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Abstract
The notion of rank of a Boolean function has
been a cornerstone in PAC learning, enabling
quasipolynomial-time learning algorithms for
polynomial-size decision trees. We present a
novel characterization of rank, grounded in the
well-known Transformer architecture. We show
that the rank of a function f corresponds to the
minimum number of Chain of Thought (CoT)
steps required by a single-layer Transformer with
hard attention to compute f . Based on this charac-
terization we establish tight bounds on the number
of CoT steps required for specific problems, show-
ing that ℓ-fold function composition necessitates
exactly ℓ CoT steps. Furthermore, we analyze
the problem of identifying the position of the k-th
occurrence of 1 in a Boolean sequence, proving
that it requires k CoT steps.

1. Introduction
Ehrenfeucht & Haussler introduced the notion of the rank of
a Boolean function and showed that, for any constant r, the
class of Boolean functions with rank at most r is properly
PAC-learnable in polynomial time. As a corollary, they
derived their renowned quasipolynomial-time PAC-learning
algorithm for polynomial-size decision trees. Pudlák &
Impagliazzo further characterized the rank—not only for
Boolean functions but also for Boolean relations—through
Prover-Delayer games. Since its introduction, this concept
has played a significant role in proof complexity (Kullmann,
1999; Esteban & Torán, 2003).

In this paper, we present a new characterization of the notion
of rank. Surprisingly, this characterization is grounded in the
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Transformer architecture (Vaswani et al., 2017), which has
recently revolutionized the field of NLP and facilitated the
development of LLMs. In essence, we show that the rank of
a function f corresponds to the minimum number of Chain
of Thought (CoT) steps required by a single-layer Trans-
former to compute f . The Transformers used in our char-
acterization are based on the hard attention mechanism—a
theoretical abstraction of the soft attention mechanism em-
ployed in practice. Hard attention has been widely used in
theoretical studies (Hahn, 2020b; Hao et al., 2022b; Barceló
et al., 2024; Yang et al., 2024) due to its amenability to
formal analysis, while still effectively capturing the essence
of practical models (Clark et al., 2019; Voita et al., 2019).

The Transformer architecture is built upon attention layers
and a decoder. An attention layer performs attention on
the input sequence, mapping a sequence of input vectors
to another sequence of vectors of the same length. Atten-
tion layers are used to generate vector representations of
sentences in natural language. However, a more common
application of Transformers is sequence generation, where
the input sequence is mapped to an unbounded sequence
of output vectors, generated iteratively, one at a time. This
task is carried out by the decoder. In the first iteration, the
decoder processes the input sequence through the attention
layers and outputs the vector in the last position. This output
is then appended to the input sequence. During subsequent
iterations, the decoder applies its attention layers to the ex-
tended sequence, computes the next output, and appends it
to the sequence. These are the CoT steps mentioned earlier
(Merrill & Sabharwal, 2024; Liu et al., 2024).

Below we summarize our main results:

• We show that the rank of a function f , denoted by
rk(f), is the minimal number of iterations of a single-
layer decoder with one hard-attention head that com-
putes f . We establish our result not only for Boolean
functions, generalizing the notion of the rank to the
non-Boolean case (as far as we know, for the first time).

• In practice, Transformers are equipped with multiple
attention heads, which enhance their computational
capabilities. We show that the ability of such Trans-
formers to compute functions can also be characterized
using the notion of rank. Specifically, we define the
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H-head rank of a function f , denoted as rk(H)(f), for
H ≥ 1. We prove that rk(H)(f) equals the minimum
number of iterations required by a single-layer decoder
with H hard-attention heads to compute f .

• We then explore methods for obtaining tight bounds
on the multi-head rank. We begin by observing that
rk(H)(f) is at most a factor of H smaller than rk(f).
While computing rk(f) is typically straightforward,
it does not always provide an accurate bound for
rk(H)(f). To address this limitation, we propose a
general communication complexity lower bound for
rk(H)(f). Using this technique, we derive a tight
bound on the H-head rank for the t-fold iterated com-
position, a function whose complexity has been pre-
viously studied for single-layer decoders with soft at-
tention (Peng et al., 2024). The function t-Comp takes
as input a sequence of n integers from {1, . . . , n}, in-
terpreted as the values of a function ϕ : {1, . . . , n} →
{1, . . . , n}. The output of t-Comp is the value of ϕ,
composed with itself t times, evaluated at 1.

It is easy to see that rk(t-Comp) ≤ t for any input
length n. A decoder, establishing this upper bound
works by computing ϕ(1) in the first iteration, then
ϕ(ϕ(1)) in the second iteration, and so on. We prove
that this is optimal even if we increase the number of
attention heads. Namely, for any H , we show that
rk(H)(t-Comp) = t for all large enough input lengths.

• Finally, we study the k-thOne function. This function
takes as input a Boolean sequence of length n, and it
returns the position of the k-th one in it. It is easy to see
that rk(k-thOne) ≤ k for any input length. In terms
of decoders, in the first iteration we can compute the
position of the first one, then of the second one in the
second iteration, and so on. We prove that for any H
and for large enough n, we have rk(H)(k-thOne) = k,
showing that even increasing the number of attention
heads we cannot improve upon the trivial solution for
large enough input lengths. Interestingly, this result
cannot be obtained via the communication complexity
techniques used for iterated composition. Instead, our
proof relies on a purely combinatorial argument.

Related work. Numerous studies have sought to explore
the expressive power of Transformers by treating them as a
computational model and investigating what they can com-
pute (Hahn, 2020a; Pérez et al., 2021; Hao et al., 2022a;
Angluin et al., 2023; Chiang et al., 2023; Merrill & Sab-
harwal, 2023; Barceló et al., 2024; Merrill & Sabharwal,
2024; Liu et al., 2024; Yang & Chiang, 2024; Peng et al.,
2024). In particular, several works have investigated how
the capability of decoders depends on the number of iter-
ations. To start with, Pérez et al. showed that decoders

based on hard attention with an unbounded number of it-
erations are capable of computing any decidable language
(with the parameters of the decoder not depending on the
input length). Afterwards, the computation power of de-
coders with polynomially many iterations was addressed.
Merrill & Sabharwal have shown that in the uniform-regime
(when, as in (Pérez et al., 2021), parameters do not depend
on the input length), such decoders with constant number of
layers and softmax attention are capable of computing any
polynomial-time language. Similarly, for the non-uniform
regime, (Liu et al., 2024) have shown that such decoders
are capable of computing any language recognizable by a
polynomial-size family of Boolean circuits.

Our result is the first exact characterization of the expres-
sive power of decoders with a given fixed number of itera-
tions, although just for a single layer and for hard attention.
Recently, Peng et al. have shown that any single-layer de-
coder with soft attention requires Ω(t) iterations to compute
t-Comp for t =

√
n/(dHp), where n is the input length, d

is the dimension of vectors, H is the number of attention
heads, and p is the number of bits of precision. We point
out that our results instead do not require any assumptions
on the dimension and the number of bits of precision.

Organization of the paper. An introduction to decision
trees and the notion of rank is found in Section 2, with basic
concepts of Transformers being discussed in Section 3. The
main results about single-head Transformers are presented
in Section 4, with extensions to multi-head Transformers
covered in Section 5. Final remarks are given in Section
6. Missing proofs can be found in the arXiv version of this
paper.

2. Decision Trees and Rank
Consider n + 1 finite sets Σ1, . . . ,Σn, O, for n > 0. We
are interested in decision trees that compute functions:

f : Σ1 × Σ2 × . . .× Σn → O.

To do this, we consider decision trees over arbitrary families
of queries, where a query is a function q whose domain is
Σ1 × . . .× Σn. We write Im(q) for the image of query Q.
If F is a set of queries, a decision tree over F is a rooted
tree T such that:

• Every non-leaf node v is labeled by some query qv ∈ F
and has exactly |Im(qv)| out-going edges, each one of
them labeled by a different element from Im(qv).

• Every leaf ℓ is labeled by some element oℓ ∈ O.

Given an input w̄ = (σ1, . . . , σn) ∈ Σ1 × . . . × Σn, the
output of decision tree T on w̄ is computed by descending
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from the root to one of the leaves. At each intermediate non-
leaf node v, the tree computes the value qv(w̄) ∈ Im(qv)
and descends to the unique child of v that is linked to v
through an edge labeled q(w̄). In this way, we reach some
leaf ℓ, where T outputs the element oℓ as its result on w̄. We
denote this output as T (w̄).

The function f : Σ1 × . . .× Σn → O is computed by T , if
T (w̄) = f(w̄) for every input w̄ ∈ Σ1 × . . .× Σn.

Boolean case. Decision trees are often defined for
Boolean functions, i.e., functions of the form f : {0, 1}n →
{0, 1}. In our notation, this corresponds to the case Σ1 =
. . . = Σn = O = {0, 1}. Boolean decision trees are deci-
sion trees over a family {p1, . . . , pn} of queries, where for
i = 1, . . . , n the function pi : {0, 1}n → {0, 1} is defined
as follows on input (b1, . . . , bn) ∈ {0, 1}n:

pi(b1, . . . , bn) = bi.

That is, at every node, a Boolean decision tree queries the
value of some coordinate of the input.

Ehrenfeucht & Haussler defined the rank of a Boolean deci-
sion tree T by inductively defining the rank of its nodes as
follows:

• the rank of a leaf is 0, and

• the rank of a non-leaf v, whose two children have ranks
r0, r1, is r = max{min{r0, r1}+ 1,max{r0, r1}}.

The rank of T is then the rank of its root, and the rank of
a Boolean function f : {0, 1}n → {0, 1} is the minimum
rank of a Boolean decision tree that computes f .

Rank in the non-boolean case and a-queries. We extend
the notion of rank to the non-Boolean case through decision
trees over assignment queries. We start by introducing some
terminology. Pairs of the form (i, σ), where i ∈ [n] and
σ ∈ Σi, are called assignments. We denote by

A = {1} × Σ1 ∪ · · · ∪ {n} × Σn

the set of assignments. An assignment (i, σ) is consistent
with an input w̄ = (σ1, . . . , σn) ∈ Σ1 × . . .Σn if and only
if σi = σ. By a permutation of a finite set B we mean a
bijection τ : {1, . . . , |B|} → B.

An assignment query (a-query from now on) is a function of
the form qτ : Σ1× . . .×Σn → A, where τ is a permutation
of the set of assignments A. For w̄ ∈ Σ1 × . . .×Σn, we let
kw̄ be the minimal element k ∈ {1, . . . , |A|} such that τ(k)
is consistent with w̄. We then define qτ (w̄) = τ(kw̄).

It is sometimes convenient to view the computation of
an a-query qτ on an input w̄ as follows. Assume that

τ(j) = (ij , σj), for each j = 1, . . . , |A|. Imagine that
we do not know w̄, and we start asking a person who knows
w̄ questions: “is the i1-th letter of w̄ equal to σ1?”, ‘is the
i2-th letter of w̄ equal to σ2?”, and so on. We stop once we
receive the first YES answer. If this happens at the kth step,
we return qτ (w̄) = (ik, σk).

We define the rank of an arbitrary function f : Σ1 × . . .×
Σn → O in terms of the class of decision trees over assign-
ment queries that compute f .

Definition 2.1. Let f : Σ1 × . . . × Σn → O. We define
rk(f) as the minimal depth of a decision tree over a-queries
that computes f .

As we show below, the notion of rank we have just intro-
duced for arbitrary functions aligns, in the case of Boolean
functions, with the definition we previously provided for
that class of functions.

Proposition 2.2. For any Boolean function f : {0, 1}n →
{0, 1}, its rank, as defined by Ehrenfeucht and Haussler, is
equal to rk(f).

An example: Iterated composition We consider the it-
erated composition function. We use a notation [n] =
{1, . . . , n} for n ∈ N. For positive integer numbers t, n, we
define:

t-Compn : [n]
n → [n],

t-Compn : (f(1), . . . , f(n)) 7→ f(f(. . . f︸ ︷︷ ︸
t times

(1))).

A clarification for the second line: an input to t-Compn is
an n-length word, where every letter is a number from 1 to
n. This input is interpreted as a function f : [n] → [n], with
f(1) being the first letter of the word, f(2) being the second
letter of the word, and so on. Sometimes, we also use the
following notation:

f (ℓ) = f ◦ f ◦ . . . ◦ f︸ ︷︷ ︸
ℓ times

.

In particular, we let f (0) be the identity function.

We claim that the rank of t-Compn does not exceed t. Recall
that the input is interpreted as a word (f(1), . . . , f(n)), for
some f : [n] → [n], and our task is to compute f (t)(1).
Consider a decision tree that first tries to guess the value of
the first letter, that is, of f(1) by going “is f(1) = 1?”, “is
f(1) = 2?”, and so on. Once the tree gets it right, receiving
the first YES-answer, it already knows f(1), and now it
starts guessing the f(1)st letter, that is, f (2)(1) = f(f(1))).
It costs the second YES-answer to get it right. Continuing in
this way, the tree will find out f (t)(1) after t YES-answers.

By means of a combinatorial argument, it is possible to
show that this is the best one can do if n is large enough.
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Proposition 2.3. For any t and for all n > 2t, we have
rk(t-Compn) = t.

Proof. Assume for contradiction that we have a decision
tree T of depth t− 1 over a-queries for t-Compn, for some
n > 2t. We start answering questions for T , descending to
one of its leafs, in the following manner. We maintain a set
F ⊆ [n] of “forbidden numbers”. Initially, F = {1}. When
we receive an a-query with a permutation τ of assignments,
we select the first assignment (i, j) such that j /∈ F and
f(i) is not fixed yet. We fix f(i) = j and continue along
the tree as if this was the first consistent assignment. After
that, we put j into F . Note that after k values of f have
been fixed this way, F consists of precisely k + 1 distinct
elements. Indeed, every a-query we consider adds exactly
one new element to F .

Let ℓ denote the leaf of T where we come in this way by
answering a-queries. Suppose that oℓ ∈ [n] is the value that
T outputs in this leaf. We obtain a contradiction by showing
that some function g : [n] → [n] with g(t)(1) ̸= oℓ also gets
to ℓ.

Observe that, since T is of depth t− 1, there are k ≤ t− 1
a-queries on the path to ℓ and the same number of values of
f have been fixed:

f(i1) = j1, f(i2) = j2, . . . , f(ik) = jk. (1)

Note that i1, . . . , ik are distinct because we never fix the
same value twice. Numbers j1, . . . , jk are distinct too, and
they define the evolution of the set F . Initially, F = {1}
after the first a-query, F = {1, j1} after the second a-query,
F = {1, j1, j2} after the third one, and so on.

Take any y ∈ [n] \ {1, i1, . . . , ik, j1, . . . , jk, oℓ} (it exists
because n > 2t ≥ 2(k+1)). Define a function g : [n] → [n]
by

g(i1) = j1, . . . , g(ik) = jk,

g(x) = y for x ∈ [n] \ {i1, . . . , ik}.

We first show that g arrives to ℓ in T . For that, we show
that g is consistent with all answers to questions on the path
to ℓ. All the assignments corresponding to our answers to
a-queries on the path to ℓ are as in (1), and g is consistent
with all of them by definition. Next, take an assignment
(i, j) and suppose it appears at the m-th a-query along the
path to ℓ, ordered before the assignment (im, jm) (which we
chose to be the first consistent one). Hence, in our descent
along the tree we ignored this assignment and decided to fix
the assignment (im, jm) instead. Hence, we need to observe
that g is not consistent with it, that is, that g(i) ̸= j. Indeed,
we could have ignored (i, j) in two cases. Firstly, it could
have happened that g(i) was already fixed to some value
different to j. Secondly, we could have ignored it when g(i)

was not yet fixed, because j already belonged to the set of
forbidden numbers F . But by definition of g that means that
either g(i) = y or g(i) = js for some s > m. The first case
is not possible since y was chosen to be outside of F , and
the second case gives us g(i) ̸= j.

To finish the proof, we show that g(t)(1) = y. Consider a
directed graph with vertex set {1, . . . , n}, where for every
i ∈ {1, . . . , n} there is a directed edge from i to g(i). The
image of the function g consists of j1, . . . , jk and y. In
the graph, these are the only nodes with incoming edges.
Observe that each of j1, . . . , jk has exactly one incoming
edge. Namely, for s = 1, . . . , k, the node js has a unique
incoming edge from is. To compute g(t)(1), we start mov-
ing from 1 along the edges for t steps. We will be mov-
ing over j1, . . . , jk and y. Note that g(y) = y because
y /∈ {i1, . . . , ik}. Hence, it is enough to show that y is
reached from 1 in at most t steps because then we stay at y
forever. Now, if we do not reach y within the first t steps,
then we travel over j1, . . . , jk for t steps. Since k ≤ t−1, it
means that we come into some of j1, . . . , jk two times, but
this would mean that one of them has two distinct incoming
edges, which is impossible.

An example: Position of the k-th one. We define a func-
tion k-thOnen : {0, 1}n → [n+ 1] such that:

k-thOnen(σ1, . . . , σn) =

min ({n+ 1} ∪ {i ∈ [n] : σ1 + . . .+ σi = k}) .

In other words, given w̄ = (σ1, . . . , σn) ∈ {0, 1}n, the
function k-thOnen returns the position of the k-th one in w̄
(counting from the left). If there are fewer than k ones in w̄,
we return n+ 1. We can then show the following by means
of a combinatorial argument:

Proposition 2.4. For any n, k, we have rk(k-thOnen) ≤ k,
and for n ≥ k2 + k, we have rk(k-thOnen) = k.

3. Attention Layers and Decoders
Attention layer. We consider layers with unique hard
attention, and possibly multiple attention heads, where the
output of the layer is computed in the last token. By unique
hard attention we refer to the mechanism in which each
position attends to the element with the highest attention
score (breaking ties arbitrarily).

Formally, a unique hard-attention layer (or, simply, atten-
tion layer) with H heads and embedding dimension d is a
function L : (Rd)∗ → Rd, which is defined by

• H query matrices Q(h) ∈ Rd×d and H key matrices
K(h) ∈ Rd×d, for h = 1, . . . ,H ,

• two matrices W1,W2 ∈ Rd×d, and
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• a matrix WO ∈ Rd×(dH).

Consider an input sequence of vectors (x1, . . . , xm) ∈
(Rd)m. The output of L on (x1, . . . , xm) is computed as
follows. For every h = 1, . . . ,H , we compute the value of
the h-th head on (x1, . . . , xm), which is a vector from Rd

denoted by headh ∈ Rd. Namely, we start by computing
“attention scores”

a
(h)
i,m = ⟨K(h)xi, Q

(h)xm⟩, (2)

defining, for every i = 1, . . . ,m, the attention from the last
token to the i-th token with respect to the h-th head. The
vector K(h)xi is called the key of the i-th token, and the
vector Q(h)xm is called the query of the m-th token.

For every h = 1, . . . ,H , we let ih ∈ {1, . . . ,m} to be
the index maximizing (2). If there are multiple indices
achieving the maximum, we let ih be the leftmost one. We
then set headh = xih , for h = 1, . . . ,H , and define:

multihead = WO ·

head1
...

headH

 ∈ Rd (3)

Finally, we define:

L(x1, . . . , xm)

= W2 · ReLU (W1(multihead + xm)) ∈ Rd. (4)

Recall that ReLU(x) = max {0, x}, for every x ∈ R, and
if x ∈ Rd then ReLU(x) is obtained by applying ReLU to
each one of its components.

Decoders. A decoder, defined by the d-dimensional atten-
tion layer L, is a function that takes on input a sequence of
vectors (x1, . . . , xm) ∈ (Rd)m and in the output produces
an infinite sequence of vectors {yt ∈ Rd}∞t=1, defined by:

y1 = L(x1, . . . , xm),

yt = L(x1, . . . , xm, y1, . . . , yt−1), t ≥ 2.

That is, the decoder works in iterations: first, it computes
the output of L, adds it to the end of the input sequence,
computes the output of L on the new sequence, adds this
output to the end, and so on. We refer to yt as the output of
the decoder after t iterations (sometimes these iterations are
called “chain of thought steps”).

Computation of functions by decoders. Fix n and n+ 1
finite sets Σ1, . . . ,Σn, O. We want to define how a decoder
computes functions of the form:

f : Σ1 × . . .× Σn → O.

Inputs to f are interpreted as words with n letters, with the
i-th letter coming from the alphabet Σi, for i = 1, . . . , n
(alphabets are possibly different at different positions). We
put this word as an input to a decoder using n+ 1 tokens,
one per letter plus a special token at the end for the “end
of line” symbol. Input tokens can use arbitrary encodings
of letters by d-dimensional vectors, potentially different at
different positions of the input word, utilizing in this form
a positional information. We then run the decoder on the
resulting input for some number t of iterations. The output
of f is computed by applying an output function to the
decoder’s output yt from the final iteration.
Definition 3.1 (Computation of functions by decoders). Let
n be a natural number and Σ1, . . . ,Σn, O be n + 1 finite
sets. A function f : Σ1 × . . .× Σn → O can be computed
by t iterations of a decoder with H heads, if there exist:

• d ∈ N and an attention layer L of embedding dimen-
sion d with H heads,

• a positional encoding p, i.e. a function p : Σ1 × {1} ∪
. . . ∪Σn × {n} ∪ {EoL} → Rd, where EoL denotes a
special “end-of-line” symbol, and

• an output function α : Rd → O,

such that for any w̄ = (σ1, . . . , σn) ∈ Σ1 × . . .× Σn, the
value f(w̄) is determined by the following procedure:

1. Define a sequence (x1, . . . , xn, y0) of d-dimensional
vectors by:

x1 = p(σ1, 1), . . . , xn = p(σn, n), y0 = p(EoL).

2. Place (x1, . . . , xn, y0) as an input to the the decoder
defined by L, and let yt for t ≥ 1 denote the output of
this decoder after t iterations.

3. Set f(w̄) = α(yt).

Next, we define the following important notion.
Definition 3.2 (Decoder depth of a function). The decoder
depth with H heads of f : Σ1 × . . . × Σn → O, denoted
dd(H)(f), is the minimum t ≥ 0 such that f can be com-
puted by t iterations of a decoder with H heads.

4. One-Head Decoder Depth vs Tree Rank
In this section, we show that the rank of a function is equiv-
alent to its decoder depth in the single-head setting.
Theorem 4.1. For any function f : Σ1 × . . .Σn → O, we
have rk(f) = dd(1)(f).

As a corollary to Theorem 4.1 and Proposition 2.3, we obtain
that for suitable n the decoder depth with one head of the
iterated composition function t-Compn is precisely t:
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Corollary 4.2. For each t and for all n > 2t, we have
dd(1)(t-Compn) = t.

Also, as a corollary to Theorem 4.1 and Proposition 2.4, we
obtain that for suitable n the decoder depth with one head
of the kth one function k-thOnen is precisely k:

Corollary 4.3. For each k, and for every n ≥ k2 + k, we
have dd(1)(k-thOnen) = k.

We now prove our main theorem.

Proof of Theorem 4.1. We first show the inequality rk(f) ≤
dd(1)(f). Assume that f can be computed by a decoder with
one head in r iterations, for some r ∈ N. We deduce that
rk(f) ≤ r. For that, we show that at the cost of t a-queries
one can compute the outputs of the decoder in the first
t iterations on a given input. Hence, in r a-queries, we
can compute the rth output of the decoder, which uniquely
determines the value of f , implying that rk(f) ≤ r.

Consider any input w̄ = (σ1, . . . , σn) ∈ Σ1 × . . . × Σn.
Define then:

x1 = p(1, σ1), . . . , xn = p(n, σn), y0 = p(EoL) ∈ Rd,

where d is the dimension of our decoder and p is its posi-
tional encoding function. Let {yt ∈ Rd}∞t=1 be the sequence
of the outputs of our decoder on input (x1, . . . , xn, y0). As-
sume that we have already computed y1, . . . , yt for some
t ≥ 0 (if t = 0, we just know y0 = p(EoL)). We explain
how to compute yt+1 using one a-query. By definition,

yt+1 = L(x1, . . . , xn, y0, y1, . . . , yt),

where L is the attention layer defining our decoder. It is
enough to compute s ∈ {x1, . . . , xn, y0, y1, . . . , yt} with
the maximal value of ⟨Ks,Qyt⟩ for the key and query ma-
trices K,Q ∈ Rd×d of our attention layer. If there are
multiple vectors s ∈ {x1, . . . , xn, y0, . . . , yt} with the max-
imal value of this scalar product, we need to compute the
leftmost one among them. Since we already have com-
puted y0, y1, . . . , yt, it suffices to find this maximal s over
{x1, . . . , xn} = {p(1, σ1), . . . , p(n, σn)}.

Consider the following linear order of the set A of
assignments. Given two different assignments a =
(i, σ), a′ = (i′, σ′), we say that a is larger than a′ if ei-
ther ⟨Kp(a), Qyt⟩ > ⟨Kp(a′), Qyt⟩ or ⟨Kp(a), Qyt⟩ =
⟨Kp(a′), Qyt⟩ and i < i′. We arbitrarily order assign-
ments with ⟨Kp(a), Qyt⟩ = ⟨Kp(a′), Qyt⟩ and i =
i′. Our task is to find the maximal assignment from
{p(1, σ1), . . . , p(n, σn)} in this order. For that, we ask the
a-query qτ for a permutation τ , where the first assignment
is the maximal in our linear order, the second one is the
second maximal, and so on.

We now show the inequality dd(1)(f) ≤ rk(f). Assume that
T is an r-depth decision tree over a-queries that computes f .
We transform into a decoder with one head that computes
f in r iterations. We assume that T is a complete r-depth
|A|-ary tree, where A is the set of assignments.

The embedding dimension of our decoder will be:

d = 1 + |A|+ . . .+ |A|r−1

+ 1 + |A|+ . . .+ |A|r

+ |A|
+ 1.

The coordinates will be split into 4 groups:

• the first 1 + |A|+ . . .+ |A|r−1 coordinates are called
positional coordinates and are indexed by non-leaf
nodes of T ;

• the second 1 + |A|+ . . .+ |A|r coordinates are called
output coordinates and are indexed by nodes of T ;

• the third |A| coordinates are called assignment coordi-
nates and are indexed by assignments;

• the last coordinate will be called special.

Our goal is to construct a decoder that “simulates” T in the
following sense. On input w̄ ∈ Σ1×. . .×Σn, for any t ≥ 0,
we want the t-th output of the decoder, denoted by yt ∈ Rd,
to be the one-hot encoding of the node where T comes on
w̄ at depth t. More specifically, this one-hot encoding will
take place in output coordinates, the remaining coordinates
of yt will all be 0.

To achieve this, we start with defining y0 = p(EoL) ∈
Rd as follows. In the restriction to the output coordinates
it is the one-hot encoding of the root of T ; all the other
coordinates of y0 are 0. Next, we define the positional
encoding p(a) ∈ Rd for an assignment a = (i, σ) ∈ A.
In the restriction to the assignment coordinates, it is the
one-hot encoding of a. Now, for each non-leaf node v of
T and its corresponding positional coordinate p(a)v, we
set p(a)v = 1/τ−1

v (a), where τv : {1, . . . , |A|} → A is
the permutation defining the a-query asked at v. We let
the special coordinate of p(a) to be 1. Finally, all output
coordinates of p(a) are set to 0.

Having our positional encoding defined, we move to the con-
struction of the attention layer and define the query matrix
Q ∈ Rd×d by the following linear transformation α 7→ Qα
for α ∈ Rd: for every non-leaf node v of T , the v-th posi-
tional coordinate of Qα is equal the v-th output coordinate
of α; the remaining coordinates of Qα are 0. The key matrix
K ∈ Rd×d is set to be the identity matrix.
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Assume that, as an input, for some t < r, we give to a layer
the following sequence of vectors:

x1, . . . , xn, y0, y1, . . . , yt ∈ Rd,

where xi = p(i, σi) for i = 1, . . . , n and for some w̄ =
(σ1, . . . , σn) ∈ Σ1 × . . .×Σn, y0 = p(EoL), and for every
i = 1, . . . , t, the vector yi is the one-hot encoding, inside
the output coordinates, of some depth-i node vi of T , and
has 0 in the remaining coordinates. Let q = qvt be the
a-query asked at vt, and let τ = τvt be the corresponding
permutation of the set of assignments (the node vt is a non-
leaf node because t < r). We claim that the attention on this
input will be maximized for the position with the assignment
which is the output of q on w̄.

Indeed, the vector yt has the unique 1 at the vt-th output co-
ordinate, with the remaining coordinates of vt being 0. The
matrix Q moves this 1 into the vt-th positional coordinate,
and the rest of the coordinates of Qyt are 0. Thus, for any
α ∈ Rd, the product ⟨Kα,Qyt⟩ equals the value of α in
the vt-th positional coordinate. If α = p(i, σi) for i ∈ [n],
this value is 1/τ−1(i, σi). The maximum of this value is
attained for (i, σi) ∈ {(1, σ1), . . . , (n, σn)} with the mini-
mal value of τ−1(i, σi), i.e, for (i, σi) = q(w̄). Now, for
α ∈ {y0, y1, . . . , yt}, the value of the vt-th positional co-
ordinate, as well as any other positional coordinate, is 0.
Hence, the output of the head will be the vector p(q(w̄)).

The output of the layer is now computed as:

yt+1 = W2 · ReLU (W1 · β) , (5)
β = p(q(w̄)) + yt. (6)

We need to choose W1,W2 ∈ Rd×d such that the resulting
yt+1 will encode the node vt+1 where the tree goes from vt
by following the q(w̄)-labeled edge. More specifically, we
want yt+1 to be the one-hot encoding of vt+1 in the output
coordinates, and we want all the other coordinates of yt+1

to be 0. We will set W2 to be the identity matrix. To define
W1, we fix the following notation. For a non-root node v
of T , let parent(v) denote the parent node of v, and let
label(v) ∈ A denote the label of the edge from parent(v)
to v. We define W1 by the following linear transformation
α 7→ W1α, α ∈ Rd: for every non-root node v of T , we
define the v-th output coordinate of Wα as

the parent(v)-th output coordinate of α (7)
+ the label(v)-th assignment coordinate of α (8)

− the special coordinate of α. (9)

We set all the other coordinates of W1α to 0.

We have to show now that ReLU(W1 ·β), with β as in (5–6)
has 1 in the vt+1-th output coordinate and 0 in all the other
coordinates. Indeed, W1 · β has 0 in any coordinate which

is not an output coordinate for a non-root node of T . Now,
consider any non-root node v of T . It is enough to show that
the v-th output coordinate of W1 · β is 1 for v = vt and is 0
or -1 for v ̸= vt (applying ReLU to 0 and −1, we get 0).

To calculate the v-th output coordinate of W1β, as stated
in (7–9), we calculate the parent(v)-th output coordinate
of β, the label(v)-th assignment coordinate of β, and the
special coordinate of β. Recall that positional encodings
of assignments have 0 in the output coordinates. Hence,
the sum β = p(q(w̄)) + yt, in the restriction to the output
coordinates, is the one-hot encoding of vt. In other words,
the parent(v)-th output coordinate of β is the indicator
I{parent(v) = vt}. Likewise, since yt has only 0 in the
non-output coordinates, the sum β = p(q(w̄)) + yt, in
the restriction to the assignment coordinates, is the one-
hot encoding of the assignment q(w̄). Again, this means
that the label(v)-th assignment coordinate of β is equal
to the indicator I{label(v) = q(w̄)}. Finally, the special
coordinates of p(q(w̄)) and yt are 1 and 0, respectively,
meaning that the special coordinate of β is 1. Plugging
these equalities into (7–9) for α = β, we obtain that the
v-th output coordinate of W1β equals:

I{parent(v) = vt}+ I{label(v) = q(w̄)} − 1.

This expression takes values in {−1, 0, 1} and it is equal to
1 if and only if both indicators are 1. It remains to note that
vt+1 is the only node whose parent is vt and such that the
label of the edge from vt to this node is q(w̄).

The r-th output of the decoder, yr, in restriction to the
output coordinates, will be the one-hot encoding of the leaf
to which we come while computing T on input w̄. Since
this leaf uniquely determines f(w̄), we are done.

5. Multihead Rank
In order to generalize Theorem 4.1 to decoders with many
heads, we define the notion of H-head rank for a function
f : Σ1 × . . .×Σn → O. For that we require a notion of the
product of two functions with the same domain. Namely,
by the product of f : A → B and g : A → C, we mean a
function (f ⊗ g) : A → B × C, defined by:

(f ⊗ g)(a) = (f(a), g(a)).

An H-degree a-query is a product of H a-queries.

Definition 5.1. The H-head rank of a function f : Σ1 ×
. . .× Σn → O, denoted rk(H)(f), is the minimal depth of
a decision tree over H-degree a-queries that computes f .

A simple generalization of the construction of Theorem 4.1
allows us to obtain the following result.

Theorem 5.2. For any H ∈ N and for any function f : Σ1×
. . .× Σn → O, we have rk(H)(f) = dd(H)(f).
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We observe that the H-head rank can be at most H times
smaller than the normal rank. Specifically, each H-degree
a-query can be computed by performing H individual a-
queries sequentially.

Proposition 5.3. For f : Σ1 × . . .× Σn → O and H ≥ 1,
we have rk(f) ≤ H · rk(H)(f).

Proposition 5.3 allows us to reduce, up to a factor of
H , lower bounds on rk(H)(f) to lower bounds on rk(f).
However, this proposition is sometimes unable to provide
tight bounds on rk(H)(f). This occurs, for instance, when
rk(H)(f) is not smaller at all than rk(f). We present two
examples of this phenomenon in this section.

To establish precise lower bound on the decoder depth of a
function with H heads, it suffices to derive a lower bound on
its H-head rank (Theorem 5.2). However, this task proves
to be significantly more challenging than for the single-head
rank. Specifically, for the iterated composition function,
combinatorial arguments alone, as employed in the proof of
Proposition 2.3, are no longer sufficient. Instead, we must
rely on techniques from communication complexity to ad-
dress the problem. For the k-thOnen function, we develop
a combinatorial argument that is notably more intricate than
the one used in the proof of Proposition 2.4.

5.1. Multihead decoder depth of iterated composition

In this section, we show a method for lower bounding the
multihead rank of a function based on communication com-
plexity (Kushilevitz & Nisan, 1996). Let X ,Y,Z be finite
sets and f : X × Y → Z be a function. Imagine that there
are two players, Alice and Bob. Alice is given x ∈ X and
Bob is given y ∈ Y . Their goal is to cooperatively compute
f(x, y). For that, they can send each other messages that
are binary words. They want to minimize the number of
messages and their total length in bits.

Formally, a k-round Alice-first communication protocol Π
is given by:

• k positive integer numbers ℓ1, . . . , ℓk (messages
lengths);

• a function Mi : {0, 1}ℓ1+...+ℓi−1 × X → {0, 1}ℓi for
every odd i ∈ {1, . . . , k};

• a function Mi : {0, 1}ℓ1+...+ℓi−1 × Y → {0, 1}ℓi for
every even i ∈ {1, . . . , k}; and

• the output function out : {0, 1}ℓ1+...+ℓk → Z .

The communication complexity of Π is the sum ℓ1+ . . .+ℓk.

On input (x, y) ∈ X × Y , the output of Π on (x, y) is
computed as follows. We inductively define a sequence of

binary words m1 ∈ {0, 1}ℓ1 , . . . ,mk ∈ {0, 1}ℓk by setting

mi = Mi(m1 . . .mi−1, x) for odd i ∈ {1, . . . , k},
mi = Mi(m1 . . .mi−1, y) for even i ∈ {1, . . . , k}.

Intuitively, m1 = M1(ε, x) is the first message of Al-
ice that she sends to Bob in the protocol on input x.
Upon receiving m1, Bob replies with the second message
m2 = M2(m1, y) that depends on his input and the first
of Alice’s messages. Then Alice sends the third message
m3 = M3(m1m2, x), and so on. The output of the protocol
is defined as out(m1 . . .mk) ∈ Z .

By Ck,A(f) we mean the minimal communication complex-
ity of a k-round Alice-first protocol that computes f . By
reversing the roles of Alice and Bob, we define k-round Bob-
first protocols, and Ck,B(f), the minimal communication
complexity of a k-round Bob-first protocol for a function f .

Assume we have a function f : Σ1 × . . . × Σn → O and
a subset S ⊆ [n]. Suppose that positions of an input word
w̄ ∈ Σ1 × . . . × Σn are split between Alice and Bob like
this: Alice knows letters of w̄ at positions i ∈ S, and Bob
knows letter of w̄ at positions i ∈ [n] \ S. Their goal is to
find out f(w̄). This defines a function:

fS :

(∏
i∈S

Σi

)
×

 ∏
i∈[n]\S

Σi

→ O,

where the two inputs correspond to the parts of w̄ that Alice
and Bob knows, respectively, and the output of is f(w̄).

Assuming that the H-head rank of f is r, we construct
low-communication (r + 1)-round Alice-first and Bob-first
protocols for fS , for any S ⊆ [n]. This gives a method for
lower bounding the multihead rank of f : by showing that
either Cr+1,A(f) and Cr+1,B is large enough, we conclude
that the H-head rank of f is larger than r.

Lemma 5.4. For every f : Σ1 × . . . × Σn → {0, 1}, for
every S ⊆ [n], and for every H ≥ 1, denoting r = rk(H)(f)
and |A| the number of assignments for f , we have:

Cr+1,A(fS) ≤ 2Hr · ⌈log2 |A|⌉ and

Cr+1,B(fS) ≤ 2Hr · ⌈log2 |A|⌉.

Proof. We first notice that Alice and Bob can compute the
value of any H-degree a-query qτ1 ⊗ . . .⊗ qτH by exchang-
ing messages of length H · ⌈log2 a⌉. In fact, for a given
input w̄ ∈ Σ1 × . . .× Σn there are exactly n assignments
consistent with w̄. A part of them is known to Alice (for
positions in S) and the other part to Bob (for positions in
[n] \ S). For each h = 1, . . . ,H , Alice and Bob have to
calculate the first assignment in the permutation τh which is
consistent with w̄. Alice can see which w̄-consistent assign-
ment, known to her, goes first in τh, and the same for Bob.
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Among these two assignments, the one that goes first is the
answer to qτh . Alice and Bob just have to exchange the
indices of these assignments. For both Alice and Bob it is
thus enough to send a H⌈log2 a⌉-bit message with indices
of H assignments.

We already see that an r-depth decision tree over H-degree
a-queries can be simulated by a communication protocol
with 2Hr · ⌈log2 a⌉ bits. We need to explain how to arrange
this communication in r + 1 rounds. For that, Alice and
Bob have to alternate the order in which they exchange their
messages in a computation of the H-degree a-queries. For
example, for the Alice-first protocol, in the computation
of the first query Alice has to send her message first and
then Bob. Now, for the second query, Bob has to send his
message first and then Alice. In this way, Bob’s messages
for the first and for the second query merge into a single
round of communication. Similarly, for the third query,
Alice has to send first, and then Bob, and so on, getting
overall r + 1 rounds. The Bob-first protocol is constructed
in an analogous fashion.

As a corollary, we obtain the following:
Corollary 5.5. For every H and t, for all but finitely many
n, we have rk(H)(t-Compn) = t.

Proof. We reduce from a communication problem called
pointer chasing. In this problem, Alice is given
fA : {1, . . . ,m} → {1, . . . ,m} and Bob is given
fB : {1, . . . ,m} → {1, . . . ,m}. In the k-step pointer
chase, denoted here by PCm

k , the goal of Alice and Bob
is to compute:

. . . fA(fB(fA︸ ︷︷ ︸
k times

(1)) . . .)

It is easy to see that Ck,A(PCm
k ) = O(k logm) (Alice

starts by sending m1 = fA(1), Bob replies by sending
m2 = fB(m1), and so on). It is known that this task
requires much longer communication for k-round Bob-
first protocols. Namely, for any constant k, we have
Ck,B(PCk) = Ω(m) (Duris et al., 1987).

It remains to notice that PCn/2
t is a special case of the

problem t-CompSn , for S = {1, . . . , n/2}, where Alice gets
(ϕ(1), . . . , ϕ(n/2)) and Bob gets (ϕ(n/2 + 1), . . . , ϕ(n)),
for some function ϕ : {1, . . . , n} → {1, . . . , n}, and the
task is to compute ϕ(k)(1). Namely, we obtain PC

n/2
t as a

special case when ϕ maps the first half of the inputs into the
second half, and the second half into the first half. Assuming
that rk(H)(t-Compn) < t, by Lemma 5.4 we obtain:

Omega(n) = Ct,B(PC
n/2
t ) ≤

Ct,B(t-CompSn) ≤ 2Ht · ⌈log2 n2⌉.

For any fixed H, t this is true only for finitely many n.

5.2. Multihead decoder depth of kth One

In this section, we establish a tight lower bound on the
multi-head rank of k-thOne.

Theorem 5.6. For any k,H ∈ N, for all but finitely many
n ∈ N, we have rk(H)(k-thOnen) = k.

We observe that our communication complexity tool is not
applicable in this case, as for any partition of the input
positions between Alice and Bob, there exists a 2-round
protocol with logarithmic communication that computes the
position of the k-th one: Alice sends the positions of the
first k ones in her part of the input, and Bob does the same.

Proposition 5.7. For any k, n and S ⊆ [n]:

C2,A(k-thOneSn) = C2,B(k-thOneSn) = O(k log n).

If we wanted to use Lemma 5.4 to obtain a lower on
rk(H)(k-thOnen), we would have needed C2,A(k-thOneSn)
or C2,B(k-thOneSn) to grow super-logarithmically with n
for some S ⊆ [n]. Instead, we use a self-reducibility tech-
nique by means of partial fixations.

6. Final Remarks
We have shown that the expressive power of single-layer
Transformers with hard attention is tightly connected to the
notion of rank of functions. Extending this characterization
to more layers or to soft attention is a challenging future
direction. In a contemporaneous manuscript, Chen et al.
have proved unconditional lower bounds on the embedding
dimension of multilayer decoder-only Transformers with
soft attention that compute iterated function composition.
However, their version of the problem differs significantly
from the one considered here: they have several functions to
compose, and each function is completely given in a single
token. We plan to explore whether the techniques used in
their work can be applied to strengthen our results.
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