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Abstract
The growing adoption of spectrum-aware matrix-valued optimizers such as Shampoo and Muon in
deep learning motivates a systematic study of their generalization properties and, in particular, when
they might outperform competitive methods. We approach this challenging question by introducing
appropriate simplifying abstractions as follows: First, we use imbalanced data as a testbed for
studying the behavior of spectrum-aware optimizers. Second, we study the canonical form of
such optimizers, which is Spectral Gradient Descent (SpecGD)—each update step is UV T where
UΣV T is the truncated SVD of the gradient. Third, within this framework we identify a minimal
linear setting where we can analyze when SpecGD outperforms vanilla GD. We show that unlike GD,
which prioritizes learning majority classes first, SpecGD initially learns all principal components of
the data at equal rates. We demonstrate how this translates to a growing gap in balanced accuracy
favoring SpecGD early in training.

1. Introduction
Spectrum-aware optimizers such as Shampoo [8] and Muon [10] have recently gained significant
traction in the deep learning community, delivering substantial training speedups for deep classifiers
[10] and transformer language models [13, 20] compared to standard practices like SGD [15] with
momentum or Adam [11]. The key distinction lies in how these methods treat neural network
parameters: while SGD and Adam operate entry-wise on vectorized parameters, Shampoo and Muon
work directly with matrix-valued parameters (such as weight matrices and attention matrices) at
the layer level. This matrix-level approach intuitively enables optimization trajectories that entry-
wise methods cannot achieve. Despite their empirical success, a fundamental question remains
unanswered: when do spectrum-aware optimizers generalize better than standard methods?

The challenge is substantial. Even well-established optimizers like Adam, despite over a decade
of practical dominance, remain poorly understood compared to SGD, whose Euclidean gradient
descent trajectory is well-characterized both statistically and algorithmically. Recent theoretical
progress has begun to illuminate these methods through the lens of implicit bias. For instance, while
the implicit bias of gradient descent toward max-margin classifiers with respect to the ℓ2 norm has
been established [9, 19], recent work proved that Adam converges to a max-margin classifier with
respect to the ℓ∞ norm in linear settings [21]. Conceptually, this difference can be understood by
realizing that Adam reduces to SignGD when momentum and preconditioning histories are ignored
(i.e., β parameters set to zero) [6]. This reduction has been leveraged before to argue about Adam
properties, because often SignGD is simpler to analyze, e.g., [12].

A similar reduction exists for spectrum-aware optimizers: Shampoo without preconditioning
history and Muon with perfect matrix operations reduce to Spectral Gradient Descent (SpecGD) [3].
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Figure 1: Results for training a one-hidden-layer MLP CMNIST dataset with 99% digit–colour
correlation (see Section 2 for details) using SGD with momentum, Shampoo and Adam. All three
optimizers trained to comparable train loss achieve near-perfect test accuracy on the majority groups
(same digit and color labels) but SGD and Adam have much lower test accuracy on the minority
groups (opposite digit and color labels) as compared to Shampoo.

Thus, just as SignGD serves as the canonical form for understanding Adam, SpecGD might provide
the key to understanding Shampoo and Muon. Both SignGD and SpecGD are instances of normalized
steepest descent with respect to ℓ∞ and spectral norms, respectively [2, 6].

Recent work [6] characterized SpecGD’s optimization trajectory in linear multi-class classifica-
tion, showing that its implicit bias drives weights toward a max-margin classifier with respect to the
spectral norm. However, these results have two limitations. First, they only describe the algorithm’s
behavior in the terminal phase of training, which may not reflect practical deep learning scenarios
that often employ early stopping. Second, and more important, implicit bias results provide no direct
guarantees about generalization performance—the ultimate objective in machine learning.

Motivated by the apparent lack of understanding generalization properties of SpecGD, as a
starting point, we ask: Can we identify concrete settings where SpecGD generalizes better than
standard (Euclidean) GD? We focus on minimal settings for two reasons: (a) understanding benefits
in simple cases can demystify often contradictory performance reports in large-scale models, and (b)
minimal settings are more amenable to theoretical analysis that can formalize our intuitions.

1.1. Contribution
Imbalanced data as playground. We introduce imbalanced data as a testbed for studying SpecGD’s
potential generalization advantages. Fig. 1 provides a concrete demonstration: we train a one-
hidden-layer MLP on Colored-MNIST under severe group imbalance, where each digit appears
in its majority color 99% of the time during training, creating a strong but spurious digit-color
correlation. At test time, we evaluate on majority and minority group with same and opposite
digit-color associations, respectively. The results are revealing: whereas SGD (with momentum) and
Adam overfit the spurious correlation and suffer a marked drop in accuracy on the minority group,
Shampoo maintains high performance suggesting that spectrum-aware updates can curb reliance on
spurious features. This poses a natural question: Under which kinds of data imbalance and training
regimes do spectrum-aware optimizers provably outperform ordinary gradient descent?
Minimal setting. We pursue this question in the simplest setting that still captures the key tension
illustrated in Fig. 1: a linear classifier trained with a squared-loss objective under class imbalance.
Although the Colored-MNIST experiment involves a richer group imbalance (digits × colors), its
difficulty ultimately stems from the same mechanism—an under-representation of certain label
values and the temptation to fit easy but spurious correlations. By collapsing the color dimension and
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focusing on label imbalance alone, we obtain a tractable model that lets us isolate and analyse the
implicit regularisation imposed by different update rules.
Theoretical comparison on class-imbalanced data. For a linear model, we derive closed-form
expressions for the training trajectories of Euclidean GD and Spectral GD (Shampoo without
accumulation). We show that, with early stopping, Spectral GD achieves a lower balanced-class risk
than GD, whereas both approach the same risk asymptotically in time.

2. Results on Colored-MNIST
As discussed in Section 1.1, we first compare three optimizers—SGD with momentum, Adam and
Shampoo—on a variant of the Colored-MNIST (CMNIST) dataset, a benchmark used commonly in
the literature on spurious correlations [1, 14, 16]. The task is to classify each digit as either < 5 or
≥ 5. The digits in each class are injected with a background color (red or green) that is correlated
with the label and acts as a spurious feature. In our setting, the spurious correlation in the train set is
99%. To assess the reliance of the trained model on the color or the digit features, we evaluate test
accuracies on two groups: the majority group (samples where the spurious feature label and the class
label are the same) and the minority group (samples where they differ).

We train a one-hidden-layer ReLU MLP with fixed final layer weights (see App. D for details).
Fig. 1 compares the train loss and test accuracies on majority and minority groups for the three
optimizers. While all optimizers reach low training loss and high accuracy on the majority group,
Shampoo attains much higher accuracy on the minority group. To demystify this behavior and
analyze the implicit regularization of different update rules, we next transition to a simplified setting.

3. Linear Model on Class-Imbalanced Data
Here, we train a linear model with the canonical forms of the three optimizers considered in the
previous section (i.e., NGD, SpecGD and SignGD), on class imbalanced data. This as a minimal
setting that retains key features of the CMNIST experiment, and is amenable to theoretical analysis.

3.1. Notations and Algorithms
We denote matrices, vectors and scalars by A, a, and a, respectively. We denote the (i, j)-th entry
of matrix A as A[i, j]. Let ∥·∥F , ∥·∥2, and ∥·∥max denote the Frobenius, spectral and max norms,
respectively, where ∥A∥max := maxi,j A[i, j]. Let ∥a∥ denote the ℓ2 norm of a. 1[·] denotes the
indicator function, e.g., 1[a ≥ b] = 1 if a ≥ b and 0 otherwise.

Let W ∈ RK×d denote the weight matrix of a linear model, and L(W ) denote the loss function.
Let Wt and

∆

t :=

∆

L(Wt) denote the iterate and gradient at time t, respectively. The updates for
normalized steepest descent with respect to norm ∥·∥, with step-size η > 0, are [4]:

Wt+1 = Wt − η∆t, where ∆t := argmax∥∆∥≤1 ⟨

∆

t,∆⟩. (1)

As discussed in Section 1, NGD, SpecGD and SignGD are instances of normalized steepest descent
Eq. (1) with respect to Frobenius, spectral and max norms, respectively (also see Appendix A).

3.2. Data Model
Let y ∈ {1, . . . , k} denote the class labels, and let the corresponding one-hot labels be denoted
as y ∈ {ec}kc=1, where ec is the c-th standard basis vector in Rk. Class probabilities are given by
pc := Pr(y = c) such that

∑k
c=1 pc = 1. Each class c has an associated mean vector µc ∈ Rd, and

samples for class c are generated as isotropic Gaussians with mean µc. Finally, we assume that the
means µc are orthonormal. Put together, the data model we study is such that:
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Figure 2: Results for training a linear model with NGD, SpecGD and SignGD on heavy-tailed
class-imbalance data using cross-entropy loss. Early-stopped SpecGD achieves higher class-balanced
and worst-class accuracy compared to other update rules or stopping points.

Pr(y = c) = pc, c ∈ [k], x|y ∼ N
(
µy, σ

2
xId

)
, and µ1 ⊥ . . . ⊥ µk , ∥µc∥ = 1. (DM)

3.3. Experimental Results
For the experiments, we consider a heavy-tailed class imbalance setting by choosing pc ∝ 1

c , and we
sample each µc independently from a zero-mean isotropic Gaussian distribution and normalize it.
We use 20 classes, 100 samples, d = 200 and σx = 0.1. We initialize W0 by sampling each entry
independently from N (0, 1d). We use learning rates 0.025, 0.005 and 5× 10−4 for NGD, SpecGD
and SignGD, respectively. These choices are made such that train loss curves of the algorithms are
comparable.

Fig. 2 shows the results for training a linear model in this setting using NGD, SpecGD, or
SignGD, to minimize the cross-entropy loss. We observe that for all three update rules, as train loss
approaches 0, the model converges to a solution that maximizes the margin defined with respect to the
corresponding norm. This long-training behavior was recently shown by [6]. However, comparing the
test performance, we find that early-stopped SpecGD attains higher class-balanced and worst-class
test accuracies compared to NGD or SignGD at any stopping point.

3.4. Theoretical Analysis
In this section, we analyze and compare the dynamics of GD [5] and SpecGD in the setting considered
in the previous section. For tractability, we make two simplifications: we consider squared-loss
objective instead of cross-entropy loss, and population setting instead of finite samples. Specifically,
we let total loss L(W ) = 1

2E∥y − Wx∥2, where the expectation is over the joint distribution
of x, y in (say) (DM). In addition to this, define Lc(W ) = 1

2Ex|y=c∥y − Wx∥2 to be the class-
conditional loss for class c ∈ [k] and let Lbal(W ) = 1

k

∑
c∈[k] Lc(W ) be the balanced loss. Define

the population moment matrices Σx := E
[
xx⊤] and Σxy := E

[
y x⊤]. We focus on a setting

where these satisfy the following assumption: the (full) SVDs of these moment matrices are jointly
diagonalizable.

Assumption 1 There exist orthonormal matrices U ∈ Rk×k,V ∈ Rd×d and matrices S ∈
Rk×d,Λ ∈ Rd×d with non-zero entries only along their main diagonals (σ1 ≥ σ2 · · · ≥ σk ≥ 0 and
λ1 ≥ λ2 · · · ≥ λd ≥ 0, respectively), such that, Σxy = USV ⊤ and Σx = V ΛV ⊤ .

This assumption is adopted by Gidel et al. [7], Saxe et al. [17], who apply it to empirical moment
matrices to derive closed-form training dynamics of two-layer linear networks. Here, we instead
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apply this assumption on population data and analyze the population loss making it possible to study
test statistics. In the lemma below we show that this assumption holds under data following (DM).
Lemma 1 The population moment matrices of data model (DM) satisfy Assumption 1.
Evolution of Wt. We compare the evolution of the weight matrix Wt for GD and SpecGD over
iterations t. For each iteration t, define W t := U⊤WtV and recall that W t[i, i] denotes the i-th
main-diagonal entry of W t, for i ∈ [k].

For GD, under Assumption 1 it is shown in [17] (see also Appendix B.2) that when initialized at
zero and run with sufficiently small step size, its iterates Wt are such that W t is diagonal at each
iteration with diagonal entries evolving as (with the approximation becoming accurate as η → 0):

W t[i, i] ≈ σi
λi

(
1− e−ηλit

)
.

The following result characterizes the dynamics of Wt for SpecGD.
Proposition 2 Assume zero initialization W0 = 0 and Assumption 1 holds. Then, for SpecGD, at
each iteration, Wt = UW tV

⊤ where W t is zero except its main diagonal along which entries
evolve as follows for i ∈ [k]:

W t[i, i] = η t1[t ≤ σi
ηλi

] + σi
λi
1[t > σi

ηλi
].

Comparing the above two displays, which contrast GD’s and SpecGD’s iterate evolution, shows the
following. Although both methods asymptotically converge to the same solution, their trajectories
differ significantly. While GD learns component i at a rate proportional to λi, meaning more dominant
components are learned faster. In contrast, SpecGD learns all components at the same rate until each
individual value saturates and converges to its terminal value.

We now show that this property of SpecGD to learn concepts at equal rate translates to superior
generalization in an imbalanced setting where least-significant spectral components of the moment
matrices correspond to learning minority features. Concretely, under data model (DM), the k first
eigenvectors of Σx align with the class-mean vectors, ordered in decreasing class prior probability
(see proof of Lemma 1). Intuitively, learning least-significant components earlier during training
should translate to generalization gains. The following theorem formalizes this intuition.
Theorem 3 Assume data model (DM), zero initialization, and equal sufficiently small step size η
for GD and SpecGD. Let t⋆ = σm

ηλm
be the first time SpecGD fits a minority component of class-prior

pm. Further assume σ2
x ∈

[
7pm, 1−pm

k

]
. Then for every t ∈ (0, t⋆], SpecGD dominates GD with a

growing loss gap:

LGD
m (t)− LSpec

m (t) ≥ 5η(1−pm)
4 t.

Moreover, in a STEP-imbalance setting with kM ≤ (1−pm)
4 k majority classes of prior pM and

km = k − kM minority classes of prior pm, the gap in the balanced loss satisfies

LGD
bal(t)− LSpec

bal (t) ≥
η(1−pm)

4 t.

4. Future Work
There are many exciting directions for future work. First, we aim to extend our analysis to the
group-imbalanced spurious correlations setting of Sec. 2. Second, even in the linear setting of Sec. 3,
proving the empirically observed superior performance of SpecGD over NGD and SignGD remains
open. Third, while the minimal setting studied here already provides new insights into SpecGD’s
bias toward learning principal directions at equal rates, we wish to investigate how these benefits
manifest in more practical large-scale settings.
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Appendix A. Optimizers

In this section, we list the update rules for all the optimizers considered in the paper, for completeness.
We start with the update rules of NGD, SpecGD and SignGD, respectively, and then write the updates
for Shampoo and Adam.

Using the notation introduced in Section 3, we have

NGD updates: ∆t =

∆

t

∥

∆

t∥F
.

Let the truncated SVD of

∆

t be written as UtΣtV
⊤
t , where Ut and Vt are orthonormal matrices

and Σt is a positive diagonal matrix.

SpecGD updates: ∆t = UtV
⊤
t .

SignGD updates: ∆t = sign(

∆

t), where sign(x) := x
|x| and sign(()0) = 0, and it is applied

element-wise on the matrix

∆

t.
For Shampoo, first define the preconditioning matrices

Lt = β2Lt−1 + (1− β2)

∆

t

∆⊤
t and Rt = β2Rt−1 + (1− β2)

∆⊤
t

∆

t,

where the parameter β2 denotes the preconditioning accumulation parameter. These preconditioners
are used to give the following update.

Shampoo updates: ∆t = L
−1/4
t

∆

tR
−1/4
t . It is easy to see that Shampoo reduces to SpecGD

when we set β2 = 0.
For Adam, let M̂t =

Mt+1

1−βt+1
1

= 1
1−βt+1

1

(
β1Mt + (1 − β1)

∆
t

)
denote the bias-corrected first-

moment estimate, and Ẑt =
Zt+1

1−βt+1
2

= 1
1−βt+1

2

(
β2Zt + (1− β2)

∆

t ⊙

∆

t

)
denote the bias-corrected

second (raw) moment estimate, where ⊙ denotes the Hadamard product, and β1, β2 denote the
momentum parameters.

Adam updates: ∆t =
M̂t

Ẑt + ϵ11⊤
, where the division is done element-wise, ϵ > 0 is the

numerical precision parameter, and 1 denotes the all-ones vector. It is easy to see that Adam reduces
to SignGD when we set β1 = β2 = ϵ = 0.

Appendix B. Proofs

B.1. Proof of Lemma 1

The covariance matrix is

Σx := E
[
xx⊤] = Ey,ε

[
(µy + ε)(µy + ε)⊤

]
= Ey

[
µyµ

⊤
y

]︸ ︷︷ ︸
=:Σµ

+ Ey

[
µy

]
Eε

[
ε⊤

]
+ Eε

[
ε
]
Ey

[
µ⊤
y

]
+ E

[
εε⊤

]
= Σµ + σ2

xId,

since ε and y are independent and E[ε] = 0. Further,

Σµ =
k∑

c=1

pcµcµ
⊤
c = MPM⊤, M :=

[
µ1 µ2 · · · µk

]
∈ Rd×K , P := diag(p1, . . . , pk).
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Then, we can write Σx = V ΛV ⊤, where

Λ = diag(p1 + σ2
x, . . . , pk + σ2

x, σ
2
x, . . . , σ

2
x︸ ︷︷ ︸

d−k times

), (2)

V =
[
M V⊥

]
=

[
µ1, . . . ,µk, vk+1, . . . ,vd

]
∈ Rd×d, {vi}di=k+1 ⊥ {µc}kc=1.

Here, we used the assumption on orthonormality of the means.
The cross-covariance is

Σxy := E
[
y x⊤] = k∑

c=1

pc yc E
[
x⊤ | y = c

]
=

k∑
c=1

pc ecµ
⊤
c .

We can write Σxy = U S V ⊤, where

U = Ik, S = diag(p1, . . . , pk, 0, . . . , 0). (3)

B.2. Proof of Prop. 2

We can write the gradient as

∇L(Wt) = −E
[(
y −Wtx

)
x⊤

]
= −USV ⊤ +WtV ΛV ⊤.

For GD, we have

Wt+1 = Wt − η∇L(Wt)

= Wt + ηUSV ⊤ − ηWtV ΛV ⊤ = Wt

(
I − ηV ΛV ⊤)+ ηUSV ⊤

= W0

(
I − ηV ΛV ⊤)t+1

+

t∑
τ=0

ηUS
(
I − ηΛ

)τ
V ⊤.

Since W0 = 0, this gives

W t+1 := U⊤Wt+1V = ηS
t∑

τ=0

(
I − ηΛ

)τ
.

Assuming η < 1
dmax

, we get

W t+1[i, i] = ησi

t∑
τ=0

(
1− η λi

)τ
= σi

1−
(
1− ηλi

) t+1

λi
.

For sufficiently small η this gives the approximation

W t+1[i, i] ≈
σi
λi

(
1− e−ηλi(t+1)

)
.

For SpecGD, note that the gradient can be written in terms of W t as

∇t = ∇L(Wt) = −USV ⊤ +WtV ΛV ⊤ = U(ΛW t − S)V ⊤.
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Starting at Wt = 0 ⇔ W t = 0 gives ∇0 = −USV ⊤.

Thus, W1 = ηUV ⊤ ⇒ W 1[i, j] = η

{
1 i = j ∈ [k]

0 i ̸= j
. Proceeding this way, we arrive at the

following update rule for all t,

Wt+1 = Wt + η
∑

i:W t[i,i]λi<σi

uiv
⊤
i .

This gives

W t+1 = W t + η
∑

i: W t[i,i]λi<σi

eie
⊤
i .

Since W0 = 0, we concled with the desired:

W t+1[i, i] = η (t+ 1)1[(t+ 1) ≤ σi
ηλi

] + σi
λi
1[(t+ 1) > σi

ηλi
].

B.3. Proof of Theorem 3

The population loss for class c using iterate Wt is written as

Lc(t) := E
∥∥y −Wt x

∥∥2
2
= E

[
1− 2y⊤Wt x+ x⊤W⊤

t Wt x
]
.

= 1− 2 e⊤c Wtµc +
∥∥Wt µc

∥∥2
2
+ σ2

x ∥Wt∥2F
=

∥∥ec −Wtµc

∥∥2
2
+ σ2

x ∥Wt∥2F .

Using Prop. 2 and Lem. 1, shows that the singular values of W GD
t and W

SpecGD
t evolve as

σGD
c (t) := W

GD
t [c, c] = αc

(
1− exp

(
−η pc

αc
t
))

, (4)

σSpec
c (t) := W

SpecGD
t [c, c] = ηt1[t ≤ αc

η ] + αc1[t >
αc
η ], (5)

where αc :=
σc
λc

denotes the ratio of the singular values for class c, and using Eqs. (2) and (3) from
the proof of Lem. 1, αc =

pc
σ2
x+pc

.
Using these expressions, we can write the per-class loss in terms of the singular values of Wt as

Lc(t) = (1− σc(t))
2 + σ2

x

K∑
c=1

σ2
c (t). (6)

The time derivatives of σGD
c (t) and σ

Spec
c (t) for t ≤ t∗ are given by

sGD
c (t) := dσGD

c (t)
dt = pcη e

−(σ2
x+pc)ηt, sSpec

c (t) := dσ
Spec
c (t)
dt = η.

Define the gaps

∆σc(t) := σSpec
c (t)− σGD

c (t) ≥ 0, ∆sc(t) := sSpec
c (t)− sGD

c (t) = η − η pc e
−(σ2

x+pc)ηt > 0.
(7)

Also note that ∆sc(t) is increasing in t.

10
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Minority–class loss gap. For a fixed t, consider the minority loss gap

∆Lm(t) := LGD
m (t)− LSpec

m (t). (8)

Using the per-class-loss from Eq. (6) and differentiating,

∆L′
m(t) =− 2

[
(1− σGD

m ) sGD
m − (1− σSpec

m ) sSpec
m︸ ︷︷ ︸

Term-1(Φ)

]
+ 2σ2

x

[∑
j

σGD
j sGD

j −
∑
j

σ
Spec
j s

Spec
j︸ ︷︷ ︸

Term-2(Ψ)

]
,

(9)

where we drop the time t in σ(t) and s(t) for brevity.

Term-1 (Φ). Add–subtract (1− σGD
m )s

Spec
m to Term-1, and we have

Φ = (1− σGD
m )sGD

m − (1− σSpec
m )sSpec

m = −(1− σGD
m )∆sm +∆σm sSpec

m . (10)

We know that

∆σ(t) =

∫ t

0
∆s(τ) dτ ≤ t∆s(t) (increasing integrand).

Substituting in Eq. (10), we get

Φ ≤ −
(
1− σGD

m − t sSpec
m

)
∆sm(t)

≤ −
(
1− αm − ηt

)
∆sm(t)

≤ −
(
1− 2αm

)
∆sm(t). (11)

Term-2 (Ψ) Before any σ
Spec
j saturates,∑

j

σ
Spec
j s

Spec
j = kη2t,

which gives for all t ≤ t∗ that

Ψ ≥ −ηkαm. (12)

Using Eq. (11) and Eq. (12) in Eq. (9), we have

∆L′
m(t) ≥ 2(1− 2αm

)
∆sm(t)− 2σ2

xηkαm

≥ 2(1− 2αm

)
η(1− pm)− 2σ2

xηkαm

≥ 5η(1−pm)
4 , (13)

since αm ≤ 1
8 (as pm ≤ σ2

x
7 ), and σ2

x ≤ 1−pm
k . Since ∆Lm(0) = 0, integrating over (0, t] gives the

final bound.
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Class–balanced loss gap. For a fixed t, the class-balanced loss gap is

∆Lbal(t) :=
∑
c

LGD
c (t)− LSpec

c (t). (14)

Here, we consider kM majority classes with pc = pM and km = k − kM minority classes with
pc = pm. Using the per-class-loss from Eq. (6) and differentiating,

∆L′
bal(t) =− 2kM

k

[
(1− σGD

M ) sGD
M − (1− σ

Spec
M ) s

Spec
M︸ ︷︷ ︸

Term-3(Λ)

]
− 2km

k Φ + 2σ2
x Ψ, (15)

Term-3 (Λ). Following similar steps as we used for Term-1 (Φ), we have

Λ = − (1− σGD
M )∆sM +∆σM s

Spec
M

≤ −
(
1− 2αM

)
∆sM (t) ≤ η(1− pMe

− αm
αM

pM ) ≤ η. (16)

Also we know,

−Φ ≥ (1− 2αm)∆sm(t) ≥ − η(1− pme−pm) ≥ η. (17)

Using Eq. (11), Eq. (12), Eq. (16) and Eq. (17) in Eq. (15), we have

∆L′
bal(t) ≥ 1.25η(1− pm)− 4η kM

k ,

≥ η(1−pm)
4 , (18)

since kM
k ≤ 1−pm

4 . Since ∆Lbal(0) = 0, integrating over (0, t] gives the final bound.

Appendix C. Results on MNIST with Heavy-tailed Class Imbalance

In this section, we consider the Barcoded MNIST dataset, which is a variant of MNIST with heavy-
tailed class imbalance introduced in Kunstner et al. [12]. Barcoded MNIST contains two types of
classes: 10 classes with 5000 samples each from the original MNIST dataset (majority), and 10×210

additional classes with 5 samples each (minority). The images in the minority classes are generated
by taking images from the original MNIST dataset, and encoding a 10-bit barcode into the top left
corner of the images, for each of the 10 original classes.

Following Kunstner et al. [12], we train a 2-layer CNN on this dataset in the full-batch setting.
In Fig. 3, we compare the total train loss as well as train loss on the majority and minority classes
(each comprising about ≈ 50% of the total samples) for the three optimizers: GD with momentum,
Shampoo and Adam (we use learning rates 0.005, 10−4 and 10−4, respectively).

We rely on the distributed-shampoo reference implementation of Shi et al. [18] and
use default β parameters (β1, β2) = (0.9, 1.0), matrix inverse stabilization parameter ε = 10−8,
precondition_frequency= 1, max_preconditioner_dim= 8192. In order to stabilize
training, we also use AdamGraftingConfig for the update grafting. Here, β1 governs the
exponential moving average of the raw gradients, while β2 governs the accumulation in the matrix
preconditioners (see Appendix A). Further, ε is a small diagonal ‘jitter’ that stabilises the matrix
inverse, and Adam grafting simply rescales the Shampoo update so its overall magnitude matches
that of a plain Adam step (with default β parameters).

12
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Figure 3: Comparison of GD, Shampoo and Adam when training a CNN on the Barcoded MNIST
dataset from [12], a variant of MNIST with heavy-tailed class imbalance. GD only drives the loss on
majority classes towards 0 and makes little progress on the minority classes. In contrast, Shampoo
and Adam drive the loss on both majority and minority classes towards 0.

Consistent with the results in Kunstner et al. [12], we observe while that GD only minimizes the
loss on the majority classes, and makes negligible progress on the minority classes, Adam minimizes
loss on both majority and minority classes. In addition, we find that training with Shampoo has a
similar behaviour as Adam: it also minimizes the loss on both majority and minority classes, in
contrast to GD.

Appendix D. Details of Experimental Settings

Coloured-MNIST spurious-correlation experiment. We train a two-layer multilayer perceptron
(MLP) with hidden width m = 128 and ReLU activation, using inputs from the standard Coloured-
MNIST dataset. Each image is 28 × 28 with 3 channels (RGB), The final output head is a linear
layer initialised to ±1/

√
m and kept frozen throughout training to isolate representation learning in

the hidden layer.
We compare three optimisers: Shampoo (lr= 0.1), SGD (lr= 0.1, momentum β = 0.9), and

Adam (lr= 0.01, default β parameters). Adam is the only optimizer for which cosine learning rate
decay is applied; the others use a constant schedule. Training is performed for 500 epochs with a
batch size of 64.

All Shampoo hyper-parameters mirror those in Appendix C, except that we do the preconditioning
every five steps (precondition_frequency= 5), set the stabilisation term to ε = 10−6, and
replace Adam grafting with SGDGraftingConfig. For each run, we log training loss and
accuracy, along with test accuracy on both the minority (colour-flipped) and majority (colour-aligned)
groups.

13


	Introduction
	Contribution

	Results on Colored-MNIST
	Linear Model on Class-Imbalanced Data
	Notations and Algorithms
	Data Model
	Experimental Results
	Theoretical Analysis

	Future Work
	Optimizers
	Proofs
	Proof of Lemma 1
	Proof of Prop. 2
	Proof of Theorem 3

	Results on MNIST with Heavy-tailed Class Imbalance
	Details of Experimental Settings

