

000 001 COG-RETHINKER: HIERARCHICAL METACOGNI- 002 TIVE REINFORCEMENT LEARNING FOR LLM REA- 003 SONING 004 005 006 007

008 **Anonymous authors**
009 Paper under double-blind review

010 011 ABSTRACT 012

013
014 Contemporary progress in large language models (LLMs) has revealed notable
015 inferential capacities via reinforcement learning (RL) employing rule-based re-
016 ward, facilitating the development of O1 and R1-like reasoning models. Directly
017 training from base models with RL is called zero-RL. However, previous works
018 rely upon activating LLMs' inherent capacities through fixed prompt templates.
019 This strategy introduces substantial sampling inefficiencies for weak LLMs, as
020 the majority of problems generate invalid outputs during accuracy-driven filtra-
021 tion in reasoning tasks, which causes a waste of samples. To solve this issue,
022 we propose Cog-Rethinker, a novel hierarchical metacognitive RL framework for
023 LLM reasoning. Our Cog-Rethinker mainly focuses on the rollout procedure in
024 RL training. After the direct rollout, our Cog-Rethinker improves sample utiliza-
025 tion in a hierarchical metacognitive two-stage framework. By leveraging human
026 cognition during solving problems, firstly, it prompts policy to decompose zero-
027 accuracy problems into subproblems to produce final reasoning results. Secondly,
028 with zero-accuracy problems in previous rollout stage, it further prompts policy
029 to refine these answers by referencing previous wrong solutions. Moreover, to
030 enable cold-start of the two new reasoning patterns and maintain train-test consis-
031 tency across prompt templates, our Cog-Rethinker applies supervised fine-tuning
032 on the policy using correct samples of the two stages with direct rollout template.
033 Experimental results demonstrate Cog-Rethinker's superior performance on var-
034 ious mathematical reasoning benchmarks, we also analyzed its improved sample
035 efficiency that accelerates convergence compared to baseline methods.

036 1 INTRODUCTION

037
038 Recent developments in Large Language Models (LLMs) have exhibited significant advancements in
039 inferential capacities, achieving unprecedented accuracy in complex reasoning challenges and even
040 surpassing human performance in specialized disciplines. Prominent examples including OpenAI's
041 O1 (Jaech et al., 2024), Google's Gemini-2.0 (Google, 2024), DeepSeek-R1 (Guo et al., 2025),
042 and Qwen-QwQ (Team, 2024) demonstrate these improvements through their capacity to replicate
043 human-like systematic reasoning methodologies. Performance optimization is achieved through
044 deliberate temporal resource allocation during inference phases. Despite these breakthroughs, it is
045 still challenging when addressing exceptionally demanding tasks such as mathematical reasoning (Li
046 et al., 2024; He et al., 2024) and program synthesis (Jain et al., 2024), which necessitates exploration
047 of expansive solution spaces and meticulous execution of intricate reasoning steps.

048 Contemporary investigations have prioritized advancing LLMs' sophisticated reasoning capacities
049 through inference-phase optimization strategies. The zero-RL framework (Guo et al., 2025; Zeng
050 et al., 2025; Liu et al., 2025) has emerged as particularly effective, implementing RL on base model
051 by leveraging their own rollouts. Despite empirical validation, zero-RL exhibits inherent limitations
052 imposed by the foundational competency profile of base LLMs (Zhao et al., 2025), primarily re-
053 inforcing pre-existing patterns instead of novel cognitive capacities. Recent studies (Gandhi et al.,
2025; Zhang et al., 2025) have demonstrated this limitation, revealing that models such as Llama
3.2 (Meta AI Team, 2024) quickly reach performance plateaus in zero-RL training due to the absence

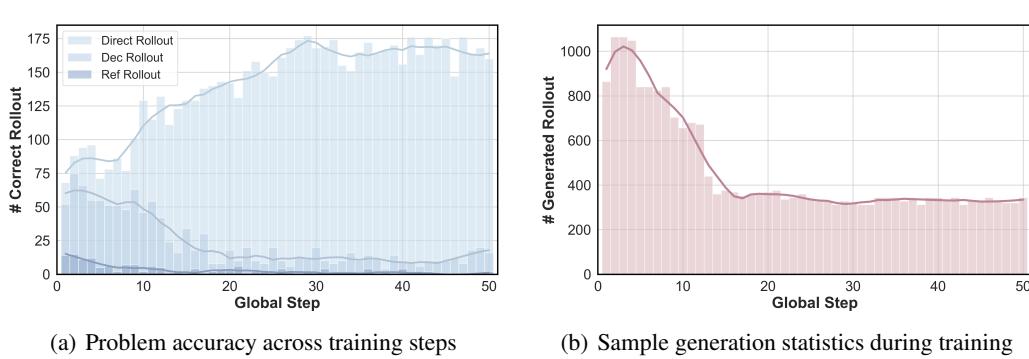


Figure 1: The case study of our Cog-Rethinker. The Dec Rollout and Ref Rollout denote the policy generation by problem decomposition and answer reflection, respectively. Our Cog-Rethinker can generate more correct samples especially at the beginning of training procedure.

of fundamental cognitive mechanisms. Existing approaches that depend on fixed prompt templates exacerbate these issues, while the accuracy filter leads to significant sample waste during early training stages. However, the incorporation of negative samples through more principled designs (Xiong et al., 2025), can enhance the performance of reasoning models, particularly for weaker base models in zero-RL. Existing research in cognitive science (Thagard, 2013; Endsley et al., 2007) shows that problem solving can benefit from cognition. This provokes a crucial research question:

How can we enable LLMs to acquire reasoning behaviors for the negative samples that fully transcend their initial cognitive boundaries?

In this work, we propose Cog-Rethinker, a novel hierarchical metacognitive reinforcement learning framework designed to enhance LLM reasoning capabilities. Unlike existing approaches that rely solely on direct rollout, our Cog-Rethinker introduces two hierarchical metacognitive rollout stages. In the first stage, with the zero-accuracy problem after the direct rollout, our Cog-Rethinker incentivize policy to decompose the problem into manageable subproblems with a provided meta demonstration for sequential solving. But, with the policy reasoning ability improving during training, the simple fixed demonstration cannot fully motivate the policy to provide correct decomposition with hard problems. To alleviate this, we implement a memory buffer to store the correct decomposition samples generated by the policy itself. With demonstrations dynamically retrieved based on problem similarity in the decomposition template in the following rollout. In the second stage, with the problems of zero-accuracy in the first stage, our Cog-Rethinker prompts policy to revise incorrect solutions by referencing previous wrong solutions in a structured reflection template. Moreover, to maintain train-test consistency and inject new reasoning patterns for cold-start scenarios, we restore all samples in the replay buffer to their original prompt templates and apply supervised fine-tuning (SFT) to the policy using correct samples from the two stages. Our Cog-Rethinker significantly accelerates policy convergence while requiring fewer training samples. We conduct a training visualization of our Cog-Rethinker on the Qwen2.5-1.5B-Base model in Figure 1, the two rollout stages lead to a significant increase in positive sample generation early in training and a consequent major gain in sample utilization efficiency. Our main contribution is summarized as follows:

- We propose Cog-Rethinker, a novel hierarchical metacognitive reinforcement learning framework that introduces two additional rollout stages – decomposition and reflection rollout, which significantly enhance sample utilization efficiency in LLM reasoning training.
- To ensure stable training and testing dynamics, we develop an adaptive metacognitive buffer for metacognitive rollout and apply SFT to policy with correct samples in two stages.
- Through experiments across multiple reasoning benchmarks, we demonstrate that Cog-Rethinker achieves better performance while requiring fewer samples compared to existing approaches.

2 RELATED WORK

Reinforcement Learning with Verifiable Reward (RLVR). Leveraging rule-based verification for reward computation has become increasingly prevalent in enhancing LLMs’ reasoning capabilities

(Lambert et al., 2024; Guo et al., 2025; Team et al., 2025). Unlike preference-based approaches that require human feedback collection (Christiano et al., 2017; Ouyang et al., 2022; Bai et al., 2022; Song et al., 2023), RLVR employs deterministic verification functions, most commonly answer matching in mathematical domains to generate binary reward signals that guide model optimization (Guo et al., 2025; Team et al., 2025; Zeng et al., 2025; Xie et al., 2025). The PPO (Schulman et al., 2017) algorithm is the most commonly used reinforcement learning training algorithm. However, when applied to the field of LLMs training, the PPO algorithm often suffers from excessively high resource consumption. As a result, new algorithms have recently been proposed from the perspectives of resource efficiency and training acceleration, including GRPO (Shao et al., 2024), Reinforce++ (Hu et al., 2025a), and other similar variants (Yu et al., 2025; Lin et al., 2025; Kazemnejad et al., 2024; Yuan et al., 2025; Liu et al., 2025). Recent industry breakthroughs like OpenAI o1 (OpenAI et al., 2024) and DeepSeek-R1 (Guo et al., 2025) have demonstrated RLVR’s potential to develop models with superior reasoning patterns.

Inference Scaling for LLM Reasoning. The auto-regressive nature of LLMs necessitates increased token generation for complex problem-solving. Foundational work like Chain-of-Thought (CoT) (Wei et al., 2022) introduced step-by-step prompting to decompose reasoning tasks, significantly improving performance. Subsequent approaches including Tree-of-Thoughts (Tot) (Yao et al., 2024) and Graph-of-Thoughts (GoT) (Besta et al., 2024) expanded the solution space through structured reasoning pathways. Recent theoretical advances (Wu et al., 2024; Snell et al., 2024) have established inference scaling laws that quantify the trade-offs between token generation and inference strategies. Current methods employ various techniques: majority voting and best-of-N sampling (Wang et al., 2022; Li et al., 2023) generate multiple solutions for optimal selection, while Monte Carlo Tree Search (MCTS) approaches (Zhang et al., 2024; Liu et al., 2024; Choi et al., 2023; Zhou et al., 2023) enhance accuracy through extensive computation. Process Reward Models (PRMs) (Setlur et al., 2024; Snell et al., 2024; Lightman et al., 2023; Wang et al., 2024) have proven particularly effective for complex reasoning by selecting high-quality reasoning paths. Modern methods like Bootstrapped Thought (BoT) (Yang et al., 2024b) leverage historical reasoning templates to guide exploration, though the exploration-exploitation balance in template-based approaches (Tang et al., 2024; Setlur et al., 2024) remains unresolved. Our Cog-Rethinker advances this frontier through hierarchical metacognitive reinforcement learning, combining template-augmented reasoning with enhanced sample efficiency to achieve superior accuracy.

3 PRELIMINARIES

Cognitive Engineering. As demonstrated in Xia et al. (2025), cognitive engineering marks a paradigm shift in AI development. To analyze this emerging discipline, we employ the DIKW (Data-Information-Knowledge-Wisdom) hierarchy (Zeleny, 1987; Ackoff, 1989) as a theoretical framework, examining how cognitive engineering facilitates the transition from knowledge to wisdom. The key distinction between cognitive engineering and traditional LLM development approaches lies in their fundamental methodologies. Cognitive engineering specifically emulates human thought processes, directly targeting the cognitive attributes of the wisdom level.

Decouple Clip and Dynamic Sampling Policy Optimization (DAPO). DAPO (Yu et al., 2025) represents an improved version of the GRPO (Shao et al., 2024) algorithm. During practical training, DAPO samples a group of outputs $\{o_i\}_{i=1}^G$ for each question-answer pair (q, a) and optimizes the policy through the following objective function:

$$\begin{aligned} \mathcal{L}_{\text{DAPO}}(\theta) = & -\mathbb{E}_{(q, a) \sim \mathcal{D}, \{o_i\}_{i=1}^G \sim \pi_{\theta_{\text{old}}}(\cdot | q)} \\ & \left[\frac{1}{\sum_{i=1}^G |o_i|} \sum_{i=1}^G \sum_{t=1}^{|o_i|} \min \left(r_{i,t}(\theta) \hat{A}_{i,t}, \text{clip} \left(r_{i,t}(\theta), 1 - \varepsilon_{\text{low}}, 1 + \varepsilon_{\text{high}} \right) \hat{A}_{i,t} \right) \right] \quad (1) \\ \text{s.t. } & 0 < \left| \{o_i \mid \text{is_equivalent}(a, o_i)\} \right| < G, \end{aligned}$$

where,

$$r_{i,t}(\theta) = \frac{\pi_{\theta}(o_{i,t} \mid q, o_{i,<t})}{\pi_{\theta_{\text{old}}}(o_{i,t} \mid q, o_{i,<t})}, \quad \hat{A}_{i,t} = \frac{r_i - \text{mean}(\{r_i\}_{i=1}^G)}{\text{std}(\{r_i\}_{i=1}^G)}.$$

162 Since reward models often suffer from reward hacking (Amodei et al., 2016; Everitt et al., 2017;
 163 2021; Gao et al., 2023), in mathematical reasoning tasks, a simpler rule-based matching approach
 164 is typically employed to determine whether the final answer is correct, providing a binary reward
 165 signal. Specifically, given a question-answer pair (q, a) and an output o , the binary reward model is
 166 typically defined as,

$$167 \quad R(a, o; x) = \begin{cases} 1, & \text{is_equivalent}(a, o), \\ 168 & -1, \quad \text{otherwise.} \end{cases} \quad (2)$$

169 The use of this binary reward function in RL enhances training stability and reliability by substan-
 170 tially reducing vulnerabilities to reward hacking.
 171

172 4 METHODOLOGY

173 In this section, to easily understand the overall structure of our Cog-Rethinker, we present the de-
 174 tail visualization in Figure 2. In a high level, our Cog-Rethinker mainly focus on the accuracy
 175 filter-based rollout stage in RL training, thus, we directly introduce it from three aspects, the decom-
 176 position rollout, the reflection rollout and the policy training.
 177

178 4.1 DECOMPOSITION ROLLOUT

179 In our Cog-Rethinker, with the zero-accuracy problem after the direct rollout, we apply the decom-
 180 position rollout in the first stage. When tackling complex reasoning tasks, human problem-solvers
 181 frequently resort to decomposition techniques and analogical reasoning strategies for particularly
 182 difficult problems (Landauer et al., 1997). Motivated by this, within the domain of LLMs, exist-
 183 ing research in LLMs has provided empirical validation for the effectiveness of such decomposi-
 184 tion methods (Xue et al., 2024; Jiang et al., 2022; Zhao et al., 2023; Zhou et al., 2025).

185 For a given complex mathematical reasoning problem Q , how to incentivize policy to decompose
 186 the problem in our desired manner remains a challenge. Existing works (Xue et al., 2024; Sarangi
 187 et al., 2025) show that when provided with specific decomposition demonstrations, LLMs are capa-
 188 ble of breaking down the problem in accordance with the expected format. Therefore, we maintain
 189 a metacognitive buffer \mathcal{M} of decomposition demonstrations and pre-construct a set of problem de-
 190 composition demonstrations. These examples serve as the reference for the model to learn decom-
 191 position patterns and improve its ability to break down complex problems.
 192

193 Specifically, we retrieve the most similar problem \hat{Q} from the decomposition example metacognitive
 194 buffer based on problem similarity to assist in the decomposition process,
 195

$$196 \quad \{\hat{Q}, \{(\hat{q}_i, \hat{a}_i)\}_{i=1}^k, \hat{A}\} = \underset{Q_i \in \mathcal{M}}{\operatorname{argmax}} \operatorname{sim}(Q, Q_i). \quad (3)$$

197 Here, we utilize BM25 (Robertson et al., 2009) for similarity-based retrieval.
 198

$$199 \quad \operatorname{sim}(Q, Q_i) = \sum_{w \in Q} \operatorname{IDF}(w) \cdot \frac{f_{w, Q_i} \cdot (k + 1)}{f_{w, Q_i} + k \cdot (1 - b + b \cdot \frac{|Q_i|}{\operatorname{avg}_{\mathcal{M}}})}, \quad (4)$$

200 where $\operatorname{IDF}(w)$ (Spärck Jones et al., 1998) measures how important a word w is in the question Q ,
 201 downweighting common terms and highlighting rare, meaningful ones. f_{w, Q_i} denotes the frequency
 202 of the word w in Q_i , $|Q_i|$ represents the length of the query Q_i , $\operatorname{avg}_{\mathcal{M}}$ is the average question length
 203 in buffer \mathcal{M} , and k and b are hyperparameters. In our experiments, we set $k = 1.2$ and $b = 0.75$.

204 Compared to other similarity retrieval algorithms, BM25 demonstrates superior performance in han-
 205 dling text length variations, particularly for long-form responses and extended sequences. Addition-
 206 ally, its lightweight computational cost makes it suitable for integration into RL training. By lever-
 207 aging this metacognitive strategy, our Cog-Rethinker enhances the policy’s ability to break down
 208 intricate problems into manageable sub-tasks.

209 After obtaining the most similar question \hat{Q} to the original question Q , we prompt the policy to
 210 perform an explicit problem decomposition process. Specifically, we input the original question
 211 Q , the similar question \hat{Q} , along with its decomposition and solution process $\{(\hat{q}_i, \hat{a}_i)\}_{i=1}^k$, as well
 212 as the final answer \hat{A} into the policy, enabling it to carry out the corresponding decomposition.

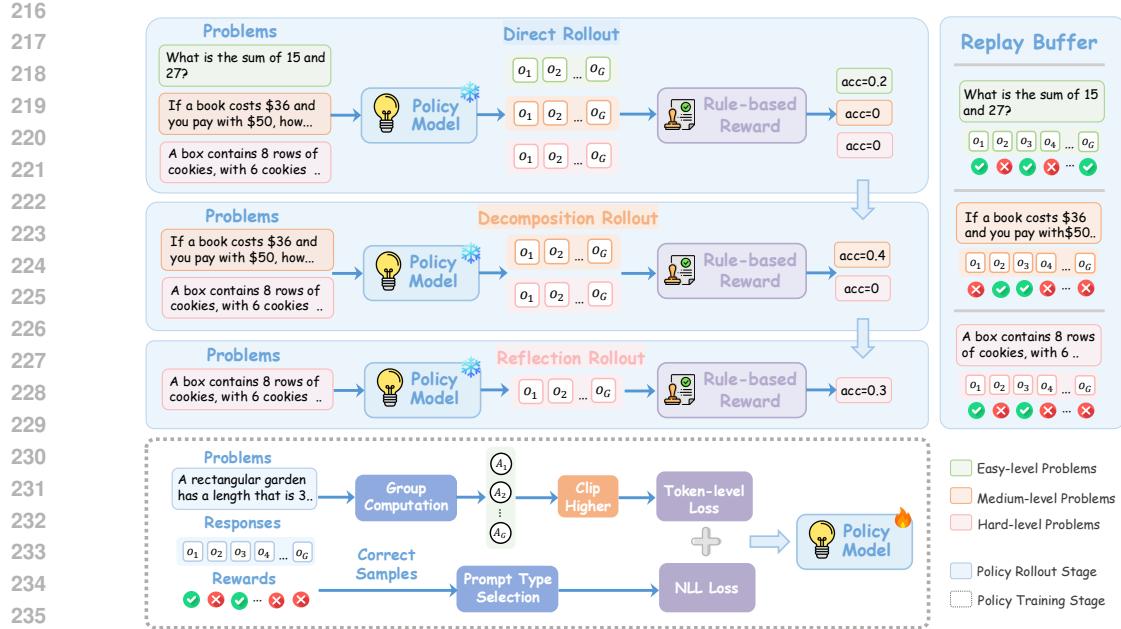


Figure 2: Overall procedure of our Cog-Rethinker. The upper is the whole rollout stage for different difficulty problems, the lower is the training procedure with token-level policy gradient loss of DAPO and NLL loss of SFT.

After that, we guide the policy to sequentially solve these subproblems, generating corresponding question-answer pairs $\{(q_i, a_i)\}_{i=1}^n$. Based on these subproblem-answer pairs, we finally prompt the policy to produce the solution to the original problem,

$$\{q_i\}_{i=1}^n = \text{Decompose}(\pi_\theta, Q, \hat{Q}, \{(\hat{q}_i, \hat{a}_i)\}_{i=1}^k, \hat{A}), \quad A \sim \pi_\theta(\cdot | Q, \{(q_i, a_i)\}_{i=1}^n), \quad (5)$$

where π_θ represents the policy.

However, predefining decomposition demonstrations is time-consuming and labor-intensive, which limits the scalability and adaptability. To overcome this bottleneck, we propose an automated approach for generating diverse decomposition demonstrations, ensuring sustained and efficient utilization of the decomposition process. Specifically, our Cog-Rethinker dynamically updates the metacognitive buffer \mathcal{M} by integrating the questions that are successfully solved after decomposition but previously unresolved through direct response:

$$\mathcal{M} \leftarrow \mathcal{M} \cup (Q, \{(q_i, a_i)\}_{i=1}^k, A), \quad \text{if } R = 1 \quad (6)$$

where $R = 1$ indicates that the policy generated the correct answer. Through dynamic augmentation of the metacognitive buffer with additional decomposition demonstrations, we increase the diversity of available decomposition strategies. Furthermore, the buffer is designed with maximum capacity and a first-in-first-out (FIFO) structure to better align with the current policy's capabilities during RL training, thereby providing higher-quality options.

4.2 REFLECTION ROLLOUT

In our Cog-Rethinker, we apply reflection rollout in the second stage with the problems that is zero-accuracy filtered by the decomposition stage. It incentivizes the policy to revise the answer with the previous wrong answer as the metacognition, which is called the reflection rollout.

Specifically, given a problem Q , its corresponding decomposition and solution steps $\{(q_i, a_i)\}_{i=1}^n$, and the final wrong answer A , our Cog-Rethinker prompts policy to systematically re-evaluate and correct the reasoning process:

$$(Q, \{(q'_i, a'_i)\}_{i=1}^n, A') = \text{Reflect}(\pi_\theta, Q, \{(q_i, a_i)\}_{i=1}^n, A) \quad (7)$$

where A' and (q', a') are the answer and solution steps generated by the reflection rollout, we aim to enable the policy to conduct fine-grained reflection on the entire reasoning process, which involves

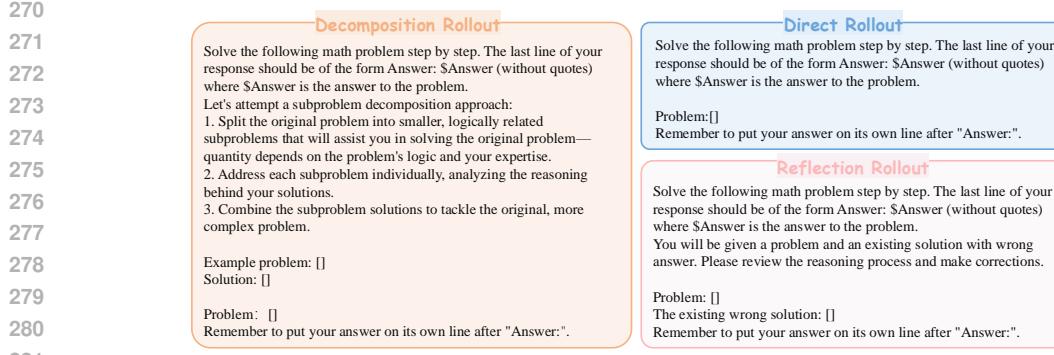


Figure 3: Different prompt templates of our Cog-Rethinker during whole rollout stage.

two key aspects: (1) revising the sub-questions $\{q_i\}_{i=1}^n$ and (2) correcting the resolutions $\{a_i\}_{i=1}^n$ to these sub-questions. Both inadequate problem decomposition and erroneous sub-question responses can hinder the generation for correct answer, necessitating meticulous refinement.

4.3 POLICY TRAINING

Following direct rollout and above two rollout stages, all samples with accuracy scores between 0 and 1 are collected into the replay buffer \mathcal{B} for policy training. However, these samples present a critical inconsistency: the prompt templates differ between training and testing phases. During rollout stage of RL training, three distinct prompt templates are employed, while testing utilizes only the direct rollout template.

To alleviate this and inject the new reasoning patterns into policy training, our Cog-Rethinker modifies the token-level policy gradient loss in Eq. (1) by incorporating clip-higher regularization. Furthermore, to integrate the two new reasoning patterns introduced during policy rollout, we implement Supervised Fine-Tuning (SFT) (Chu et al., 2025) alongside RL training. This hybrid approach specifically targets correct problems generated through decomposition and reflection rollout, systematically transferring these reasoning capabilities into the policy’s direct response generation. Specifically, we incorporate the following additional loss function,

$$\mathcal{L}_{\text{SFT}}(\theta) = - \mathbb{E}_{\substack{(Q, \{(q_i, a_i)\}_{i=1}^k, A, R) \sim \mathcal{B} \\ Q \in \{\text{Decompose, Reflect}\} \& R=1}} \left[\log \pi_\theta(\{(q_i, a_i)\}_{i=1}^k, A) \mid Q \right], \quad (8)$$

Specially, we replace the prompt template of $Q \in \{\text{Decompose, Reflect}\} \& R = 1$ into the direct rollout template to keep the training testing consistency.

Ultimately, we obtain the final loss function of Cog-Rethinker as follows:

$$\mathcal{L}_{\text{Cog-Rethinker}}(\theta) = \mathcal{L}_{\text{DAPo}}(\theta) + \lambda \mathcal{L}_{\text{SFT}}(\theta). \quad (9)$$

where λ is the hyperparameter to control the trade-off between RL and SFT training.

To better understand the effectiveness of our Cog-Rethinker, we conduct Theorem 1 to analyze the convergence rate of three different rollout stages, Direct Rollout (DR), Decomposition Rollout (DecR) and Reflection Rollout (RefR), respectively.

Theorem 1 (Convergence Rate across Stages). *Let $m \in \{\text{DR, DecR, RefR}\}$ index the rollout stages of Cog-Rethinker. Assume (i) horizon H is finite and rewards $r_m(\cdot, \cdot) \in [0, 1]$; (ii) for DecR, the problem is decomposed into sub-problems of horizon $H' < H$; (iii) for RefR, reflection is performed on a sub-tree of horizon $H'' \leq \gamma H'$ with $\gamma \in (0, 1)$. Then the policy-gradient estimator,*

$$g_m(\theta) = \sum_{t=0}^{H_m-1} \nabla_\theta \log \pi_\theta(a_t | q_t) G_{t,k}, \quad G_{t,m} = \sum_{u=t}^{H_m-1} r_m(q_u, a_u)$$

satisfies

$$\text{Var}(g_{\text{RefR}}) \leq \gamma(1 - \eta) \text{Var}(g_{\text{DecR}}) < \text{Var}(g_{\text{DecR}}) < \text{Var}(g_{\text{DR}}),$$

324 Table 1: Overall accuracy performance on various reasoning benchmarks. The best and second best
 325 results are in **bold** and underlined.
 326

Method	GSM8K	MATH-500	AIME 24	AIME 25	AMC 2023	Gaokao 2023en	Minerva	GPQA-diamond	Olympiad
Qwen2.5-1.5B-Base	37.98	21.60	3.33	0.00	15.00	14.81	4.04	5.65	5.33
PPO	67.78	41.20	0.00	0.00	28.50	38.81	15.44	22.31	17.67
GRPO	69.67	42.00	6.67	0.00	32.50	37.92	15.44	20.11	16.00
Reinforce++	63.15	44.20	0.00	0.00	30.00	31.43	14.71	24.36	18.07
BODF	74.07	51.20	<u>3.33</u>	0.00	42.50	44.16	15.07	20.07	<u>18.96</u>
DAPO	77.56	<u>56.00</u>	6.67	0.00	47.50	42.34	<u>16.54</u>	19.53	22.22
Cog-Rethinker	<u>77.51</u>	59.00	6.67	6.67	47.50	44.94	17.65	24.40	22.22
Qwen2.5-7B-Base	58.91	41.60	6.67	0.00	52.50	29.87	11.40	18.55	14.67
PPO	90.55	76.40	20.00	16.67	70.00	61.82	31.62	23.85	40.78
GRPO	92.12	78.40	26.67	20.00	<u>72.50</u>	61.56	33.09	33.24	41.48
Reinforce++	91.36	78.20	<u>20.00</u>	<u>23.33</u>	70.00	61.82	31.62	23.85	42.22
BODF	91.58	74.40	20.00	16.67	62.50	60.00	31.25	26.76	37.78
DAPO	<u>92.21</u>	<u>79.40</u>	26.67	26.67	69.00	<u>63.22</u>	31.88	<u>34.65</u>	42.44
Cog-Rethinker	93.32	80.60	26.67	26.67	73.50	65.52	32.98	36.42	44.22

340 Table 2: Ablation study on various mathematical reasoning benchmarks. The best and second best
 341 results are in **bold** and underlined.
 342

Method	GSM8K	MATH-500	AIME 24	AIME 25	AMC 2023	Gaokao 2023en	Minerva	GPQA-diamond	Olympiad
Cog-Rethinker-1.5B	77.51	59.00	6.67	6.67	47.50	44.94	17.65	24.40	22.22
Cog-Rethinker w/o SFT	72.25	51.40	<u>3.33</u>	0.00	50.00	37.66	15.81	<u>23.86</u>	20.89
Cog-Rethinker w/o MB	<u>75.89</u>	<u>55.60</u>	<u>3.33</u>	0.00	50.00	43.90	14.71	<u>23.86</u>	23.26
Cog-Rethinker w/o RefR	74.45	54.80	<u>3.33</u>	<u>3.33</u>	42.50	41.82	<u>17.28</u>	19.09	18.67
Cog-Rethinker-7B	93.32	80.60	26.67	26.67	73.50	65.52	32.98	36.42	44.22
Cog-Rethinker w/o SFT	91.66	77.00	16.67	<u>16.67</u>	<u>70.50</u>	<u>61.04</u>	29.04	31.43	39.41
Cog-Rethinker w/o MB	<u>92.34</u>	78.00	<u>20.00</u>	13.33	65.00	60.00	30.88	30.88	38.67
Cog-Rethinker w/o RefR	92.12	80.40	<u>20.00</u>	10.00	65.00	59.48	<u>31.62</u>	<u>31.44</u>	42.07

350 where $\eta \in (0, 1)$ is the variance-reduction factor induced by importance-sampling the error sub-tree,
 351 $\text{Var}(\cdot)$ represents the variance. Consequently, for target accuracy $\epsilon > 0$,

$$T_{\text{ReTR}}(\epsilon) < T_{\text{DecR}}(\epsilon) < T_{\text{DR}}(\epsilon).$$

354 where $T(\cdot)$ represents the iteration complexity.

355 We provide the related proof in Appendix A. Thus, our Cog-Rethinker achieves better convergence
 356 than the direct rollout method given the same number of rollouts on negative samples.

358 5 EXPERIMENTS

360 In this section, we present comprehensive experimental results and analysis of our Cog-Rethinker
 361 against other baselines. Our experiments focus on the following research questions:

- 363 • **RQ1:** Can our Cog-Rethinker outperforms all the baseline method across various benchmarks?
- 364 • **RQ2:** How each part of our Cog-Rethinker affects the model performance?
- 365 • **RQ3:** Can our Cog-Rethinker improves the sample efficiency during training?

367 **Training Details.** We initialize both our policy and critic networks with Qwen-2.5-base models
 368 (1.5B and 7B) (Yang et al., 2024a), where value head is random initialized from $\mathcal{U}(-\sqrt{5}, \sqrt{5})$ with
 369 no bias term. For policy networks, we employ AdamW optimizer with $\beta = [0.9, 0.95]$ without
 370 weight decay. The learning rate is set to 1×10^{-6} for the policy. The learning rate scheduler are
 371 both constant learning rate with linear warm-up of 50 optimizer steps. We employ sample packing
 372 during training. We use orz-math-127k as the training dataset (Hu et al., 2025b), also we develop
 373 our code based on VeRL (Sheng et al., 2024). Each generation step contains 128 unique prompts
 374 sampled from the dataset, and generates 64 responses per prompt with temperature and top-p both
 375 set to 1.0. To maintain training stability, we keep the size of the replay buffer as 128 unique prompts
 376 until it is satisfied with the accuracy filter.

377 **Evaluation Benchmarks.** To evaluate the complex reasoning capabilities, we choose a broad set of
 378 challenging reasoning benchmarks, including GSM8K (Cobbe et al., 2021), MATH500 (Hendrycks

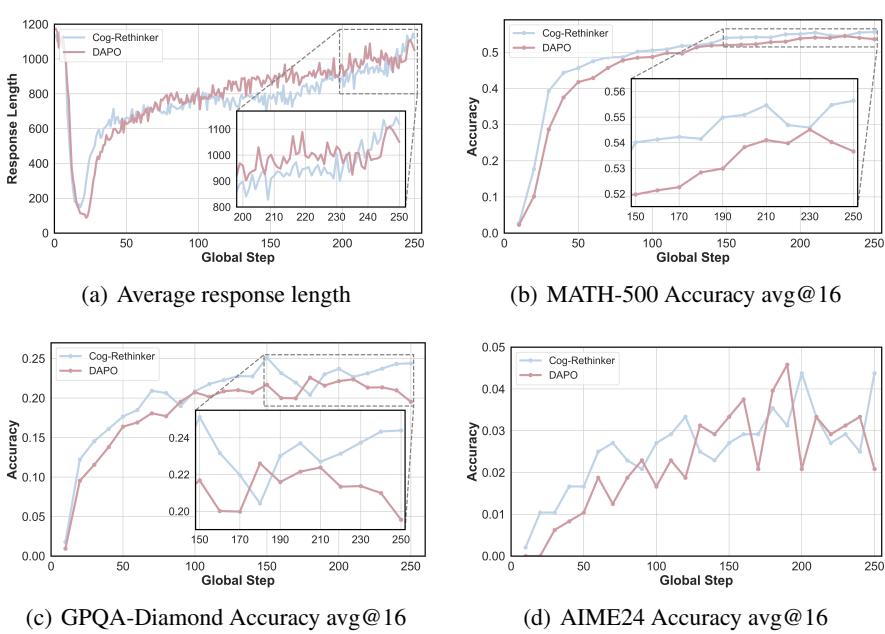


Figure 4: Training comparison between our Cog-Rethinker and DAPO.

et al., 2021), AIME 2024 and 2025 (Li et al., 2024), AMC 2023 (Li et al., 2024), Gaokao 2023en (Liao et al., 2024), GPQA-diamond (Rein et al., 2024), Minera (Lewkowycz et al., 2022) and OlympiadBench (He et al., 2024). These benchmarks comprehensively evaluate mathematical reasoning capabilities, and they are all competition-level and Olympic-level problems. Moreover, AIME 2024, 2025 and AMC 2023 are highly challenging competition benchmarks, the results are through majority voting across 16 runs.

Baselines. To demonstrate the reasoning ability of our Cog-Rethinker, we compare it with many strong baseline methods: PPO (Schulman et al., 2017), GRPO (Shao et al., 2024), Reinforce++ (Hu, 2025), BODF (Bae et al., 2025) and DAPO (Yu et al., 2025). Specifically, PPO, GRPO and Reinforce++ are the commonly used methods for reproducing the O1 and R1-like reasoning models. BODF is the extension of accuracy filtering-based methods (Yu et al., 2025; Cui et al., 2025) by designing the balanced filtering with theoretical guarantees. DAPO leverages the dynamic sampling to improve the training efficiency and stability. Additionally, we choose the accuracy rate of rollout samples between 0.3 and 0.7 in BODF optimization.

5.1 OVERALL PERFORMANCE (RQ1)

Table 1 shows the final results of our Cog-Rethinker with a comprehensive comparison to SOTA reasoning methods. We find that our Cog-Rethinker consistently outperforms the baselines on most challenging mathematical benchmarks across the 1.5B and 7B size base models. More specifically, over the results of 1.5B model, our Cog-Rethinker achieves highest score in MATH-500, surpassing the nearest competitor DAPO by 3.00%, and demonstrates exceptional adaptability in AIME 24 and AMC 2023, outperforming all baselines. Notably, Cog-Rethinker uniquely solves AIME 25 where all other methods score 0.00%, highlighting its capacity for highly challenging tasks. While narrowly trailing DAPO in GSM8K. Over the results of 7B models, our Cog-Rethinker stands out as the top-performing method, achieving the highest scores in most datasets. It leads with 93.32% on GSM8K, 80.60% on MATH-500, 26.67% on both AIME 24 and 25, 73.50% on AMC 2023, 65.52% on Gaokao 2023en, 36.42% on GPQA-diamond, and 44.22% on Olympiad, demonstrating consistent superiority. Other methods like GRPO, DAPO, and Reinforce++ show competitive results but fall short of our Cog-Rethinker’s performance. For instance, DAPO scores 92.21% on GSM8K and 26.67% on AIME 25, while GRPO achieves 78.40% on MATH-500, both trailing behind our Cog-Rethinker. The base model, Qwen2.5-7B-Base, performs the weakest, highlighting the significant improvements brought by advanced techniques. Our Cog-Rethinker’s dominance across diverse and complex tasks underscores its effectiveness in tackling challenging problems.

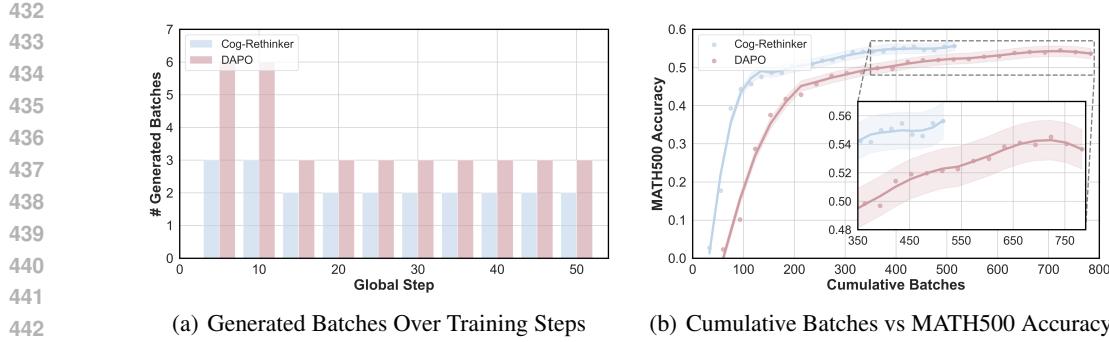


Figure 5: Sample utilization efficiency analysis between our Cog-Rethinker and DAPO.

5.2 ABLATION STUDY (RQ2)

In this section, we conduct experiments to verify the effectiveness of each part in our Cog-Rethinker. Specifically, we sequentially remove the SFT for correct sample of decomposition and reflection, metacognitive buffer of decomposition rollout (MB) and reflection rollout (RefR) to test the newly trained policies. We make three variants (Cog-Rethinker w/o SFT, Cog-Rethinker w/o MB, Cog-Rethinker w/o RefR), the results are shown in Table 2. From the results in Table 2 on both 1.5B and 7B models, we can see that, while removing any component degrades results. SFT removal causes the steepest decline, with GSM8K dropping to 72.25% of 1.5B model, underscoring its role in knowledge injection for the base model to cold start. Ablating MB reduces consistency, causing MATH-500 falling to 78.00% of the 7B model’s performance, highlighting its importance for the decomposition rollout. The removal of RefR weakens performance, with Olympiad scores dropping to 18.67 for the 1.5B model, proving its importance in optimizing complex tasks. The 1.5B variant’s significantly weaker performance confirms the advantages of scale, shows that our Cog-Rethinker improve the training of weaker models.

5.3 TRAINING EFFICIENCY (RQ3)

In this section, we visualize the training procedure of our Cog-Rethinker compared with DAPO to demonstrate its effectiveness. Figure 4(a) shows that Cog-Rethinker achieves shorter stabilized response lengths, indicating more efficient output refinement. Figures 4(b) and (c) reveal that our method maintains consistent performance advantages over DAPO, suggesting superior convergence properties. Finally, Figure 4(d) demonstrates that Cog-Rethinker continuously improves performance on challenging tasks, being competitive with DAPO throughout training. To further analyze sample efficiency, we conduct experiments comparing the relationship between training samples used and final model performance, with results presented in Figure 5. Figure 5(a) demonstrates that our Cog-Rethinker is capable of obtaining more valid training samples than DAPO, reduces the batch generation overhead before both methods reach stability. Figure 5(b) reveals a positive correlation between cumulative batches and MATH500 accuracy, with Cog-Rethinker exhibiting superior sample efficiency throughout the training dynamics, which also confirms the analysis in Theorem 1.

6 CONCLUSION

In this paper, we propose Cog-Rethinker, a hierarchical metacognitive reinforcement learning framework that advances beyond zero-RL through two key mechanisms: (1) hierarchical integration of problem decomposition and reflection in rollout stage to transcend initial cognitive constraints, and (2) adaptive memory for demonstration retrieval of prompt templates and combined with SFT to cold start and keep the train-test consistency. Empirical results show state-of-the-art reasoning performance with faster convergence and reduced sample needs especially on the weak models. Early-stage synergy between decomposition and reflection boosts correct sample generation, overcoming LLMs’ initial cognitive limits. This work establishes a paradigm for developing LLMs that acquire advanced reasoning beyond pretraining, offering scalable solutions for complex mathematical tasks.

486 REPRODUCIBILITY STATEMENT
487488 We provide a full specification of our experimental setup in Section 5 and Appendix C, encompass-
489 ing the benchmarks, training data, baseline configurations, and all hyperparameters to ensure repro-
490 ducibility. The source code is publicly available at: <https://anonymous.4open.science/r/Cog-Rethinker-50C7/>.
491492
493 REFERENCES
494

495 Russell L Ackoff. From data to wisdom. *Journal of applied systems analysis*, 16(1):3–9, 1989.

496 Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané. Con-
497 crete problems in ai safety. *arXiv preprint arXiv:1606.06565*, 2016.

498 Sanghwan Bae, Jiwoo Hong, Min Young Lee, Hanbyul Kim, JeongYeon Nam, and Donghyun
499 Kwak. Online difficulty filtering for reasoning oriented reinforcement learning. *arXiv preprint*
500 *arXiv:2504.03380*, 2025.

501 Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
502 Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless
503 assistant with reinforcement learning from human feedback. *arXiv preprint arXiv:2204.05862*,
504 2022.

505 Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gian-
506 inazzi, Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczek, et al. Graph of
507 thoughts: Solving elaborate problems with large language models. In *Proceedings of the AAAI*
508 *Conference on Artificial Intelligence*, volume 38, pp. 17682–17690, 2024.

509 Sehyun Choi, Tianqing Fang, Zhaowei Wang, and Yangqiu Song. Kcts: knowledge-constrained
510 tree search decoding with token-level hallucination detection. *arXiv preprint arXiv:2310.09044*,
511 2023.

512 Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
513 reinforcement learning from human preferences. *Advances in neural information processing sys-
514 tems*, 30, 2017.

515 Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans, Quoc V
516 Le, Sergey Levine, and Yi Ma. Sft memorizes, rl generalizes: A comparative study of foundation
517 model post-training. *arXiv preprint arXiv:2501.17161*, 2025.

518 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
519 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
520 solve math word problems. *arXiv preprint arXiv:2110.14168*, 2021.

521 Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Wendi Li, Bingxiang He, Yuchen Fan, Tianyu
522 Yu, Qixin Xu, Weize Chen, et al. Process reinforcement through implicit rewards. *arXiv preprint*
523 *arXiv:2502.01456*, 2025.

524 Mica R Endsley, Robert Hoffman, David Kaber, and Emilie Roth. Cognitive engineering and de-
525 cision making: An overview and future course. *Journal of Cognitive Engineering and Decision
526 Making*, 1(1):1–21, 2007.

527 Tom Everitt, Victoria Krakovna, Laurent Orseau, Marcus Hutter, and Shane Legg. Reinforcement
528 learning with a corrupted reward channel. *arXiv preprint arXiv:1705.08417*, 2017.

529 Tom Everitt, Marcus Hutter, Ramana Kumar, and Victoria Krakovna. Reward tampering problems
530 and solutions in reinforcement learning: A causal influence diagram perspective. *Synthese*, 198
531 (Suppl 27):6435–6467, 2021.

532 Kanishk Gandhi, Ayush Chakravarthy, Anikait Singh, Nathan Lile, and Noah D Goodman. Cogni-
533 tive behaviors that enable self-improving reasoners, or, four habits of highly effective stars. *arXiv*
534 *preprint arXiv:2503.01307*, 2025.

540 Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization. In
 541 *International Conference on Machine Learning*, pp. 10835–10866. PMLR, 2023.
 542

543 Google. Introducing gemini 2.0: our new ai model for the agentic era.
 544 <https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024/>,
 545 2024.

546 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 547 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 548 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

549 Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
 550 Xu Han, Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for
 551 promoting agi with olympiad-level bilingual multimodal scientific problems. *arXiv preprint*
 552 *arXiv:2402.14008*, 2024.

553 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
 554 and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *arXiv*
 555 *preprint arXiv:2103.03874*, 2021.

556 Jian Hu. Reinforce++: A simple and efficient approach for aligning large language models. *arXiv*
 557 *preprint arXiv:2501.03262*, 2025.

558 Jian Hu, Jason Klein Liu, Haotian Xu, and Wei Shen. Reinforce++: An efficient rlhf algorithm with
 559 robustness to both prompt and reward models. *arXiv preprint arXiv:2501.03262*, 2025a.

560 Jingcheng Hu, Yinmin Zhang, Qi Han, Dixin Jiang, Xiangyu Zhang, and Heung-Yeung Shum.
 561 Open-reasoner-zero: An open source approach to scaling up reinforcement learning on the base
 562 model. *arXiv preprint arXiv:2503.24290*, 2025b.

563 Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
 564 Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. *arXiv*
 565 *preprint arXiv:2412.16720*, 2024.

566 Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
 567 Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
 568 evaluation of large language models for code. *arXiv preprint arXiv:2403.07974*, 2024.

569 Albert Q Jiang, Sean Welleck, Jin Peng Zhou, Wenda Li, Jiacheng Liu, Mateja Jamnik, Timothée
 570 Lacroix, Yuhuai Wu, and Guillaume Lample. Draft, sketch, and prove: Guiding formal theorem
 571 provers with informal proofs. *arXiv preprint arXiv:2210.12283*, 2022.

572 Amirhossein Kazemnejad, Milad Aghajohari, Eva Portelance, Alessandro Sordoni, Siva Reddy,
 573 Aaron Courville, and Nicolas Le Roux. Vineppo: Unlocking rl potential for llm reasoning through
 574 refined credit assignment. *arXiv preprint arXiv:2410.01679*, 2024.

575 Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brah-
 576 man, Lester James V Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, et al. T\ulu 3: Pushing
 577 frontiers in open language model post-training. *arXiv preprint arXiv:2411.15124*, 2024.

578 Thomas Landauer, Darrell Laham, and Peter Foltz. Learning human-like knowledge by singular
 579 value decomposition: A progress report. *Advances in neural information processing systems*, 10,
 580 1997.

581 Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
 582 masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
 583 reasoning problems with language models. *Advances in Neural Information Processing Systems*,
 584 35:3843–3857, 2022.

585 Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Huang, Kashif
 586 Rasul, Longhui Yu, Albert Q Jiang, Ziju Shen, et al. Numinamath: The largest public dataset in
 587 ai4maths with 860k pairs of competition math problems and solutions. *Hugging Face repository*,
 588 13:9, 2024.

594 Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen, Jian-Guang Lou, and Weizhu Chen. Making
 595 language models better reasoners with step-aware verifier. In *Proceedings of the 61st Annual*
 596 *Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 5315–
 597 5333, 2023.

598 Minpeng Liao, Wei Luo, Chengxi Li, Jing Wu, and Kai Fan. Mario: Math reasoning with code
 599 interpreter output—a reproducible pipeline. *arXiv preprint arXiv:2401.08190*, 2024.

601 Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
 602 Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. *arXiv preprint*
 603 *arXiv:2305.20050*, 2023.

605 Zhihang Lin, Mingbao Lin, Yuan Xie, and Rongrong Ji. Cppo: Accelerating the training of group
 606 relative policy optimization-based reasoning models. *arXiv preprint arXiv:2503.22342*, 2025.

607 Jiacheng Liu, Andrew Cohen, Ramakanth Pasunuru, Yejin Choi, Hannaneh Hajishirzi, and Asli
 608 Celikyilmaz. Don’t throw away your value model! generating more preferable text with value-
 609 guided monte-carlo tree search decoding. In *First Conference on Language Modeling*, 2024.

611 Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee,
 612 and Min Lin. Understanding r1-zero-like training: A critical perspective. *arXiv preprint*
 613 *arXiv:2503.20783*, 2025.

615 Meta AI Team. Llama 3.2: Revolutionizing edge AI and vision
 616 with open, customizable models. <https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/>, May 2024.

618 OpenAI, :, Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden
 619 Low, Alec Helyar, Aleksander Madry, Alex Beutel, Alex Carney, Alex Iftimie, Alex Karpenko,
 620 Alex Tachard Passos, Alexander Neitz, Alexander Prokofiev, Alexander Wei, Allison Tam, Ally
 621 Bennett, Ananya Kumar, Andre Saraiva, Andrea Vallone, Andrew Duberstein, Andrew Kondrich,
 622 Andrey Mishchenko, Andy Applebaum, Angela Jiang, Ashvin Nair, Barret Zoph, Behrooz Ghor-
 623 bani, Ben Rossen, Benjamin Sokolowsky, Boaz Barak, Bob McGrew, Borys Minaiev, Botaao Hao,
 624 Bowen Baker, Brandon Houghton, Brandon McKinzie, Brydon Eastman, Camillo Lugaresi, Cary
 625 Bassin, Cary Hudson, Chak Ming Li, Charles de Bourcy, Chelsea Voss, Chen Shen, Chong Zhang,
 626 Chris Koch, Chris Orsinger, Christopher Hesse, Claudia Fischer, Clive Chan, Dan Roberts, Daniel
 627 Kappler, Daniel Levy, Daniel Selsam, David Dohan, David Farhi, David Mely, David Robinson,
 628 Dimitris Tsipras, Doug Li, Dragos Oprica, Eben Freeman, Eddie Zhang, Edmund Wong, Eliz-
 629 abeth Proehl, Enoch Cheung, Eric Mitchell, Eric Wallace, Erik Ritter, Evan Mays, Fan Wang,
 630 Felipe Petroski Such, Filippo Ras, Florencia Leoni, Foivos Tsimpourlas, Francis Song, Fred
 631 von Lohmann, Freddie Sulit, Geoff Salmon, Giambattista Parascandolo, Gildas Chabot, Grace
 632 Zhao, Greg Brockman, Guillaume Leclerc, Hadi Salman, Haiming Bao, Hao Sheng, Hart An-
 633 drin, Hessam Bagherinezhad, Hongyu Ren, Hunter Lightman, Hyung Won Chung, Ian Kivlichan,
 634 Ian O’Connell, Ian Osband, Ignasi Clavera Gilaberte, Ilge Akkaya, Ilya Kostrikov, Ilya Sutskever,
 635 Irina Kofman, Jakub Pachocki, James Lennon, Jason Wei, Jean Harb, Jerry Twore, Jiacheng Feng,
 636 Jiahui Yu, Jiayi Weng, Jie Tang, Jieqi Yu, Joaquin Quiñonero Candela, Joe Palermo, Joel Parish,
 637 Johannes Heidecke, John Hallman, John Rizzo, Jonathan Gordon, Jonathan Uesato, Jonathan
 638 Ward, Joost Huizinga, Julie Wang, Kai Chen, Kai Xiao, Karan Singhal, Karina Nguyen, Karl
 639 Cobbe, Katy Shi, Kayla Wood, Kendra Rimbach, Keren Gu-Lemberg, Kevin Liu, Kevin Lu,
 640 Kevin Stone, Kevin Yu, Lama Ahmad, Lauren Yang, Leo Liu, Leon Maksin, Leyton Ho, Liam
 641 Fedus, Lilian Weng, Linden Li, Lindsay McCallum, Lindsey Held, Lorenz Kuhn, Lukas Kon-
 642 draciuk, Lukasz Kaiser, Luke Metz, Madelaine Boyd, Maja Trebacz, Manas Joglekar, Mark Chen,
 643 Marko Tintor, Mason Meyer, Matt Jones, Matt Kaufer, Max Schwarzer, Meghan Shah, Mehmet
 644 Yatbaz, Melody Y. Guan, Mengyuan Xu, Mengyuan Yan, Mia Glaese, Mianna Chen, Michael
 645 Lampe, Michael Malek, Michele Wang, Michelle Fradin, Mike McClay, Mikhail Pavlov, Miles
 646 Wang, Mingxuan Wang, Mira Murati, Mo Bavarian, Mostafa Rohaninejad, Nat McAleese, Neil
 647 Chowdhury, Neil Chowdhury, Nick Ryder, Nikolas Tezak, Noam Brown, Ofir Nachum, Oleg
 Boiko, Oleg Murk, Olivia Watkins, Patrick Chao, Paul Ashbourne, Pavel Izmailov, Peter Zhokhov,
 Rachel Dias, Rahul Arora, Randall Lin, Rapha Gontijo Lopes, Raz Gaon, Reah Miyara, Reimar
 Leike, Renny Hwang, Rhythm Garg, Robin Brown, Roshan James, Rui Shu, Ryan Cheu, Ryan

648 Greene, Saachi Jain, Sam Altman, Sam Toizer, Sam Toyer, Samuel Miserendino, Sandhini Agar-
 649 wal, Santiago Hernandez, Sasha Baker, Scott McKinney, Scottie Yan, Shengjia Zhao, Shengli Hu,
 650 Shibani Santurkar, Shraman Ray Chaudhuri, Shuyuan Zhang, Siyuan Fu, Spencer Papay, Steph
 651 Lin, Suchir Balaji, Suvansh Sanjeev, Szymon Sidor, Tal Broda, Aidan Clark, Tao Wang, Tay-
 652 lor Gordon, Ted Sanders, Tejal Patwardhan, Thibault Sottiaux, Thomas Degry, Thomas Dimson,
 653 Tianhao Zheng, Timur Garipov, Tom Stasi, Trapit Bansal, Trevor Creech, Troy Peterson, Tyna
 654 Eloundou, Valerie Qi, Vineet Kosaraju, Vinnie Monaco, Vitchyr Pong, Vlad Fomenko, Weiyi
 655 Zheng, Wenda Zhou, Wes McCabe, Wojciech Zaremba, Yann Dubois, Yinghai Lu, Yining Chen,
 656 Young Cha, Yu Bai, Yuchen He, Yuchen Zhang, Yunyun Wang, Zheng Shao, and Zhuohan Li.
 657 Openai o1 system card, 2024. URL <https://arxiv.org/abs/2412.16720>.

658 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 659 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
 660 instructions with human feedback. *Advances in Neural Information Processing Systems*, 35:
 661 27730–27744, 2022.

662 David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Di-
 663 rani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a bench-
 664 mark. In *First Conference on Language Modeling*, 2024.

666 Stephen Robertson, Hugo Zaragoza, et al. The probabilistic relevance framework: Bm25 and be-
 667 yond. *Foundations and Trends® in Information Retrieval*, 3(4):333–389, 2009.

668 Sneheel Sarangi, Maha Elgarf, and Hanan Salam. Decompose-tom: Enhancing theory of mind
 669 reasoning in large language models through simulation and task decomposition. *arXiv preprint*
 670 *arXiv:2501.09056*, 2025.

671 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 672 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

673 Amrit Setlur, Chirag Nagpal, Adam Fisch, Xinyang Geng, Jacob Eisenstein, Rishabh Agarwal,
 674 Alekh Agarwal, Jonathan Berant, and Aviral Kumar. Rewarding progress: Scaling automated
 675 process verifiers for llm reasoning. *arXiv preprint arXiv:2410.08146*, 2024.

676 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 677 Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
 678 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

679 Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
 680 Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. *arXiv preprint*
 681 *arXiv:2409.19256*, 2024.

682 Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
 683 can be more effective than scaling model parameters. *arXiv preprint arXiv:2408.03314*, 2024.

684 Feifan Song, Bowen Yu, Minghao Li, Haiyang Yu, Fei Huang, Yongbin Li, and Houfeng Wang.
 685 Preference ranking optimization for human alignment. *arXiv preprint arXiv:2306.17492*, 2023.

686 K Spärck Jones, S Walker, and SE Robertson. A probabilistic model of information and retrieval:
 687 development and status. Technical report, University of Cambridge, Computer Laboratory, 1998.

688 Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient meth-
 689 ods for reinforcement learning with function approximation. *Advances in neural information*
 690 *processing systems*, 12, 1999.

691 Hao Tang, Keya Hu, Jin Peng Zhou, Sicheng Zhong, Wei-Long Zheng, Xujie Si, and Kevin
 692 Ellis. Code repair with llms gives an exploration-exploitation tradeoff. *arXiv preprint*
 693 *arXiv:2405.17503*, 2024.

694 Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
 695 Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
 696 llms. *arXiv preprint arXiv:2501.12599*, 2025.

702 Qwen Team. Qwq: Reflect deeply on the boundaries of the unknown, November 2024. URL
 703 <https://qwenlm.github.io/blog/qwq-32b-preview/>.
 704

705 Paul Thagard. Cognitive science. In *The Routledge companion to philosophy of science*, pp. 597–
 706 608. Routledge, 2013.

707 Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang
 708 Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations. In *Pro-
 709 ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
 710 1: Long Papers)*, pp. 9426–9439, 2024.

711 Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and
 712 Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions.
 713 *arXiv preprint arXiv:2212.10560*, 2022.

714 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 715 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in
 716 neural information processing systems*, 35:24824–24837, 2022.

717 Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. Inference scaling laws:
 718 An empirical analysis of compute-optimal inference for problem-solving with language models.
 719 *arXiv preprint arXiv:2408.00724*, 2024.

720 Shijie Xia, Yiwei Qin, Xuefeng Li, Yan Ma, Run-Ze Fan, Steffi Chern, Haoyang Zou, Fan Zhou,
 721 Xiangkun Hu, Jiahe Jin, et al. Generative ai act ii: Test time scaling drives cognition engineering.
 722 *arXiv preprint arXiv:2504.13828*, 2025.

723 Tian Xie, Zitian Gao, Qingnan Ren, Haoming Luo, Yuqian Hong, Bryan Dai, Joey Zhou, Kai Qiu,
 724 Zhirong Wu, and Chong Luo. Logic-rl: Unleashing llm reasoning with rule-based reinforcement
 725 learning. *arXiv preprint arXiv:2502.14768*, 2025.

726 Wei Xiong, Jiarui Yao, Yuhui Xu, Bo Pang, Lei Wang, Doyen Sahoo, Junnan Li, Nan Jiang, Tong
 727 Zhang, Caiming Xiong, et al. A minimalist approach to llm reasoning: from rejection sampling
 728 to reinforce. *arXiv preprint arXiv:2504.11343*, 2025.

729 Shangzi Xue, Zhenya Huang, Jiayu Liu, Xin Lin, Yuting Ning, Binbin Jin, Xin Li, and Qi Liu.
 730 Decompose, analyze and rethink: Solving intricate problems with human-like reasoning cycle.
 731 *Advances in Neural Information Processing Systems*, 37:357–385, 2024.

732 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 733 Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. *arXiv preprint
 734 arXiv:2412.15115*, 2024a.

735 Ling Yang, Zhaochen Yu, Tianjun Zhang, Shiyi Cao, Minkai Xu, Wentao Zhang, Joseph E Gonzalez,
 736 and Bin Cui. Buffer of thoughts: Thought-augmented reasoning with large language models.
 737 *Advances in Neural Information Processing Systems*, 2024b.

738 Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
 739 Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. *Ad-
 740 vances in Neural Information Processing Systems*, 36, 2024.

741 Qiyi Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong
 742 Liu, Lingjun Liu, Xin Liu, et al. Dapo: An open-source llm reinforcement learning system at
 743 scale. *arXiv preprint arXiv:2503.14476*, 2025.

744 Yufeng Yuan, Yu Yue, Ruofei Zhu, Tiantian Fan, and Lin Yan. What's behind ppo's collapse in
 745 long-cot? value optimization holds the secret. *arXiv preprint arXiv:2503.01491*, 2025.

746 Milan Zeleny. Management support systems: Towards integrated knowledge management. *Human
 747 systems management*, 7(1):59–70, 1987.

748 Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerl-
 749 zoo: Investigating and taming zero reinforcement learning for open base models in the wild. *arXiv
 750 preprint arXiv:2503.18892*, 2025.

756 Qiyuan Zhang, Fuyuan Lyu, Zexu Sun, Lei Wang, Weixu Zhang, Zhihan Guo, Yufei Wang, Irwin
757 King, Xue Liu, and Chen Ma. What, how, where, and how well? a survey on test-time scaling in
758 large language models. *arXiv preprint arXiv:2503.24235*, 2025.

759

760 Shun Zhang, Zhenfang Chen, Yikang Shen, Mingyu Ding, Joshua B Tenenbaum, and Chuang Gan.
761 Planning with large language models for code generation. *International Conference on Machine
762 Learning*, 2024.

763

764 Rosie Zhao, Alexandru Meterez, Sham Kakade, Cengiz Pehlevan, Samy Jelassi, and Eran Malach.
765 Echo chamber: RL post-training amplifies behaviors learned in pretraining. *arXiv preprint
766 arXiv:2504.07912*, 2025.

767

768 Xueliang Zhao, Wenda Li, and Lingpeng Kong. Decomposing the enigma: Subgoal-based demon-
769 stration learning for formal theorem proving. *arXiv preprint arXiv:2305.16366*, 2023.

770

771 Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang, and Yu-Xiong Wang. Lan-
772 guage agent tree search unifies reasoning acting and planning in language models. *arXiv preprint
773 arXiv:2310.04406*, 2023.

774

775 Yichi Zhou, Jianqiu Zhao, Yongxin Zhang, Bohan Wang, Siran Wang, Luoxin Chen, Jiahui Wang,
776 Haowei Chen, Allan Jie, Xinbo Zhang, et al. Solving formal math problems by decompositon
777 and iterative reflection. *arXiv preprint arXiv:2507.15225*, 2025.

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810 **A MATHEMATICAL DERIVATIONS**
 811

812 In this section, we present the proof of Theorem 1. To facilitate this, we first introduce Lemma 1.
 813

814 **Lemma 1** (Stage-wise Iteration Complexity). *Under the same assumptions as Theorem 1, for any*
 815 *target accuracy $\epsilon > 0$ and any $\delta \in (0, 1)$, with probability at least $1 - \delta$ the iteration complexity of*
 816 *stage $m \in \{\text{DR, DecR, RefR}\}$ satisfies*

$$817 \quad T_m(\epsilon) \leq \frac{C\sigma_m^2}{\rho_m^2\epsilon} \log\left(\frac{1}{\delta}\right), \\ 818$$

819 where C is a universal constant depending only on the smoothness L and initial step-size α_0 . Con-
 820 sequently,

$$821 \quad T_{\text{RefR}}(\epsilon) < T_{\text{DecR}}(\epsilon) < T_{\text{DR}}(\epsilon). \\ 822$$

823 *Proof.* Fix a stage m and denote $J_m(\theta) = \mathbb{E}_{\tau \sim \pi_\theta}[R_m(\tau)]$. We first establish a generic bound on
 824 $\|\theta_T - \theta^*\|^2$ and then translate it into an iteration-complexity statement.

825 By L -smoothness of $J_m(\theta)$ and the update rule $\theta_{t+1} = \theta_t + \alpha_t g_m(\theta_t)$,

$$826 \quad \|\theta_{t+1} - \theta^*\|^2 \leq \|\theta_t - \theta^*\|^2 + 2\alpha_t \langle g_m(\theta_t), \theta_t - \theta^* \rangle + \alpha_t^2 \|g_m(\theta_t)\|^2. \\ 827$$

828 Taming expectation w.r.t. the randomness of g_m ,

$$829 \quad \mathbb{E}[\|\theta_{t+1} - \theta^*\|^2] \leq \mathbb{E}[\|\theta_t - \theta^*\|^2] + 2\alpha_t \langle \nabla J_m(\theta_t), \theta_t - \theta^* \rangle + \alpha_t^2 \left(\|\nabla J_m(\theta_t)\|^2 + \frac{\sigma_m^2}{N_m} \right) \\ 830 \\ 831 \quad \leq \mathbb{E}[\|\theta_t - \theta^*\|^2] - 2\alpha_t \mu_m \mathbb{E}[J_m^* - J_m(\theta_t)] + \alpha_t^2 (2L(J_m^* - J_m(\theta_t)) + \frac{\sigma_m^2}{N_m}), \\ 832$$

833 where the last inequality uses the Polyak-Łojasiewicz (PL) Condition $\|\nabla J_m(\theta)\|^2 \geq 2\mu_m(J_m^* - J_m(\theta))$ and smoothness $J_m^* - J_m(\theta) \geq \frac{1}{2L} \|\nabla J_m(\theta)\|^2$.

834 Let $\Delta_t = \mathbb{E}[J_m^* - J_m(\theta_t)]$. Then

$$835 \quad \mathbb{E}[\|\theta_{t+1} - \theta^*\|^2] \leq (1 - 2\alpha_t \mu_m + 2L\alpha_t^2) \mathbb{E}[\|\theta_t - \theta^*\|^2] + \alpha_t^2 \frac{\sigma_m^2}{N_m}. \\ 836$$

837 Choosing $\alpha_t = \frac{1}{\mu_m(t+1)}$ yields

$$838 \quad \mathbb{E}[\|\theta_T - \theta^*\|^2] \leq \frac{C\sigma_m^2}{\mu_m^2 N_m T} \leq \frac{C'\sigma_m^2}{\rho_m^4 \mu_{\min}^4 N_m T}, \\ 839$$

840 where we used $\mu_m = \rho_m^2 \mu_{\min}^2 / 2$.

841 To achieve $\mathbb{E}[\|\theta_T - \theta^*\|^2] \leq \epsilon$, it suffices to tame

$$842 \quad T \geq \frac{C\sigma_m^2}{\rho_m^2\epsilon} \log\left(\frac{1}{\delta}\right). \\ 843$$

844 High-probability extension follows from Azuma-Hoeffding applied to the martingale sequence
 845 $M_t = \|\theta_t - \theta^*\|^2 - \mathbb{E}[\|\theta_t - \theta^*\|^2]$.

846 Inserting the empirical inequalities

$$847 \quad \rho_{\text{RefR}} > \rho_{\text{DecR}} > \rho_{\text{DR}}, \quad \sigma_{\text{RefR}}^2 < \sigma_{\text{DecR}}^2 < \sigma_{\text{DR}}^2 \\ 848$$

849 into the bound gives

$$850 \quad T_{\text{RefR}}(\epsilon) < T_{\text{DecR}}(\epsilon) < T_{\text{DR}}(\epsilon), \\ 851$$

852 which completes the proof. \square

853 Then, we can conduct the proof of Theorem 1.

854 **Theorem 1** (Convergence Rate across Stages (Restatement)). *Let $m \in \{\text{DR, DecR, RefR}\}$ index*
 855 *the rollout stages of Cog-Rethinker. Assume (i) horizon H is finite and rewards $r_m(\cdot, \cdot) \in [0, 1]$; (ii)*
 856 *for DecR, the problem is decomposed into sub-problems of horizon $H' < H$; (iii) for RefR, reflection*
 857 *is performed on a sub-tree of horizon $H'' \leq \gamma H'$ with $\gamma \in (0, 1)$. Then the policy-gradient estimator,*

$$858 \quad g_m(\theta) = \sum_{t=0}^{H_m-1} \nabla_\theta \log \pi_\theta(a_t | q_t) G_{t,k}, \quad G_{t,m} = \sum_{u=t}^{H_m-1} r_m(q_u, a_u) \\ 859$$

864 satisfies

$$865 \quad \text{Var}(g_{\text{RefR}}) \leq \gamma(1 - \eta) \text{Var}(g_{\text{DecR}}) < \text{Var}(g_{\text{DecR}}) < \text{Var}(g_{\text{DR}}),$$

866 where $\eta \in (0, 1)$ is the variance-reduction factor induced by importance-sampling the error sub-tree,
 867 $\text{Var}(\cdot)$ represents the variance. Consequently, for target accuracy $\epsilon > 0$,

$$869 \quad T_{\text{RefR}}(\epsilon) < T_{\text{DecR}}(\epsilon) < T_{\text{DR}}(\epsilon).$$

870 where $T(\cdot)$ represents the iteration complexity.

872 *Proof.* We bound $\text{Var}(g_m)$ for each m by analysing the reward-to-go variance.
 873 From Sutton et al. (1999),

$$876 \quad \text{Var}(g_m) = \mathbb{E} \left[\sum_{t=0}^{H_m-1} \|\nabla_{\theta} \log \pi_{\theta}(a_t | s_t)\|^2 \text{Var}_t(G_{t,m}) \right],$$

879 where $H_m = H, H', H''$ for DR, DecR, RefR respectively and

$$880 \quad \text{Var}_t(G_{t,m}) = \mathbb{E} \left[\left(\sum_{u=t}^{H_m-1} r_m(s_u, a_u) - Q_m(s_t, a_t) \right)^2 \mid s_t, a_t \right].$$

884 Since rewards are in $[0, 1]$ and $H_m = H$,

$$885 \quad \text{Var}_t(G_{t,DR}) \leq (H - t)^2 \leq H^2.$$

887 Hence,

$$888 \quad \text{Var}(g_{\text{DR}}) \leq C H^3,$$

889 where $C = \max_t \mathbb{E} \|\nabla_{\theta} \log \pi_{\theta}(a_t | s_t)\|^2$.

890 Decomposition splits the original MDP into k sub-MDPs each of horizon $H' = H/k$. For any
 891 sub-problem i ,

$$893 \quad \text{Var}_t(G_{t,DecR}^{(i)}) \leq (H')^2 = H^2/k^2.$$

894 Summing over k sub-problems,

$$895 \quad \text{Var}(g_{\text{DecR}}) \leq C k (H')^3 = C H^3/k^2 < \text{Var}(g_{\text{DR}}).$$

897 Reflection only resamples a *sub-tree* of relative size $\gamma \in (0, 1)$ and uses importance weight $w \leq 1$
 898 on the erroneous part. The law of total variance gives

$$900 \quad \text{Var}_t(G_{t,RefR}) = \mathbb{E}[\text{Var}_t(G_{t,RefR} \mid \text{sub-tree})] + \text{Var}_t(\mathbb{E}[G_{t,RefR} \mid \text{sub-tree}]).$$

901 The first term is bounded by $\gamma(H')^2$; the second term is reduced by the *negative-curriculum* effect
 902 (mnowing the wrong path) and satisfies

$$904 \quad \text{Var}_t(\mathbb{E}[G_{t,RefR} \mid \text{sub-tree}]) \leq (1 - \eta) \text{Var}_t(G_{t,DecR})$$

905 with $\eta \in (0, 1)$ depending on the overlap between wrong and corrected trajectories. Thus

$$907 \quad \text{Var}(g_{\text{RefR}}) \leq C \gamma(1 - \eta) H^3/k^2 < \text{Var}(g_{\text{DecR}}).$$

909 From smoothness and PL Condition (as in Lemma 1),

$$911 \quad \mathbb{E}[\|\theta_T - \theta^*\|^2] \leq \frac{C' \text{Var}(g_m)}{T}.$$

913 Therefore the iteration complexity

$$915 \quad T_m(\epsilon) \leq \frac{C' \text{Var}(g_m)}{\epsilon}$$

916 satisfies the ordering

$$917 \quad T_{\text{RefR}}(\epsilon) < T_{\text{DecR}}(\epsilon) < T_{\text{DR}}(\epsilon).$$

□

918 **B TRAINING DETAILS**
919920 In this section, we present the training details of our Cog-Rethinker, including the training algorithm,
921 prompt templates and implementation details.
922923 **B.1 TRAINING ALGORITHM**
924925 To better understand the training procedure of our Cog-Rethinker, we present the pseudo code in
926 Algorithm 1.
927928 **Algorithm 1** The training pipeline of our Cog-Rethinker.
929

930 **Require:** Initial policy π_θ ; reward model R ; problems data \mathcal{D} ; hyperparameters $\varepsilon_{\text{low}}, \varepsilon_{\text{high}}, \lambda$

931 1: **for** step = 1, ..., M **do**

932 2: Sample a batch \mathcal{D}_b from \mathcal{D}

933 3: Update the old policy model $\pi_{\theta_{\text{old}}} \leftarrow \pi_\theta$

934 4: Sample G outputs $\{o_i\}_{i=1}^G \sim \pi_{\theta_{\text{old}}}(\cdot | q)$ for each problem $q \in \mathcal{D}_b$ using normal prompt
935 template

936 5: Compute rewards $\{r_i\}_{i=1}^G$ for each o_i by running R

937 6: Calculate accuracy rate γ for each problem q

938 7: Filter out o_i and add remaining to dynamic sampling buffer

939 8: **if** buffer size $n_b < N$ **then**

940 9: **for** each q with $\gamma = 0$ **do**

941 10: Sample G outputs $\{o_i\}_{i=1}^G \sim \pi_{\theta_{\text{old}}}(\cdot | q)$ using decomposition prompt template

942 11: Repeat lines 5-7

943 12: **end for**

944 13: **end if**

945 14: **if** buffer size $n_b < N$ **then**

946 15: **for** each q with $\gamma = 0$ **do**

947 16: Sample G outputs $\{o_i\}_{i=1}^G \sim \pi_{\theta_{\text{old}}}(\cdot | q)$ using reflection prompt template

948 17: Repeat lines 5-7

949 18: **end for**

950 19: **end if**

951 20: **if** buffer size $n_b < N$ **then**

952 21: **continue**

953 22: **end if**

954 23: For each o_i in buffer, compute $\hat{A}_{i,t}$ for t -th token of o_i

955 24: **for** iteration = 1, ..., μ **do**

956 25: Update π_θ by minimizing objective in Eq. (9)

957 26: **end for**

27: **end for**

Ensure: Optimized policy π_θ

960 **B.2 PROMPT TEMPLATES**
961962 As shown in Figure 2 of our Cog-Rethinker, there are two new rollout procedures in the rollout
963 stage of RL training. For the decomposition rollout procedure, we present the details of full prompt
964 template in the following.
965966 **B.3 IMPLEMENTATION DETAILS**
967968 Our Cog-Rethinker is easy to implement. We present the training algorithm in Algorithm 1, with
969 all training procedures based on VeRL (Sheng et al., 2024). In the practical training procedure, we
970 introduce a hyperparameter λ to control the Gaussian regularization strength. Our experiments are
971 conducted on 8 × NVIDIA A800 GPUs, with λ set to 0.04. Additional results on hyperparameter
analysis are presented in Section C.3.

972
973

Prompt Template for Decomposition Rollout

974
975
976
977
978
979
980

Solve the following math problem step by step. The last line of your response should be of the form Answer: \$Answer (without quotes) where \$Answer is the answer to the problem. Let's attempt a subproblem decomposition approach:

1. Split the original problem into smaller, logically related subproblems that will assist you in solving the original problem-quantity depends on the problem's logic and your expertise.
2. Address each subproblem individually, analyzing the reasoning behind your solutions.
3. Combine the subproblem solutions to tackle the original, more complex problem.

Example problem: Solve the equation $\frac{3(x-2)}{4} - \frac{2x+5}{3} = \frac{1}{6}$.

Solution:

Subproblem 1: Eliminate denominators by multiplying all terms by the least common multiple (LCM) of 4, 3, and 6, which is 12: $12 \cdot \frac{3(x-2)}{4} - 12 \cdot \frac{2x+5}{3} = 12 \cdot \frac{1}{6}$. Simplifies to: $9(x-2) - 4(2x+5) = 2$.

Subproblem 2: Expand and simplify: $9x - 18 - 8x - 20 = 2$. Combine like terms: $x - 38 = 2$

Subproblem 3: Isolate the variable: $x = 2 + 38, x = 40$.

Final Solution:

Substituting $x = 40$ back into the original equation confirms both sides equal $\frac{1}{6}$.

Answer: 40

Remember to put your answer on its own line after "Answer:"

991
992
993

Prompt Template for Reflection Rollout

994
995

Solve the following math problem step by step. The last line of your response should be of the form Answer: \$Answer (without quotes) where \$Answer is the answer to the problem.

Let's attempt a subproblem decomposition approach:

1. Analyze the problem. Read the problem carefully and clarify the known conditions and final requirements.
2. Identify the error. Locate the error type in the existing solution (concept error, calculation error, logical loophole).
3. Correct step by step. Correct the error step by step, retain the reasonable part of the original solution and correct the error point one by one.
4. Verify the answer. Use multiple methods to verify the correctness of the final answer.

Problem: Solve the system of equations:

- 1) $2x + 3y = 7$
- 2) $4x - y = 3$

The existing wrong solution:

Subproblem 1: Solve equation 2 for y. Starting equation: $4x - y = 3$.

Subproblem 2: Substitute into equation 1. Correct substitution should be: $2x + 3(4x - 3) = 7$.

Subproblem 3: Solve the simplified equation. Equation being solved: $2x + 12x = 7$.

Subproblem 4: Find corresponding y value. Using partial solution: $y = 4(0.5) = 2$.

Answer: (0.5, 2)

Remember to put your answer on its own line after "Answer:"

1016

1017

C ADDITIONAL EXPERIMENTS

1019

C.1 TRAINING VISUALIZATION

1020

1021

1022

1023

1024

1025

In addition to the results in Figure 4, we conduct further experiments comparing our Cog-Rethinker with DAPO, with the results presented in Figure 6. Specifically, we use maj@16 as the comparison metric. Figure 6 shows our Cog-Rethinker consistently outperforms DAPO in all tests. On the MATH500 benchmark in Figure 6(a), our method outperforms 2% than DAPO and converges faster, becoming stable after 150 training steps. For GPQA-Diamond in Figure 6(b), our method maintains



Figure 6: Additional training visualization between our Cog-Rethinker with DAPO.

accuracy between 22.5% and 25% after step 200, and shows more stable performance between 210-250 steps than DAPO. The smaller graphs show our method stays stable during important training periods (steps 150-250), while DAPO stops improving or gets worse.

The AIME results in Figure 6(c)-(d) show both methods have unstable results due to difficult problems, but our approach works more reliably. Specially, for AIME 25, our method keeps a 2% to 4% lead even when results vary more.

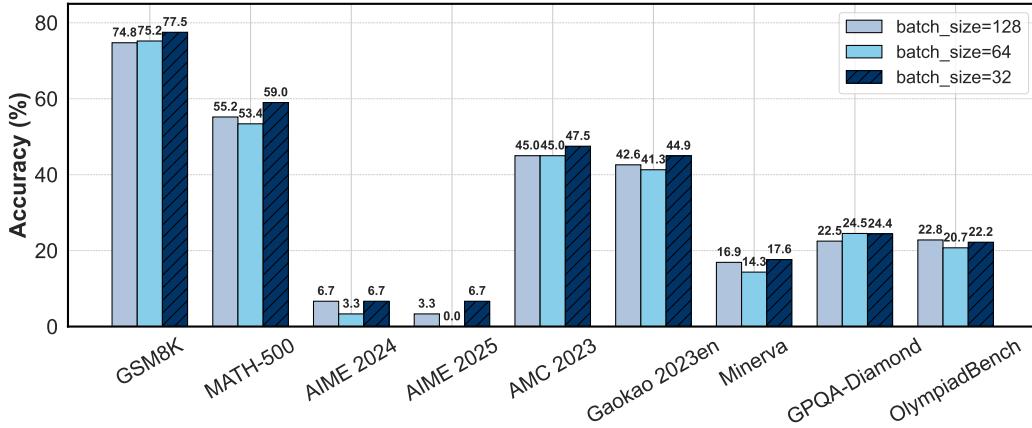
C.2 HYPERPARAMETER ANALYSIS

In our experiments, the main hyperparameters are ε_{low} and $\varepsilon_{\text{high}}$, which are used in DAPO for clip-higher. We adopt the default DAPO settings of $\varepsilon_{\text{low}} = 0.20$ and $\varepsilon_{\text{high}} = 0.28$.

For our newly introduced hyperparameter λ , we analyze its influence by testing values in $\{0.04, 0.02, 0.01, 0.005\}$, with results shown in Figure 7. The results demonstrate dataset-dependent responses to SFT coefficient λ variations. GSM8K and MATH-500 show λ -sensitivity. AMC 2023, Gaokao 2023en exhibit limited accuracy variation (42.5%-47.5%) across λ values. Challenging benchmarks, such as AIME 2024/2025, OlympiadBench, maintain consistently low performance (3.3%-6.7%), showing minimal λ -sensitivity. Minerva and GQA-Diamond display moderate accuracy (15.1%-24.4%). These patterns indicate that λ tuning primarily benefits already well-performing datasets, while complex reasoning tasks require fundamental model improvements beyond hyperparameter optimization. The findings highlight the critical interplay between dataset characteristics and regularization effectiveness in mathematical reasoning tasks.

Regarding optimization steps per global step, the main experiments use a batch size of 32 with four optimization steps. We also conduct experiments with mini batch sizes 64 and 128, corresponding to two and one optimization steps respectively. The results are shown in Figure 8.

Figure 8 evaluates three mini-batch configurations across multiple benchmarks, demonstrating consistent performance advantages for smaller mini batch sizes. The results show a clear hierarchy where batch_size=32 outperforms larger batches in most tasks, achieving 77.5% on GSM8K (vs. 74.8% for 128) and showing the most substantial 5.6% gain on MATH-500. While this trend holds universally, the magnitude varies by domain - mathematical problems like MATH-500 benefit most, while complex tasks like AIME 25 show greater variance (6.7% for 32 vs. 0% for 64). The find-

Figure 7: Performance comparison of different SFT coefficient λ for policy π_θ update.Figure 8: Performance comparison of different training mini batch size for policy π_θ update, where batch_size=128, batch_size=64 and batch_size=32 represent the optimization steps as 1, 2 and 4 in each global step, respectively.

ings confirm batch size selection should balance computational efficiency with these task-specific patterns, particularly for mathematical problems where smaller batches show clearest advantages.

C.3 PERFORMANCE ANALYSIS

We conduct the experiments on Llama3.2 (Meta AI Team, 2024) in Table 3. The results also demonstrate the superiority of our proposed Cog-Rethinker, particularly in scenarios where the baseline model Llama exhibits limited reasoning capability. Both BODF and DAPO failed to complete the training process due to challenges associated with online filter design. Specifically, Llama’s weak mathematical reasoning ability led to a substantial number of samples with zero accuracy, resulting in insufficient valid training batches. In contrast, our Cog-Rethinker successfully completed training and demonstrated superior performance compared to baseline methods, which can be attributed to its effective decomposition and reflection rollout mechanism.

We also conducted comparison of our Cog-Rethinker and DAPO in handling negative samples under the same rollout time in Table 4. In extreme cases, our Cog-Rethinker requires up to three times the number of rollouts when performing both decomposition and reflection operations. To ensure a fair comparison, we allocated the maximum potential number of rollouts on all samples to DAPO ($DAPO_{rollout}$). While increasing the number of rollouts led to a minor performance improvement

1134
1135 Table 3: Overall accuracy performance of Llama3.2 models on various reasoning benchmarks. The
1136 best and second best results are in **bold** and underlined.
1137

Method	GSM8K	MATH-500	AIME 24	AIME 25	AMC 2023	Gaokao 2023en	Minerva	Olympiad
Llama3.2-1B-Base	1.74	3.80	0.00	0.00	0.00	0.00	2.57	1.04
PPO	29.09	<u>15.00</u>	0.00	0.00	2.50	2.60	2.21	3.41
GRPO	28.60	13.41	0.00	0.00	10.00	<u>5.19</u>	<u>1.47</u>	3.30
Reinforce++	34.93	14.60	0.00	0.00	<u>12.50</u>	<u>5.19</u>	<u>1.47</u>	<u>3.62</u>
BODF	–	–	–	–	–	–	–	–
DAPO	–	–	–	–	–	–	–	–
Cog-rethinker	34.70	17.80	0.00	0.00	18.50	8.68	3.49	4.38
Llama3.2-3B-Base	6.97	6.40	0.00	0.00	0.00	0.00	5.51	1.48
PPO	20.43	17.80	0.00	0.00	10.00	17.53	7.78	5.63
GRPO	24.30	17.40	0.00	0.00	17.50	8.57	8.04	5.19
Reinforce++	<u>27.81</u>	<u>22.20</u>	0.00	0.00	<u>12.50</u>	17.53	<u>8.15</u>	<u>5.78</u>
BODF	–	–	–	–	–	–	–	–
DAPO	–	–	–	–	–	–	–	–
Cog-rethinker	32.73	26.60	0.00	0.00	17.50	<u>17.27</u>	9.23	8.48

1150
1151 Table 4: Comparison of our Cog-Rethinker and DAPO on Qwen2.5 models in handling negative
1152 samples under the same rollout number.
1153

Method	GSM8K	MATH-500	AIME 24	AIME 25	AMC 2023	Gaokao 2023en	Minerva	Olympiad
Qwen2.5-1.5B-Base								
DAPO	<u>77.56</u>	<u>56.00</u>	6.67	0.00	47.50	42.34	16.54	22.22
DAPO _{rollout}	77.78	<u>55.56</u>	6.67	0.00	<u>47.00</u>	<u>43.48</u>	<u>16.77</u>	22.22
Cog-Rethinker	77.51	59.00	6.67	6.67	47.50	44.94	17.65	22.22
Qwen2.5-7B-Base								
DAPO	92.21	<u>79.40</u>	26.67	26.67	69.00	<u>63.22</u>	<u>31.88</u>	42.44
DAPO _{rollout}	<u>93.02</u>	78.90	<u>23.33</u>	26.67	66.88	<u>64.41</u>	31.27	43.78
Cog-Rethinker	93.32	80.60	26.67	26.67	73.50	65.52	32.98	44.22

1163 in DAPO, our Cog-Rethinker achieves significantly greater gains. This discrepancy arises because
1164 DAPO_{rollout} encounters limitations inherent to the base model’s capacity, and merely increasing roll-
1165 out number of negative samples does not enable the model to surpass these inherent constraints. In
1166 contrast, our Cog-Rethinker enables the model to break down complex questions into simpler sub-
1167 problems through its rollout mechanism, thereby transcending the base model’s limitations. This
1168 observed phenomenon substantiates the effectiveness of our Cog-Rethinker.

D LIMITATIONS

1172 Our Cog-Rethinker’s performance is contingent on the quality of the base model and the predefined
1173 demonstrations in its metacognitive buffer, which may limit its adaptability to unseen or highly novel
1174 problems. The framework assumes access to accurate subproblem decompositions and reflections,
1175 which may not always be feasible in practice. Additionally, the binary reward system lacks granular-
1176 ity to reward intermediate reasoning steps, potentially hindering nuanced learning. The experiments
1177 focus on mathematical reasoning, and generalization to other domains remains untested.

E USE OF LLMs

1181 We use LLMs only to refine the language and grammar in our paper. We do not use them for
1182 generating research ideas or for finding related work. We provide our complete original text to
1183 OpenAI’s GPT-4o with instructions to make it more professional, coherent, and native-sounding for
1184 a research paper. We then carefully review all suggestions to guarantee that no factual content is
1185 altered and that all changes remain true to our original writing.