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ABSTRACT

Recent studies customizing Multimodal Large Language Models (MLLMs) for
domain-specific tasks have yielded promising results, especially in the field of
scientific chart comprehension. These studies generally utilize visual instruction
tuning with specialized datasets to enhance question and answer (QA) accuracy
within the chart domain. However, they often neglect the fundamental discrepancy
between natural image-caption pre-training data and digital chart image-QA data,
particularly in the models’ capacity to extract underlying numeric values from
charts. This paper tackles this oversight by exploring the training processes neces-
sary to improve MLLMs’ comprehension of charts. We present three key findings:
(1) Incorporating raw data values in alignment pre-training markedly improves
comprehension of chart data. (2) Replacing images with their textual representa-
tion randomly, during end-to-end fine-tuning, transfers the language reasoning to
chart interpretation skills. (3) Requiring the model to first extract the underlying
chart data and then answer the question in the fine-tuning can further improve
the accuracy. Consequently, we introduce CHOPINLLM, an MLLM tailored for
in-depth chart comprehension. CHOPINLLM effectively interprets various types
of charts, including unannotated ones, while maintaining robust reasoning abilities.
Furthermore, we establish a new benchmark to evaluate MLLMs’ understanding
of different chart types across various comprehension levels. Experimental re-
sults show that CHOPINLLM exhibits strong performance in understanding both
annotated and unannotated charts across a wide range of types.

1 INTRODUCTION

In today’s data-driven world, visualizations like bar and pie charts are crucial for deciphering complex
datasets. However, the increasing diversity and complexity of these charts highlights the need for
advanced tools to enhance human capabilities in data analysis. Artificial Intelligence (AI), particularly
Multimodal Large Language Models (MLLMs), is increasingly used to automate the understanding
of scientific charts, promising more efficient and accurate analysis. Robust benchmarks are also
essential, setting standards and metrics that drive the development and evaluation of these Al tools.

Prior studies have introduced end-to-end neural models aimed at enhancing chart comprehension (Lee
et al., 2023; Liu et al., 2022b; Zhou et al., 2023), such as masked table prediction (Zhou et al., 2023),
chart question answering (Masry et al., 2023), and chart de-rendering (Liu et al., 2022b). These models
specialize in handling one task each within the domain of chart analysis. Furthermore, advancements
in Multimodal Large Language Models (MLLMs), exemplified by LLaVA (Liu et al., 2024b; 2023)
and miniGPT (Zhu et al., 2023), have showcased their versatility in vision-language tasks. These
generalist models undergo a two-stage training process: initially learning visual-language alignment
through image-caption pairs, followed by end-to-end fine-tuning using image-QA pairs. This training
not only enables LLMs to interpret visual data but also retains their extensive pre-trained knowledge,
which supports their reasoning abilities and leads to strong performance across diverse visual language
understanding tasks.

Recent advancements have further ignited interest in tailoring MLLMs to specialized domains
such as scientific chart understanding. Han et al. (2023); Liu et al. (2024a) have explored collecting
instruction-tuned chart data and low-rank adaptation (Hu et al., 2021) to enhance MLLMSs’ proficiency
with unique chart characteristics. However, research on the fundamental-training regimes — namely,
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Figure 1: The underlying data values can be inferred regardless of whether the chart is annotated.
However, existing MLLMs rely on annotations and struggle with unannotated charts. In contrast, our
model bridges this fundamental discrepancy between natural image-caption pre-training data and
digital chart image-QA data, enabling it to extract values regardless of whether the chart is annotated.

pre-training to align across modalities and comprehensive end-to-end fine-tuning — for chart-specific
understanding remains scarce. As shown in Fig. 1, existing MLLMs often struggle to extract the
underlying data from charts when numerical values are not annotated. We hypothesize that this
issue stems from a gap in vision-language alignment between natural image-caption pairs and digital
chart-data pairs. Without targeted pre-training for chart-data alignment, models may resort to relying
on a “shortcut” of recognizing numeric annotations through OCR during fine-tuning with QA pairs,
rather than truly understanding the visual subtleties of diverse charts.

This paper addresses the above issues by concentrating on the essential training methodologies for
MLLMs, including cross-modal feature alignment pre-training and comprehensive end-to-end fine-
tuning. Our research is guided by the question, “How does fundamental MLLM training influence the
enhancement of general MLLMs with chart-specific domain understanding?” Our findings indicate
that: (1) Raw data extraction are pivotal in alignment pre-training to bolster chart data comprehension;
(2) Substituting some chart images with purely textual data during end-to-end fine-tuning not only
preserves LLM’s text-only reasoning ability but also augments chart interpretation capabilities;
(3) Augmenting QAs with data extraction tasks in the fine-tuning phase allows model to achieve the
data prompting during testing, where it first extract data and then answer the QAs, further improving
the its reasoning skills. Furthermore, existing chart benchmarks are limited in chart and question
types. This motivates us to introduce a comprehensive chart benchmark, comprising 20 chart types
and three QA levels, to better measure MLLM performance and advance future research in this field.

Our key contributions are summarized as follows:

» We introduce CHOPINLLM,' a Multimodal Large Language Model tailored for comprehensive
chart understanding. This model excels at interpreting various chart types including unannotated
ones, underpinned by our detailed analysis and training guidance that emphasizes the importance
of foundational training for chart-specific tasks.

* We propose a novel data generation pipeline using text-only Large Language Models to efficiently
produce large-scale pairwise data. This approach significantly reduces the costs and complexity
of data generation for MLLM training.

* We establish a robust benchmark comprising a diverse array of chart types and question-answering
levels, designed to rigorously evaluate MLLMs’ fundamental understanding of the scientific chart
domain.

2 RELATED WORKS

Large Language Models (LLMs). LLMs have seen remarkable advancements in recent years,
primarily driven by transformers (Vaswani et al., 2017) that allowed significant scaling in model size
and training data (Chowdhery et al., 2023; Brown et al., 2020; Du et al., 2022; Dai et al., 2019; Fe-
dus et al., 2022; Hoffmann et al., 2022; Rae et al., 2021; Smith et al., 2022). These models excel
in generalized reasoning and exhibit robust chain-of-thought reasoning (Wei et al., 2022; Wang
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et al., 2022; Zhang et al., 2023c) across a variety of tasks, largely attributed to extensive pre-
training (Devlin et al., 2018; Zhao et al., 2023; Beltagy et al., 2019) and fine-tuning strategies (Ope-
nAl, 2023a; Ouyang et al., 2022; Chung et al., 2024). The availability of powerful LLMs with
specialized capabilities — ranging from general assistance (Gemini Team, 2023; OpenAl, 2023b; An-
thropic, 2023; Touvron et al., 2023) to coding (Roziere et al., 2023; GitHub, 2023; Jiang et al., 2023)
— has fueled diverse applications such as data augmentation (Ding et al., 2024), data generation (Yu
et al., 2024; Patel et al., 2024), and providing training guidance (Yuan et al., 2024; Kwon et al., 2023).
These developments have markedly accelerated research and practical applications in the field.

Multimodal Large Language Models (MLLMs). Building on the success of LLMs, recent re-
search has expanded their application to multimodal tasks, including image (Liu et al., 2024b; Zhang
etal.,2023b; Lu et al., 2024; McKinzie et al., 2024), video (Zhang et al., 2023a; Chen et al., 2023a), au-
dio or speech (Fathullah et al., 2024; Das et al., 2024; Borsos et al., 2023), mixed-modal (Team, 2024),
various tool and API usages (Patil et al., 2023; 2024; MeetkAl, 2024), and robotics (Zeng
et al., 2023; Brohan et al., 2023). In extending LLMs to image modalities, early studies combined
LLMs with external vision models to convert visual information into text, enhancing image compre-
hension (Liu et al., 2022a; Yang et al., 2022). Others have integrated visual encoders directly within
LLM frameworks, developing end-to-end systems that transform images into textual tokens (Zhu
et al., 2023; Liu et al., 2024b; 2023; Aiello et al., 2023; Driess et al., 2023; Chen et al., 2023b).
While maintaining capabilities like reasoning and chain-of-thought processing across various tasks,
these models often fall short in domain-specific tasks like chart analysis (Masry et al., 2022; Methani
et al., 2020). This prompts further research into specialized data collection and fine-tuning for distinct
domains.

Chart Understanding. Current approaches to chart understanding fall into two main categories:
models specifically designed for chart-related tasks (Lee et al., 2023; Zhou et al., 2023; Masry
et al., 2023; Liu et al., 2022b; Masry & Hoque, 2021), and those that utilize pre-trained LLMs
and MLLMs (Han et al., 2023; Xia et al., 2024; Masry et al., 2024a; Liu et al., 2024a; Masry
et al., 2024b; Meng et al., 2024). The first group involves models trained exclusively on chart-specific
data, often limited by the scope of the training datasets thus cannot be applied to diverse chart scenar-
i0s. The second group, which involves adapting existing LLMs and MLLMs through fine-tuning (Liu
et al., 2024b) or integration with external models (Liu et al., 2022a), shows promising versatility
across various questions and scenarios. Yet, there is a scarcity of research on MLLMSs’ pre-training,
crucial for deep chart understanding and adaptability to multiple chart types in practical settings.
Additionally, chart understanding models are evaluated against benchmarks focused on tasks like data
extraction (Masry et al., 2022; Kantharaj et al., 2022a; Shi et al., 2024), summarization (Kantharaj
et al., 2022b), and basic mathematical reasoning (Methani et al., 2020), which predominantly feature
basic chart types (e.g., bar, line, pie charts) and lack nuanced differentiation in QA levels to thor-
oughly assess models’ understanding capabilities. Addressing these gaps, our work not only explores
effective pre-training strategies for MLLMs on chart data but also introduces a new benchmark with
a variety of chart types, differentiated QA levels (e.g., literal, inferential, reasoning), and raw data to
evaluate MLLMs’ comprehension abilities. Concurrently, CharXiv (Wang et al., 2024) is proposed
for evaluating general understanding of real-world scientific charts, including complex compositions
with multiple subplots. In contrast, our benchmark focuses on single-plot chart images, evaluating
the raw data understanding and mathematical reasoning of an MLLM.

3 GENERATING DATA FOR CHART UNDERSTANDING

To build a chart understanding MLLM and study its fundamental training process, a comprehensive
dataset containing chart images paired with captions and raw data is essential for pre-training,
alongside different types of question-answer pairs for end-to-end fine-tuning. However, no existing
dataset provides the necessary variety of chart types, topics, and styles. To bridge this gap, we
introduce a novel data generation pipeline for large-scale chart data generation (Sec. 3.1) and QAs
generation (Sec. 3.2). With the data at hand, we then explore various training strategies in the later
sections, including feature alignment pre-training and end-to-end fine-tuning for LLMs. Figure 2
presents an overview of our framework.
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Figure 2: Overview of (a) the proposed data generation pipeline and (b) training strategies of
CHOPINLLM. Generating code and data points conforming to a shared JSON template enables
quadratic scaling of the data size (w.r.t. to #GPT calls). The 3-stage training equips our model to
grasp the underlying data, thereby achieving a fundamental understanding of charts. (/N and M
denote the number of generated scripts and data, respectively.)

3.1 EFFICIENT DATA GENERATION WITH QUADRATIC SCALING

Our data generation leverages the promising text content generation and coding abilities of large
language models, e.g., GPT-4, to generate chart images and data. Specifically, LLMs allow us to
synthesize raw data for chart images, and then the generated Python script turns the raw data into a
chart image. In this way, we can produce image data without accessing costly multimodal LLMs like
GPT-4V. Unlike previous and concurrent works (e.g., Han et al. (2023); Xia et al. (2024)) that prompt
LLMs to iteratively generate CSV data, QAs, and Python script for each chart image — a process
that is costly to massively scale — our pipeline features parallel code and data generation through
shared templates and README:s for consistent definitions and formats across the same chart types.
Most importantly, since all code script and data share the same structure, our generated data can be
universally applied to any generated code and vice versa, significantly enhancing scalability without
exhaustedly prompting LLMs. We detail the pipeline further below.

Shared Template and README. As shown in Fig. 2 (a), given a chart type (e.g., line) sampled
from a predefined chart type database, the JSON expert GPT-4 first generates a JSON template for
the given chart type, along with a README file. In detail, the JSON template contains general
information for the chart image, including the title, x-axis, y-axis information, and raw data. The
README contains the definition of the chart type and the meanings of the keys and values to enhance
understanding of the JSON template. Please refer to Appendix G for some examples. We note that
the JSON template, together with the README, ensures the consistency of data generation so that
further data and code generation can follow the explicit format and definition guidance of the template
data. Note that we choose JSON as our primary data representation format, in contrast to previous
works Han et al. (2023); Masry et al. (2022); Methani et al. (2020); Xia et al. (2024), which used
CSV. The JSON format allows us to incorporate not only numerical data but also additional chart
information, such as titles and the scales of x and y axes, which is beneficial for pair-wise pre-training
tasks. Moreover, JSON data is structured, and when paired with a README file, it minimizes
ambiguity in data descriptions, which is particularly valuable for complex chart types. For instance,
in candlestick charts, we can clearly define a data point as a dictionary containing “open”, “close”,
“high”, and “low” values, rather than a list where the meaning of each number might be unclear.

Orthogonal Data and Code Generation. With the template files at hand, we can generate data
and code independently. For the data generation branch, to ensure the generated data covers diverse
topics, we jointly input the produced template files (i.e., JSON template and README) and a topic
sampled from a pre-defined topic set (e.g., energy production and market share) into a data expert
GPT-4 module. For the complete topic list, please refer to Appendix H. We require the data expert
GPT-4 to follow the definitions in the template files and generate M JSON data along with different
kinds of questions and answers (e.g., summary QA) based on the raw data. As for code generation,
another code expert GPT-4 is utilized to produce /N Python code based on the given chart type, data
template, and Python library. Note that to prevent generating simple code repeatedly for the given



Chart Example 1 Literal QA
Tech Giant Quarterly Earnings Report Q: What was the opening earnings per share (EPS) for Q4-2022? Short A: 6.50 USD

Long A: The opening earnings per share (EPS) for Q4-2022 was 6.50 USD.

Inferential QA
Q: Was ... closing EPS was lower than the opening EPS? Short A: Yes

Long A: Yes, in Q4-2022 ... of 6.40 USD was lower than the opening EPS of 6.50 USD.
Reasoning QA
Q: How much ... the lowest of Q1-2022 to the highest of Q1-2023?  Short A: 1.80 USD

Earnings per share (EPS) in USD

Quarter " Long A: The EPS grew by 1.80 USD ... Q1-2022 at 5.10 USD to ...Q1-2023 at 6.90 USD.
Chart Example 2 Literal QA

Website Traffic vs Conversion Rate Analysis Q: What is the website traffic from Paid Advertisements? Short A: 150

Long A: According to ... Y-axis in the bar chart, the ... is 150 (in thousands).
= .
Monthly Inferential QA

150 Website
r 2 Visitors Q: Does Social Media Referrals lead in conversion rate? Short A: Yes
] Long A: Yes, Social ... at 3.0%, the highest among all categories ... line graph.
Monthly Reasoning QA
| >~ Conversion

Website Traffic (in thousands)
Conversion Rate (%)

Rate Q: What is the total website traffic from all sources? Short A: 660

Long A: The total ... sum of ... : 120,000 + 150,000 + 180,000 + 210,000 = 660,000.

Figure 3: Examples of generated three-level QAs with long and short answers, accessing the
understanding of charts from various perspectives. Best viewed in color.

chart type, we explicitly ask the code expert GPT-4 to introduce visual variations in aspects such as
color, legend, grid, font, and mark texture, efc. More details can be found in the Appendix.

3.2 DIVERSE QA SYNTHESIS

Based on the parallel data generation pipeline, we are able to collect massive amount of chart image
and JSON raw data pairs for the feature alignment pre-training. Now, we details how we generate
different types of QAs for end-to-end fine-tuning. Specifically, having each JSON data as input, we
use text-only LLM to generate question-answer (QA) pairs. To cover various question-anwser for
chart data, we include general QAs, containing not only description and summary QA but also three
different level of QAs: literal QAs, inferential QAs, and reasoning QAs (as illustrated in Fig. 3).
Furthermore, to enhance the training of chart understanding, we introduce two additional augmented
QAs (for training only): text-only QAs and data-driven QAs. We detail each QA type as follows:

* Description QAs: Generate objective descriptions based on the chart data.

e Summary QAs: Summarize the chart, highlighting key findings.

« Literal QAs: Extract specific values directly from the data.

* Inferential QAs: Infer global insights, such as identifying extreme values.

* Reasoning QAs: Perform calculations to derive answers from chart data.

JSON-only QAs: Replace images with JSON raw data to augmented previous QAs.

* Data-driven QAs: Prompt the model to extract JSON raw data before answering the question.

These QAs encompass a range of questions for chart images, covering abilities from basic data
understanding and global concept comprehension to advanced reasoning, allowing us to further
assess the abilities of MLLMs. Note that, for each QA pair, we use GPT-4 to generate both long
and short answers. The long answer, generated first, includes a step-by-step explanation to derive
the answer, while the short answer, generated later, contains only the final answer derived from the
long explanation. Short answers contain only numerical values or Yes/No response for convenient
evaluation purpose. For more examples of generated chart and QAs, please refer to Appendix K.

Composition for Quadratically Scaled Data. As shown in Fig. 3 (a), we consider 20 different
chart types. For each chart type, we collect 400 different Python codes (N = 400) and 1000 different
JSON data files (M = 1000) covering various topics. Note that we exclude bad data based on
predicted file structure’s correctness, Python code execution errors, and OCR tools. Please refer
to the supplementary materials for detailed information. After filtering, we have approximately
5 million images, with all the chart types listed in Fig. A6. For each chart image, we collect the



Table 1: Comparative analysis with existing benchmarks for chart understanding evaluations. * de-
notes unbounded chart types. Chart variation refers to whether the dataset contains chart images with
different styles but sharing the same raw data.

Benchmark # Image # Chart type Avg. .# QAs Multi—]§vel QAs Ra“.’ data C.haT‘
per image per image per image | Variation
PlotQA Methani et al. (2020) 33.7k 3 1 X X X
ChartQA Masry et al. (2022) 1.5k 3 1 X v X
Chart-to-text Kantharaj et al. (2022b) 6.6k 6 1 X X X
MMC Liu et al. (2024a) 2k 6 1 X 4 X
Chartbench Xu et al. (2023) 2.1k 9 9 v X X
ChartX Xia et al. (2024) 6k 18 1 X v X
CharXiv Wang et al. (2024) 2.3k * 5 v X X
Ours 5.48k 20 135 v v v

raw data in JSON format, a shared README file, the corresponding Python script, 17 general
question-answer (QA) pairs: one description QA, one summary QA, five literal QAs, five inferential
QAs, five reasoning QAs, 2 augmented QAs: 1 JSON-only QA, and 1 data-driven QA.

3.3 A NEW BENCHMARK FOR COMPREHENSIVE CHART UNDERSTANDING

A chart expert model should be capable of understanding a wide range of common chart types and,
like a human, should not only be able to answer questions of varying complexity but also grasp
the underlying data. However, as shown in Table 1, existing chart benchmarks either cover only a
limited range of chart types (e.g., line, bar, and pie charts) or lack comprehensive QA sets to evaluate
a model’s understanding of charts from various perspectives, including raw data comprehension,
inferential abilities, and mathematical reasoning capabilities. To bridge this gap, we propose a
comprehensive benchmark derived from the aforementioned synthetic dataset. It covers 20 different
chart types, three different levels of QAs (literal, inferential, and reasoning QAs), and provides both
long and short answers. Notably, the chart images in the benchmark are not all annotated, allowing
assessment of the model’s ability to understand the underlying data of a chart as humans do. To
ensure the quality of the images in the benchmark, we employed human evaluations to filter the
data and obtain a high-quality test set. The evaluations are based on two criteria: Answerability:
whether the question is answerable given the chart image. Correctness: whether the provided answer
is correct. Please refer to Sec. 3.3 in the supplementary materials for more details about benchmark
statistics, filtering, analysis, etc. Note that these QAs equally cover literal, inferential, and reasoning
questions for measuring chart understanding of MLLM:s.

4 EXPERIMENTS AND MODEL ANALYSIS

4.1 EXPERIMENTAL SETUP

Benchmark. Our evaluation utilizes four classical benchmarks to compare our model against
previous works. Specifically, we use the ChartQA dataset (Masry et al., 2022), which includes 1.5k
chart images in its test set, divided into human-written and machine-generated questions with 1.2k
QA pairs each. The human-written questions often require mathematical reasoning. ChartQA also
provides CSV data for each image, enabling us to conduct a Chart-to-Table (or Chart Extraction)
task to assess the ability of MLLMs to extract raw data from charts, following previous studies (Han
etal., 2023; Liu et al., 2022a). Additionally, we use the PlotQA dataset Methani et al. (2020) where
images generally lack numerical value annotations, necessitating value inference relative to the Y-axis.
For evaluating the models’ capability to capture global concepts, we assess on the Chart-to-Text task
using the Pew and Statista splits from the dataset (Kantharaj et al., 2022b). The Pew split contains 9k
images accompanied by descriptions written by professional editors, while the Statista split includes
33k images that often feature descriptive text within the charts themselves, making it easier than Pew.

Metrics. For ChartQA and PlotQA, we adopt the relaxed accuracy metric for numeric answers,
allowing a 5% margin of error from the exact value, and use exact match for non-numeric answers
as per the standard in previous studies (Masry et al., 2022; Han et al., 2023). In the Chart-to-Table
task, we measure performance using F1 score of Relative Mapping Similarity (RMS) and Relative
Number Set Similarity (RNSS) to evaluate numeric accuracy and table similarity, respectively. For the
Chart-to-Text task, we use BLEU-4, an N-gram matching score, following (Kantharaj et al., 2022b).
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Table 2: Ablation of stage-1 training. This empirically verifies that pre-training basic chart visual
perception is still important, even with abundant stage-2 instruction fine-tuning data. Moreover,
learning to predict JISON data is beneficial, even on top of pre-training with descriptive captions.

Training data ChartQA Our benchmark
human  augmented  literal  inferential  reasoning
LLaVA-CC3M-Pretrain pairs Liu et al. (2024b) 44.80 83.92 41.45 34.09 22.31
+ Chart-description pairs 48.56 86.89 42.71 33.68 23.51
+ Chart-JSON data pairs 52.28 87.68 44.96 34.94 24.61

Table 3: Ablation of stage-2 training. Each type of new instruction / QA data improves the final
performance consistently across almost all metrics. Best result is highlighted in Bold and the second
best is underlined. T denotes inference technique without extra data.

Training data ChartQA Our benchmark
human  augmented  literal  inferential  reasoning
LLaVA-Instruct-150K QAs 45.84 86.48 16.54 15.99 6.57
+ description and summary QAs 47.04 87.76 19.90 15.69 5.26
+ Literal / infer. / reasoning QAs 48.96 87.52 40.55 33.33 21.30
+ JSON-only QAs 49.60 87.36 41.45 34.84 22.36
+ Data-driven QAs 52.28 87.68 44.96 34.94 24.61
+ Data Prompting " 56.96 87.60 52.00 41.75 31.90

The 3-stage Training Process. Unlike previous approaches that convert a general MLLM into a
chart-specific expert by only applying LoRA fine-tuning on limited high-quality data (Han et al., 2023),
training CHOPINLLM unfolds in three stages, illustrated in Fig. 2 (b). The 3-stage training enables
our model not only to understand chart QAs and downstream tasks but also to capture the underlying
data, thereby achieving a fundamental understanding of charts. In the initial pre-training stage, we
fix the ViT and LLM while training the projector from scratch using original LLaVA data alongside
our newly generated chart-description and chart-json pairs. The second stage involves freezing
ViT and jointly fine-tuning the projector and LLM with both original LLaVA QA pairs and our
generated chart QA pairs, enabling the LLM to comprehend visual tokens and facilitate chart question
answering. Finally, we apply LoRA fine-tuning to align the LLM’s response distribution with the
target downstream dataset. Each stage is carefully studied and the results are presented in the
following subsections. In the following study, we ablate 1 stage at a time and use the full-training
setting for the other 2 stages.

4.2 STAGE 1: PRE-TRAINING FOR CHART FEATURE ALIGNMENT

In the first training stage, the goal is to align visual and linguistic features so that visual data can be
seamlessly translated into the textual domain for LLM comprehension. Employing a strategy from
Liu et al. (2024b), we use a projector to translate visual features from ViT (Dosovitskiy et al., 2020)
into the textual domain, training it with pairwise image-caption data to enhance its capability to
capture visual information. We explore three configurations: utilizing only LLaVA CC3M Pretraining
data,” combining LLaVA data with chart-description pairs, and using LLaVA data with both chart-
description and chart-raw data pairs. The data for stage two training remains consistent across these
settings, summary QAs, description QAs, three-level QAs, text-only QAs, and data-driven QAs,
as depicted in Fig. 2 (b). In stage three, all models undergo LoRA fine-tuning on the downstream
dataset, using LLaVA-7B as the baseline for this comparison. Results are detailed in Table 2.

Dense data alignment is beneficial for both chart data comprehension and reasoning. For chart
images, chart-description pairs act as standard image-caption pairs. However, to more effectively
bridge the visual-textual gap, we also utilize chart-json pairs that encompass the underlying numer-
ical data and its schema of the charts. This approach not only aligns visual features with textual
descriptions but also significantly enhances model performance, as demonstrated by improvements of
approximately 2% in literal QAs and about 1% in reasoning skills, according to results in Table 2.

2https ://huggingface.co/datasets/liuhaotian/LLavVA-CC3M-Pretrain-595K
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Table 4: Comprehensive evaluation across four chart benchmarks. CHOPINLLM achieves best
QA results on both (mostly) annotated benchmark, ChartQA, and non-annotated benchmark, PlotQA.
H and A denote the human and augmented branch in ChartQA, respectively. Stat. represent the
statista split. T: our reproduction using the official code. Note that for fair comparison, we don’t use
chain-of-reasoning in the inference. The best result is highlighted in Bold and the second underlined.
# chart data denotes the number of pairwise chart data used in the training. A and S in the data source
represent annotated data and synthetic data, respectively.

Data  Data ChartQA Chart-to-Table Chart-to-Text PlotQA™
Method
# Source

H A Avg. Fl1 RNSS Pew Stat. vl v2
Pix2struct Lee et al. (2023) 80M A 30.50  81.60  56.00 - - 10.30  38.00
Matcha Liu et al. (2022b) 16M  S+A 3820  90.20  64.20 - - 1220 39.40
Unichart Masry et al. (2023) ™ S+A 4392 8356 6624 5271 - 1248 3821
DePlot Liu et al. (2022a) 0.5M  S+A - - - 87.22 94.28 - -
LLaVA7g T Liv etal. 2024b) - - 36.00 6744 5172 56.96 91.83 8.50 21.50  27.26 30.64
LLaVA)3p - - 37.68 7296 5532 4895 - 7.16 24.65 - -
LLaVA3p T - - 4256  73.60 58.08  63.18 93.18 8.83 2239  27.68 30.98
ChartLlama;sg Han et al. (2023) 0.16M A 4896 9036  69.66  89.84 94.65 1423  40.71 29.76  29.93
MMC7g Liu et al. (2024a) 0.6M S+A - - 57.40 - - - - - -
Chartlnstruct;g Masry etal. (2024a)  0.19M A 4552  87.76  66.64 18.87 34.59 13.83  43.53
ChartAst3g Meng et al. (2024) 24M  S+A 65.9 93.9 79.9 91.6 - 15.5 41.0
CHOPINLLM 75 SM N 5228 87.68 69.98  83.63 95.27 11.50 3897  30.06 31.08
CHOPINLLM 33 SM S 54.11 88.67 71.39  88.12 95.95 12.66  40.81 33.98 33.96

4.3 STAGE 2: END-TO-END FINE-TUNING

The second stage, end-to-end fine-tuning, trains the MLLM to actually understand the aligned visual
tokens so that it follows the user instruction and reason about the answer, on top of the inherent
language capability from the original LLM. We utilize a significant number of image-QA pairs to
jointly tune the LLM and the projector. To evaluate the effectiveness of incorporating chart QAs
during fine-tuning, we conduct ablation studies starting with a baseline that uses only LLaVA Instruct-
150K data,” incrementally adding extra QA pairs. All methods leverage the same pre-training weights,
derived from training on LLaVA data with both chart-description and chart-raw data pairs (the best
setting in Sec. 4.2). In stage three, all models undergo LoRA fine-tuning on the downstream dataset.
Comprehensive results are presented in Table 3.

JSON-only QAs allow transferring pure text reasoning abilities to multimodal chart under-
standing. The chart understanding of MLLMs can be seen as two stages: visual and text raw data
alignment (which is done in the training of the first stage) and question answering with reasoning
ability on the raw textual data (JSON). Thus, with a well-aligned first stage training, we hypothesize
that re-blending some pure textual QAs, preserving the ability of reasoning on text raw data, can
also benefit the reasoning abilities in visual-text scenarios. As detailed in Sec. 3.2, for JSON-only
QAs, rather than utilizing chart images and QAs, we replace the chart image with JSON data and a
README, resulting in purely text-based QAs for training. Table 3 demonstrates the effectiveness of
each QA type. We discover that re-blending JSON-only data during the end-to-end fine-tuning stage
improves chart reasoning skills, matching the assumption.

Data-driven QAs in the fine-tuning stage enable MLLMs to enhance prediction accuracy
through data prompting. As detailed in Sec. 3.2, data-driven QAs are multi-turn QAs, which
require models to extract raw data before answering given questions. Combined with the raw data
reasoning abilities enhanced via JSON-only QAs, the model can perform data prompting during
inference, where models achieve better reasoning robustness by first extracting raw data and then
answering the given question based on the data. Please refer to Appendix J for some examples.
As shown in Table 3, data-driven QAs significantly enhance the model’s ability to capture visual
information. Furthermore, leveraging data prompting in inference significantly improves performance
across all downstream tasks.

Shttps://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K
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Figure 4: Qualitative comparison on Chart-to-text and Chart-to-Table task. CHOPINLLM
effectively captures the underlying data and generates accurate chart descriptions with correct
numerical values. denotes correct numbers, while red indicates mistakes. Best viewed in color.
Note that the gold table is the noisy ground truth provided in ChartQA dataset.

4.4 STAGE 3: DOWNSTREAM FINE-TUNING

We build CHOPINLLM with the best setting based on the previous observation (the data used in each
stage can be found in Fig. 2 (b)), and we compare CHOPINLLM with existing chart understanding
approaches, including Pix2struct (Lee et al., 2023), Matcha (Liu et al., 2022b), Unichart (Masry
et al., 2023), Deplot (Liu et al., 2022a), LLaVA (Liu et al., 2024b), and ChartLLlama Han et al. (2023).
The results are shown in Table 4.

Classical question-answering on ChartQA. We find that CHOPINLLM achieves the second best
performance on ChartQA, as shown in Table 4. Notably, compared to the recent work of ChartAst,
we use significantly less data, and most importantly, our training data is fully synthetic, requiring no
additional human effort. In comparison to the third-best model, ChartLlama, we outperform it by
~ 5% on the human split of ChartQA. Note that the human split in ChartQA is more challenging
than the augmented split, as it contains more reasoning questions, suggesting that CHOPINLLM is
better at performing reasoning tasks.

Raw data and global concept understanding. As shown in Table 4, CHOPINLLM achieves the
competitive F1 score and the highest RNSS result, indicating that CHOPINLLM can capture not only
the structure but numerical values of raw data of chart images. We note that the performance on the
chart-to-table task may have been saturated, as the images are mostly annotated. In this context, this
primarily measures the OCR capability and does not assess the ability to capture the underlying data.
As for the Chart-to-Text, shown in Table 4, CHOPINLLM performs comparable in the global concept
capturing and can caption chart image with meaningful texts.

Performance on unannotated chart images. Most of the images in ChartQA (Masry et al., 2022)
are annotated, which means the numerical values of data points are explicitly shown on the images.
We observe that existing chart MLLMs, such as ChartLlama (Han et al., 2023), seem to heavily
rely on this annotation for chart understanding, which is not ideal since real-world charts may be
unannotated. We further evaluate them using the PlotQA dataset, and the results are shown in the last
column of Table 4. Notably, since training previous models like ChartL.lama on PlotQA is infeasible,
we load the model weights as used in ChartQA and perform zero-shot prediction on PlotQA. The
results show that our model performs significantly better (~ 3% improvement) on unannotated chart
images, suggesting that our methods with fundamental training rely less on numerical annotations.
Note that the comparison with ChartAst and ChartInstruct is not included, as it was trained on PlotQA,
which would affect the validity of the zero-shot predictions on PlotQA.

4.5 MORE MODEL ANALYSIS

Qualitative Examples. We provide a qualitative comparison of chart-to-text and chart-to-table
tasks, with results depicted in Fig. 4. In the chart-to-table task, our model accurately captures values
from chart images, unlike LL.aVA and ChartLlama. It is important to note that the gold data tables for
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Figure 5: Qualitative comparison of multi-turn chart question-answering. denotes numbers

that match groundtruth number, while red indicates mismatches. Best viewed in color.

Table 5: Performance comparison on different chart types. Overlapped denotes the chart types that
are in both the ChartLlama training set and our dataset.

Method Basic Overlapped

Line Bar Pie Funnel  Gantt  Heatmap  Scatter Box Candle.
LLaVA Liu et al. (2024b) 455 833 27.14 28.57 0.00 10.61 0.00 13.04 4.76
ChartLlama Han et al. (2023) 29.6 27.1 38.6 25.0 8.07 16.7 12.0 26.09 19.05
CHOPINLLM 409 292 68.6 60.7 15.8 25.8 26.0 21.7 23.8

ChartQA are not always directly accessible, leading to the use of existing models or OCR tools for
data extraction. This process can introduce errors, such as misreporting the value 91.5 for the UK as
915.0, which can adversely affect the performance of MLLMs fine-tuned on such data. Despite these
dataset inaccuracies, our model remains robust, correctly outputting values where ChartL.lama does
not. In the chart-to-text comparison, both ChartL.lama and our model grasp the overall concept of the
charts, but our model excels at accurately capturing and summarizing exact numerical values.

Additionally, as a multimodal chatbot, we emphasize preserving human-like multi-turn conversation
abilities. Figure 5 presents a qualitative comparison on chart images with multi-turn QAs. Although
ChartLlama extracts accurate numerical values, it fails to provide coherent explanations or reasonable
text outputs. In contrast, CHOPINLLM not only extracts accurate data but also provides logical
reasoning and coherent explanations, showcasing the effectiveness of our training approach.

Performance Across Different Chart Types. To asses ability of our model to perform chart
understanding on a broader and more complex chart types we also evaluate it and state-of-the-art
models on the proposed Benchmark discussed in Section 3.3. For an unbiased comparison, we
focused on the short answer format in QA pairs to avoid variations in output preference. The results,
detailed in Table 5, reveal that our model consistently outperforms the state-of-the-art across both
overlapping and basic chart types. Notably, our benchmark, which features unannotated images,
poses a greater challenge than ChartQA. The substantial performance improvement indicates that our
model is adept at inferring data directly from charts and demonstrates superior reasoning capabilities.

5 CONCLUSION

In this paper, we explore the impact of fundamental training strategies in adapting generalist Multi-
modal Large Language Models (MLLMs) to chart understanding. We offer practical guidance for
optimizing feature alignment pre-training and end-to-end fine-tuning. Leveraging these enhanced
training strategies, we introduce a specialized chart MLLM, named CHOPINLLM, capable of inter-
preting diverse chart types independently of numerical annotations. Extensive experiments confirm
that CHOPINLLM surpasses the previous state-of-the-art across four benchmarks, validating our
framework’s effectiveness. Additionally, we present a new benchmark specifically designed to
evaluate MLLMs’ comprehension across various chart types and multiple levels of understanding.
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