions that solve the issue
to ensure code consistency and quality.
The issues raised can be about using the code from the provided repository as a framework or library
in the user code.
Keep this in mind when understanding what might be going wrong in the provided repository (framework/
library) rather than in the user code.

Follow the above steps to debug the following issue raised in the repository named: {{ repo }} -

<issue>
{{ problem_statement }}
</issue>
{% if issue_hints %}
{{ issue_hints }}
{% endif %}
Your end goal is to identify which parts of the resposoitory require edits to resolve the issue.

Here is the structure of the repository:
{{repo_structure}}

You can perform the following actions while debugging this issue -

1. READ: Read the code of a function, class or file
2. COMMAND: Run a shell command in the repository.
3. EDIT: Mark a file, class or file in the repository for editing.
4. ADD: Mark a new function, class or file to be added to the repository.
5. DONE: Once you have identified all code requiring edits to resolve the issue, respond with the DONE
.

You should specify which action to execute in the following format -

If you want to EDIT/READ a function ’ABC’ in class ’PQR’ in file ’XYZ’, respond as

<reasoning>...</reasoning>
<action>EDIT/READ</action>
<file>XYZ</file>
<class>PQR</class>
<function>ABC</function>.

It’s okay if you don’t know all the three attributes. Even 2 attributes like function name and class
name is okay.
Also, do not EDIT a function before you READ it.

If you want to add some code(maybe a function) to a file, then use the ADD action like so

<reasoning>...</reasoning>
<action>ADD</action>
<file>XYZ</file>
<class>PQR</class>
<function>function_to_be_added</function>

If you don’t know the location of a file, you can LIST or ’ls’ a folder FGH by saying:

<action>LIST</action>
<folder>FGH</folder>

As an example, if you want to READ the function get_symbolic_name from class ASTNode, then respond:

<reasoning>The function get_symbolic_name appears to be faulty when run with the verbose=False flag
and doesn’t log the stacktrace. Reading it might give more hints as to where the underlying problem

941

17

would be.</reasoning>
<action>READ</action>
<class>ASTNode</class>
<function>get_symbolic_name</function>

Or, if you want to add a function validate_params to a file src/validator.py, respond:
<action>ADD</action>
<file>src/validator.py</file>
<function>validate_params</function>

Or, if you want to LIST a folder src/templates, respond:

<action>LIST</action>
<folder>src/templates</folder>

Or, if you want to READ a file name symbolic_solver/src/templates/numerics.py and a function
get_string_repr in the repository, then use the -AND- tag to separate the two responses as follows:

<reasoning>The file symbolic_solver/src/templates/numerics.py seems to contain important classes which
extend BaseSymbol along with their implementations of get_symbolic_name and solve_symbolic_system</
reasoning>
<action>READ</action>
<file>symbolic_solver/src/templates/numerics.py</file>
-AND-
<reasoning>The function get_string_repr is used in the code and might be causing the issue. Reading it
might give more hints as to where the underlying problem would be.</reasoning>
<action>READ</action>
<function>get_string_repr</function>

You can also execute shell actions using the COMMAND action like so
<reasoning>...</reasoning>
<action>COMMAND</action>
<command>XYZ</command>

For example if you want to run my_script.py in the root directory of the respository, then respond as
<reasoning>...</reasoning>
<action>COMMAND</action>
<file>python my_script.py</file>

You can also make use of various shell utilities like ls, grep, cat, etc... to debug the issue. For
example

<reasoning>...</reasoning>
<action>COMMAND</action>
<command>grep -r "get_symbolic_name" .</command>

<reasoning>...</reasoning>
<action>COMMAND</action>
<command>ls src/utils</command>

The COMMAND action can also be used to execute arbitrary executables present in either the PATH or the
repo that may be required for debugging.

Try and read all possible locations which can have buggy code or can be useful for fixing the issue.
Ensure that you don’t query for the same function or class again and again. While giving a file/class/
function to read/edit, make sure that you only query for item at a time. Make sure you dont mark
pieces of code for editing unnecessarily. Do not try to edit tests. They will be fixed later.

Once you have made the identified all the parts of the code requiring edits to resolve the issue, you
should respond with the DONE action.

<reasoning>...</reasoning>
<action>DONE</action>

942

18

Fixer Sub-agent Prompt 943

944

You are given the following {{ language }} code snippets from one or more ’{{ extension }}’ files:
<codebase>
{{ code_snippets }}
</codebase>
Instructions: You will be provided with a partial codebase containing a list of functions and an issue
statement explaining a problem to resolve from the repo {{ repo_name }}.

Issue:
{{ issue_description }}
{% if issue_hints %}
{{ issue_hints }}
{% endif %}
{% if localization %}{{ localization }}
{% endif %}

{% if testcase %}
Testcase:
Here are testcases that should pass on correct resolution of the issue.
{{ testcase }}
{% endif %}
{% if feedback %}{{ feedback }}
{% endif %}

Solve the issue by giving changes to be done in the functions using all the information given above in
the format mentioned below. All the necessary information has already been provided to you.

For your response, return one or more ChangeLogs (CLs) formatted as follows. Each CL must contain one
or more code snippet changes for a single file. There can be multiple CLs for a single file. Each CL
must start with a description of its changes. The CL must then list one or more pairs of (OriginalCode
, ChangedCode) code snippets. In each such pair, OriginalCode must list all consecutive original lines
of code that must be replaced (including a few lines before and after the changes), followed by
ChangedCode with all consecutive changed lines of code that must replace the original lines of code (
again including the same few lines before and after the changes). In each pair, OriginalCode and
ChangedCode must start at the same source code line number N. Each listed code line, in both the
OriginalCode and ChangedCode snippets, must be prefixed with [N] that matches the line index N in the
above snippets, and then be prefixed with exactly the same whitespace indentation as the original
snippets above. See also the following examples of the expected response format.

Plan: Step by step plan to make the edit and the logic behind it.
ChangeLog:1@<complete file path>
Description: Short description of the edit.
OriginalCode@4:
[4] <white space> <original code line>
[5] <white space> <original code line>
[6] <white space> <original code line>
ChangedCode@4:
[4] <white space> <changed code line>
[5] <white space> <changed code line>
[6] <white space> <changed code line>
OriginalCode@9:
[9] <white space> <original code line>
[10] <white space> <original code line>
ChangedCode@9:
[9] <white space> <changed code line>
...
Plan: Step by step plan to make the edit and the logic behind it.
ChangeLog:K@<complete file path>
Description: Short description of the edit.
OriginalCode@15
[15] <white space> <original code line>
[16] <white space> <original code line>
ChangedCode@15:
[15] <white space> <changed code line>
[16] <white space> <changed code line>
[17] <white space> <changed code line>
OriginalCode@23:

945

19

[23] <white space> <original code line>
ChangedCode@23:
[23] <white space> <changed code line>

For instance, consider the following code snippet:

Code snippet from file ’runner/src/orchestrator.py’ (lines: 0 to 22):
[0]"""
[1]Orchestrator for experimental pipeline
[2]"""
[3]
[4]if __name__ == "__main__":
[5]
[6] import argparse
[7] import dotenv
[8] from pathlib import Path
[9]
[10] from masai.config import ExpConfig
[11] from masai.pipeline import pipeline
[12]
[13] dotenv.load_dotenv()
[14]
[15] parser = argparse.ArgumentParser()
[16] parser.add_argument("--config", type=Path, default=Path("pipeline-config.yaml"))
[17] args = parser.parse_args()
[18]
[19] config_path = Path(args.config)
[20] config = ExpConfig.from_yaml_file(config_path=config_path)
[21] pipeline(config)
[22]

If the issue wants the path of the config to be validated before hand and the final looks like this:

[0]"""
[1]Orchestrator for experimental pipeline
[2]"""
[3]import os
[4]
[5]def sanity_check(config_path):
[6] """
[7] Check if the config_path is a valid path.
[8] """
[9] return os.path.exists(config_path)
[10]
[11]if __name__ == "__main__":
[12]
[13] import argparse
[14] import dotenv
[15] from pathlib import Path
[16]
[17] from masai.config import ExpConfig
[18] from masai.pipeline import pipeline
[19]
[20] dotenv.load_dotenv()
[21]
[22] parser = argparse.ArgumentParser()
[23] parser.add_argument("--config", type=Path, default=Path("pipeline-config.yaml"))
[24] args = parser.parse_args()
[25] # Check if path passes the sanity_check
[26] if not sanity_check(args.config):
[27] raise ValueError("Invalid config path provided.")
[28]
[29] config_path = Path(args.config)
[30] config = ExpConfig.from_yaml_file(config_path=config_path)
[31] pipeline(config)
[32]

946

20

Then, your output should be:

Plan: First, we need to add a function called sanity_check which will check if the file exists. Then,
we will edit the code to perform the check after the arguments have been processed.
ChangeLog:1@runner/src/orchestrator.py
Description: Added sanity_check for checking config path.
OriginalCode@3:
[3]
[4]if __name__ == "__main__":
ChangedCode@3:
[3]import os
[4]
[5]def sanity_check(config_path):
[6] """
[7] Check if the config_path is a valid path.
[8] """
[9] return os.path.exists(config_path)
[10]
[11]if __name__ == "__main__":
OriginalCode@17:
[17] args = parser.parse_args()
[18]
[19] config_path = Path(args.config)
ChangedCode@17:
[17] args = parser.parse_args()
[18] # Check if path passes the sanity_check
[19] if not sanity_check(args.config):
[20] raise ValueError("Invalid config path provided.")
[21]
[22] config_path = Path(args.config)

Now try to solve the issue given above.

Make sure to follow these rules while giving changelog response:
1. Ensure that your changelogs are always less that 10 lines for each change that is made.
2. Ensure that OriginalCode and ChangedCode pairs always start from the same line number.
3. Give comments on every change you make in the ChangedCode explaining what change you made.
4. OriginalCode and ChangedCode pairs should always have some difference.
5. Do not add any text after the changelog.

Make sure you plan out the edit first before giving the Changelog.

947

Ranker Sub-agent Prompt 948

You are an senior software developer who can review solutions to issues raised on large repository.
You should first consider the description of the issues to understand the problem and then carefully
consider multiple solutions that have been proposed.
{% if testcase %}
Here are some example of how you can rank solutions to issues.

Example 1:

Issue:
bin_search doesn’t work accurately on edge-cases such as single element arrays or None inputs.
Here is an example:

>>> from utils import bin_search
>>> bin_search([5], 5)
-1
>>> bin_search(None, 5)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>

949

21

File "/home/utils.py", line 23, in bin_search
left, right = 0, len(arr)-1

ˆˆˆˆˆˆˆˆ
TypeError: object of type ’NoneType’ has no len()

Possible buggy code:

File: utils.py

def bin_search(arr, key):
Returns index of the key in sorted array
If element is not present, returns -1.
left, right = 0, len(arr)-1
while left < right:

mid = (left + right) // 2
if arr[mid] == key:

return mid
elif arr[mid] < key:

left = mid + 1
else:

right = mid - 1
return -1

Test case:
A junior has proposed the following test case. It might be useful for you in making your judgement.

import pytest

def test_bin_search():
assert bin_search([5], 5) == 0
assert bin_search(None, 5)
assert bin_search([1,2,3,4], 4) == 3

On running the test case on the EARLIER state of the repository, the output obtained was(note that
empty output generally means that the tests passed):

Initial Test Status:

== test session starts
==
platform linux -- Python 3.11.7, pytest-7.4.4, pluggy-1.4.0
rootdir: /home/
plugins: anyio-4.2.0
collected 1 item

utils_test.py F
[100%]

=== FAILURES
==
__ test_bin_search
__

def test_bin_search():
> assert bin_search([5], 5) == 0
E assert -1 == 0
E + where -1 = bin_search([5], 5)

utils_test.py:21: AssertionError
== short test summary info
==
FAILED utils_test.py::test_bin_search - assert -1 == 0
=== 1 failed in 0.04s
===

950

22

Proposed solution patches:

Proposed patch number 1:

--- a/utils.py
+++ b/utils.py
@@ -1,4 +1,6 @@
def bin_search(arr, key):
+ if len(arr) == 1:
+ return 0

Returns index of the key in sorted array
If element is not present, returns -1.
left, right = 0, len(arr)-1

After incorporating this change, the test output is:

New Test Status 1:
== test session starts
==
platform linux -- Python 3.11.7, pytest-7.4.4, pluggy-1.4.0
rootdir: /home/
plugins: anyio-4.2.0
collected 1 item

utils_test.py F
[100%]

=== FAILURES
==
__ test_bin_search
__

def test_bin_search():
assert bin_search([5], 5) == 0

> assert bin_search(None, 5)

utils_test.py:22:
_ _
_ _

arr = None, key = 5

def bin_search(arr, key):
> if len(arr) == 1:
E TypeError: object of type ’NoneType’ has no len()

utils.py:2: TypeError
== short test summary info
==
FAILED utils_test.py::test_bin_search - TypeError: object of type ’NoneType’ has no len()
=== 1 failed in 0.04s
===

Proposed patch number 2:

--- a/utils.py
+++ b/utils.py
@@ -2,7 +2,7 @@ def bin_search(arr, key):

Returns index of the key in sorted array
If element is not present, returns -1.
left, right = 0, len(arr)-1

- while left < right:
+ while left <= right:

mid = (left + right) // 2
if arr[mid] == key:

return mid

951

23

After incorporating this change, the test output is:

New Test Status 2:

platform linux -- Python 3.11.7, pytest-7.4.4, pluggy-1.4.0
rootdir: /home/
plugins: anyio-4.2.0
collected 1 item

utils_test.py F
[100%]

=== FAILURES
==
__ test_bin_search
__

def test_bin_search():
assert bin_search([5], 5) == 0

> assert bin_search(None, 5)

utils_test.py:22:
_ _
_ _

arr = None, key = 5

def bin_search(arr, key):
Returns index of the key in sorted array
If element is not present, returns -1.

> left, right = 0, len(arr)-1
E TypeError: object of type ’NoneType’ has no len()

utils.py:4: TypeError
== short test summary info
==
FAILED utils_test.py::test_bin_search - TypeError: object of type ’NoneType’ has no len()
=== 1 failed in 0.04s
===

Proposed patch number 3:

--- a/utils.py
+++ b/utils.py
@@ -1,8 +1,10 @@
def bin_search(arr, key):

Returns index of the key in sorted array
If element is not present, returns -1.

+ if arr is None:
+ return -1

left, right = 0, len(arr)-1
- while left < right:
+ while left <= right:

mid = (left + right) // 2
if arr[mid] == key:

return mid

After incorporating this change, the test output is:

New Test Status 3:
== test session starts
==
platform linux -- Python 3.11.7, pytest-7.4.4, pluggy-1.4.0
rootdir: /home/
plugins: anyio-4.2.0
collected 1 item

952

24

utils_test.py .
[100%]

=== 1 passed in 0.00s
===

Response:

Test Description:
The test runs the function on different values of the key and the array arr. All of these should pass
when the function is bug-free.

Test Status:
Failing Initially

Patch description:
[

{
"patch_number": 1,
"test_effect": "The test still fails, but a new TypeError is raised instead of the old error

.",
"test_status": "FAIL_TO_FAIL",
"patch_effect": "The patch adds a special edge case for single length error. However it doesn’

t fix the fundamental error in the step where the left < right is wrong."
},
{

"patch_number": 2,
"test_effect": "The test still fails, but the TypeError is no longer raised.",
"test_status": "FAIL_TO_FAIL",
"patch_effect": "The patch fixed the most important part of the testcase where the left <

right was fixed however, the None array case is not handled properly which leads to the TypeError."
},
{

"patch_number": 3,
"test_effect": "The test passes.",
"test_status": "FAIL_TO_PASS",
"patch_effect": "The patch fixed left < right condition and handled the the None array case as

well."
}

]

Ranking description:
Patch 1 doesn’t fix the root cause of the problem and is only a superficial solution. Patch 2 and 3
both fix the root problem in the binary search function, however patch 3 handled the additional case
where a None object can be passed as well. Therefore the ranking should be [3] > [2] > [1]

Ranking:
[3] > [2] > [1]

Example 2:

Issue:
Mailer fails when username contains an ’@’ symbol.

For example:
>>> from mailer import send_notification
>>> send_notification("Test message", "user@invalid@google.com")
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "/home/mailer.py", line 16, in send_notification

return mailer.send_mail(email_id.split("@")[0], email_id.split("@")[1], title="Notification", body
=msg)

ˆˆ
File "/home/mailer.py", line 10, in send_mail

953

25

raise InvalidDomainException(f"Domain: {domain} doesn’t exist.")
mailer.InvalidDomainException: Domain: invalid doesn’t exist.

Possible buggy code:

File: mailer.py

def send_notification(msg, email_id):
mailer = Mailer()
return mailer.send_mail(email_id.split("@")[0], email_id.split("@")[1], title="Notification", body

=msg)

Test case:
A junior has proposed the following test case. It might be useful for you in making your judgement.

from mailer import send_notification
import pytest

def test_send_notification():
with pytest.raises(Exception):

assert send_notification("Test message", "user@invalid@example.com") == 0

On running the test case on the EARLIER state of the repository, the output obtained was(note that
empty output generally means that the tests passed):
Initial Test Status:

=== test session
starts ===
platform linux -- Python 3.11.7, pytest-7.4.4, pluggy-1.4.0
rootdir: /home/testcase
plugins: anyio-4.2.0
collected 1 item

test_mailer.py .
[100%]

== 1 passed in 0.01s
==

Proposed solution patches:

Proposed patch number 1:

--- a/mailer.py
+++ b/mailer.py
@@ -22,4 +22,4 @@ class Mailer:

def send_notification(msg, email_id):
mailer = Mailer()

- return mailer.send_mail(email_id.split("@")[0], email_id.split("@")[1], title="Notification",
body=msg)
+ return mailer.send_mail(email_id.split("@")[0], email_id.split("@")[-1], title="Notification",
body=msg)

After incorporating this change, the test output is:

New Test Status 1:
=== test
session starts
===
platform linux -- Python 3.11.7, pytest-7.4.4, pluggy-1.4.0
rootdir: /home/testcase
plugins: anyio-4.2.0
collected 1 item

test_mailer.py .

954

26

[100%]

=== 1
passed in 0.00s
===

Proposed patch number 2:

--- a/mailer.py
+++ b/mailer.py
@@ -22,4 +22,6 @@ class Mailer:

def send_notification(msg, email_id):
mailer = Mailer()

- return mailer.send_mail(email_id.split("@")[0], email_id.split("@")[1], title="Notification",
body=msg)
+ if "@" in email_id:
+ domain = email_id.split("@")[-1]
+ return mailer.send_mail(email_id[:-len(domain)], domain, title="Notification", body=msg)

After incorporating this change, the test output is:

New Test Status 2:

=== test
session starts
===
platform linux -- Python 3.11.7, pytest-7.4.4, pluggy-1.4.0
rootdir: /home/testcase
plugins: anyio-4.2.0
collected 1 item

test_mailer.py F

[100%]

===
FAILURES
===

test_send_notification

def test_send_notification():
> with pytest.raises(Exception):
E Failed: DID NOT RAISE <class ’Exception’>

test_mailer.py:5: Failed
=== short
test summary info
===
FAILED test_mailer.py::test_send_notification - Failed: DID NOT RAISE <class ’Exception’>
=== 1
failed in 0.05s
===

Response:

Test description:
The test confirms that an exception is being raised when the Mailer is used for send_notification.
This behaviour should NOT happen when the issue is fixed.

Test Status:
Passing Initially

Patch description:
[

955

27

{
"patch_number": 1,
"test_effect": "The test passes as before because an exception is still being raised.",
"test_status": "PASS_TO_PASS",
"patch_effect": "The patch modifies the computation of the domain by saying that the last

element after splitting on ’@’ should be the domain. This is correct but the username isn’t computed
correctly."

},
{

"patch_number": 2,
"test_effect": "The test fails indicating correct behaviour of the code now.",
"test_status": "PASS_TO_FAIL",
"patch_effect": "The patch fixes the issue now by splitting on the last ’@’ symbol but also

computes the username correctly."
}

]

Ranking description:
Patch 1 tries to solve the problem but still hits an exception and the test cases passes which is not
the desired behaviour. Patch 2 works perfectly and an exception is not raised which is why the test
fails.
Since patch 2 is also PASS_TO_FAIL, it is more probable that it is a useful change therefore it should
be ranked higher.

Ranking:
[2] > [1]

Now use the same principles to solve this issue:
{% endif %}

Issue:
{{ issue }}
</issue>

Possible buggy code:

{% for bc in buggy_code %}

File: {{ bc[’file’] }}

{{ bc[’body’] }}

{% endfor %}

{% if testcase %}
Test case:

A junior has proposed the following test case. It might be useful for you in making your judgement.
{{ testcase }}

On running the test case on the EARLIER state of the repository, the output obtained was(note that
empty output generally means that the tests passed):
Initial Test Status:

{{ initial_test_output }}

{% endif %}

Proposed solution patches:

{% for patch in patches %}

Proposed patch number {{ loop.index }}:

{{ patch[’patch’] }}
{% if patch[’test_output’] %}

956

28

After incorporating this change, the test output is:

New Test Status {{loop.index}}:

{{ patch[’test_output’] }}
{% endif %}

{% endfor %}

Your job is to rank these these solutions from most likely to least likely to fix the issue.
We want to carefully reason about whether the patch would truly fix the issue and in what way.
{%if testcase%}Use the test case outputs to determine which patch might be useful in resolving the
issue.
Note that the test case might be wrong as well.{% endif %}
Do not worry about import errors, they can be fixed easily.
Reason carefully about what solving the issue requires.

Your job is to summarize and rank each patch based on it’s correctness and effect on test cases if
provided.
You should first describe the patches in the following manner:
{% if testcase %}First, describe the status of the test BEFORE any patch was run: {% endif %}
[

{
"patch_number": 1,

{% if testcase %} "test_effect": <Change in the test case status if any>,
"test_status": <FAIL_TO_PASS/PASS_TO_FAIL/FAIL_TO_FAIL/PASS_TO_PASS>,{% endif %}
"patch_effect": <Describe what the patch does and its effects. Does it solve the issue? Why or

why not?>
},
...
{

"patch_number": N,
{% if testcase %} "test_effect": <Change in the test case status if any>,

"test_status": <FAIL_TO_PASS/PASS_TO_FAIL/FAIL_TO_FAIL/PASS_TO_PASS>,{% endif %}
"patch_effect": <Describe what the patch does and its effects. Does it solve the issue? Why or

why not?>
},

]

Then, give a ranking of the patches as follows:
For instance if there are 5 patches and you believe the order should be: patch #2 > patch #3 > patch
#1 > patch #5 > patch #4, then output: [2] > [3] > [1] > [5] > [4].

A complete example would be(assume there are 5 patches):

{%if testcase %}
Initial Test description:
What does the test case check?(for this read the logs in "### Test case")

Initial Test Status:
Passing Initially/Failing Initially(for this read the logs in "### Initial Test Status"){% endif %}
Patch description:
[

{
"patch_number": 1,

{% if testcase %} "test_effect": <Change in the test case status if any>,
"test_status": <FAIL_TO_PASS/PASS_TO_FAIL/FAIL_TO_FAIL/PASS_TO_PASS>(read "### New Test Status

1" for this),{% endif %}
"patch_effect": <Describe what the patch does and its effects. Does it solve the issue? Why or

why not?>
},
...
{

"patch_number": N,
{% if testcase %} "test_effect": <Change in the test case status if any>,

"test_status": <FAIL_TO_PASS/PASS_TO_FAIL/FAIL_TO_FAIL/PASS_TO_PASS>(read "### New Test Status
N" for this),{% endif %}

957

29

"patch_effect": <Describe what the patch does and its effects. Does it solve the issue? Why or
why not?>

}
]
Ranking description:
<description>
Ranking:
[2] > [3] > [1] > [5] > [4]

Now try on the issue given above. Do not give any justifications while giving the ### Ranking. Also do
not use = between any patch indices. Break ties using code quality.
Also, note that passing tests is not a requirement. Use the tests like a heuristic instead.
{% if testcase %}Changes in the test status is a good indication that the patch is useful.
PASS_TO_FAIL or FAIL_TO_PASS indicates that the test is useful and that the patch should be ranked
higher. FAIL_TO_FAIL or PASS_TO_PASS patches should be ranked lower.{% endif %}
Carefully look at what was happening before any patch was applied versus what happens after the patch
is applied.

Response:

958

B Links for logs959

Logs for various methods can be found here:960

Aider: https://github.com/swe-bench/experiments/tree/main/evaluation/lite/961

20240523 aider962

CodeR: https://github.com/swe-bench/experiments/tree/main/evaluation/lite/963

20240604 CodeR/964

Open-Devin: https://huggingface.co/spaces/OpenDevin/evaluation/tree/main/outputs/965

swe bench lite/CodeActAgent/gpt-4o-2024-05-13 maxiter 30 N v1.5-no-hint966

SWE-agent: https://github.com/swe-bench/experiments/tree/main/evaluation/lite/967

20240402 sweagent gpt4/logs968

30

https://github.com/swe-bench/experiments/tree/main/evaluation/lite/20240523_aider
https://github.com/swe-bench/experiments/tree/main/evaluation/lite/20240523_aider
https://github.com/swe-bench/experiments/tree/main/evaluation/lite/20240523_aider
https://github.com/swe-bench/experiments/tree/main/evaluation/lite/20240604_CodeR/
https://github.com/swe-bench/experiments/tree/main/evaluation/lite/20240604_CodeR/
https://github.com/swe-bench/experiments/tree/main/evaluation/lite/20240604_CodeR/
https://huggingface.co/spaces/OpenDevin/evaluation/tree/main/outputs/swe_bench_lite/CodeActAgent/gpt-4o-2024-05-13_maxiter_30_N_v1.5-no-hint
https://huggingface.co/spaces/OpenDevin/evaluation/tree/main/outputs/swe_bench_lite/CodeActAgent/gpt-4o-2024-05-13_maxiter_30_N_v1.5-no-hint
https://huggingface.co/spaces/OpenDevin/evaluation/tree/main/outputs/swe_bench_lite/CodeActAgent/gpt-4o-2024-05-13_maxiter_30_N_v1.5-no-hint
https://github.com/swe-bench/experiments/tree/main/evaluation/lite/20240402_sweagent_gpt4/logs
https://github.com/swe-bench/experiments/tree/main/evaluation/lite/20240402_sweagent_gpt4/logs
https://github.com/swe-bench/experiments/tree/main/evaluation/lite/20240402_sweagent_gpt4/logs

	Introduction
	MASAI Agent Architecture
	Agent Specification and Composition
	Action Space
	Agent Instantiation

	Experimental Setup
	Results
	RQ1: Performance on software engineering tasks in SWE-bench Lite
	RQ2: Assumptions by different methods
	RQ3: How does MASAI perform effective fault localization from issue description?
	RQ4: How does MASAI's sampling and ranking compare to iterative repair?
	RQ5: How does MASAI perform effective issue reproduction?
	RQ6: How does MASAI generate edits that can be applied successfully?

	Related Work
	Conclusions
	Limitations
	Broader Concerns
	Prompts used in MASAI sub-agents
	Links for logs

