Under review as a conference paper at ICLR 2023

JOINT GENERATOR-RANKER LEARNING FOR NATURAL
LLANGUAGE GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Generate-then-rank is a widely used mechanism for text generation, where a
generator produces multiple candidates and a ranker chooses the best one. However,
existing methods usually train the generator and the ranker separately, which
causes a lack of mutual feedback and a misalignment of their objectives. This
results in suboptimal generation quality. To address this issue, we propose JGR,
a novel joint training algorithm that integrates the generator and the ranker in
a single framework. JGR optimizes the generator with a hybrid objective that
combines data likelihood and ranker reward, and trains the ranker with a contrastive
loss that compares the generator outputs. By alternately updating the generator
and the ranker, JGR can effectively harmonize their learning and enhance their
quality jointly. We evaluate JGR on various text generation tasks and demonstrate
that it surpasses existing methods on four public datasets across three common
generation scenarios. Our code and models are publicly available at https
//anonymous.4open.science/r/jgr—-anonymous—-F597.

1 INTRODUCTION

The quality of the output texts produced by neural natural language generation (NLG) models, such
as those for machine translation (Vaswani et al.| |2017) and summarization (Lewis et al., [2019),
depends largely on how they are trained and decoded. The conventional approach is to train them
with log-likelihood objectives and decode them with greedy or beam search strategies. However, this
approach often fails to select the best sample with the highest evaluation score among the generated
candidates, as shown by previous studies (Cohen & Beck,|2019; |[Meister et al.l 2020).

To overcome this limitation, some recent works (Liu & Liu, [2021; [L1u et al., 20215 [L1 et al., 2022b;
Ravaut et al.| |2022)) proposed to use a separate ranker model to re-rank the output texts of the generator
model, following a generate-then-rank pipeline. This pipeline can improve the quality of the output
texts by exploiting the ranker model’s ability to evaluate and compare different candidates. However,
this pipeline also has a drawback: it requires training the generator and ranker models in two separate
phases, which may not fully exploit the potential of the generator model and the feedback from the
ranker model.

In this paper, we propose a novel Joint training paradigm of both Generator and Ranker (JGR)
for NLG tasks, which aims to overcome the drawback of the generate-then-rank pipeline. Unlike
previous works, which train the generator and ranker models separately, we explore a joint and
iterative training algorithm that updates both models in turn.

Our main motivation for the joint and iterative training of generator and ranker is twofold: First, the
ranker model can provide valuable feedback to the generator model based on the ranking scores of
the generated candidates. This encourages the generator model to produce better outputs. Second,
the ranker model can also benefit from the outputs of a progressively better generator model, and
improve its ranking performance.

The JGR framework consists of a generator and a ranker. During training, the generator and ranker
alternate to update their parameters, and each of them involves the other’s outputs in its own input
signals. Specifically, at the ranker training phase, the ranker model is trained to rank the outputs
generated by the generator model for a given input text. At the generator training phase, the generator
model uses a combination of the ranker score and the matching score (e.g., BLEU) as the reward for

https://anonymous.4open.science/r/jgr-anonymous-F597
https://anonymous.4open.science/r/jgr-anonymous-F597

Under review as a conference paper at ICLR 2023

each sample, and trains with policy gradients, which encourages the generator to produce candidates
with higher rewards and (Sutton et al., |1999) mitigate the exposure bias issue in the teacher-forcing
learning.

To assess the effectiveness of JGR, we conduct experiments on four diverse NLG tasks from different
domains, including abstractive summarization (Hermann et al., [2015), conversational summariza-
tion (Gliwa et al., [2019)), question generation (Rajpurkar et al.l|2016), and dialogue (Zhang et al.,
2018). The experimental results demonstrate that JGR achieves remarkable performance gains over
the conventional MLE training method, with a 3-point increase in ROUGE-2 score on CNN/DailyMail
and a 3.5-point increase in BLEU-2 score on PersonaChat.

Furthermore, we make several interesting observations from the results. First, the rewards from the
ranker are more effective than the rewards from the direct metrics, but combining them together
stabilizes the training and produces a better generator. This simple combination also beats popular
RL methods. Second, training the ranker only on the candidates from the generator is better than
using ground-truth as positive examples. Third, sampling more candidates during training leads to
better performance within a certain range, which is consistent with data augmentation. Finally, the
joint training paradigm increases the diversity of the generator outputs, which in turn benefits the
ranker training.

2 RELATED WORK

2.1 NATURAL LANGUAGE GENERATION

Natural language generation is a long-standing research topic. RNN-based methods for dialog
systems (Wen et al| (2015)) and convolutional methods for translation |Gehring et al.| (2016) are
some examples of earlier approaches. In the last few years, pre-trained transformer models have
advanced the state of the art on many NLG tasks. These models, such as BART (Lewis et al.| 2019),
ProphetNet (Qi et al., [2020), and TS (Raffel et al.| 2020)), use an encoder-decoder architecture and
leverage large amounts of unlabeled data. Other models, such as GPT2 (Radford et al.,[2019) and
UniLM (Dong et al.,|2019), use only a decoder or an encoder for natural language generation.

Reinforcement learning can assist the training of NLG models, as shown by several works. Rennie
et al.| (2017); |Paulus et al.| (2018)) used self-critical methods that measure the reward as the difference
between the metric score and the baseline score. Bahdanau et al.| (2017); |Le et al.| (2022) introduced
actor-critic frameworks (Konda & Tsitsiklis, [1999), which is also a joint training framework, while
they have not considered the contrastive rewards between different candidates given one input. We
provided a more detailed comparison in[A.1]

Another common approach to NLG is to apply adversarial networks (Goodfellow et al.,|2014) in
a reinforcement learning-based way. For example, SeqGAN (Yu et al., 2017), RankGAN (Lin
et al.,2017), GCN (Lamprier et al.,|2022) and SelfGAN (Scialom et al., [2021b). These methods
also introduce a joint training framework, however, instead of training a ranker, they trained a
discriminator, which distinguishes the ground-truth text and the generator outputs. In Appendix
we detail the main distinctions between these methods and our JGR.

2.2 GENERATE-THEN-RANK FRAMEWORK

The generate-then-rank framework generates some candidate texts with a generator and then
ranks them with a ranker. SimCLS (Liu & Liul 2021), RefSum (Liu et al.l 2021}, and Sum-
Ranker (Ravaut et al.l 2022) train rankers separately to rank the outputs of summarization models
such as BART (Lewis et al.,[2019). In other domains, such as code generation and math problem solv-
ing, rankers are also used to evaluate the generated outputs, as shown by AlphaCode (Li et al.|[2022b)
and Verifier (Cobbe et al.,[2021)). There are also some works trying to compress the generate-then-rank
pipeline to one single model using extra training objectives, for example, MATCHSUM (Zhong et al.,
2020), CoLo (An et al., [2022), and BRIO (Liu et al.| |2022) with contrastive learning, and Amortized
Noisy-Channel NMT (Pang et al.l[2021) with Q-learning. However, the above methods do not explore
the joint training framework that optimizes both generators and rankers together.

Under review as a conference paper at ICLR 2023

o y:(o] () G2) Score
i .
P x Reference I ; Contrastive Loss

y:
Encoder Decoder ﬂ m @ G5)
1]

T Candidates
@) DEE
Generator Ranker

Figure 1: An example to illustrate the generator and ranker in JGR. The input text is first fed into
the encoder-decoder generator model to sample candidates, then the candidates are sent to ranker
together with the input text to output ranker scores and feedback rewards.

In the retrieve-then-rank framework for dense retrieval (Karpukhin et al.,|2020), a retriever first finds
relevant documents from a large collection, then a ranker reorders them according to their scores.
Our JGR is partially motivated by this framework, we think in the generate-then-rank framework,
the generation can be viewed as a retrieval process. Therefore, during training and inference, the
generator should sample enough candidates for the ranker to re-rank. Several works have proposed to
jointly train the retriever and the ranker to improve generate-then-rerank. Such as RocketQA v2 (Ren
et al.,[2021)) and AR2 (Zhang et al., 2021). However, to our knowledge, JGR is the first work applying
the joint training paradigm to the generate-then-rank framework for natural language generation.

3 METHODOLOGY

3.1 PRELIMINARIES

In this section, we introduce the basic elements of conditional text generation, including problem
definition, model architecture, and model training.

Given a text pair (x,y), x is the input text sequence, y is the target text sequence. The conditional
text generation tasks ask the model to generate a high-quality output y that close the the ground-truth
y based on the input x. We adopt the Transformer (Vaswani et al., [2017)) encoder-decoder model
as a general framework for conditional text generation. The encoder part transforms x into a tensor
representation #, using the Transformer model, as shown in Eqn. [I]

‘H. = Encoder(x), €))
The decoder part uses H. as input and produces a text sequence via the auto-regressive fashion.
|9l
§ ~ Decoder (3, H Hp Jeld<r, He))

To simplify the notation, we write Gg(-) for the encoder-decoder generation model with parameters
0, and p¢, (¥|x) for the probability of generating § given x. The standard way to train the encoder-
decoder sequence generation model is to minimize the negative log-likelihood of the ground-truth
target sequence:

lyl

Ly = =Y logpa, (yily<i, %),)
=1

When inference, the generator adopts a decoding strategy such as beam search. However, previous
studies (Cohen & Beckl 2019 Meister et al.l [2020) observed that the top-scored candidate from
decoding strategies is often not the candidate with the highest evaluation score. Therefore we design
JGR, which alleviates this problem through joint training of generator and ranker.

Under review as a conference paper at ICLR 2023

3.2 JOINT GENERATOR-RANKER TRAINING

The model architecture of JGR, shown in Figure|l] has two components: a generator that outputs
several text candidates for an input text using an encoder-decoder model, and a ranker that scores
these text candidates. The JGR workflow works as follows: a) the generator decodes multiple text
candidates from the input text; b) the input text and the text candidates are combined and sent to the
ranker; c) the ranker learns to rank the text candidates via a contrastive learning objective; d) the
ranker gives a reward to each text candidate, which in turn is used to train the generator.

We use Gy(-) and Dy(-) to represent the generator model and ranker model respectively, where G ()
is a text generation model with an encoder-decoder structure as explained in section and Dy(-)
works as scoring model that takes the concatenation of input text x and and generated text ¥ as input,
and outputs a scalar value s; reprensenting the quality of the generated text:

sy = Dy([x,¥]) “4)

During the training stage, the generator and ranker are trained alternatively and iteratively. Algorithm
shows the training procedure of JGR. We first warm up the generator Gy with a standard negative
log-likelihood (NLL) loss according to Eqn[3] Then, we iteratively update the ranker and generator:
Fix Gy (-), Train D(-): the goal of the ranker model Dy(-) is to choose the best sample from a set
of candidates generated by the generator model, which we denote as Y= {34, 9%,...,5¢}

{yl’yQ"”’yC} NpGe('|X)7 (5)

C is the number of sampled candidates. For each §7, we calculate the matching score (e.g., BLEU
or ROUGE) with the ground-truth text y, denoted as A(y,$*). Then, we pick up the positive
and negative samples in the candidate set by their matching scores, for the training of the ranker.
Specifically, 7 is the text candidate with the highest matching score, and JA)_, whose size is a
hyper-parameter, is the negative candidate set containing a certain number of candidates with the
lowest scores. The ranker model can be trained by minimizing contrastive loss:

£¢ = - 10ng¢ (y+|j}_7x)7 (6)

where pp,, (§7| Y, x) is the probability of selecting 4 from the set {§+} UY~, which is computed
by applying softmax function on the ranking scores:

exp®t
exXp™rt + D g ey eXpTIT

pD¢(y+|j)77X) = s @)

After several training steps of updating the ranker, we turn to fix the ranker and update the generator.

Fix Dy(-), Train Gy(-): the generator model is trained in two ways. The first one is Lyir, which
uses a teacher-forcing mechanism to minimize the negative log-likelihood loss function over the
training instances as discussed in section [3.]] n(Eqn. [3). The second one is Lgy, - a reinforcement
learning-based approach in which the generator model acts as a policy network to produce a list of
text samples Y given the input x, and the ranker model gives a reward to each text sample in Y based
on its ranking score. The generator model can be trained by maximizing (minimizing) the expected
(negative) reward (Sutton et al.,[1999).

LrL = — Z(R(y) - b) Z IngGe (ﬂt‘@<t,x), ®)
yey t

where R(¥) is the reward for sample ¥, calculated by combining the matching score A(¥,y) and the
ranking score sy: R(¥) = A(y, y) + sy, baseline b is used to reduce the variance in RL training,
which is computed by averaging the rewards of all samples in the candidate set: b = Y R(3)/C.

yey
We then combine Lyp and Lgy to form the final objective function for generator model training :

L% = L + Lre. 9

After updating the generator for several steps, we go back to fixing the generator and updating the
ranker. This iteration will continue until the entire JGR framework converges.

4

Under review as a conference paper at ICLR 2023

Algorithm 1 Joint Training of Generator and Ranker (JGR)

Require: Generator Gy; Ranker D; Training data ID.
1: Initialize Gip and Dy from the pre-trained language models.
2: Train the warm-up generator G on D.
3: while model has not converged do

4: for training steps A do
5: Sample candidates) ~ p, (-|x) for each x in the mini-batch.
6: Select § and Y~ from)
7: Update parameters of Dy with Eq[6]
8: end for
9: for training steps B do
10: Sample candidates) ~ pg, (-|x) for each x in the mini-batch.
11: Compute rewards R(y) for each § €).
12: Update parameters of Gy with Eq[9]
13: end for

14: end while

4 EXPERIMENT

We begin the experimental section by first introducing the implementation details of JGR, including
the datasets and experimental settings. Then we show the overall performance of JGR and other
compared methods. After that, we conduct sever analyses: First, we compare the ranker of JGR with
other rankers. Second, we examine several types of rewards to see how they impact the training.
Third, we investigate how the different types and numbers of sampled candidates will affect the
performance of JGR. And finally, we conduct an analysis to show the necessity of joint training.

4.1 DATASETS

We evaluate the proposed method on four publicly available benchmarks: CNN/DailyMail, SAMSum
SQuAD 1.1, and PersonaChat. The statistics of these benchmarks and the details of evaluation metrics
are in Appendix

CNN/DailyMail (Hermann et al., 2015)) is a benchmark for summarization. Both extractive and
abstractive summarization models can be applied on CNN/DailyMail. Since our JGR focuses on text
generation, we treat CNN/DailyMail as an abstractive summarization task. There are two versions:
anonymized and non-anonymized. We use the non-anonymized dataset [See et al.| (2017). The
evaluation metrics are Rouge-1, Rouge-2, and Rouge-L.

SAMSum (Gliwa et al., 2019) is a benchmark for conversational summarization, whose inputs are
the concatenation of dialog context. The evaluation metrics are Rouge-1, Rouge-2, and Rouge-L.

SQuAD 1.1 (Rajpurkar et al., [2016) is originally an machine reading comprehension dataset. We
follow the data split and pre-processing as done by |Du et al.| (2017); Zhao et al.|(2018]); |Liu et al.
(2020), to make it a question generation dataset, which treats the concatenation of the answer span
and article as the input, and the question as the target output. The evaluation metrics are Rouge-L,
Bleu-4, and METEOR.

PersonaChat|Zhang et al.|(2018)) contains about 160K utterances. Given the multi-turn conversations
and persona profile, the model learns to generate the response. The evaluation metrics are Bleu-1,
Bleu-2, and the ratio of distinct unigrams and bigrams in the generated responses (Distinct-1 and
Distinct-2).

4.2 SETTINGS

We use BART-large (Lewis et al. [2019) as the backbone model for the generator. The backbone
of the ranker is based on RoBERTa-large (Liu et al.,[2019). The generator and ranker models are

Under review as a conference paper at ICLR 2023

Table 1: Overall results on CNN/DailyMail and SAMSum. The results with “”” means from our
implementation. The results with “*” are the results of backbone models for JGR-G.

Method CNN/DailyMail SAMSum
R-1 R-2 R-L AVG R-1 R-2 R-L AVG
Lead-3 40.42 17.62 36.67 31.57 - - - -
PTGEN (See et al.|[2017) 36.44 15.66 3342 28.51 - - - -
PTGEN-COV (See et al.|[2017) 39.53 17.28 36.38 31.06 - - - -
BART (Lewis et al.[[2019) 44.16* 21.28* 40.90* 3545 52.86f* 28.24%* 4857t 43227+
PEGASUS (Zhang et al.[[2020) 44.17 21.47 41.11 35.58 51.99 27.59 47.56 42.38
ProphetNet (Qi et al.||2021) 44.20 21.17 41.30 35.56 52.62 27.77F 48.33 4291
GSUM (Dou et al.[[2021) 45.94 2232 42.48 36.91 - - - -
BRIO (Liu et al.|[2022) 47.48* 23.55* 44.57* 38.53* - - - -
JGR-G 46.86 23.18 43.74 37.93 53.85 29.22 49.93 44.33
JGR-R 47.63 23.59 44.50 38.57 54.30 29.48 50.51 44.76
JGR-Giyit w. BRIO 48.39 23.22 46.11 39.24 - - - -
JGR-Ripit w. BRIO 48.86 23.35 46.56 39.59 - - - -
Table 2: Overall results on SQuAD 1.1. Table 3: Overall results on PersonaChat.
R-L B-4 MTR] B-1 B2 D1 D2
MASS (Song et al.|[2019) 5098 23.14 25.36 ESETT O<Lewis et(“;;OZg[l:lﬁ . t"dj‘* 431% ;31* f»zoi
gﬁﬂ\f{l‘ew‘s ctal[ZO10) 51467 23.14% 26.56 PLATO S P 458 357 12 64
(Dong etal.[2019) ~ 52.04 2375 25.01 ProphetNet (Qi et al.J)2020} 467 390 13 75
ProphetNet (Qi et al JZ020) 5150 2250 26.00 DialogVED (Chen ctal.]2022) 482 399 L5 94
JGR-G 5279 2452 26.46 “IGRG ’ 525 432 14 62
JGR-R 53.57 2473 26.97 JGR-R 533 435 15 80

initialized with the off-the-shelf checkpointﬂ On CNN/DailyMail , apart from initializing JGR
with the language models, we also evaluate JGR that initializes the generator using the previous
state-of-the-art model BRIO (Liu et al., 2022ﬂ

In the model training, the generator model adopts a nucleus sampling approach to generate the
candidate set with temperature = 1.0 and top(p) = 1.0. In inference, we apply beam search decoding
strategy with beam size = 16, and length penalty = 1.0; The details of other hyper-parameters (e.g.,
learning rate and training epochs, etc) are listed in Appendix [} The JGR model is implemented
based on the open-source Huggingface Transformers framework (Wolf et al., 2020). We conduct
experiments on a single node of 8§ NVIDIA A100 GPUs.

It is worth noting that in order to initialize the ranker with a more general and reasonable ranking
function, we increase the number of training steps and add a certain number of warm-up steps at
the first ranker training iteration. The hyper-parameters of the first ranker training iteration are also
introduced in Appendix [F]

4.3 OVERALL RESULTS

Table[T]shows the results of JGR and other baseline methods on summarization tasks CNN/DailyMail
and SAMSum. “Lead-3” is an ad-hoc summarization approach that uses the first three sentences
in the article as the summary. “PTGEN” and “PTGEN-COV” are sequence-to-sequence generation
methods without pre-training. Other baselines are pre-trained language models fine-tuned on the
benchmarks. “JGR-G” indicates the generator model in JGR, and “JGR-R” is using the ranker of JGR
to re-rank the outputs of JGR-G. “JGR-G/Rpi w. Brio” are our JGR with the generator initialized from
BRIO. As shown in Table m the generator model (JGR-G) itself achieves a considerable performance
gain compared with its backbone models on both the two benchmarks, which verifies the effectiveness
of the proposed JGR training to obtain a better generator. On both CNN/DailyMail and SAMSum,
the ranker (JGR-R) can further improve the performance upon JGR-G. Both JGR-G and JGR-R can
reach state-of-the-art on SAMSum. If initialized with BRIO, both our JGR-G and JGR-R can surpass
the state-of-the-art on CNN/DailyMail with a significant margin over the average ROUGE score.

In Table 2} we compare the performance of JGR with four pre-trained language models (Song et al.,
2019; Lewis et al.; 2019; Dong et al., 2019; Q1 et al.,|2020) on SQuAD 1.1, since they have reported

'"RoBERTa: https://huggingface.co/roberta-large, BART: https://huggingfacel
co/facebook/bart-large
“BRIO: |https://github.com/yixinL7/BRIO

https://huggingface.co/roberta-large
https://huggingface.co/facebook/bart-large
https://huggingface.co/facebook/bart-large
https://github.com/yixinL7/BRIO

Under review as a conference paper at ICLR 2023

the results finetuned and evaluated in the same data split as in|Liu et al.|(2020). With a relatively weak
backbone model, BART, our JGR-G can still outperform all the compared baselines. And JGR-R can
also further improve the results of JGR-G.

Table 3] shows the results of compared methods in persona-based response generation. As shown in
the results, our JGR-G and JGR-R can surpass the baselines significantly on the metrics of BLEU-1
and BLEU-2. However, both JGR-G and JGR-R can only perform the same level of the baselines on
Distinct-1 and Distinct-2. It is noteworthy that PLATO and DialogVED are the only two language
models that are pre-trained using a conversational corpus among these baselines. They achieved high
scores on Distinct-1 and Distinct-2, showing the importance of pre-training corpus.

4.4 PERFORMANCE OF RANKER

Recently, several works adopt the generate-then- Table 4: The results of different rankers on

rerank framework, especially on the summariza- CNN/DailyMail. “Gain™ represents the perfor-

tion tasks (Liu & Liul 20215 [Liu et al., 2021} . .)
Ravaut et al., 2022 LLiu ot al| 2022). We com. mance gain of ranker compared with the used gen
erator over the average score.

pare these methods with that our JGR-R on
CNN/DailyMail. Since all the above methods

. A Generator | Ranker R-1 R-2 R-L Gain
train the ranker separately with the fine-tuned ey . 2416 2128 4090 0.0
BART as the generator on CNN/DailyMail, we el SimCLS | 46.67 2215 4354 200

. s . G RefSum 4515 2170 42.00 083

only report their results in this setting. oo SumRanker | 4662 2239 4359 208
. . G° BRIO 4728 2293 4415 3.84

The exp%rlmental results are shown in Table[d] o0 Do 4554 2207 4205 104
where G denotes the base generator, i.e. BART, JGR-G 4686 23.18 43.74 0.0

and DV is the ranker after the first ranker training JGR-G | JIGRR 47.63 2359 4450 0064
iteration, as described in Section [d.2] Several

observations can be seen in the results. First, our JGR can achieve the highest score with the inference
pipeline. Second, on CNN/DailyMail, the performance gain brought by JGR-R is not as big as other
related methods which introduced some extra modules to their models. Third, on CNN/DailyMail,
after the joint training in JGR, the performance gain brought by the ranker drops. We think this is
because as the generator’s performance grows, the quality of candidates rises, causing the ranker
harder to tell which on is the best among all candidates.

4.5 IMPACT OF REWARDS

In this section, we investigate the impact of rewards. We compare different reward settings on
CNN/DailyMail. The compared methods are as follows: 1) RL is the conventional self-critical
reinforcement-learning method where the rewards are the metric scores A(¥,y), and the greedy
search output is used as baseline [Rennie et al.|(2017); [Paulus et al.| (2018)). 2) JGR-Gnty mi/JGR-
Gonly rr are our JGR where the generator is trained without the rewards from generator/metrics. The
standard NLL loss is added in all the compared methods. The results are shown in Table[3}

—— JGR-G

Table 5: Results generator trained with different type of A T e
rewards on CNN/DailyMail. -
46
R1 R2 RL AVG 2
BART 44.16 21.28 4090 35.45 8
RL 4414 21.20 4095 3543
JGR-G 46.86 23.18 43.74 37.93 44
JGR-Goymr 4420 2137 4104 3554 . b, AR
JGR-Gopyr 4676 2299 43.81 37.85 # Training steps of generator

Figure 2: Dev scores for methods with
different type of rewards.

From the results, we can see that our JGR can outperform traditional RL significantly. In addition,
both JGR-Gopty mr and JGR-Gonyy 1 suffer a performance decline compared to standard JGR-G, and the
performance of JGR-Goniy mr is far worse than that of JGR-Goyjy 1, indicating that using rewards from
ranker contributes more than using rewards from metrics, and it is better to combine them. In Figure
we plot the curves of the dev scores under 3 random runs for the compared methods. As illustrated

Under review as a conference paper at ICLR 2023

in the figure, although the standard RL method appears to have a small variance under different
random runs, its dev scores are hard to grow while training. The JGR-Gpyy ;r has a smaller variance
than JGR-Gy1y mr, however, it fails to achieve a high dev score. Our standard JGR, which combines
metric rewards and ranker rewards, not only shows the relatively small variance in randomized trials
but also can steadily improve the dev score during training.

Table 6: Results of JGR with different candidate picking strategies on CNN/DailyMail.

Generator Ranker
R-1 R-2 R-L AVG R-1 R-2 R-L AVG
vF=GT 45.64 2227 4255 36.82 4420 21.46 4122 35.63
Y~ =BOT()) 46.86 23.18 43.74 37.93 47.63 23.59 44.50 38.57
Yy = TOP(?) 44.16 21.31 41.00 3549 44.07 2123 4091 3540

JA)*:RAND(JA)) 4468 21.65 4142 3592 4580 2268 4256 37.01
Y~ =TOP-BOT(Y) 4486 2180 41.64 36.10 46.12 2276 4291 37.26

Table 7: Results of JGR with numbers of sampled candidates on CNN/DailyMail.

Generator Ranker
R-1 R-2 R-L AVG R-1 R-2 R-L AVG

C=2 4459 21.63 4132 3585 46.15 2276 4286 37.26
C=4 4544 2219 4280 36.81 46.70 23.10 43.81 37.87
C=6 4636 2277 4294 3737 4732 2349 4429 38.37
C=8 46.86 23.18 43.74 3793 47.63 2359 44.50 38.57
C=16 4634 2297 43.11 3747 4734 23.64 44.13 38.37
C =32 46.14 2278 4287 3726 4725 2348 4398 38.24
C=40 4629 2298 43.00 3742 4726 23.60 44.00 38.29

4.6 CANDIDATE PICKING STRATEGIES

We examine how different types and numbers of candidates can affect the performance of JGR. We
first compare different methods of picking positive candidates and negative candidates when training
the ranker. The results are shown in Table|6| The $+=GT denotes that the best candidate §+ is not
sampled from the generator, but always the reference. The result shows that if the best candidate
is always the reference, the performance of the generator is not as good as the standard JGR, and
the ranker’s performance is even worse than the generator. We think the reason is that the ranker
is misled by the reference, thus it may always misclassify the references as the positive candidates,
while other candidates sampled by the generator as the negative candidates. As a result, neither the
ranker is well-trained, nor it can pass proper rewards to train the generator.

The last four lines of Table 6] show the results of methods for picking negative samples, i.e., with the

lowest matching scores (BOT()), our standard setting), with the highest matching scores (TOP()))),

randomly pick (RAND())), and half has the highest matching scores and the second half has the

lowest matching score (TOP-BOT())). From the results, we can see that our standard setting

(BOT(Y)) significantly outperforms other negative candidate picking strategies.

In Table[/| we show the performance of JGR with different numbers of sampled candidates when
training the generator. As shown in the table, under a certain range (C' = 2 ~ 8), the performance
of JGR rises as the number of candidates increases. We attribute this to the fact that increasing
the number of candidates means that the generator can be optimized on more probabilities from
candidates, which is to some extent a way of data augmentation. However, the performance does not
grow as desired when the number of candidates becomes too large.

Table 8: Results of JGR and JGR without joint training on CNN/DailyMail.

Generator Ranker
R-1 R-2 R-L AVG R-1 R-2 R-L AVG
JGR 46.86 23.18 43.74 3793 47.63 23.59 44.50 38.57

w/ojoint 45.02 21.83 4240 3642 45.10 21.81 4247 36.46

Under review as a conference paper at ICLR 2023

IS

951 === IGR Vi
--4-- JGR w/o joint N
.

1)

>

%
g

—— JGR
—— JGR wio joint

e
%

Average of Self-BLEU
<
>

e
>

Average of wasserstein distance

N - N 2 N
N AN ----’ \
60 N

e
=

250 1250 2250 3250 4250 5250 6250 500 1300 2500 3500 4500 5500 6500
Training steps of generator # Training steps of generator

Figure 3: The average of Wasserstein Figure 4: The average of self-BLEU at
distances between ranker rewards and each training interval.
metrics rewards.

4.7 DOES JOINT TRAINING MATTER?

To see how the joint training affects our method, we compare the performance of our JGR and the
variant that only trains the generator in JGR while fixing the ranker after the first ranker training
iteration (JGRyo joint)- As the results shown in Table @, JGR /6 joint 18 far worse than JGR, and
JGR-Ry/o joint achieves no performance gain over JGR-Gyyo joint. To take an in-depth look, we analyze
the distribution of rewards. We first draw the curves of the Wasserstein distance between ranker
rewards and metrics rewards at each training interval for JGR and JGRy/o joint. As illustrated in Figure
the Wasserstein distances of JGR are hovering within a range, while the Wasserstein distances of
JGRy/0 joint are growing extremely high, which means the distribution of ranker rewards and metrics
rewards are quite different in JGRyyo joine. Therefore we think that JGR-Ry joine might not assign the
proper rewards to the sampled candidates, due to it not being jointly trained.

We also analyse the diversity of sampled candidates for JGR-G and JGR-Gyo joint. We use self-BLE
to measure the diversity of sampled candidates. A larger self-BLEU score means a lower diversity of
the sampled candidates. We show the curves of the average self-BLEU score for generated candidates
at each training interval in Figure[zl_f} From the figure, we can see that the self-BLEU of JGR o joint
increases rapidly after the generator is trained 1000 steps, while the same situation never happens in
JGR. It indicates that if the ranker is not jointly trained with the generator, the rewards it feeds back
to the generator will cause the generator to sample candidates that are more and more similar to each
other, making the training of JGR harder. On the contrary, joint training can erase this phenomenon
and help to keep a certain level of diversity in sampled candidates, thus leading to better training.

4.8 MORE DISCUSSIONS

Due to the page limit, we show more discussions about JGR compared to reinforcement learning,
GAN, data augmentation in Appendix [A] the evaluation on advanced metrics in Appendix [C]and the
impact of decoding strategies in Appendix [D}

5 CONCLUSION

In this paper, we propose a novel Joint training of Generator and Ranker framework, namely JGR, for
natural language generation. Both the generator and ranker of our JGR can achieve state-of-the-art
results on several benchmarks in the areas of summarization, question generation, and dialog. We also
analyze our JGR in several aspects and find that: First, the rewards from the ranker work better than
the rewards from the direct metrics such as BLEU, but combining them together helps the training
become more stable. Second, during training, letting the ranker be trained on the candidates generated
by the generator exclusively is even better than previous approaches using ground-truth as positive
examples. Third, more candidates being sampled during training can lead to better performance,
which is consistent with the findings from data augmentation. Finally, the joint training paradigm
helps the generator sample candidates with higher diversity, which in turn contribute to the training.

*We introduce the computation of self-BLEU in Appendix@

Under review as a conference paper at ICLR 2023

REFERENCES

Chenxin An, Ming Zhong, Zhiyong Wu, Qin Zhu, Xuanjing Huang, and Xipeng Qiu. CoLo: A
contrastive learning based re-ranking framework for one-stage summarization. In Proceedings
of the 29th International Conference on Computational Linguistics, pp. 57835793, Gyeongju,
Republic of Korea, October 2022. International Committee on Computational Linguistics. URL
https://aclanthology.org/2022.coling—1.508.

Dzmitry Bahdanau, Philemon Brakel, Kelvin Xu, Anirudh Goyal, Ryan Lowe, Joelle Pineau, Aaron
Courville, and Yoshua Bengio. An actor-critic algorithm for sequence prediction. In International
Conference on Learning Representations, 2017. URL https://openreview.net/forum?
id=SJDaggveq.

Siqi Bao, Huang He, Fan Wang, Hua Wu, and Haifeng Wang. PLATO: Pre-trained dialogue generation
model with discrete latent variable. In Proceedings of the 58th Annual Meeting of the Association
Sfor Computational Linguistics, pp. 85-96, Online, July 2020. Association for Computational
Linguistics. doi: 10.18653/v1/2020.acl-main.9. URL https://aclanthology.org/2020.
acl-main. 9.

Wei Chen, Yeyun Gong, Song Wang, Bolun Yao, Weizhen Qi, Zhongyu Wei, Xiaowu Hu, Bartuer
Zhou, Yi Mao, Weizhu Chen, Biao Cheng, and Nan Duan. DialogVED: A pre-trained latent
variable encoder-decoder model for dialog response generation. In Proceedings of the 60th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 4852-4864,
Dublin, Ireland, May 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.
acl-long.333. URL https://aclanthology.org/2022.acl-1long.333!l

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021. URL https://arxiv.org/
abs/2110.14168.

Eldan Cohen and Christopher Beck. Empirical analysis of beam search performance degradation in
neural sequence models. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of
the 36th International Conference on Machine Learning, volume 97 of Proceedings of Machine
Learning Research, pp. 1290-1299. PMLR, 09-15 Jun 2019. URL https://proceedings|
mlr.press/v97/cohenl9a.html,

Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xiaodong Liu, Yu Wang, Jianfeng Gao, Ming Zhou,
and Hsiao-Wuen Hon. Unified language model pre-training for natural language understanding
and generation. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran As-
sociates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/
c20bb2d9a50d5aclf713f8b34d%aacba—Paper.pdfl

Zi-Yi Dou, Pengfei Liu, Hiroaki Hayashi, Zhengbao Jiang, and Graham Neubig. GSum: A general
framework for guided neural abstractive summarization. In Proceedings of the 2021 Confer-
ence of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, pp. 4830-4842, Online, June 2021. Association for Computational Lin-
guistics. doi: 10.18653/v1/2021.naacl-main.384. URL https://aclanthology.org/
2021 .naacl-main.384.

Xinya Du, Junru Shao, and Claire Cardie. Learning to ask: Neural question generation for reading
comprehension. In Proceedings of the 55th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 1342-1352, Vancouver, Canada, July 2017. Association
for Computational Linguistics. doi: 10.18653/v1/P17-1123. URL https://www.aclweb|
org/anthology/P17-1123.

Jonas Gehring, Michael Auli, David Grangier, and Yann N Dauphin. A convolutional encoder model
for neural machine translation. arXiv preprint arXiv:1611.02344, 2016.

Bogdan Gliwa, Iwona Mochol, Maciej Biesek, and Aleksander Wawer. Samsum corpus: A human-
annotated dialogue dataset for abstractive summarization. In Proceedings of the 2nd Workshop on
New Frontiers in Summarization, pp. 70-79, 2019.

10

https://aclanthology.org/2022.coling-1.508
https://openreview.net/forum?id=SJDaqqveg
https://openreview.net/forum?id=SJDaqqveg
https://aclanthology.org/2020.acl-main.9
https://aclanthology.org/2020.acl-main.9
https://aclanthology.org/2022.acl-long.333
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://proceedings.mlr.press/v97/cohen19a.html
https://proceedings.mlr.press/v97/cohen19a.html
https://proceedings.neurips.cc/paper/2019/file/c20bb2d9a50d5ac1f713f8b34d9aac5a-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/c20bb2d9a50d5ac1f713f8b34d9aac5a-Paper.pdf
https://aclanthology.org/2021.naacl-main.384
https://aclanthology.org/2021.naacl-main.384
https://www.aclweb.org/anthology/P17-1123
https://www.aclweb.org/anthology/P17-1123

Under review as a conference paper at ICLR 2023

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Z. Ghahramani, M. Welling,
C. Cortes, N. Lawrence, and K.Q. Weinberger (eds.), Advances in Neural Information Processing
Systems, volume 27. Curran Associates, Inc., 2014. URL https://proceedings.neurips.
cc/paper/2014/file/5ca3e9b122f61£8f06494c97blafccf3-Paper.pdf.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefenstette, Lasse Espeholt, Will Kay, Mustafa
Suleyman, and Phil Blunsom. Teaching machines to read and comprehend. In Ad-
vances in Neural Information Processing Systems 28: Annual Conference on Neural Infor-
mation Processing Systems 2015, December 7-12, 2015, Montreal, Quebec, Canada, pp.
1693-1701, 2015. URL https://proceedings.neurips.cc/paper/2015/hash/
afdec/7005cc9f14302cd0474fd0f3c96-Abstract.htmll

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Dangqi
Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. arXiv
preprint arXiv:2004.04906, 2020.

Vijay Konda and John Tsitsiklis. Actor-critic algorithms. Advances in neural information processing
systems, 12, 1999.

Wojciech Kryscinski, Bryan McCann, Caiming Xiong, and Richard Socher. Evaluating the factual
consistency of abstractive text summarization. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pp. 9332-9346, Online, November 2020.
Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.750. URL https:
//aclanthology.org/2020.emnlp-main.750.

Sylvain Lamprier, Thomas Scialom, Antoine Chaffin, Vincent Claveau, Ewa Kijak, Jacopo Staiano,
and Benjamin Piwowarski. Generative cooperative networks for natural language generation. arXiv
preprint arXiv:2201.12320, 2022.

Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio Savarese, and Steven CH Hoi. Coderl:
Mastering code generation through pretrained models and deep reinforcement learning. arXiv
preprint arXiv:2207.01780, 2022.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Ves Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-to-sequence pre-training for
natural language generation, translation, and comprehension. arXiv preprint arXiv:1910.13461,
2019.

Bohan Li, Yutai Hou, and Wanxiang Che. Data augmentation approaches in natural language
processing: A survey. Al Open, 3:71-90, 2022a. ISSN 2666-6510. doi: https://doi.org/10.1016/
j-aiopen.2022.03.001. URL https://www.sciencedirect.com/science/article/
Pi11/52666651022000080.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien
de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven
Gowal, Alexey Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson,
Pushmeet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level
code generation with alphacode, 2022b.

Kevin Lin, Dianqi Li, Xiaodong He, Zhengyou Zhang, and Ming-ting Sun. Adversarial ranking
for language generation. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/
paper/2017/file/bf201d5407a6509fa536afc4b380577e-Paper.pdf.

Dayiheng Liu, Yu Yan, Yeyun Gong, Weizhen Qi, Hang Zhang, Jian Jiao, Weizhu Chen, Jie Fu,

Linjun Shou, Ming Gong, et al. Glge: A new general language generation evaluation benchmark.
arXiv preprint arXiv:2011.11928, 2020.

11

https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2015/hash/afdec7005cc9f14302cd0474fd0f3c96-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/afdec7005cc9f14302cd0474fd0f3c96-Abstract.html
https://aclanthology.org/2020.emnlp-main.750
https://aclanthology.org/2020.emnlp-main.750
https://www.sciencedirect.com/science/article/pii/S2666651022000080
https://www.sciencedirect.com/science/article/pii/S2666651022000080
https://proceedings.neurips.cc/paper/2017/file/bf201d5407a6509fa536afc4b380577e-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/bf201d5407a6509fa536afc4b380577e-Paper.pdf

Under review as a conference paper at ICLR 2023

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Yixin Liu and Pengfei Liu. SimCLS: A simple framework for contrastive learning of abstractive
summarization. In Proceedings of the 59th Annual Meeting of the Association for Computa-
tional Linguistics and the 11th International Joint Conference on Natural Language Processing
(Volume 2: Short Papers), pp. 1065-1072, Online, August 2021. Association for Computational
Linguistics. doi: 10.18653/v1/2021.acl-short.135. URL https://aclanthology.org/
2021 .acl-short.135.

Yixin Liu, Zi-Yi Dou, and Pengfei Liu. RefSum: Refactoring neural summarization. In Pro-
ceedings of the 2021 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, pp. 1437-1448, Online, June 2021.
Association for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.113. URL
https://aclanthology.org/2021.naacl-main.113l

Yixin Liu, Pengfei Liu, Dragomir Radev, and Graham Neubig. BRIO: Bringing order to ab-
stractive summarization. In Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 2890-2903, Dublin, Ireland, May
2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.207. URL
https://aclanthology.org/2022.acl-1long.207.

Clara Meister, Ryan Cotterell, and Tim Vieira. If beam search is the answer, what was the question?
In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 2173-2185, Online, November 2020. Association for Computational Linguis-
tics. doi: 10.18653/v1/2020.emnlp-main.170. URL https://aclanthology.org/2020.
emnlp-main.170.

Richard Yuanzhe Pang, He He, and Kyunghyun Cho. Amortized noisy channel neural machine
translation. arXiv preprint arXiv:2112.08670, 2021.

Romain Paulus, Caiming Xiong, and Richard Socher. A deep reinforced model for abstractive
summarization. In International Conference on Learning Representations, 2018. URL https:
//openreview.net/forum?id=HkKACI1QgA-.

Weizhen Qi, Yu Yan, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang, and
Ming Zhou. Prophetnet: Predicting future n-gram for sequence-to-sequence pre-training. arXiv
preprint arXiv:2001.04063, 2020.

Weizhen Qi, Yeyun Gong, Yu Yan, Can Xu, Bolun Yao, Bartuer Zhou, Biao Cheng, Daxin Jiang,
Jiusheng Chen, Ruofei Zhang, et al. Prophetnet-x: large-scale pre-training models for english,
chinese, multi-lingual, dialog, and code generation. arXiv preprint arXiv:2104.08006, 2021.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. Journal of Machine Learning Research, 21(140):1-67, 2020. URL
http://jmlr.org/papers/v21/20-074.html.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ questions
for machine comprehension of text. In Proceedings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pp. 2383-2392, Austin, Texas, November 2016. Association for
Computational Linguistics. doi: 10.18653/v1/D16-1264. URL https://www.aclweb.org/
anthology/D16-1264.

Mathieu Ravaut, Shafiq Joty, and Nancy F Chen. Summareranker: A multi-task mixture-of-experts
re-ranking framework for abstractive summarization. arXiv preprint arXiv:2203.06569, 2022.

12

https://aclanthology.org/2021.acl-short.135
https://aclanthology.org/2021.acl-short.135
https://aclanthology.org/2021.naacl-main.113
https://aclanthology.org/2022.acl-long.207
https://aclanthology.org/2020.emnlp-main.170
https://aclanthology.org/2020.emnlp-main.170
https://openreview.net/forum?id=HkAClQgA-
https://openreview.net/forum?id=HkAClQgA-
http://jmlr.org/papers/v21/20-074.html
https://www.aclweb.org/anthology/D16-1264
https://www.aclweb.org/anthology/D16-1264

Under review as a conference paper at ICLR 2023

Ruiyang Ren, Yingqi Qu, Jing Liu, Wayne Xin Zhao, Qiaoqiao She, Hua Wu, Haifeng Wang, and
Ji-Rong Wen. Rocketqav2: A joint training method for dense passage retrieval and passage
re-ranking. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, pp. 2825-2835, 2021.

Steven J. Rennie, Etienne Marcheret, Youssef Mroueh, Jerret Ross, and Vaibhava Goel. Self-critical
sequence training for image captioning. In 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 1179-1195, 2017. doi: 10.1109/CVPR.2017.131.

Thomas Scialom, Paul-Alexis Dray, Sylvain Lamprier, Benjamin Piwowarski, Jacopo Staiano,
Alex Wang, and Patrick Gallinari. QuestEval: Summarization asks for fact-based evalua-
tion. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, pp. 6594-6604, Online and Punta Cana, Dominican Republic, November 2021a.
Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.529. URL
https://aclanthology.org/2021.emnlp-main.529.

Thomas Scialom, Paul-Alexis Dray, Jacopo Staiano, Sylvain Lamprier, and Benjamin Piwowarski.
To beam or not to beam: That is a question of cooperation for language gans. Advances in neural
information processing systems, 34:26585-26597, 2021b.

Abigail See, Peter J Liu, and Christopher D Manning. Get to the point: Summarization with
pointer-generator networks. arXiv preprint arXiv:1704.04368, 2017.

Shiqi Shen, Yong Cheng, Zhongjun He, Wei He, Hua Wu, Maosong Sun, and Yang Liu. Minimum
risk training for neural machine translation. CoRR, abs/1512.02433,2015. URL http://arxiv,
org/abs/1512.02433.

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. MASS: Masked sequence to sequence
pre-training for language generation. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.),
Proceedings of the 36th International Conference on Machine Learning, volume 97 of Proceedings
of Machine Learning Research, pp. 5926-5936. PMLR, 09-15 Jun 2019. URL https://
proceedings.mlr.press/v97/songl9d.htmll

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradi-
ent methods for reinforcement learning with function approximation. In S. Solla, T. Leen,
and K. Miiller (eds.), Advances in Neural Information Processing Systems, volume 12.
MIT Press, 1999. URL https://proceedings.neurips.cc/paper/1999/file/
464d828b85b0bed98e80adelascd43b0f-Paper.pdf.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Fukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Ashwin K. Vijayakumar, Michael Cogswell, Ramprasaath R. Selvaraju, Qing Sun, Stefan Lee, David J.
Crandall, and Dhruv Batra. Diverse beam search: Decoding diverse solutions from neural sequence
models. CoRR, abs/1610.02424, 2016. URL http://arxiv.org/abs/1610.02424.

Tsung-Hsien Wen, Milica Gasic, Nikola Mrksic, Pei-Hao Su, David Vandyke, and Steve Young.
Semantically conditioned Istm-based natural language generation for spoken dialogue systems.
arXiv preprint arXiv:1508.01745, 2015.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von
Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama
Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural language
processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Pro-
cessing: System Demonstrations, pp. 38—45, Online, October 2020. Association for Computational
Linguistics. URL https://www.aclweb.org/anthology/2020.emnlp-demos. 6.

Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. Seqgan: Sequence generative adversarial nets
with policy gradient. Proceedings of the AAAI Conference on Artificial Intelligence, 31(1), Feb.
2017. doi: 10.1609/aaai.v31i1.10804. URL https://ojs.aaai.org/index.php/AAAT/
article/view/10804.

13

https://aclanthology.org/2021.emnlp-main.529
http://arxiv.org/abs/1512.02433
http://arxiv.org/abs/1512.02433
https://proceedings.mlr.press/v97/song19d.html
https://proceedings.mlr.press/v97/song19d.html
https://proceedings.neurips.cc/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://proceedings.neurips.cc/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
http://arxiv.org/abs/1610.02424
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://ojs.aaai.org/index.php/AAAI/article/view/10804
https://ojs.aaai.org/index.php/AAAI/article/view/10804

Under review as a conference paper at ICLR 2023

Hang Zhang, Yeyun Gong, Yelong Shen, Jiancheng Lv, Nan Duan, and Weizhu Chen. Adversarial
retriever-ranker for dense text retrieval. arXiv preprint arXiv:2110.03611, 2021.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Peter Liu. PEGASUS: Pre-training with extracted
gap-sentences for abstractive summarization. In Hal Daumé III and Aarti Singh (eds.), Proceedings
of the 37th International Conference on Machine Learning, volume 119 of Proceedings of Machine
Learning Research, pp. 11328—11339. PMLR, 13-18 Jul 2020. URL https://proceedings,
mlr.press/v119/zhang20ae.html.

Saizheng Zhang, Emily Dinan, Jack Urbanek, Arthur Szlam, Douwe Kiela, and Jason Weston.
Personalizing dialogue agents: I have a dog, do you have pets too? In Proceedings of the 56th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
2204-2213, Melbourne, Australia, July 2018. Association for Computational Linguistics. doi:
10.18653/v1/P18-1205. URL https://www.aclweb.org/anthology/P18-1205.

Tianyi Zhang*, Varsha Kishore*, Felix Wu*, Kilian Q. Weinberger, and Yoav Artzi. Bertscore:
Evaluating text generation with bert. In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=SkeHuCVFDr.

Yao Zhao, Xiaochuan Ni, Yuanyuan Ding, and Qifa Ke. Paragraph-level neural question generation
with maxout pointer and gated self-attention networks. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing, pp. 3901-3910, Brussels, Belgium, October-
November 2018. Association for Computational Linguistics. doi: 10.18653/v1/D18-1424. URL
https://www.aclweb.org/anthology/D18-1424.

Ming Zhong, Pengfei Liu, Yiran Chen, Danqing Wang, Xipeng Qiu, and Xuanjing Huang. Extractive
summarization as text matching. In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, pp. 6197-6208, Online, July 2020. Association for Computational
Linguistics. doi: 10.18653/v1/2020.acl-main.552. URL https://aclanthology.org/
2020.acl-main.552.

14

https://proceedings.mlr.press/v119/zhang20ae.html
https://proceedings.mlr.press/v119/zhang20ae.html
https://www.aclweb.org/anthology/P18-1205
https://openreview.net/forum?id=SkeHuCVFDr
https://www.aclweb.org/anthology/D18-1424
https://aclanthology.org/2020.acl-main.552
https://aclanthology.org/2020.acl-main.552

Under review as a conference paper at ICLR 2023

A DISCUSSION

In this section, we discuss the relations between our JGR and several popular methods, including
reinforcement learning (RL), generative adversarial networks (GAN), and data augmentation.

A.1 JGR & RL

Some previous RL works, i.e., (Shen et al.,[2015; Rennie et al., 2017; [Paulus et al., 2018) proposed
to use A(§,y) to compute reward R(¥) directly which doesn’t combine ranking scores as feedback
signals. However, we argue that the ranking score calculated by the ranker model can provide more
semantic-relevant information than the matching scores (e.g., BLEU or ROUGE) which are purely
based on the surface match. In the ablation study, we also demonstrate that the proposed approach is
superior to other configurations in terms of training stability and performance.

Some other RL works |[Bahdanau et al. (2017); [Le et al.| (2022) introduced actor-critic frame-
works (Konda & Tsitsiklis) [1999), which jointly train an actor and a critic, are similar to our
JGR framework. while they have not considered the contrastive rewards between different candidates
given one input. However, different from these works, JGR allows the generator to sample several
i.i.d. candidates and be optimized simultaneously on these candidates at each training step. This
improvement makes the reward of a sampled candidate contain contrastive information from the
candidates from the same candidate set. Furthermore, it effectively raises the number of diverse
chains of probabilities on which the generator can be optimized. In Table[9] we compare our JGR-G
with the simple RL baseline that uses metric rewards, and the actor-critic baseline that the critic
is trained to fit the metric score A(y,y). The empirical results show that trained with the JGR
framework, the generator model can surpass those trained with previous RL-based methods well used
in the NLG area.

Table 9: Performance of generators in JGR and two kinds of RL-based method.
R-1 R-2 R-L AVG

BART 44.16 21.28 4090 35.45
RL (self-critical) 44.14 21.20 40.95 35.43
Actor-critic 45.04 2199 4171 36.25
JGR-G 46.86 23.18 43.74 37.93

A.2 JGR & GAN

From the perspective of the composition of a framework, both JGR and GAN contain a generator and
a critic. In GAN, the critic is the discriminator that aims at discriminating the real candidate from the
candidate pool. While in JGR, the critic is the ranker that aims to re-rank the candidates generated by
the generator.

The main difference between JGR and GAN comes from the training objective. Let the G denotes
the generator, and D, denotes the discriminator/ranker. GAN trains G and Dy with the min-max
objective:

JGeDy = MingMaxy By + p,..(-1x) 10200, (v 7, X)] + Eg- pe, (10 log(1 = pp, (¥7,%))] (10)

In Eq y* is the ground-truth output of input x, and y~ is the candidate texts sampled by the
generator. This is different from the setting of JGR, where both y* (denoted as ¥ in JGR) and y~
are sampled from pg, (+]x).

To implement GAN in NLG, according to|Yu et al.|(2017), the policy gradient is used and the reward
assigned to y~ is logpp, (¥, x). Note that the reward is always positive, therefore GAN essentially
raises the probability of the generator outputs, regardless of the quality of the outputs. On contrary,
as computed in Eq. [8] there are both positive and negative rewards in JGR, which means that JGR
not only encourages the generator to generate good candidates but also punishes the generator when
generating bad candidates.

Table [T0]shows the performance of generators in JGR and GAN on CNN/DailyMail, where GANgq
is the standard GAN setting that y™ is the ground-truth text and GAN,,.q is our modified version

15

Under review as a conference paper at ICLR 2023

Table 10: Results generator in JGR and two kinds of GANs.

R-1 R-2 R-L AVG
BART 4416 21.28 4090 3545
GANgg 43.68 20.81 4045 3498
GANpoq 4293 20.66 39.87 3449
JGR-G 46.86 23.18 43.74 37.93

of GAN that y* is replaced by the best candidate sampled by the generator, i.e., . As shown in
the table, our JGR surpasses the GAN methods, and the performance of GANgy and GANy,,q can
not even surpass the model trained on optimizing the standard NLL loss, indicating that the GAN
methods are not suitable for all NLG tasks. The GAN,oq performs worse than GANgy, showing that
for the min-max objective of GAN, it is not a good choice to letting ¥ as the positive sample, which
is contrary to what we found in JGR.

A.3 JGR & DATA AUGMENTATION

Data augmentation methods aim to improve the models’ performance by adding modified or syn-
thesized data to the existing training data (Li et al.| 2022a). For natural language generation tasks,

denote the augmented dataset as D, where D contains several augmented samples (X, y), the training
object for model in the augmented data is:

Loa=— Y Y logpa,(iilj<i, %) (11

(%.9)eD *
The above equation is similar to JGR’s reinforcement learning loss in Eq[8] Both of them optimize
the generator by maximizing the log-likelihood of synthesized data. Therefore, from this perspective,

we can regard our JGR as a way of data augmentation where the synthesized data is sampled from
the generator and the log-likelihood is re-scaled by the rewards.

Table 11: Results generator in JGR and two kinds of GANs.

R-1 R-2 R-L AVG
BART 44.16 21.28 4090 3545
DAy, 4437 2124 41.18 35.60
DAnix 4427 2138 41.04 35.56
JGR-G 46.86 23.18 43.74 37.93

We designed two simple but effective data augmentation methods named DA, and DA,;x. Both
of DA, and DAy use a fine-tuned generator G° to generate one summary y for each input x
in original tralmng set D using beam search, the collection of all (x,y) is treat as the augmented

training data D. After that, 1) DAqep fine-tunes G° firstly on D and then on D, 2) DA,ix further

fine-tunes G° on the mixture of D and D. We compare the performance of DA, and DAy,ix with our
JGR on CNN/DailyMail, with BART as the generator, the results are shown in Table@ As shown in
the results, both DA, and DA, can further improve the performance of BART, verifying the effect
of data augmentation. However, the performance gain brought by data augmentation is far less than
that brought by JGR.

B COMPUTATION OF SELEF-BLEU

Given a candidate set 57 = {yl, y27 s yC} sampled from the generator, the self-BLEU score for 52
is computed as the average of mutual BLEU scores of all candidate pairs:

>, BLEU(F".§)

self-BLEU(Y) = L'€Y g(j = (12)

16

Under review as a conference paper at ICLR 2023

55

50 /i

’,ll \\\\ / ‘\\ i
8 ! \ >~ », 1
2 \ \ K
45 i \ -t
]
g A v
) Ay
175] \
540 N\
Y \
=11 \
£ ‘\
o)
z35 <
\
\
\
l\
30 \\\ N
---- JGR \ e ISR
R Y -
25) === JGR w/o joint T TN s
500 1500 2500 3500 4500 5500 6500

Training steps of generator

Figure 5: The average of self-Distinct-2 at each training interval.

A higher self-BLEU score means the sampled candidates are more similar to each other, in other
words, a lower diversity of the sampled candidates.

It is another way to assess the diversity of sampled candidates by computing the proportion of the
number of distinct n-grams in the total number of tokens for the sampled candidates of an input
sequence. We refer to this metric as self-Distinct-n where n refers to n-grams. The higher self-
Distinct-n corresponds to the higher diversity of sampled candidates. Like Figure 4] we show the
curves of the average self-Distinct-2 for generated candidates at each training interval in Figure 3
From the figure, we can see that the self-Distinct-2 of JGRy joine drops rapidly after the generator
is trained 1000 steps, while the self-Distinct-2 keeps hovering in a relatively high range for JGR.
This phenomenon aligns with what we found when applying self-BLEU and further enhances our
conclusion in Section 4.7l

C EVALUATING JGR ON ADVANCED METRICS

A model trained with RL objective may succeed in the metrics it uses as the reward function but
perform poorly in other metrics. We hope to investigate whether JGR, which uses the RL objective
to train its generator, suffers from the same problem. We use three advanced metrics, namely
BERTScore (Zhang* et al.,[2020), FactCC (Kryscinski et al.,|2020), and QuestEval (Scialom et al.|
2021a)), to evaluate JGR on CNN/DailyMail. BERTScore measures the semantic similarity of the
predicted summary and ground-truth reference. FactCC and QuestEval use a trained language model
to measure the factual consistency between the generated summary and input source document. The

results are shown in Table[12]

Table 12: Performance on BERTScore, FactCC, and QuestEval.
BERTScore FactCC QE

BART 88.47 57.54 5941
JGR-G 88.90 60.33 61.53
JGR-R 88.96 61.59 61.62

As shown in the table, JGR-G and JGR-R both achieve higher BERTScore than BART, indicating that
they can generate summaries with better semantic quality. For FactCC and QuestEval, which measure
factual consistency, JGR-G and JGR-R also surpass the BART baseline. These results demonstrate
that JGR, despite optimizing for ROUGE, does not compromise on other aspects of summary quality,
such as semantic similarity and factual consistency, and can even improve on them compared to the
generator trained with NLL.

Moreover, JGR is not limited to ROUGE and BLEU as the ranking criteria. It could potentially
perform better if we incorporate other metrics like FactCC into A(¥,y). We plan to explore this
direction in the future.

17

Under review as a conference paper at ICLR 2023

D DECODING STRATEGIES

We study the impact of different decoding strategies during inference. Two decoding strategies are
compared, namely beam search and group beam search (Vijayakumar et al.| 2016)). We also compare
different beam sizes. The results of ROUGE-1 score with beam search on CNN/DailyMail are shown
in Figure[q]

48.00 48.00
—— JGR-G —— JGR-G
JGR-R JGR-R
47.50 47.50
o o
4700 7 4700
=3 /M =
46.50 46.50
46007 6 10 14 18 02 4600 6 10 14 18 2

Beam size Beam size

Figure 6: ROUGE-1 score using beam search Figure 7: ROUGE-1 score using diverse beam
with different on CNN/DailyMail test set. search with different on CNN/DailyMail test set.

As shown in Figure[6] increasing the beam size does not contribute to the performance of JGR-G
when using the normal beam search. However, the performance of JGR-R can rise as the beam size
increases. This indicates that increasing the beam size can raise the probability of JGR-R ranking a
better candidate to the top among all the candidates decoded by JGR-G.

Figure [/| shows the results with diverse beam search. Firstly we can find that with diverse beam
search the JGR system can not achieve comparable results with JGR using normal beam search, and
the performance of JGR-G begins to drop when beam size exceeds 4. We can still observe that the
performance of JGR-R rises as the beam size increases. However, since the performance of JGR-G
keeps declining, the performance ascent of JGR-R is not as significant as that of JGR-R with the
normal beam search.

E STATISTICS OF THE BENCHMARKS

The statistics of all benchmarks are shown in Table [T3]

Table 13: The statistics of the benchmarks. |Src.| means the average number of tokens for each source
input. | Tgt.| means the average number of tokens for each target text.

Benchmark |Train|] |Dev| |Test|] |[Src.| |Tgt.|
CNN/DailyMail 287,113 13,368 11,490 8223 57.9
SAMSum 14,731 818 819 124.1 234
SQuAD 1.1 75,722 10,570 11,877 1494 115
PersonaChat 122,499 14,602 14,056 120.8 11.8

For evaluation on CNN/Daily and SAMSum, we use the python rouge score package:
https://pypi.org/project/rouge—score/. For evaluation on SQuAD 1.1, we follow
the evaluation scripts open-sourced by Liu et al.| (2020) athttps://github.com/microsoft/
ProphetNet/tree/master/GLGE_baselines/script/script/evaluate/qgqg. For
evaluation on PersonaChat, we follow the evaluation scripts open-sourced by [Liu et al.
(2020) at https://github.com/microsoft/ProphetNet/tree/master/GLGE_
baselines/script/script/evaluate/personachat.

18

https://pypi.org/project/rouge-score/
https://github.com/microsoft/ProphetNet/tree/master/GLGE_baselines/script/script/evaluate/qg
https://github.com/microsoft/ProphetNet/tree/master/GLGE_baselines/script/script/evaluate/qg
https://github.com/microsoft/ProphetNet/tree/master/GLGE_baselines/script/script/evaluate/personachat
https://github.com/microsoft/ProphetNet/tree/master/GLGE_baselines/script/script/evaluate/personachat

Under review as a conference paper at ICLR 2023

Table 14: The hyper-parameters of JGR on each benchmark.

CNN/DailyMain SAMSum SQuAD 1.1 PersonaChat
Warming-up G
Epochs 5 5 20 5
Learning rate Se-5 Se-5 Se-5 Se-5
Batch size 96 128 96 96
Max source length 1024 1024 600 700
Max target length 100 100 65 70
First Ranker training iteration
Epochs 3 20 3 3
Learning rate le-5 le-5 le-5 le-5
Warm-up ratio/steps 0.2 500 steps 0.2 0.3
Batch size 64 64 64 32
Max source length 512 512 500 500
Candidates sampled for G° 16
Negative candidates 2
Ay,y) 0.02(R-1)+0.05(R-2)+0.025(R-L) 0.02(R-L)+0.04(B-4)+0.04(MTR) 0.02(B-1)+0.025(B-2)
JGR training
Epochs 3 10 3 3
JGR-R steps per iteration 500 231 steps (1 epoch) 250 500
JGR-G steps per iteration 500 231 steps (1 epoch) 250 500
JGR-G learning rate Se-5 le-5 Se-5 Se-5
JGR-R learning rate le-5 Se-6 le-5 le-5
Batch size 64 64 32 64
Candidates sampled for JGR-R 16
Negative candidates for JGR-R 2
Candidates sampled for JGR-G 8
Beam size when inference 16

A(Y.y)

0.02(R-1)+0.05(R-2)+0.025(R-L)

0.02(R-L)+0.04(B-4)+0.04(MTR)

0.02(B-1)+0.025(B-2)

F HYPER-PARAMETERS OF FINE-TUNING ON BENCHMARKS.

The hyper-parameters for our JGR on each benchmark are shown in Table[T4]

19

	Introduction
	Related Work
	Natural Language Generation
	Generate-then-Rank Framework

	Methodology
	Preliminaries
	Joint Generator-Ranker Training

	Experiment
	Datasets
	Settings
	Overall Results
	Performance of Ranker
	Impact of Rewards
	Candidate Picking Strategies
	Does Joint Training Matter?
	More Discussions

	Conclusion
	Discussion
	JGR & RL
	JGR & GAN
	JGR & Data Augmentation

	Computation of Self-BLEU
	Evaluating JGR on Advanced Metrics
	Decoding Strategies
	Statistics of the Benchmarks
	Hyper-parameters of Fine-tuning on Benchmarks.

