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ABSTRACT

Contemporary progress in large language models (LLMs) has revealed notable
inferential capacities via reinforcement learning (RL) employing rule-based re-
ward, facilitating the development of O1 and R1-like reasoning models. Directly
training from base models with RL is called zero-RL. However, previous works
rely upon activating LLMs’ inherent capacities through fixed prompt templates.
This strategy introduces substantial sampling inefficiencies for weak LLMs, as
the majority of problems generate invalid outputs during accuracy-driven filtra-
tion in reasoning tasks, which causes a waste of samples. To solve this issue,
we propose Cog-Rethinker, a novel hierarchical metacognitive RL framework for
LLM reasoning. Our Cog-Rethinker mainly focuses on the rollout procedure in
RL training. After the direct rollout, our Cog-Rethinker improves sample utiliza-
tion in a hierarchical metacognitive two-stage framework. By leveraging human
cognition during solving problems, firstly, it prompts policy to decompose zero-
accuracy problems into subproblems to produce final reasoning results. Secondly,
with zero-accuracy problems in previous rollout stage, it further prompts policy
to refine these answers by referencing previous wrong solutions. Moreover, to
enable cold-start of the two new reasoning patterns and maintain train-test consis-
tency across prompt templates, our Cog-Rethinker applies supervised fine-tuning
on the policy using correct samples of the two stages with direct rollout template.
Experimental results demonstrate Cog-Rethinker’s superior performance on var-
ious mathematical reasoning benchmarks, we also analyzed its improved sample
efficiency that accelerates convergence compared to baseline methods.

1 INTRODUCTION

Recent developments in Large Language Models (LLMs) have exhibited significant advancements in
inferential capacities, achieving unprecedented accuracy in complex reasoning challenges and even
surpassing human performance in specialized disciplines. Prominent examples including OpenAI’s
O1 (Jaech et al., 2024), Google’s Gemini-2.0 (Google, 2024), DeepSeek-R1 (Guo et al., 2025),
and Qwen-QwQ (Team, 2024) demonstrate these improvements through their capacity to replicate
human-like systematic reasoning methodologies. Performance optimization is achieved through
deliberate temporal resource allocation during inference phases. Despite these breakthroughs, it is
still challenging when addressing exceptionally demanding tasks such as mathematical reasoning (Li
et al., 2024; He et al., 2024) and program synthesis (Jain et al., 2024), which necessitates exploration
of expansive solution spaces and meticulous execution of intricate reasoning steps.

Contemporary investigations have prioritized advancing LLMs’ sophisticated reasoning capacities
through inference-phase optimization strategies. The zero-RL framework (Guo et al., 2025; Zeng
et al., 2025; Liu et al., 2025) has emerged as particularly effective, implementing RL on base model
by leveraging their own rollouts. Despite empirical validation, zero-RL exhibits inherent limitations
imposed by the foundational competency profile of base LLMs (Zhao et al., 2025), primarily re-
inforcing pre-existing patterns instead of novel cognitive capacities. Recent studies (Gandhi et al.,
2025; Zhang et al., 2025) have demonstrated this limitation, revealing that models such as Llama
3.2 (Meta AI Team, 2024) quickly reach performance plateaus in zero-RL training due to the absence
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(a) Problem accuracy across training steps (b) Sample generation statistics during training

Figure 1: The case study of our Cog-Rethinker. The Dec Rollout and Ref Rollout denote the policy
generation by problem decomposition and answer reflection, respectively. Our Cog-Rethinker can
generate more correct samples especially at the beginning of training procedure.

of fundamental cognitive mechanisms. Existing approaches that depend on fixed prompt templates
exacerbate these issues, while the accuracy filter leads to significant sample waste during early train-
ing stages. However, the incorporation of negative samples through more principled designs (Xiong
et al., 2025), can enhance the performance of reasoning models, particularly for weaker base models
in zero-RL. Existing research in cognitive science (Thagard, 2013; Endsley et al., 2007) shows that
problem solving can benefit from cognition. This provokes a crucial research question:

How can we enable LLMs to acquire reasoning behaviors for the negative samples that fully
transcend their initial cognitive boundaries?

In this work, we propose Cog-Rethinker, a novel hierarchical metacognitive reinforcement learning
framework designed to enhance LLM reasoning capabilities. Unlike existing approaches that rely
solely on direct rollout, our Cog-Rethinker introduces two hierarchical metacognitive rollout stages.
In the first stage, with the zero-accuracy problem after the direct rollout, our Cog-Rethinker incen-
tivize policy to decompose the problem into manageable subproblems with a provided meta demon-
stration for sequential solving. But, with the policy reasoning ability improving during training, the
simple fixed demonstration cannot fully motivate the policy to provide correct decomposition with
hard problems. To alleviate this, we implement a memory buffer to store the correct decomposition
samples generated by the policy itself. With demonstrations dynamically retrieved based on prob-
lem similarity in the decomposition template in the following rollout. In the second stage, with the
problems of zero-accuracy in the first stage, our Cog-Rethinker prompts policy to revise incorrect
solutions by referencing previous wrong solutions in a structured reflection template. Moreover, to
maintain train-test consistency and inject new reasoning patterns for cold-start scenarios, we restore
all samples in the replay buffer to their original prompt templates and apply supervised fine-tuning
(SFT) to the policy using correct samples from the two stages. Our Cog-Rethinker significantly
accelerates policy convergence while requiring fewer training samples. We conduct a training visu-
alization of our Cog-Rethinker on the Qwen2.5-1.5B-Base model in Figure 1, the two rollout stages
lead to a significant increase in positive sample generation early in training and a consequent major
gain in sample utilization efficiency. Our main contribution is summarized as follows:

• We propose Cog-Rethinker, a novel hierarchical metacognitive reinforcement learning framework
that introduces two additional rollout stages – decomposition and reflection rollout, which signif-
icantly enhance sample utilization efficiency in LLM reasoning training.

• To ensure stable training and testing dynamics, we develop an adaptive metacognitive buffer for
metacognative rollout and apply SFT to policy with correct samples in two stages.

• Through experiments across multiple reasoning benchmarks, we demonstrate that Cog-Rethinker
achieves better performance while requiring fewer samples compared to existing approaches.

2 RELATED WORK

Reinforcement Learning with Verifiable Reward (RLVR). Leveraging rule-based verification for
reward computation has become increasingly prevalent in enhancing LLMs’ reasoning capabilities

2
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(Lambert et al., 2024; Guo et al., 2025; Team et al., 2025). Unlike preference-based approaches that
require human feedback collection (Christiano et al., 2017; Ouyang et al., 2022; Bai et al., 2022;
Song et al., 2023), RLVR employs deterministic verification functions, most commonly answer
matching in mathematical domains to generate binary reward signals that guide model optimization
(Guo et al., 2025; Team et al., 2025; Zeng et al., 2025; Xie et al., 2025). The PPO (Schulman et al.,
2017) algorithm is the most commonly used reinforcement learning training algorithm. However,
when applied to the field of LLMs training, the PPO algorithm often suffers from excessively high re-
source consumption. As a result, new algorithms have recently been proposed from the perspectives
of resource efficiency and training acceleration, including GRPO (Shao et al., 2024), Reinforce++
(Hu et al., 2025a), and other similar variants (Yu et al., 2025; Lin et al., 2025; Kazemnejad et al.,
2024; Yuan et al., 2025; Liu et al., 2025). Recent industry breakthroughs like OpenAI o1 (OpenAI
et al., 2024) and DeepSeek-R1 (Guo et al., 2025) have demonstrated RLVR’s potential to develop
models with superior reasoning patterns.

Inference Scaling for LLM Reasoning. The auto-regressive nature of LLMs necessitates increased
token generation for complex problem-solving. Foundational work like Chain-of-Thought (CoT)
(Wei et al., 2022) introduced step-by-step prompting to decompose reasoning tasks, significantly im-
proving performance. Subsequent approaches including Tree-of-Thoughts (ToT) (Yao et al., 2024)
and Graph-of-Thoughts (GoT) (Besta et al., 2024) expanded the solution space through structured
reasoning pathways. Recent theoretical advances (Wu et al., 2024; Snell et al., 2024) have estab-
lished inference scaling laws that quantify the trade-offs between token generation and inference
strategies. Current methods employ various techniques: majority voting and best-of-N sampling
(Wang et al., 2022; Li et al., 2023) generate multiple solutions for optimal selection, while Monte
Carlo Tree Search (MCTS) approaches (Zhang et al., 2024; Liu et al., 2024; Choi et al., 2023; Zhou
et al., 2023) enhance accuracy through extensive computation. Process Reward Models (PRMs)
(Setlur et al., 2024; Snell et al., 2024; Lightman et al., 2023; Wang et al., 2024) have proven partic-
ularly effective for complex reasoning by selecting high-quality reasoning paths. Modern methods
like Bootstrapped Thought (BoT) (Yang et al., 2024b) leverage historical reasoning templates to
guide exploration, though the exploration-exploitation balance in template-based approaches (Tang
et al., 2024; Setlur et al., 2024) remains unresolved. Our Cog-Rethinker advances this frontier
through hierarchical metacognitive reinforcement learning, combining template-augmented reason-
ing with enhanced sample efficiency to achieve superior accuracy.

3 PRELIMINARIES

Cognitive Engineering. As demonstrated in Xia et al. (2025), cognitive engineering marks a
paradigm shift in AI development. To analyze this emerging discipline, we employ the DIKW (Data-
Information-Knowledge-Wisdom) hierarchy (Zeleny, 1987; Ackoff, 1989) as a theoretical frame-
work, examining how cognitive engineering facilitates the transition from knowledge to wisdom.
The key distinction between cognitive engineering and traditional LLM development approaches
lies in their fundamental methodologies. Cognitive engineering specifically emulates human thought
processes, directly targeting the cognitive attributes of the wisdom level.

Decouple Clip and Dynamic Sampling Policy Optimization (DAPO). DAPO (Yu et al., 2025)
represents an improved version of the GRPO (Shao et al., 2024) algorithm. During practical training,
DAPO samples a group of outputs {oi}Gi=1 for each question-answer pair (q, a) and optimizes the
policy through the following objective function:

LDAPO(θ) = − E(q,a)∼D,{oi}G
i=1∼πθold (·|q)[

1∑G
i=1 |oi|

G∑
i=1

|oi|∑
t=1

min
(
ri,t(θ)Âi,t, clip

(
ri,t(θ), 1− εlow, 1 + εhigh

)
Âi,t

)]
s.t. 0 <

∣∣∣{oi | is equivalent(a, oi)}
∣∣∣ < G,

(1)

where,

ri,t(θ) =
πθ(oi,t | q, oi,<t)

πθold(oi,t | q, oi,<t)
, Âi,t =

ri −mean({ri}Gi=1)

std({ri}Gi=1)
.
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Since reward models often suffer from reward hacking (Amodei et al., 2016; Everitt et al., 2017;
2021; Gao et al., 2023), in mathematical reasoning tasks, a simpler rule-based matching approach
is typically employed to determine whether the final answer is correct, providing a binary reward
signal. Specifically, given a question-answer pair (q, a) and an output o, the binary reward model is
typically defined as,

R(a, o;x) =

{
1, is equivalent(a, o),
−1, otherwise.

(2)

The use of this binary reward function in RL enhances training stability and reliability by substan-
tially reducing vulnerabilities to reward hacking.

4 METHODOLOGY

In this section, to easily understand the overall structure of our Cog-Rethinker, we present the de-
tail visualization in Figure 2. In a high level, our Cog-Rethinker mainly focus on the accuracy
filter-based rollout stage in RL training, thus, we directly introduce it from three aspects, the decom-
position rollout, the reflection rollout and the policy training.

4.1 DECOMPOSITION ROLLOUT

In our Cog-Rethinker, with the zero-accuracy problem after the direct rollout, we apply the decom-
position rollout in the first stage. When tackling complex reasoning tasks, human problem-solvers
frequently resort to decomposition techniques and analogical reasoning strategies for particularly
difficult problems (Landauer et al., 1997). Motivated by this, within the domain of LLMs, exist-
ing research in LLMs has provided empirical validation for the effectiveness of such decomposition
methods (Xue et al., 2024; Jiang et al., 2022; Zhao et al., 2023; Zhou et al., 2025).

For a given complex mathematical reasoning problem Q, how to incentivize policy to decompose
the problem in our desired manner remains a challenge. Existing works (Xue et al., 2024; Sarangi
et al., 2025) show that when provided with specific decomposition demonstrations, LLMs are capa-
ble of breaking down the problem in accordance with the expected format. Therefore, we maintain
a metacognitive bufferM of decomposition demonstrations and pre-construct a set of problem de-
composition demonstrations. These examples serve as the reference for the model to learn decom-
position patterns and improve its ability to break down complex problems.

Specifically, we retrieve the most similar problem Q̂ from the decomposition example metacognitive
buffer based on problem similarity to assist in the decomposition process,

{Q̂, {(q̂i, âi)}ki=1, Â} = argmax
Qi∈M

sim(Q,Qi). (3)

Here, we utilize BM25 (Robertson et al., 2009) for similarity-based retrieval.

sim(Q,Qi) =
∑
w∈Q

IDF(w) · fw,Qi
· (k + 1)

fw,Qi + k · (1− b+ b · |Qi|
avgM

))
, (4)

where IDF(w) (Spärck Jones et al., 1998) measures how important a word w is in the question Q,
downweighting common terms and highlighting rare, meaningful ones. fw,Qi

denotes the frequency
of the word w in Qi, |Qi| represents the length of the query Qi, avgM is the average question length
in bufferM, and k and b are hyperparameters. In our experiments, we set k = 1.2 and b = 0.75.

Compared to other similarity retrieval algorithms, BM25 demonstrates superior performance in han-
dling text length variations, particularly for long-form responses and extended sequences. Addition-
ally, its lightweight computational cost makes it suitable for integration into RL training. By lever-
aging this metacognitive strategy, our Cog-Rethinker enhances the policy’s ability to break down
intricate problems into manageable sub-tasks.

After obtaining the most similar question Q̂ to the original question Q, we prompt the policy to
perform an explicit problem decomposition process. Specifically, we input the original question
Q, the similar question Q̂, along with its decomposition and solution process {(q̂i, âi)}ki=1, as well
as the final answer Â into the policy, enabling it to carry out the corresponding decomposition.

4
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Figure 2: Overall procedure of our Cog-Rethinker. The upper is the whole rollout stage for differ-
ent difficulty problems, the lower is the training procedure with token-level policy gradient loss of
DAPO and NLL loss of SFT.

After that, we guide the policy to sequentially solve these subproblems, generating corresponding
question-answer pairs {(qi, ai)}ni=1. Based on these subproblem-answer pairs, we finally prompt
the policy to produce the solution to the original problem,

{qi}ni=1 = Decompose(πθ, Q, Q̂, {(q̂i, âi)}ki=1, Â), A ∼ πθ(· | Q, {(qi, ai)}ni=1), (5)

where πθ represents the policy.

However, predefining decomposition demonstrations is time-consuming and labor-intensive, which
limits the scalability and adaptability. To overcome this bottleneck, we propose an automated ap-
proach for generating diverse decomposition demonstrations, ensuring sustained and efficient uti-
lization of the decomposition process. Specifically, our Cog-Rethinker dynamically updates the
metacognitive bufferM by integrating the questions that are successfully solved after decomposi-
tion but previously unresolved through direct response:

M←M∪ (Q, {(qi, ai)}ki=1, A), if R = 1 (6)

where R = 1 indicates that the policy generated the correct answer. Through dynamic augmentation
of the metacognitive buffer with additional decomposition demonstrations, we increase the diversity
of available decomposition strategies. Furthermore, the buffer is designed with maximum capacity
and a first-in-first-out (FIFO) structure to better align with the current policy’s capabilities during
RL training, thereby providing higher-quality options.

4.2 REFLECTION ROLLOUT

In our Cog-Rethinker, we apply reflection rollout in the second stage with the problems that is zero-
accuracy filtered by the decomposition stage. It incentivizes the policy to revise the answer with the
previous wrong answer as the metacognition, which is called the reflection rollout.

Specifically, given a problem Q, its corresponding decomposition and solution steps {(qi, ai)}ni=1,
and the final wrong answer A, our Cog-Rethinker prompts policy to systematically re-evaluate and
correct the reasoning process:

(Q, {(q′i, a′i)}ni=1, A
′) = Reflect(πθ, Q, {(qi, ai)}ni=1, A) (7)

where A′ and (q′, a′) are the answer and solution steps generated by the reflection rollout, we aim to
enable the policy to conduct fine-grained reflection on the entire reasoning process, which involves

5
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Direct RolloutDecomposition Rollout

Reflection Rollout
Solve the following math problem step by step. The last line of your 

response should be of the form Answer: $Answer (without quotes) 

where $Answer is the answer to the problem. 

You will be given a problem and an existing solution with wrong 

answer. Please review the reasoning process and make corrections.

Problem: []

The existing wrong solution: []

Remember to put your answer on its own line after "Answer:".

Solve the following math problem step by step. The last line of your 

response should be of the form Answer: $Answer (without quotes) 

where $Answer is the answer to the problem.

Problem:[]

Remember to put your answer on its own line after "Answer:".

Solve the following math problem step by step. The last line of your 

response should be of the form Answer: $Answer (without quotes) 

where $Answer is the answer to the problem.                

Let's attempt a subproblem decomposition approach:

1. Split the original problem into smaller, logically related 

subproblems that will assist you in solving the original problem—

quantity depends on the problem's logic and your expertise.

2. Address each subproblem individually, analyzing the reasoning 

behind your solutions.

3. Combine the subproblem solutions to tackle the original, more 

complex problem.

Example problem: []

Solution: []

Problem：[]

Remember to put your answer on its own line after "Answer:”.

Figure 3: Different prompt templates of our Cog-Rethinker during whole rollout stage.

two key aspects: (1) revising the sub-questions {qi}ni=1 and (2) correcting the resolutions {ai}ni=1 to
these sub-questions. Both inadequate problem decomposition and erroneous sub-question responses
can hinder the generation for correct answer, necessitating meticulous refinement.

4.3 POLICY TRAINING

Following direct rollout and above two rollout stages, all samples with accuracy scores between 0
and 1 are collected into the replay buffer B for policy training. However, these samples present
a critical inconsistency: the prompt templates differ between training and testing phases. During
rollout stage of RL training, three distinct prompt templates are employed, while testing utilizes
only the direct rollout template.

To alleviate this and inject the new reasoning patterns into policy training, our Cog-Rethinker mod-
ifies the token-level policy gradient loss in Eq. (1) by incorporating clip-higher regularization. Fur-
thermore, to integrate the two new reasoning patterns introduced during policy rollout, we imple-
ment Supervised Fine-Tuning (SFT) (Chu et al., 2025) alongside RL training. This hybrid approach
specifically targets correct problems generated through decomposition and reflection rollout, sys-
tematically transferring these reasoning capabilities into the policy’s direct response generation.
Specifically, we incorporate the following additional loss function,

LSFT(θ) = − E
(Q,{(qi,ai)}k

i=1,A,R)∼B
Q∈{Decompose,Reflect}&R=1

[
log πθ

(
({(qi, ai)}ki=1, A) | Q

)]
, (8)

Specially, we replace the prompt template of Q ∈ {Decompose,Reflect}&R = 1 into the direct
rollout template to keep the training testing consistency.

Ultimately, we obtain the final loss function of Cog-Rethinker as follows:

LCog-Rethinker(θ) = LDAPO(θ) + λLSFT(θ). (9)

where λ is the hyperparameter to control the trade-off between RL and SFT training.

To better understand the effectiveness of our Cog-Rethinker, we conduct Theorem 1 to analyze
the convergence rate of three different rollout stages, Direct Rollout (DR), Decomposition Rollout
(DecR) and Reflection Rollout (RefR), respectively.

Theorem 1 (Convergence Rate across Stages). Let m ∈ {DR,DecR,RefR} index the rollout stages
of Cog-Rethinker. Assume (i) horizon H is finite and rewards rm(·, ·) ∈ [0, 1]; (ii) for DecR, the
problem is decomposed into sub-problems of horizon H ′<H; (iii) for RefR, reflection is performed
on a sub-tree of horizon H ′′≤γH ′ with γ∈(0, 1). Then the policy-gradient estimator,

gm(θ) =

Hm−1∑
t=0

∇θ log πθ(at|qt)Gt,k, Gt,m =

Hm−1∑
u=t

rm(qu, au)

satisfies
Var(gRefR) ≤ γ(1− η)Var(gDecR) < Var(gDecR) < Var(gDR),

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Overall accuracy performance on various reasoning benchmarks. The best and second best
results are in bold and underlined.

Method GSM8K MATH-500 AIME 24 AIME 25 AMC 2023 Gaokao 2023en Minerva GPQA-diamond Olympiad

Qwen2.5-1.5B-Base 37.98 21.60 3.33 0.00 15.00 14.81 4.04 5.65 5.33

PPO 67.78 41.20 0.00 0.00 28.50 38.81 15.44 22.31 17.67
GRPO 69.67 42.00 6.67 0.00 32.50 37.92 15.44 20.11 16.00

Reinforce++ 63.15 44.20 0.00 0.00 30.00 31.43 14.71 24.36 18.07
BODF 74.07 51.20 3.33 0.00 42.50 44.16 15.07 20.07 18.96
DAPO 77.56 56.00 6.67 0.00 47.50 42.34 16.54 19.53 22.22

Cog-Rethinker 77.51 59.00 6.67 6.67 47.50 44.94 17.65 24.40 22.22
Qwen2.5-7B-Base 58.91 41.60 6.67 0.00 52.50 29.87 11.40 18.55 14.67

PPO 90.55 76.40 20.00 16.67 70.00 61.82 31.62 23.85 40.78
GRPO 92.12 78.40 26.67 20.00 72.50 61.56 33.09 33.24 41.48

Reinforce++ 91.36 78.20 20.00 23.33 70.00 61.82 31.62 23.85 42.22
BODF 91.58 74.40 20.00 16.67 62.50 60.00 31.25 26.76 37.78
DAPO 92.21 79.40 26.67 26.67 69.00 63.22 31.88 34.65 42.44

Cog-Rethinker 93.32 80.60 26.67 26.67 73.50 65.52 32.98 36.42 44.22

Table 2: Ablation study on various mathematical reasoning benchmarks. The best and second best
results are in bold and underlined.

Method GSM8K MATH-500 AIME 24 AIME 25 AMC 2023 Gaokao 2023en Minerva GPQA-diamond Olympiad

Cog-Rethinker-1.5B 77.51 59.00 6.67 6.67 47.50 44.94 17.65 24.40 22.22
Cog-Rethinker w/o SFT 72.25 51.40 3.33 0.00 50.00 37.66 15.81 23.86 20.89
Cog-Rethinker w/o MB 75.89 55.60 3.33 0.00 50.00 43.90 14.71 23.86 23.26

Cog-Rethinker w/o RefR 74.45 54.80 3.33 3.33 42.50 41.82 17.28 19.09 18.67

Cog-Rethinker-7B 93.32 80.60 26.67 26.67 73.50 65.52 32.98 36.42 44.22
Cog-Rethinker w/o SFT 91.66 77.00 16.67 16.67 70.50 61.04 29.04 31.43 39.41
Cog-Rethinker w/o MB 92.34 78.00 20.00 13.33 65.00 60.00 30.88 30.88 38.67

Cog-Rethinker w/o RefR 92.12 80.40 20.00 10.00 65.00 59.48 31.62 31.44 42.07

where η∈(0, 1) is the variance-reduction factor induced by importance-sampling the error sub-tree,
Var(·) represents the variance Consequently, for target accuracy ϵ > 0,

TRefR(ϵ) < TDecR(ϵ) < TDR(ϵ).

where T (·) represents the iteration complexity.

We provide the related proof in Appendix A. Thus, our Cog-Rethinker achieves better convergence
than the direct rollout method given the same number of rollouts on negative samples.

5 EXPERIMENTS

In this section, we present comprehensive experimental results and analysis of our Cog-Rethinker
against other baselines. Our experiments focus on the following research questions:

• RQ1: Can our Cog-Rethinker outperforms all the baseline method across various benchmarks?
• RQ2: How each part of our Cog-Rethinker affects the model performance?
• RQ3: Can our Cog-Rethinker improves the sample efficiency during training?

Training Details. We initialize both our policy and critic networks with Qwen-2.5-base models
(1.5B and 7B) (Yang et al., 2024a), where value head is random initialized from U(−

√
5,
√
5) with

no bias term. For policy networks, we employ AdamW optimizer with β = [0.9, 0.95] without
weight decay. The learning rate is set to 1 × 10−6 for the policy. The learning rate scheduler are
both constant learning rate with linear warm-up of 50 optimizer steps. We employ sample packing
during training. We use orz-math-127k as the training dataset (Hu et al., 2025b), also we develop
our code based on VeRL (Sheng et al., 2024). Each generation step contains 128 unique prompts
sampled from the dataset, and generates 64 responses per prompt with temperature and top-p both
set to 1.0. To maintain training stability, we keep the size of the replay buffer as 128 unique prompts
until it is satisfied with the accuracy filter.

Evaluation Benchmarks. To evaluate the complex reasoning capabilities, we choose a broad set of
challenging reasoning benchmarks, including GSM8K (Cobbe et al., 2021), MATH500 (Hendrycks
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(a) Average response length (b) MATH-500 Accuracy avg@16

(c) GPQA-Diamond Accuracy avg@16 (d) AIME24 Accuracy avg@16

Figure 4: Training comparison between our Cog-Rethinker and DAPO.

et al., 2021), AIME 2024 and 2025 (Li et al., 2024), AMC 2023 (Li et al., 2024), Gaokao
2023en (Liao et al., 2024), GPQA-diamond (Rein et al., 2024), Minera (Lewkowycz et al., 2022)
and OlympiadBench (He et al., 2024). These benchmarks comprehensively evaluate mathematical
reasoning capabilities, and they are all competition-level and Olympic-level problems. Moreover,
AIME 2024, 2025 and AMC 2023 are highly challenging competition benchmarks, the results are
through majority voting across 16 runs.

Baselines. To demonstrate the reasoning ability of our Cog-Rethinker, we compare it with many
strong baseline methods: PPO (Schulman et al., 2017), GRPO (Shao et al., 2024), Reinforce++ (Hu,
2025), BODF (Bae et al., 2025) and DAPO (Yu et al., 2025). Specifically, PPO, GRPO and Re-
inforce++ are the commonly used methods for reproducing the O1 and R1-like reasoning models.
BODF is the extension of accuracy filtering-based methods (Yu et al., 2025; Cui et al., 2025) by
designing the balanced filtering with theoretical guarantees. DAPO leverages the dynamic sampling
to improve the training efficiency and stability. Additionally, we choose the accuracy rate of rollout
samples between 0.3 and 0.7 in BODF optimization.

5.1 OVERALL PERFORMANCE (RQ1)

Table 1 shows the final results of our Cog-Rethinker with a comprehensive comparison to SOTA
reasoning methods. We find that our Cog-Rethinker consistently outperforms the baselines on most
challenging mathematical benchmarks across the 1.5B and 7B size base models. More specifically,
over the results of 1.5B model, our Cog-Rethinker achieves highest score in MATH-500, surpassing
the nearest competitor DAPO by 3.00%, and demonstrates exceptional adaptability in AIME 24 and
AMC 2023, outperforming all baselines. Notably, Cog-Rethinker uniquely solves AIME 25 where
all other methods score 0.00%, highlighting its capacity for highly challenging tasks. While nar-
rowly trailing DAPO in GSM8K. Over the results of 7B models, our Cog-Rethinker stands out as
the top-performing method, achieving the highest scores in most datasets. It leads with 93.32% on
GSM8K, 80.60% on MATH-500, 26.67% on both AIME 24 and 25, 73.50% on AMC 2023, 65.52%
on Gaokao 2023en, 36.42% on GPQA-diamond, and 44.22% on Olympiad, demonstrating consis-
tent superiority. Other methods like GRPO, DAPO, and Reinforce++ show competitive results but
fall short of our Cog-Rethinker’s performance. For instance, DAPO scores 92.21% on GSM8K and
26.67% on AIME 25, while GRPO achieves 78.40% on MATH-500, both trailing behind our Cog-
Rethinker. The base model, Qwen2.5-7B-Base, performs the weakest, highlighting the significant
improvements brought by advanced techniques. Our Cog-Rethinker’s dominance across diverse and
complex tasks underscores its effectiveness in tackling challenging problems.
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(a) Generated Batches Over Training Steps (b) Cumulative Batches vs MATH500 Accuracy

Figure 5: Sample utilization efficiency analysis between our Cog-Rethinker and DAPO.

5.2 ABLATION STUDY (RQ2)

In this section, we conduct experiments to verify the effectiveness of each part in our Cog-Rethinker.
Specially, we sequentially remove the SFT for correct sample of decomposition and reflection,
metacognitive buffer of decomposition rollout (MB) and reflection rollout (RefR) to test the newly
trained policies. We make three variants (Cog-Rethinker w/o SFT, Cog-Rethinker w/o MB, Cog-
Rethinker w/o RefR), the results are shown in Table 2. From the results in Table 2 on both 1.5B
and 7B models, we can see that, while removing any component degrades results. SFT removal
causes the steepest decline, with GSM8K dropping to 72.25% of 1.5B model, underscoring its role
in knowledge injection for the base model to cold start. Ablating MB reduces consistency, causing
MATH-500 falling to 78.00% of the 7B model’s performance, highlighting its importance for the
decomposition rollout. The removal of RefR weakens performance, with Olympiad scores dropping
to 18.67 for the 1.5B model, proving its importance in optimizing complex tasks. The 1.5B variant’s
significantly weaker performance confirms the advantages of scale, shows that our Cog-Rethinker
improve the training of weaker models.

5.3 TRAINING EFFICIENCY (RQ3)

In this section, we visualize the training procedure of our Cog-Rethinker compared with DAPO
to demonstrate its effectiveness. Figure 4(a) shows that Cog-Rethinker achieves shorter stabilized
response lengths, indicating more efficient output refinement. Figures 4(b) and (c) reveal that our
method maintains consistent performance advantages over DAPO, suggesting superior convergence
properties. Finally, Figure 4(d) demonstrates that Cog-Rethinker continuously improves perfor-
mance on challenging tasks, being competitive with DAPO throughout training. To further analyze
sample efficiency, we conduct experiments comparing the relationship between training samples
used and final model performance, with results presented in Figure 5. Figure 5(a) demonstrates
that our Cog-Rethinker is capable of obtaining more valid training samples than DAPO, reduces the
batch generation overhead before both methods reach stability. Figure 5(b) reveals a positive corre-
lation between cumulative batches and MATH500 accuracy, with Cog-Rethinker exhibiting superior
sample efficiency throughout the training dynamics, which also confirms the analysis in Theorem 1.

6 CONCLUSION

In this paper, we propose Cog-Rethinker, a hierarchical metacognitive reinforcement learning frame-
work that advances beyond zero-RL through two key mechanisms: (1) hierarchical integration of
problem decomposition and reflection in rollout stage to transcend initial cognitive constraints, and
(2) adaptive memory for demonstration retrieval of prompt templates and combined with SFT to
cold start and keep the train-test consistency. Empirical results show state-of-the-art reasoning per-
formance with faster convergence and reduced sample needs especially on the weak models. Early-
stage synergy between decomposition and reflection boosts correct sample generation, overcoming
LLMs’ initial cognitive limits. This work establishes a paradigm for developing LLMs that acquire
advanced reasoning beyond pretraining, offering scalable solutions for complex mathematical tasks.
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REPRODUCIBILITY STATEMENT

We provide a full specification of our experimental setup in Section 5 and Appendix C, encompass-
ing the benchmarks, training data, baseline configurations, and all hyperparameters to ensure repro-
ducibility. The source code is publicly available at: https://anonymous.4open.science/
r/Cog-Rethinker-50C7/.
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A MATHEMATICAL DERIVATIONS

In this section, we present the proof of Theorem 1. To facilitate this, we first introduce Lemma 1.
Lemma 1 (Stage-wise Iteration Complexity). Under the same assumptions as Theorem 1, for any
target accuracy ϵ > 0 and any δ ∈ (0, 1), with probability at least 1− δ the iteration complexity of
stage m ∈ {DR,DecR,RefR} satisfies

Tm(ϵ) ≤ Cσ2
m

ρ2mϵ
log

(1
δ

)
,

where C is a universal constant depending only on the smoothness L and initial step-size α0. Con-
sequently,

TRefR(ϵ) < TDecR(ϵ) < TDR(ϵ).

Proof. Fix a stage m and denote Jm(θ) = Eτ∼πθ
[Rm(τ)]. We first establish a generic bound on

∥θT − θ∗∥2 and then translate it into an iteration-complexity statement.

By L-smoothness of Jm(θ) and the update rule θt+1 = θt + αtgm(θt),

∥θt+1 − θ∗∥2 ≤ ∥θt − θ∗∥2 + 2αt⟨gm(θt), θt − θ∗⟩+ α2
t ∥gm(θt)∥2.

Taming expectation w.r.t. the randomness of gm,

E[∥θt+1 − θ∗∥2] ≤ E[∥θt − θ∗∥2] + 2αt⟨∇Jm(θt), θt − θ∗⟩+ α2
t

(
∥∇Jm(θt)∥2 + σ2

m

Nm

)
≤ E[∥θt − θ∗∥2]− 2αtµmE[J∗

m − Jm(θt)] + α2
t

(
2L(J∗

m − Jm(θt)) +
σ2
m

Nm

)
,

where the last inequality uses the Polyak-Łojasiewicz (PL) Condition ∥∇Jm(θ)∥2 ≥ 2µm(J∗
m −

Jm(θ)) and smoothness J∗
m − Jm(θ) ≥ 1

2L∥∇Jm(θ)∥2.

Let ∆t = E[J∗
m − Jm(θt)]. Then

E[∥θt+1 − θ∗∥2] ≤ (1− 2αtµm + 2Lα2
t )E[∥θt − θ∗∥2] + α2

t
σ2
m

Nm
.

Choosing αt =
1

µm(t+1) yields

E[∥θT − θ∗∥2] ≤ Cσ2
m

µ2
mNmT

≤ C ′σ2
m

ρ4mµ4
minNmT

,

where we used µm = ρ2mµ2
min/2.

To achieve E[∥θT − θ∗∥2] ≤ ϵ, it suffices to tame

T ≥ Cσ2
m

ρ2mϵ
log

(1
δ

)
.

High-probability extension follows from Azuma-Hoeffding applied to the martingale sequence
Mt = ∥θt − θ∗∥2 − E[∥θt − θ∗∥2].
Inserting the empirical inequalities

ρRefR > ρDecR > ρDR, σ2
RefR < σ2

DecR < σ2
DR

into the bound gives
TRefR(ϵ) < TDecR(ϵ) < TDR(ϵ),

which completes the proof.

Then, we can conduct the proof of Theorem 1.
Theorem 1 (Convergence Rate across Stages (Restatement)). Let m ∈ {DR,DecR,RefR} index
the rollout stages of Cog-Rethinker. Assume (i) horizon H is finite and rewards rm(·, ·) ∈ [0, 1]; (ii)
for DecR, the problem is decomposed into sub-problems of horizon H ′<H; (iii) for RefR, reflection
is performed on a sub-tree of horizon H ′′≤γH ′ with γ∈(0, 1). Then the policy-gradient estimator,

gm(θ) =

Hm−1∑
t=0

∇θ log πθ(at|qt)Gt,k, Gt,m =

Hm−1∑
u=t

rm(qu, au)
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satisfies
Var(gRefR) ≤ γ(1− η)Var(gDecR) < Var(gDecR) < Var(gDR),

where η∈(0, 1) is the variance-reduction factor induced by importance-sampling the error sub-tree,
Var(·) represents the variance Consequently, for target accuracy ϵ > 0,

TRefR(ϵ) < TDecR(ϵ) < TDR(ϵ).

where T (·) represents the iteration complexity.

Proof. We bound Var(gm) for each m by analysing the reward-to-go variance.

From Sutton et al. (1999),

Var(gm) = E

[
Hm−1∑
t=0

∥∥∇θ log πθ(at|st)
∥∥2Vart(Gt,m)

]
,

where Hm = H,H ′, H ′′ for DR, DecR, RefR respectively and

Vart(Gt,m) = E

[(Hm−1∑
u=t

rm(su, au)−Qm(st, at)
)2 ∣∣∣ st, at] .

Since rewards are in [0, 1] and Hm = H ,

Vart(Gt,DR) ≤ (H − t)2 ≤ H2.

Hence,
Var(gDR) ≤ C H3,

where C = maxt E∥∇θ log πθ(at|st)∥2.

Decomposition splits the original MDP into k sub-MDPs each of horizon H ′ = H/k. For any
sub-problem i,

Vart(G
(i)
t,DecR) ≤ (H ′)2 = H2/k2.

Summing over k sub-problems,

Var(gDecR) ≤ C k (H ′)3 = C H3/k2 < Var(gDR).

Reflection only resamples a sub-tree of relative size γ ∈ (0, 1) and uses importance weight w ≤ 1
on the erroneous part. The law of total variance gives

Vart(Gt,RefR) = E[Vart(Gt,RefR | sub-tree)] + Vart(E[Gt,RefR | sub-tree]) .

The first term is bounded by γ(H ′)2; the second term is reduced by the negative-curriculum effect
(mnowing the wrong path) and satisfies

Vart(E[Gt,RefR | sub-tree]) ≤ (1− η)Vart(Gt,DecR)

with η ∈ (0, 1) depending on the overlap between wrong and corrected trajectories. Thus

Var(gRefR) ≤ C γ(1− η)H3/k2 < Var(gDecR).

From smoothness and PL Condition (as in Lemma 1),

E[∥θT − θ∗∥2] ≤ C ′Var(gm)

T
.

Therefore the iteration complexity

Tm(ϵ) ≤ C ′Var(gm)

ϵ

satisfies the ordering
TRefR(ϵ) < TDecR(ϵ) < TDR(ϵ).
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B TRAINING DETAILS

In this section, we present the training details of our Cog-Rethinker, including the training algorithm,
prompt templates and implementation details.

B.1 TRAINING ALGORITHM

To better understand the training procedure of our Cog-Rethinker, we present the pseudo code in
Algorithm 1.

Algorithm 1 The training pipeline of our Cog-Rethinker.

Require: Initial policy πθ; reward model R; problems data D; hyperparameters εlow, εhigh, λ
1: for step = 1, . . . ,M do
2: Sample a batch Db from D
3: Update the old policy model πθold ← πθ

4: Sample G outputs {oi}Gi=1 ∼ πθold(· | q) for each problem q ∈ Db using normal prompt
template

5: Compute rewards {ri}Gi=1 for each oi by running R
6: Calculate accuracy rate γ for each problem q
7: Filter out oi and add remaining to dynamic sampling buffer
8: if buffer size nb < N then
9: for each q with γ = 0 do

10: Sample G outputs {oi}Gi=1 ∼ πθold(· | q) using decomposition prompt template
11: Repeat lines 5-7
12: end for
13: end if
14: if buffer size nb < N then
15: for each q with γ = 0 do
16: Sample G outputs {oi}Gi=1 ∼ πθold(· | q) using reflection prompt template
17: Repeat lines 5-7
18: end for
19: end if
20: if buffer size nb < N then
21: continue
22: end if
23: For each oi in buffer, compute Âi,t for t-th token of oi
24: for iteration = 1, . . . , µ do
25: Update πθ by minimizing objective in Eq. (9)
26: end for
27: end for
Ensure: Optimized policy πθ

B.2 PROMPT TEMPLATES

As shown in Figure 2 of our Cog-Rethinker, there are two new rollout procedures in the rollout
stage of RL training. For the decomposition rollout procedure, we present the details of full prompt
template in the following.

B.3 IMPLEMENTATION DETAILS

Our Cog-Rethinker is easy to implement. We present the training algorithm in Algorithm 1, with
all training procedures based on VeRL (Sheng et al., 2024). In the practical training procedure, we
introduce a hyperparameter λ to control the Gaussian regularization strength. Our experiments are
conducted on 8 × NVIDIA A800 GPUs, with λ set to 0.04. Additional results on hyperparameter
analysis are presented in Section C.3.
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Prompt Template for Decomposition Rollout

Solve the following math problem step by step. The last line of your response should be of
the form Answer: $Answer (without quotes) where $Answer is the answer to the problem.
Let’s attempt a subproblem decomposition approach:
1. Split the original problem into smaller, logically related subproblems that will assist you
in solving the original problem-quantity depends on the problem’s logic and your expertise.
2. Address each subproblem individually, analyzing the reasoning behind your solutions.
3. Combine the subproblem solutions to tackle the original, more complex problem.
Example problem: Solve the equation 3(x−2)

4 − 2x+5
3 = 1

6 .
Solution:
Subproblem 1: Eliminate denominators by multiplying all terms by the least common mul-
tiple (LCM) of 4, 3, and 6, which is 12: 12 · 3(x−2)

4 − 12 · 2x+5
3 = 12 · 16 . Simplifies to:

9(x− 2)− 4(2x+ 5) = 2.
Subproblem 2: Expand and simplify: 9x − 18 − 8x − 20 = 2. Combine like terms:
x− 38 = 2
Subproblem 3: Isolate the variable: x = 2 + 38, x = 40.
Final Solution:
Substituting x = 40 back into the original equation confirms both sides equal 1

6 .
Answer: 40
Remember to put your answer on its own line after ”Answer:”

Prompt Template for Reflection Rollout

Solve the following math problem step by step. The last line of your response should be of
the form Answer: $Answer (without quotes) where $Answer is the answer to the problem.
Let’s attempt a subproblem decomposition approach:
1. Analyze the problem. Read the problem carefully and clarify the known conditions and
final requirements.
2. Identify the error. Locate the error type in the existing solution (concept error, calculation
error, logical loophole).
3. Correct step by step. Correct the error step by step, retain the reasonable part of the
original solution and correct the error point one by one.
4. Verify the answer. Use multiple methods to verify the correctness of the final answer.
Problem: Solve the system of equations:
1) 2x+ 3y = 7
2) 4x− y = 3
The existing wrong solution:
Subproblem 1: Solve equation 2 for y. Starting equation: 4x− y = 3.
Subproblem 2: Substitute into equation 1. Correct substitution should be: 2x+3(4x−3) =
7.
Subproblem 3: Solve the simplified equation. Equation being solved: 2x+ 12x = 7.
Subproblem 4: Find corresponding y value. Using partial solution: y = 4(0.5) = 2.
Answer: (0.5, 2)
Remember to put your answer on its own line after ”Answer:”

C ADDITIONAL EXPERIMENTS

C.1 TRAINING VISUALIZATION

In addition to the results in Figure 4, we conduct further experiments comparing our Cog-Rethinker
with DAPO, with the results presented in Figure 6. Specifically, we use maj@16 as the comparison
metric. Figure 6 shows our Cog-Rethinker consistently outperforms DAPO in all tests. On the
MATH500 benchmark in Figure 6(a), our method outperforms 2% than DAPO and converges faster,
becoming stable after 150 training steps. For GPQA-Diamond in Figure 6(b), our method maintains

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

0 50 100 150 200 250
Global Step

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
cc

ur
ac

y

Cog-Rethinker
DAPO

150 170 190 210 230 250

0.61

0.62

0.63

0.64

0.65

(a) MATH500 maj@16

0 50 100 150 200 250
Global Step

0.00

0.05

0.10

0.15

0.20

0.25

0.30

A
cc

ur
ac

y

Cog-Rethinker
DAPO

150 170 190 210 230 250

0.200

0.225

0.250

0.275

(b) GPQA-Diamond maj@16

0 50 100 150 200 250
Global Step

0.00

0.02

0.04

0.06

0.08

A
cc

ur
ac

y

Cog-Rethinker
DAPO

(c) AIME 24 maj@16

0 50 100 150 200 250
Global Step

0.00

0.01

0.02

0.03

0.04

0.05

A
cc

ur
ac

y

Cog-Rethinker
DAPO

(d) AIME 25 maj@16

Figure 6: Additional training visualization between our Cog-Rethinker with DAPO.

accuracy between 22.5% and 25% after step 200, and shows more stable performance between 210-
250 steps than DAPO. The smaller graphs show our method stays stable during important training
periods (steps 150-250), while DAPO stops improving or gets worse.

The AIME results in Figure 6(c)-(d) show both methods have unstable results due to difficult prob-
lems, but our approach works more reliably. Specially, for AIME 25, our method keeps a 2% to 4%
lead even when results vary more.

C.2 HYPERPARAMETER ANALYSIS

In our experiments, the main hyperparameters are εlow and εhigh, which are used in DAPO for clip-
higher. We adopt the default DAPO settings of εlow = 0.20 and εhigh = 0.28.

For our newly introduced hyperparameter λ, we analyze its influence by testing values in
{0.04, 0.02, 0.01, 0.005}, with results shown in Figure 7. The results demonstrate dataset-dependent
responses to SFT coefficient λ variations. GSM8K and MATH-500 show λ-sensitivity. AMC
2023, Gaokao 2023en exhibit limited accuracy variation (42.5%-47.5%) across λ values. Chal-
lenging benchmarks, such as AIME 2024/2025, OlympiadBench, maintain consistently low per-
formance (3.3%-6.7%), showing minimal λ-sensitivity. Minerva and GQA-Diamond display mod-
erate accuracy (15.1%-24.4%). These patterns indicate that λ tuning primarily benefits already
well-performing datasets, while complex reasoning tasks require fundamental model improvements
beyond hyperparameter optimization. The findings highlight the critical interplay between dataset
characteristics and regularization effectiveness in mathematical reasoning tasks.

Regarding optimization steps per global step, the main experiments use a batch size of 32 with four
optimization steps. We also conduct experiments with mini batch sizes 64 and 128, corresponding
to two and one optimization steps respectively. The results are shown in Figure 8.

Figure 8 evaluates three mini-batch configurations across multiple benchmarks, demonstrating con-
sistent performance advantages for smaller mini batch sizes. The results show a clear hierarchy
where batch size=32 outperforms larger batches in most tasks, achieving 77.5% on GSM8K (vs.
74.8% for 128) and showing the most substantial 5.6% gain on MATH-500. While this trend holds
universally, the magnitude varies by domain - mathematical problems like MATH-500 benefit most,
while complex tasks like AIME 25 show greater variance (6.7% for 32 vs. 0% for 64). The find-
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Figure 7: Performance comparison of different SFT coefficient λ for policy πθ update.
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Figure 8: Performance comparison of different training mini batch size for policy πθ update, where
batch size=128, batch size=64 and batch size=32 represent the optimization steps as 1, 2 and 4 in
each global step, respectively.

ings confirm batch size selection should balance computational efficiency with these task-specific
patterns, particularly for mathematical problems where smaller batches show clearest advantages.

C.3 PERFORMANCE ANALYSIS

We conduct the experiments on Llama3.2 (Meta AI Team, 2024) in Table 3. The results also demon-
strate the superiority of our proposed Cog-Rethinker, particularly in scenarios where the baseline
model Llama exhibits limited reasoning capability. Both BODF and DAPO failed to complete the
training process due to challenges associated with online filter design. Specifically, Llama’s weak
mathematical reasoning ability led to a substantial number of samples with zero accuracy, resulting
in insufficient valid training batches. In contrast, our Cog-Rethinker successfully completed training
and demonstrated superior performance compared to baseline methods, which can be attributed to
its effective decomposition and reflection rollout mechanism.

We also conducted comparison of our Cog-Rethinker and DAPO in handling negative samples un-
der the same rollout time in Table 4. In extreme cases, our Cog-Rethinker requires up to three times
the number of rollouts when performing both decomposition and reflection operations. To ensure a
fair comparison, we allocated the maximum potential number of rollouts on all samples to DAPO
(DAPOrollout). While increasing the number of rollouts led to a minor performance improvement
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Table 3: Overall accuracy performance of Llama3.2 models on various reasoning benchmarks. The
best and second best results are in bold and underlined.

Method GSM8K MATH-500 AIME 24 AIME 25 AMC 2023 Gaokao 2023en Minerva Olympiad

Llama3.2-1B-Base 1.74 3.80 0.00 0.00 0.00 0.00 2.57 1.04

PPO 29.09 15.00 0.00 0.00 2.50 2.60 2.21 3.41
GRPO 28.60 13.41 0.00 0.00 10.00 5.19 1.47 3.30

Reinforce++ 34.93 14.60 0.00 0.00 12.50 5.19 1.47 3.62
BODF – – – – – – – –
DAPO – – – – – – – –

Cog-rethinker 34.70 17.80 0.00 0.00 18.50 8.68 3.49 4.38
Llama3.2-3B-Base 6.97 6.40 0.00 0.00 0.00 0.00 5.51 1.48

PPO 20.43 17.80 0.00 0.00 10.00 17.53 7.78 5.63
GRPO 24.30 17.40 0.00 0.00 17.50 8.57 8.04 5.19

Reinforce++ 27.81 22.20 0.00 0.00 12.50 17.53 8.15 5.78
BODF – – – – – – – –
DAPO – – – – – – – –

Cog-rethinker 32.73 26.60 0.00 0.00 17.50 17.27 9.23 8.48

Table 4: Comparison of our Cog-Rethinker and DAPO on Qwen2.5 models in handling negative
samples under the same rollout number.

Method GSM8K MATH-500 AIME 24 AIME 25 AMC 2023 Gaokao 2023en Minerva Olympiad

Qwen2.5-1.5B-Base
DAPO 77.56 56.00 6.67 0.00 47.50 42.34 16.54 22.22

DAPOrollout 77.78 55.56 6.67 0.00 47.00 43.48 16.77 22.22

Cog-Rethinker 77.51 59.00 6.67 6.67 47.50 44.94 17.65 22.22

Qwen2.5-7B-Base
DAPO 92.21 79.40 26.67 26.67 69.00 63.22 31.88 42.44

DAPOrollout 93.02 78.90 23.33 26.67 66.88 64.41 31.27 43.78

Cog-Rethinker 93.32 80.60 26.67 26.67 73.50 65.52 32.98 44.22

in DAPO, our Cog-Rethinker achieves significantly greater gains. This discrepancy arises because
DAPOrollout encounters limitations inherent to the base model’s capacity, and merely increasing roll-
out number of negative samples does not enable the model to surpass these inherent constraints. In
contrast, our Cog-Rethinker enables the model to break down complex questions into simpler sub-
problems through its rollout mechanism, thereby transcending the base model’s limitations. This
observed phenomenon substantiates the effectiveness of our Cog-Rethinker.

D LIMITATIONS

Our Cog-Rethinker’s performance is contingent on the quality of the base model and the predefined
demonstrations in its metacognitive buffer, which may limit its adaptability to unseen or highly novel
problems. The framework assumes access to accurate subproblem decompositions and reflections,
which may not always be feasible in practice. Additionally, the binary reward system lacks granular-
ity to reward intermediate reasoning steps, potentially hindering nuanced learning. The experiments
focus on mathematical reasoning, and generalization to other domains remains untested.

E USE OF LLMS

We use LLMs only to refine the language and grammar in our paper. We do not use them for
generating research ideas or for finding related work. We provide our complete original text to
OpenAI’s GPT-4o with instructions to make it more professional, coherent, and native-sounding for
a research paper. We then carefully review all suggestions to guarantee that no factual content is
altered and that all changes remain true to our original writing.
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