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Abstract

Federated learning (FL) algorithms, such as Fed Avg/FedProx, commonly rely on the consensus
constraint, enforcing local models to be equal to the global model obtained through the
averaging of local updates. However, in practical FL settings with heterogeneous agents,
we question the necessity of enforcing consensus. We empirically observe that relaxing
consensus constraint an improve both local and global performance to a certain extent. To
mathematically formulate it, we replace the consensus constraint in standard FL objective
with the proximity between the local and the global model controlled by a tolerance parameter
~, and propose a novel Federated Learning Beyond Consensus (FedBC) algorithm to solve it.
Theoretically, we establish that FedBC converges to a first-order stationary point at rates
that matches the state of the art, up to an additional error term that depends on a tolerance
parameter v. Finally, we demonstrate that FedBC balances the global and local model test
accuracy metrics across a suite of datasets (Synthetic, MNIST, CIFAR-10, Shakespeare),
achieving competitive performance with state-of-the-art.

1 Introduction

Federated Learning (FL) has gained popularity as a powerful framework to train machine learning models
on edge devices without transmitting the local private data to a central server (McMahan et al., 2017).
Mathematically, we can write the FL problem as

| X
min F(x) := N Zfl(x), (1)

xeX

where X C R? is a compact convex set and F(x) is the sum of N possibly non-convex local objectives f;(x)
which could be stochastic as well f;(x) := E¢,[f(x,(;)] with ¢; ~ P((;). Following standard FL literature
(McMahan et al., 2017; Karimireddy et al., 2020)), we consider that all the devices are connected in a star
topology to a central server. The FL problem is challenging because of the heterogeneity across devices
which might be due to different sources, such as the local training data sets can have different sample sizes
and might not even necessarily be drawn from a common distribution, meaning that P(¢;) is allowed to be
heterogeneous for each device i. The goal of standard FL is to train a global model x* by solving (1), which
performs well or at least uniformly across all the clients (McMahan et al., 2017; Li et al., 2020).

In the presence of data heterogeneity across devices, it is highly unlikely that one global model would work
well for all devices. This has been highlighted in (Li et al., 2019), where a large spread in terms of performance
of the global model was noted across devices. The requirement of uniform performance of the global model
across devices is also connected to fairness in FL (Li et al., 2019). In FL, the global model is generally
constructed from an aggregation of local models learned at each device. The simplest is the average of local
models in FedAVG (McMahan et al., 2017). When devices’ local objectives are distinct, solving (1) can
potentially lead to global model which is far away from the local model obtained by solving;:

min fi(x), (2)
for device i. For instance, consider the problem of learning “language models" for a cellphone keyboard,
where the goal is to predict the next word. FL can be used in such a case to learn a common global model,
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but a global model might fail to capture distinctive writing styles, as well as the cultural nuances of different
users. In such a case, a specific local model [cf. (2)] for each device is required; however, due to sub-sampling
error, data at device ¢ might not be sufficient to obtain a reasonable model via only local data. Therefore,
there are two competing criteria: global performance in terms of (1) evaluated at the global model and a local
performance evaluated at the local model [cf. (2)]. The notion of global and local models naturally arises
in FL and exists in FedAVG (McMahan et al., 2017), FedProx (Li et al., 2020), SCAFFOLD (Karimireddy
et al., 2020), etc. Predominately, the focus in the existing literature is either on training only the global
model or the local model. Hence we pose the following question:

“How can one automate the balance between global and local model performance simultaneously in FL?"

We answer this question affirmatively in this work by developing a novel framework of federated learning
beyond consensus (FedBC). We propose to consider a problem in which the global objective (1) is primal, which
owing to node-separability, allows each device to only prioritize its local objective (2). Then, we introduce a
constraint to control the deviation of the local model from the global model with a local hyper-parameter ~;
for each device 1.

Contributions. We summarize our main contributions as follows:

(1) We provide a novel connection between the global and local model improvement and consensus tolerance
parameter which is missing from the literature. To characterize it mathematically, we propose a framework of
federated learning beyond consensus, which allows us to calibrate the performance of global and local models
across devices in FL (cf. 7). This formulation itself is novel for the FL settings.

(2) We derive the Lagrangian relaxation of this problem and an instantiation of the primal-dual method,
which, owing to node-separability of the Lagrangian, admits a federated algorithm we call FedBC (cf. Algo.

1).
(3) We establish the convergence of the proposed FedBC theoretically and show that the rates are at par with

the state of the art. We also illustrate the efficacy of FedBC via showing the performance of global and local
models on a range of datasets (Synthetic, MNIST, CIFAR-10, Shakespeare).

Related Works. Current approaches in literature tend to focus either only on the performance of the global
model (McMahan et al., 2017; Li et al., 2020; Karimireddy et al., 2020), or the local model (Fallah et al.,
2020; Hanzely et al., 2020), but do not quantitatively calibrate the trade-off between them. Prioritizing global
model performance only amongst the individual devices admits a reformulation as a consensus optimization
problem (Nedic & Ozdaglar, 2009; Nedic et al., 2010), which gives rise to FedAvg (McMahan et al., 2017).
In this context, it is well-known that averaging steps approximately enforce consensus (Shi et al., 2015),
whereas one can enforce the constraint exactly by employing Lagrangian relaxations, namely, ADMM (Boyd
et al., 2011), saddle point methods (Nedi¢ & Ozdaglar, 2009), and dual decomposition (Terelius et al.,
2011). This fact has given rise to efforts to improve the constraint violation of FL algorithms, as in FedPD
(Zhang et al., 2021) and FedADMM (Wang et al., 2022). Other approaches involve using model-agnostic
meta-learning (Fallah et al., 2020), in which one executes one gradient step as an approximation for (2) as
input for solving (1) with objective % va:l fi(x — aV fi(x)). However, it does not explicitly allow one to
trade off local and global performance. Several works have sought to balance these competing local and
global criteria based upon regularization (Li et al., 2020; Hanzely et al., 2020; T Dinh et al., 2020; Li et al.,
2021b). Alternatives prioritize the performance of the global model amidst heterogeneity via control variate
corrections (Karimireddy et al., 2020; Acar et al., 2021). Please refer to Appendix A for additional related
work context.

2 Problem Formulation

In this section, to solve (1) in a federated manner, we consider a consensus reformulation of (1), where each
device ¢ is now only responsible for its local copy x; of the global model z:

N
min Zf,-(xi) s.t. x; =z, Vi (3)

{(z,x;)eX} —
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Figure 1: In the left side figure, note that the consensus in standard FL results in averaging at the server,
which doesn’t allow it to converge to optimal. For the right side figure, the parameter -; introduces beyond
consensus feature and allows the server model to converge to optimal.

The linear equality constraints x; = z for all ¢ in (3) enforce consensus among all the devices. To solve
(3), one may employ techniques from multi-agent optimization (Nedic & Ozdaglar, 2009; Nedic et al., 2010)
and consider localized gradient updates followed by averaging steps, as in FedAvg (McMahan et al., 2017).
Setting aside the issue of how sharply one enforces the constraints for the moment, observe that in (3), each
device must balance between the two competing global and local objectives. These quantities only coincide
when the set of minimizers of the sum is contained inside the set of minimizers of each cost function in the
sum. This holds only when the sampling distributions P(¢;) coincide which is not true for FL in general.
Efforts to deal with the gap between the global (1) and local (2) objectives have relied upon augmentations
of the local objective, e.g.,

fi(xi) + (1/2)|Ixi — z|)? in FedProx, (4)
arg mgin £:(0) 4 (1/2)]0 — 2|2 in pFedMe, (5)
filx = Vfi(x)) in Per-FedAvg. (6)

In the above objectives, observe that a penalty coefficient is introduced to obtain a suitable tradeoff between
global and local performance. This relationship is even more opaque in meta-learning, as the tradeoff then
depends upon mixed first-order partial derivatives of the local objective with respect to the global model — see
(Fallah et al., 2020). Therefore, it makes sense to discern whether it is possible to obtain a methodology to
solve for the suitable trade-off between local and global performance while solving for the model parameters
themselves. To do so, we reinterpret the penalization in (4) as a constraint, which gives rise to the following
problem:

N

min i\ X S't' X; —Z 2 S ) V'L ) 7
{(z,xnex};f( ) I [ <~ )

for some ~; > 0. We call this formulation FL. beyond consensus because ; > 0 would allow local models to
be different from each other and no longer enforces consensus as in (3).

Interpretation of ~;: The introduction of +; provides another degree of freedom to the selection of local
x; and global model z. Instead of forcing x; = z for all 7 in (3), they both can differ from each other while
still solving the FL problem. For instance, consider the example in Fig. 1 (left), where we generalize the
example from (Tan et al., 2022) and show (Fig. 1 (right)) that a strictly positive ~; can result in a better
global model. Further, as a teaser in Fig. 2, we also note experimentally that ~; calibrates the trade-off
between the performance of the local and global model. For simplicity in Fig. 2, we kept ~ the same for all 7,
and we note that local test accuracy and global test accuracy both increase as we start increasing v from
zero, and then eventually global performance starts deteriorating after v > 0.05 and local performance is still
improving. This makes sense because by making  larger, we are just focusing on minimizing the individual
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Figure 2: In this figure, v > 0 establishes that there is a region 0 < v < 0.05 to further improve the performance
of the global model, as compared to existing FL. approaches such as FedAvg, FedProx, SCAFFOLD, etc
(where v = 0).

loss functions for each device ¢ than focusing on minimizing the sum. But remarkably, the region between
0 < v <0.05 is interesting because both local and global performance increases, which tells us that v = 0.05
is superior to choosing than v = 0 as used in the standard FL (McMahan et al., 2017; Li et al., 2020). Hence,
this basic experiment in Fig. 2 establishes that there is some room to improve the existing FL models (even
if we just focus on the performance of the global model) with a non-zero +;, which has not yet been utilized
anywhere to the best of our knowledge. Therefore, this work is the first attempt to show the benefits of using
~v > 0. We further solidify our claims in Sec. 5. Next, we derive an algorithmic tool to solve (7).

3 FedBC: Federated Learning Beyond Consensus

To solve (7), one could consider the primal-dual method (Nedi¢ & Ozdaglar, 2009) or ADMM (Boyd et al.,
2011). However, as the constraints [cf (7) are nonlinear, ADMM requires a nonlinear optimization in the
inner loop. Thus, we consider the primal-dual method, which may be derived by Lagrangian relaxation of (7)
as:

1 N

Lz, {xi, \i}iLy) = N E;ﬁi(z7xiy Ai), (8)
i=

where £;(z,x;,\;) := [fi(x;) + Ai (| xi — 2]|* = i) |. Then we alternate between primal minimization and

dual maximization. To do so, ideally one would minimize the Lagrangian (8) with respect to x; while keeping

z and {\;}}¥, constant, i.e., at give instant ¢, we solve for x; as

x!T = argmin £;(x,z', \!). (9)

As local objectives may be non-convex, solving (9) is not simpler than solving (7) for given z' and A!. To
deal with this, we consider an oracle that provides an ¢;-approximated solution of the form

xi M =0racle; (£;(x!, 2", \!), K;); [K;-local updates] (10)
where the e¢;-approximate solution XEH is a stationary point of the Lagrangian in the sense of
[V, £i(xT1 28 A)||2 < ¢;. In case of a stochastic gradient oracle, this condition instead may be stated as
E [||Vx, Li(xth 2t AD|I?] < €;. We note that any iterative optimization algorithm can be used to perform
the K; local updates. The number of local updates K; depends upon the accuracy parameter ¢;. For instance,
in the case of non-convex local objective, a gradient descent-based oracle would need K; = O (1/¢;) and
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Algorithm 1 Federated Learning Beyond Consensus (FedBC)

1: Input: T, K; for each device i, 7; step size parameters o and f.

2: Initialize: x?, z°, and A for all i.

3: fort=0to T —1do

4:  Select a subset of S devices uniformly from N devices , we get S; € {1,2,--- , N}
5. Send z! to each j € S,

6 Parallel loop for each device j € S;

7. Primal update: x’*! = Oracle;(£;(x}, 2!, \}), K;) according to Algorithm 2

8 Dual update: A;H =P M+ a(|xiTh — 2|2 — )]

9 Each device j sends xt™1, )\;H back to server

J
10:  Server updates

1
2" = > PG Z(/\;HX;H) (13)
JES: 71 jeS

11: end for
12: Output: z”

an SGD-based oracle would require K; = O (1/€?) number of local steps — see (Wright et al., 1999). A
gradient descent-based iteration as an instance of (10) is given in Algorithm 2. Next, we present the Lagrange
multiplier updates initially under the hypothesis that all devices communicate, which we will subsequently
relax. In particular, after collecting the locally updated variables at the server, X§+1, the dual variable is
updated via a gradient ascent step given by:

N =Pa [N+ allx T =2t - )] (11)

where the dual variable )\EH is projected (P, denotes projection operation) onto a compact domain given by
A := [Amin; Amax), where the values of Ay, and Apax will be derived later from the analysis. Then, we shift
to minimization with respect to the global model variable z, which by the strong convexity of the Lagrangian
[cf. (8)] in this variable is obtained by equating V,£(z, {x:t*, Xi* 11V 1) = 0 and given by

N

1
A ()\H_l)XH_l, (12)
2&@2*1); L

The server update in (12) requires access to all local models x; and Lagrange multipliers ;. To perform the
update (12), we use device selection as is common in FL, we uniformly sample a set of |S;| devices from N
total devices. All the steps are summarized in Algorithm 1.

Connection to Existing Approaches: FL algorithms alternate between localized updates and server-level
information aggregation. The most common is FedAvg (McMahan et al., 2017), which is an instance of FedBC
with Al = 0 for all ;. Furthermore, FedProx is an augmentation of FedAvg with an additional proximal term
in the device loss function. Observe that FedBC algorithm with A} = u for all ¢ and ¢ reduces to FedProx (Li
et al., 2020) for (1). Furthermore, for 7; = 0 and without device sampling, the algorithm would become a
version of FedPD (Zhang et al., 2021). For constant A; = ¢ and with K; = 1 local GD step, our algorithm
reduces to L2GD (Hanzely & Richtarik, 2020), which is limited to convex settings. (Li et al., 2021b) similarly
mandates constant Lagrange multipliers and K; = 1.

4 Convergence Analysis

In this section, we establish performance guarantees of Algorithm 1 in terms of solving the global [cf. (1)]
and the local problem (2). We first state the assumptions:

Assumption 4.1. The domain X of functions f; in (2) is compact with diameter R, and at least one
stationary point of Vx, Li(Xi,2, A;) = 0 belongs to X.
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Algorithm 2 Oracle; in Equation (10) [K;-local updates]

: Input: K;, v, (8, xt,zt, Al

: Initialize: w¥ = x!

: for k =0 to K; — 1 for each device ¢ do

Update the local model via any optimizer
GD optimizer:

WEH k= (T, fi(wh) + (200) (wh — 1)
SGD optimizer:

wi = wk— B (g + (2A]) (wh —2'))

end for

: Output: le

:J_kwl\')H

@ &

Assumption 4.2 (Lipschitz gradients). The gradient of the local objective V f;(x) of each device is Lipschitz
continuous, i.e., |Vfi(x) = Vfi(y)l < Lillx —y||, Vx,y € X .

Assumption 4.3 (Bounded Heterogeneity). For any device pair (i, j), it holds that max(, p)en [|aV fi(x) —
bV fi(x)|| <96, forallx € X.

Next, we describe the assumption required when we use stochastic gradients instead of the actual gradients.
If we denote the stochastic gradient for agent i as g;, it satisfies the following assumption.

Assumption 4.4 (Stochastic Gradient Oracle). If a stochastic gradient oracle is used at device i, then g;
satisfies Elg; | Hi] = Vf(xi), and E[|gi — VF(x)||? | He] < 02, Vi, where Hy, is defined as filtration or
o-algebra generated by past realizations {C!}u<k-

We note that the Assumptions 4.1-4.4 are standard (Nemirovski et al., 2009). Assumption 4.2 makes
sure that the local non-convex objective is smooth with parameter L;. Assumption 4.3 is a version of the
heterogeneity assumption considered in the literature (Assumption 3 in (T Dinh et al., 2020)). Assumption
4.4 imposes conditions on the stochastic gradient oracle, particularly unbiasedness and finite variance, which
are standard. We are now ready to present the main results of this work in the form of Theorem 4.5. For
the convergence analysis, we consider the performance metric 1 Zthl |V £(z")||?> which is widely used in the
literature (McMahan et al., 2017; Li et al., 2020; Karimireddy et al., 2020; T Dinh et al., 2020). Under these
conditions, we have the following convergence result.

Theorem 4.5. Under Assumption 4.1-4.3, for the iterates of proposed Algorithm 1, we establish that the
global performance satisfies:

% Z_: E[|V f(2')|]?] =0 (E;O) +0(e) + 0(0%) + O(a) + O <NlT ;%) : (14)

t=0

where By is the initialization dependent constant, € = max; €; is the accuracy with each agent solves the local
optimization problem in the algorithm, § is the heterogeneity parameter (cf. Assumption 4.3), a > 0 is the
step size, and y;’s are the local parameters.

The proof of Theorem 4.5 is provided in Appendix C. The expectation in (14) is with respect to the randomness
in the stochastic gradients and device sampling. The first term is the initialization dependent term, and as
long as the initialization By is bounded, the first term reduces linearly with respect to T and goes to zero
in the limit as T — oo. This term is present in any state-of-the-art FL algorithm (McMahan et al., 2017;
Li et al., 2020; Karimireddy et al., 2020; T Dinh et al., 2020). The second term is O(e), which depends
upon the worst local approximated solution across all the devices. Note that the individual approximation
errors €; depend on the number of local iterations K;. This term is also present in most of the analyses of
FL algorithms for non-convex objectives. The third term is due to the heterogeneity across the devices and
is a specific feature of the FL problem. The fourth term is the step size-dependent term. The last term is
important here because that appears due to the introduction of ; in the problem formulation in (7), and it
is completely novel to the analysis in this work. This term decays linearly even if v; > 0 for all i. The ~;’s
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Figure 3: We use 30 as the total number of users and E = 5. (a) We plot global train loss vs the number of
rounds and observe that FedBC achieves the lowest train loss. (b) We track the user/device with the smallest
(min user) or largest (max user) number of data at each round and plot the min or max user’s coefficient in
computing the global model based on either its local dataset size (n;) or \;. We observe that the magnitude
difference between min and max user’s coefficient based on \; is consistently smaller than that based on n;.
(c) We plot \; against n; for each user at the end of training and observe that users of small dataset sizes
(e.g. < 200) are able to contribute significantly to the global model in FedBC. (d) We show the variance of
test accuracy of the global model on each user’s local data for different Es (shaded area shows standard
deviation), and observe that the model of FedBC achieves high uniformity.

are directly affecting the global performance because they are allowing device models to move away from
each other, hence affecting the global performance. We remark that for the special case of v; = 0 for all 4,
our result in (4.5) is equivalent to FedPD (Zhang et al., 2021), pFedMe (T Dinh et al., 2020) except for the
fact that there is no device sampling in FedPD.

The technical points of departure in the analysis of FedBC (cf. Algorithm 1) from prior work are associated
with the fact that we build out from an ADMM-style analysis. (Zhang et al., 2021) However, due to non-linear
constraint (7), one cannot solve the argmin exactly. This introduces an additional O(e) error term that
we relate to K; in (10). This issue also demands we constrain the dual variables to a compact set in (11).
Moreover, device sampling for the server update (cf. (13)) is introduced here for the first time in a primal-dual
framework, which does not appear in (Zhang et al., 2021). Furthermore, our nonlinear proximity constraints
[cf. (7)] additionally permits us to relate the performance in terms of the local objective [cf. (2)] to the
proximity to the global model defined in (7) as a function of tolerance parameter ;. We formalize their
interconnection in the following corollary.

Corollary 4.6 (Local Performance). Under Assumption 4.1-4.3, for the iterates of Algorithm 1, we establish
that

T T 2

1

T S IVAEDI? <O (6) + a*0 ([Zﬂ{lezw%m}} +> : (15)
t=1 k=0

The proof is provided in Appendix D. We note that the local stationarity of each client i actually depends on
the local €; approx error and 7; via a complicated term present in the second term in (15), where T is an
indicator function that is 1 if the condition is not satisfied, and —1 otherwise. We note that the term inside
the big bracket is larger (worse local performance) for lower ~;, and vice versa. Hence we have a relationship
between global and local model performance in terms of ;.

5 Experiments

In this section, we aim to address the following questions with our experiments: @ Does the introduction of ~y;
help FedBC to improve global performance compared to other FL algorithms in heterogeneous environments?
@ Does FedBC allow users to have their own localized models and to what extent? Interestingly, we observed
that FedBC, with the help of v; > 0, tends to weight the importance of each device equally and hence achieves
fairness as defined by Li et al. (2019). We specifically test the fairness of the global model in terms of its
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(defined in Figure 3 caption) users’ local data

at each round of communication for £ = 5. The global model of FedBC (a) initially has a performance gap
on min and max users’ data, but the gap is largely eliminated in the end. For FedAvg (b), -FedAvg (e),
FedProx (f), and Scaffold (g), this gap is more apparent and persistent throughout training.

performance on user/derive with minimum data (called min user) and device with maximum data (called
max user) in the experiments. Please refer to Appendix E for additional detailed experiments.

Table 1: Synthetic dataset classification global test accuracy for the different numbers of local training
epochs, i.e., K; = F for each device i in Algorithm 1. The + shows the standard deviation.

. Epochs
Algorithm T 5 10 55 0
FedAvg 83.61 £ 0.43 83.42 £ 0.58 83.49 £ 0.70 83.73 £ 0.57 82.94 + 0.66
-FedAvg | 87.12 + 0.25 86.76 + 0.15 86.46 + 0.28 86.76 + 0.12 86.71 + 0.12
FedProx 86.23 £ 0.42 85.59 £+ 0.37 85.34 + 0.61 85.00 £+ 0.63 85.34 £ 0.48
Scaffold 83.84 £ 0.09 82.95 £ 0.30 83.48 £ 0.21 83.60 £ 0.21 82.80 £ 0.62
FedBC 87.83 + 0.35 | 87.48 + 0.18 | 87.43 + 0.20 | 86.99 + 0.11 | 87.26 + 0.12

Experiment Setup. The synthetic dataset is associated with a 10-class classification task, and is adapted
from (Li et al., 2020) with parameters o and S controlling model and data variations across users (see
Appendix E.1 for details). For real datasets, we use MNIST and CIFAR-10 for image classification. MNIST
and CIFAR-10 datasets consist of handwritten digits and color images from 10 different classes respectively
(Krizhevsky et al., 2009) (LeCun et al., 1998). We denote C' to represent the most common number of classes
in users’ local data (see Appendix E.3 for details). To evaluate the global performance of FedBC, we compare
it with 4 other FL algorithms, i.e., FedAvg (McMahan et al., 2017), g-FedAvg (Li et al., 2019), FedProx
(Li et al., 2020), and Scaffold (Karimireddy et al., 2020). We use the term global accuracy while reporting
the performance of the global model (z!) on the entire test dataset and use the term local accuracy while
reporting the performance of each device’s local model (x!) using its own test data and take the average
across all devices.

Selection of ~;: Since we do not know the optimal ~; for each user ¢ apriori, for experiments, we initialize
them to be 0, and propose a heuristic to let the device decide its own ~;. To achieve that, we observe ~;
participating in the Lagrangian defined in (8) and which defines a loss with respect to primal variables, and
we want to minimize it. Hence, we take the derivative of the Lagrangian in (8) with respect to 7;, and
perform a gradient-descent update for «y;. Interestingly, we note that the derivative of ; is —\;, which means
that ; tends to always increase when gradient descent is performed. This implies that initially, each device’s
local model remains closer to the global model (similar to standard FL), but gradually incentivizes moving
away from the global model to improve the overall performance. Experimentally, we show that this heuristic
works very well in practice. (see Appendix E.1 for additional details).

Synthetic Dataset Experiments: We start by presenting the global accuracy results of the synthetic
dataset classification task in Table 1. Note that FedBC outperforms all other algorithms for different numbers
of local training epochs E. Figure 3 provides empirical justifications for such remarkable performance. Figure
3a shows that FedBC achieves a lower training loss than others, whereas algorithms such as FedAvg plateaus
at an early stage. Next, to understand the calibrating behavior of FedBC, we compare the contributions from
min and max users’ local models (defined in Figure 3 caption) in updating the global model z' via (13). To
this end, we plot their \;s at the end of each communication round in Figure 3b. It is evident that FedBC is
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Table 2: Global model performance of FedBC and other baselines on CIFAR-10 classification (E = 5). All
colored cells denote the proposed algorithms.

Power Law Exponent
1.1 1.2 1.3 14 1.5
C=1 | FedAvg 50.15 £+ 0.58 50.66 + 1.88 57.23 £ 0.74 53.69 £+ 2.24 60.82 + 0.85
q-FedAvg 49.17 £+ 1.38 49.32 + 1.64 57.35 £ 1.05 54.40 £+ 1.57 60.56 + 1.19
FedProx 49.92 + 1.16 50.21 £ 2.00 57.14 £+ 0.60 56.30 £ 1.95 60.57 + 0.65

Classes | Algorithm

Scaffold 46.86 + 2.03 36.55 £ 2.63 37.81 £ 2.50 30.99 £ 1.23 36.08 £ 3.25
Per-FedAvg | 45.93 + 0.86 37.03 £ 6.22 56.43 £ 2.35 52.82 £ 1.98 56.31 £ 5.52
pFedMe 47.18 £ 1.28 43.69 £ 1.38 50.76 £ 1.44 45.12 £ 1.92 50.19 £ 2.24
FedBC 50.35 £ 0.91 | 55.25 + 1.27 | 58.93 £+ 1.52 | 58.10 £ 1.56 | 61.12 + 1.24
C =2 | FedAvg 57.10 £ 0.85 56.94 £ 1.66 57.67 £ 2.76 32.87 £ 2.82 58.59 £ 3.14

q-FedAvg 57.20 £ 0.68 | 58.29 £+ 1.67 | 57.71 £ 2.09 57.10 £ 2.44 57.90 £ 3.27
FedProx 57.18 £ 1.21 57.64 £ 1.64 57.98 £ 1.73 39.99 £ 4.18 58.63 £ 2.91

Scaffold 55.561 £ 1.79 2448 £+ 3.34 36.69 £ 2.78 41.79 £+ 0.42 32.18 £ 9.18
Per-FedAvg | 55.29 + 0.82 54.67 £ 1.88 54.64 £ 1.96 39.66 £ 6.94 60.16 + 1.46
pFedMe 51.45 £ 0.44 46.80 £ 2.04 47.98 £ 1.46 30.81 £ 3.22 49.25 £+ 1.68
FedBC 56.45 £ 1.05 55.64 + 1.45 58.02 + 2.10 | 60.92 + 2.43 | 64.20 + 2.13
C =3 | FedAvg 64.19 £ 2.06 53.83 + 3.38 57.54 £ 1.17 60.96 £ 0.95 58.91 + 2.76

q-FedAvg 62.76 £ 1.53 61.37 £ 2.06 61.80 £ 1.73 63.40 £ 2.16 64.01 £ 1.96
FedProx 64.40 + 1.80 | 54.81 £ 2.16 57.28 £ 1.90 61.66 £ 0.42 59.85 + 2.81

Scaffold 61.46 £ 1.86 54.04 £ 6.99 38.38 £ 2.80 30.75 £ 5.68 33.04 £ 9.85
Per-FedAvg | 61.83 + 1.74 52.24 £ 1.84 58.16 £ 0.61 60.36 £ 1.96 59.27 £ 2.46
pFedMe 53.52 £ 1.59 42.92 £+ 1.64 52.50 £ 1.79 54.39 £ 1.91 53.26 £ 1.24
FedBC 63.43 £ 2.55 62.90 + 2.26 | 64.87 + 1.44 | 66.23 £+ 0.65 | 66.80 + 1.07

Table 3: Local model performance of FedBC and other baselines on CIFAR-10 classification (F = 5). All
colored cells denote the proposed algorithms (see Algorithm 3 in the appendix for Per-Fed BC).

e . Power Law Exponent

Classes | Algorithm i1 i3 13 ! 5

C =1 | Per-FedAvg 99.92 + 0.15 | 85.58 + 0.66 | 94.99 + 0.37 | 91.10 £ 1.90 | 85.09 + 1.42
pFedMe 86.28 + 0.59 72.05 £ 0.35 81.21 £+ 0.27 82.46 + 0.65 | 76.94 + 0.82
FedBC 91.96 £ 0.70 77.52 £ 0.60 84.87 £ 1.01 86.15 £ 0.43 | 81.31 £ 0.22
FedBC -FineTune | 97.36 £ 0.22 84.54 £ 0.17 91.89 £ 0.44 87.18 £0.21 | 82.01 £ 0.17
Per-FedBC 99.39 + 1.09 85.42 £ 0.75 93.79 £ 1.57 | 91.15 + 2.10 | 85.18 + 1.08

C =2 | Per-FedAvg 93.45 + 0.28 | 86.29 + 0.93 87.38 £ 1.19 62.01 £ 5.60 | 86.28 £ 1.32
pFedMe 73.16 £+ 0.45 68.01 £ 0.55 69.76 £+ 0.68 49.97 £ 0.58 | 60.16 + 1.50
FedBC 78.04 £ 0.57 73.24 £ 0.47 74.95 £ 0.36 53.83 £0.56 | 71.22 £1.21
FedBC -FineTune | 89.27 + 0.29 77.64 £ 0.28 79.69 + 0.11 56.83 £ 0.34 | 80.63 + 0.51
Per-FedBC 93.09 £ 0.41 86.55 + 1.76 | 88.47 + 2.11 | 70.20 £+ 4.60 | 87.47 + 1.12

C =3 | Per-FedAvg 85.79 + 0.87 | 75.69 + 2.30 89.14 £ 0.71 90.98 £ 3.37 | 81.63 £ 3.32
pFedMe 57.93 £ 1.05 47.84 £ 1.17 70.16 £ 0.60 68.76 £ 0.91 | 59.71 £ 0.50
FedBC 60.31 £ 0.74 52.77 £ 1.34 73.09 £ 0.85 74.56 £ 0.90 | 65.05 £ 1.00
FedBC -FineTune | 74.42 + 0.29 67.46 £+ 0.59 90.08 £ 0.42 88.84 +£0.82 | 72.60 + 0.34
Per-FedBC 85.61 £ 1.18 | 80.96 + 2.50 | 91.22 + 0.95 | 91.85 + 1.54 | 83.40 + 1.41

significantly less biased towards the min user. The min user’s coefficient eventually catches that of the max
user for FedBC, and the difference between them is one order of magnitude less than that of the data-size-based
coefficient. This enables FedBC to be better in terms of fairness as compared to other algorithms. Figure 3c
shows the distribution of A- coefficients at the end of training for devices of different data sizes. Interestingly,
the max user’s coefficient is almost the same as those of users of small data sizes. In fact, the coefficients
of users of data size less than 300 for FedBC are consistently larger than their data-size-based counterparts,
and vice versa for data sizes greater than 300. Lastly, Figure 3d shows the model of FedBC achieves a high
uniformity in test accuracy over users’ local data at different values of F.

To further emphasize the fairness aspect of FedBC, we plot the test accuracy of the global model on min
and max users’ local data throughout the entire communication in Figure 4. We observe that the global
model performs better on max user’s data than on min user’s data in general for all algorithms. Most
importantly, FedBC demonstrates a superior advantage in reducing this performance gap. After 100 rounds of
communication, test accuracy for min and max users are nearly the same, as shown in Figure 4a. Whereas
for FedAvg (Figure 4b), this gap can be as large as 100% even after nearly 200 rounds of communication. As
compared to g-Fedavg (Figure 4c), FedProx (Figure 4d), or Scaffold (Figure 4e), FedBC has a much higher
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fraction of points at which test accuracy for min and max user overlap, which indicates that they are being
treated equally well (enforcing fairness). We also present additional results in Appendix F (Figure 10-12)
for E = 25,50, because the local model differs more from the global model as F increases. The trend is
similar, and FedBC can still make good predictions on the min user’s local data despite an increase in the
performance gap compared to E = 5. This is significantly different from the case of FedAvg, in which its
model fails to make any correct predictions on the min user’s local data for the majority of times, as shown in
Figure 10-12 in Appendix F. In essence, FedBC has the best performance because it allows users to participate
fairly in updating the global model. This performance benefit is credited to using non-zero ~y;, which is the
main contribution of this work.

Real Dataset Experiments: The experiments on real datasets are in line with our previous observations
in Figure 3. We first report the results for global model performance on the CIFAR-10 dataset in Table 2 for
E =5 (see Appendix 6 for E = 1). We note that FedBC outperforms FedAvg by 7.89% for C = 3. For the
most challenging situation of C' = 1, FedBC outperforms all other baselines. The superior performance of
FedBC is attributed to the fact that we observe unbiasedness in computing the coefficient for the global model
when C' =1, 2, or 3 (see Figure 13 in Appendix G.1). We also observe the high uniformity in test accuracy
over users’ local data for all classes with different power law exponents (see Figure 15 in Appendix G.1).

We show the classification results on MNIST in Table 7 and Table 8 in Appendix G.2 and observe that FedBC
outperforms all the other baselines. We also present the results on the Shakespeare dataset in Table 9 in
Appendix G.3. From Table 2, we also notice the global performance of pFedMe and Per-FedAvg is worse
than that of FedAvg, FedProx or FedBC when C' = 1. This is mainly because personalized algorithms are
designed to optimize the local objective of (2). However, this may create conflicts with the global objective
in (1) and lead to poor global performance.

Local Performance. We have established that a non-zero ; in FedBC leads to obtaining a better global
model. This is because it provides additional freedom to automatically decide the contributions of local
models rather than sticking to a uniform averaging, as done in existing FL. methods. But a remark regarding
the individual performance of local models x! is due. We can evaluate the test accuracy of local model x; at
each device 7 to see how it performs with respect to local test data. Table 3 presents the local performance of
FedBC and other personalization algorithms. We observe that FedBC performs better and worse than pFedMe
and Per-FedAvg, respectively. We can expect this performance because our algorithm is not designed to just
focus on improving the local performance compared to pFedMe and Per-FedAvg. But an interesting point is
that we can utilize the local models x! obtained by FeBC to act as a good initializer, and after doing some
fine tuning at device 4, can improve the local performance as well. For instance, by doing 1-step fine-tuning
on the test data (we call it FedBC-FineTune), we can improve the local performance of FedBC. For example,
FedBC-FineTune achieves a 7.55% performance increase over FedBC when C' = 3. To further improve the local
model performance, as an additional experimental study, we incorporated MAMI-type training into FedBC
(cf. Algorithm 3 in Appendix E.4), which we call Per-FedBC algorithm, we can significantly improve the local
performance for both C' =1 and C = 3.

Takeaways: In summary, we experimentally show that FedBC has the best global performance when compared
against all baselines (addresses @). Moreover, FedBC has reasonably good local performance but can be
improved by fine-tuning or performing MAML-type training (addresses ®). We leave the question of how to
fully exploit the advantage in the freedom of choosing ; to achieve personalization for future work.

6 Conclusions

In this work, we delved into the intricate relationship between local and global model performance in federated
learning (FL). We introduced a new proximity constraint to the FL framework, enabling the automatic
determination of local model contributions to the global model. Our research demonstrates that by recognizing
the flexibility to not force consensus among local models, we can simultaneously improve both the global
and local performance of FL algorithms. Building on this insight, we developed the novel FedBC algorithm,
which has been shown to perform well across a broad range of synthetic and real data sets. It outperforms
state-of-the-art methods by automatically calibrating local and global models efficiently across devices.
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