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Abstract
Any well-behaved generative model over a vari-
able x can be expressed as a deterministic transfor-
mation of an exogenous (‘outsourced’) Gaussian
noise variable z: x = 𝑓𝜃 (z). In such a model (e.g.,
a VAE, GAN, or continuous-time flow-based
model), sampling of the target variable x ∼ 𝑝𝜃 (x)
is straightforward, but sampling from a posterior
distribution of the form 𝑝(x | y) ∝ 𝑝𝜃 (x)𝑟 (x, y),
where 𝑟 is a constraint function depending on
an auxiliary variable y, is generally intractable.
We propose to amortize the cost of sampling
from such posterior distributions with diffusion
models that sample a distribution in the noise
space (z). These diffusion samplers are trained by
reinforcement learning algorithms to enforce that
the transformed samples 𝑓𝜃 (z) are distributed
according to the posterior in the data space (x).
For many models and constraints, the posterior
in noise space is smoother than in data space,
making it more suitable for amortized inference.
Our method enables conditional sampling under
unconditional GAN, (H)VAE, and flow-based
priors, comparing favorably with other inference
methods. We demonstrate the proposed out-
sourced diffusion sampling in several experiments
with large pretrained prior models: conditional
image generation, reinforcement learning with
human feedback, and protein structure generation.

1. Introduction
Generative models, trained on a dataset to maximize likeli-
hood or related quantities, can become priors for Bayesian
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Table 1. Common families of generative models can be expressed
as deterministic transformations of noise. Here, 𝑑latent refers to
the dimension of the latent variable as typically understood in
the model; typically, 𝑑latent ≪ 𝑑data (§2). Posteriors under these
generative model priors are generally intractable, but some models
can be fine-tuned by asymptotically unbiased variational objec-
tives to sample intractable posteriors (§3.1). Outsourced diffusion
sampling approximates posteriors in the noise space (§3.2 and §4).
Model Noise dim. 𝑑noise Invertible? Variational tuning?

(H)VAE 𝑑latent · 𝑁 + 𝑑data × ✓
GAN 𝑑latent × ×
NF / CNF 𝑑data ✓ ✓/×
Diffusion 𝑑data · (𝑇 + 1) × ✓
Latent diffusion 𝑑latent · (𝑇 + 1) + 𝑑data × ✓

inference problems. The aim is to approximate or sam-
ple from the product of the modeled distribution over a
data space with an observation likelihood or other constraint
function. While such diverse applications as conditional gen-
eration (Dhariwal & Nichol, 2021; Ho & Salimans, 2022),
inverse problems (Song et al., 2022; Chung et al., 2023;
Venkatraman et al., 2024), and constrained improvement
from human feedback (Korbak et al., 2022; Fan et al., 2023)
can be cast as posterior inference tasks, sampling from such
posterior distributions when no unbiased target data is avail-
able is generally intractable. For some model families, ap-
proximate solutions, such as MCMC, approximate guidance,
and variational inference, may be possible. Each of those
methods has limitations, such as high cost to reach conver-
gence for multimodal posteriors, intractability of accurate
density estimation, and reliance on techniques specialized
to the model and constraint.

Fundamentally, generative models are probabilistic pro-
grams that produce samples from the distributions they de-
fine by a combination of deterministic computation and
injection of random noise.1 This paper argues that the noise
space of generative models – the space where the noise in-
jected during generation resides – is an effective target for
posterior inference. To be precise, we consider a generative

1We refer here to models that produce samples in a bounded
number of operations, not to objects such as deep energy-based
models, for which sampling is intractable.
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Figure 1. Left: Top row: Marginal densities of a CNF
that transforms a Gaussian distribution (𝑡 = 0) to a
Swiss roll (𝑡 = 1). Middle row: The constraint function
– a mixture of two Gaussians centered an an observation
y (•) and its reflection through the origin – pulled back
to x𝑡 . Bottom row: Posterior densities at x𝑡 , propor-
tional to the product of the first two rows. The rightmost
column shows samples in the data space. Right: The
same objects shown in noise and data space for a GAN
that transforms noise (z) to data (x). Outsourced dif-
fusion samplers approximate 𝑝(x0 | y) or 𝑝(z | y),
which are smoother than 𝑝(x | y) (see Fig. 2).
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model that expresses data as a deterministic transformation
of noise, x = 𝑓𝜃 (z), where the noise variable z follows a
known distribution z ∼ 𝑝z (z) and 𝜃 are the model parame-
ters. This model defines a distribution over x – the pushfor-
ward [ 𝑓𝜃 ]∗𝑝z of the noise distribution by the deterministic
transformation – with density 𝑝(x). A constraint function
𝑟 (x, y) in the data space, depending on an auxiliary variable
y, defines a posterior distribution 𝑝(x | y) ∝ 𝑝(x)𝑟 (x, y).
This posterior can be sampled by inferring a distribution
over the noise variable z that, when transformed by 𝑓𝜃 ,
aligns with the posterior in the data space. The posterior in
the noise space is often smoother (and lower-dimensional)
than the corresponding posterior in the data space (Fig. 1),
making it more amenable to efficient sampling (Fig. 2).

While posterior sampling in noise space is still intractable,
it can be addressed by methods of black-box variational
inference. Recent advances in diffusion samplers – diffusion
models trained not on a dataset, but to match a given
unnormalized density (Zhang & Chen, 2022; Vargas et al.,
2023; Richter & Berner, 2024; Sendera et al., 2024) – open
an opportunity to model complex posteriors in noise space.
We call such amortized posterior inference in the noise
space outsourced diffusion sampling.

Our exposition and experiments support three claims:

(1) Outsourced diffusion sampling is agnostic to the form of
the mapping 𝑓𝜃 and applicable to a wide range of prior
models, including VAEs, GANs, normalizing flows, and
continuous-time flow-based models (Table 1).

(2) Outsourced diffusion sampling is an effective poste-
rior inference method under large pretrained genera-
tive model priors in a variety of domains: conditional
image generation, reinforcement learning with human
feedback, discriminator-adjusted GAN sampling, and
protein structure generation (Table 2).

(3) Outsourced diffusion sampling is more efficient than
amortized inference methods that fit a model to sample
the data space posterior directly and than non-amortized
methods like MCMC, illustrating the flexibility of diffu-
sion sampling in outsourced noise spaces for sampling

Target
p(x1

y)
Outsourced

p(x0
y)

Figure 2. Marginal densities of a diffusion sampler of the posteriors
from the CNF example in Fig. 1 in data space and noise space.
The data space posterior (top row) has well-separated modes and is
harder to sample from than the outsourced posterior (bottom row).

complex posteriors (§5).

2. Outsourcing Noise in Generative Models
Consider a probabilistic model over a variable x taking val-
ues in R𝑑data , with auxiliary latent variables w valued in
R𝑑latent . The model is a joint distribution over x and w, and it
induces a distribution over x, its marginalization over w. In
terms of densities (if they exist), if 𝑝(w, x) is the joint den-
sity, then the marginal density of x is 𝑝(x) =

∫
𝑝(w, x) 𝑑w.

A form of the noise outsourcing lemma (see, e.g., Austin,
2015) states that, under basic assumptions, any such model
is equivalent to one augmented with additional latent vari-
ables w′, independent of w and following a fixed distribu-
tion, such that x is a (deterministic) function of w and w′. In
particular, if w and w′ are both standard Gaussian, then x is
a deterministic function of a Gaussian noise variable z (the
concatentation of w and w′), called the ‘outsourced’ noise:

Proposition 2.1 (Noise outsourcing lemma for Gaussians).
Let w and x be Borel-measurable random variables val-
ued in R𝑑latent and R𝑑data , respectively, with w marginally
standard Gaussian, and let 𝑑noise > 𝑑latent. There exists a
random variable z in R𝑑noise such that:

(1) z is standard Gaussian;
(2) w is the projection of z onto its first 𝑑latent coordinates;
(3) there exists a measurable function 𝑓 : R𝑑noise → R𝑑data

such that (w, x) = (w, 𝑓 (z)) almost surely.
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Prop. 2.1 ensures that any generative model with marginally
Gaussian latent variables can be rewritten as a deterministic
function of a higher-dimensional Gaussian noise variable,
but does not specify the form of the function 𝑓 (which is very
non-unique). We will be interested in modeling Bayesian
posteriors over x given observations by pulling them back
to the noise variable z, using methods agnostic to the form
of 𝑓 , which is seen as a black-box transformation.

Common families of generative models have a natural form
for 𝑓 , obtainable explicitly from their latent variable struc-
ture, that we will exploit. We now explain how several
model families, in their basic form, can be expressed as de-
terministic transformations of noise z following a Gaussian
distribution over R𝑑noise . See Table 1 for a summary.

Variational autoencoders (VAEs; Kingma & Welling,
2014). The generative model in a simple VAE may have
the form x ∼ N(𝝁𝜃 (w), 𝜎2

𝜃
(w)𝐼𝑑data ), where w follows a

Gaussian distribution in R𝑑latent and 𝝁𝜃 and 𝜎𝜃 are neural
networks outputting a vector and scalar, respectively. This
model may be reparametrized as

x = 𝝁𝜃 (w) + 𝜎𝜃 (w)𝜉, (1)

where 𝜉 ∼ N(0, 𝐼𝑑data ). Thus x is a deterministic transfor-
mation of the concatenation of w and 𝜉, which follows a
Gaussian distribution in R𝑑latent+𝑑data . (The encoder, an aux-
iliary object used in training the VAE, does not form part
of the generative model.) Hierarchical VAEs (HVAEs;
Rezende et al., 2014), generalize VAEs, using a Marko-
vian chain of latent variables in the generative process i.e.,
a graphical model structure of w𝑁 → · · · → w1 → x
with each transition a conditional Gaussian distribution. If
these variables are all R𝑑latent -valued, then x can be similarly
reparametrized as a function of the 𝑁 𝑑latent-dimensional
Gaussian noises injected on each transition w𝑖+1 → w𝑖 and
the 𝑑data-dimensional noise on the last step, as in (1).

Generative adversarial networks (GANs; Goodfellow
et al., 2014). In a GAN, a generator 𝐺 𝜃 maps Gaussian-
distributed noise z ∼ N(0, 𝐼𝑑latent ) deterministically to data,
x = 𝐺 𝜃 (z). Thus a GAN is naturally a model with out-
sourced noise in R𝑑latent . (The discriminator is an auxiliary
object used in training, not a part of the generative model.)

Normalizing flows (NFs; Rezende & Mohamed, 2015).
In a NF – also naturally a generative model with out-
sourced noise – the generator 𝑓𝜃 maps Gaussian noise
z ∼ N(0, 𝐼𝑑data ) to data x deterministically, x = 𝑓𝜃 (z). Un-
like a GAN generator, the function 𝑓𝜃 is constrained to be in-
vertible and necessarily (in order to model a full-support dis-
tribution) must have noise of the same dimension as the data.

Continuous normalizing flows (CNFs; Chen et al., 2018)
A CNF is an invertible transformation from noise z = x0
to data x = x1 that is the solution of a neural ordinary

differential equation (ODE)

𝑑x𝑡 = 𝑣 𝜃 (x𝑡 , 𝑡) 𝑑𝑡.

This includes ODEs derived from diffusion models, e.g.,
DDIMs (Song et al., 2021a), and those trained with flow
matching, the family of methods introduced by Lipman et al.
(2023); Albergo & Vanden-Eijnden (2023); Liu et al. (2023).

Under regularity conditions on 𝑣 𝜃 , a distribution over initial
conditions x0 induces marginal distributions over x𝑡 for
𝑡 > 0, and in particular over the data variable x1. The CNF
is a generative model with outsourced noise variable z = x0.

Diffusion models. Diffusion models (Sohl-Dickstein et al.,
2015; Ho et al., 2020) and latent diffusion models (Rom-
bach et al., 2021) can also be expressed as deterministic
transformations of noise; see Appendix A.1 for discussion
and connections.

3. Posteriors under Generative Model Priors
For a generative model 𝑝(x) of any of the types described
in §2, and a positive constraint function 𝑟 (x, y) such that
Ex∼𝑝 (x) [𝑟 (x, y)] is finite, we are interested in sampling the
posterior distribution 𝑝(x | y) ∝ 𝑝(x)𝑟 (x, y). Various
sources of constraints will be described in §5 (see Table 2).

3.1. Posterior Sampling and Approximation

In this section, we describe existing methods for sampling
approximately from such intractable posteriors.

Model-agnostic methods. The most general methods
for sampling from distributions defined by unnormalized
densities are Markov chain Monte Carlo (MCMC) methods.
These methods may not require fitting parametric models,
although hybrid methods – such as adaptive importance
sampling (Bugallo et al., 2017), twisted SMC variants
(Lawson et al., 2018; 2022), and neural boostrap algorithms
(Midgley et al., 2023) – can accelerate their convergence.

MCMC methods are agnostic to the form of the target dis-
tribution and are guaranteed to converge to it under mild
conditions in the limit of infinite time (or memory in the
case of particle filtering methods like SMC (Del Moral
et al., 2006; Doucet et al., 2009)), making them anytime
algorithms that can trade off computation cost for accuracy.
However, MCMCs assume access to the target density and
possibly to its gradient, limiting their applicability:

• For (H)VAEs and their special case diffusion models,
the density cannot be computed exactly; only variational
bounds are available.

• For GANs, the density cannot be computed because the
generator is not injective (invertible) and may not even
define a full-support distribution over the target space.

• For CNFs, the density can be approximated using the
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Hutchinson trace estimator (Hutchinson, 1989; Grath-
wohl et al., 2019), but accurately computing the gradient
is expensive, as it requires backpropagating through the
computation graph of a neural ODE integrator.

Monte Carlo methods in latent space. MCMC sampling
can be performed at intermediate time points of continuous-
time flow-based models (Cabezas et al., 2024). MCMC
techniques are also used for sampling in GAN latent spaces
for discriminator-guided sampling (Che et al., 2020; Hou
et al., 2025) and for conditional generation by sampling in
intermediate activation spaces (Nguyen et al., 2017). Simi-
lar approaches are applied to normalizing flows (Coeurdoux
et al., 2024). Monte Carlo techniques are also used in diffu-
sion models (Appendix A.1).

Amortized inference and fine-tuning. For some families of
models, it is possible to train a model that, at convergence to
the global optimum, samples from the posterior distribution
exactly. This is a problem of variational inference: the
model is trained – or perhaps fine-tuned using the prior
model as initialization – to be close to the target distribution
in some measure of divergence.

For CNFs, a method for fine-tuning the drift function 𝑣 𝜃
to yield a CNF that samples from the posterior distribution,
known as adjoint matching, has recently been proposed
by Domingo-Enrich et al. (2024). While this method is
asymptotically unbiased, it requires access to the gradient of
the likelihood function. Furthermore, it is only applicable to
a narrow class of flow-based models, namely, those that are
trained from certain marginal couplings and interpolants and
closely related to the probability flow ODEs of diffusion
models. This restrictiveness is due to adjoint matching
converting the neural ODE to an equivalent neural SDE2,
which is not possible in general (e.g., for flow-based models
trained using minibatch optimal transport couplings (Tong
et al., 2024; Pooladian et al., 2023) or with non-Gaussian
source distributions). Naı̈vely applying adjoint matching to
such CNFs gives biased results (Fig. 3).

3.2. Bayesian Posterior in Noise Space

We describe how posterior distributions can be pulled back
to the noise space of a generative model expressed as a de-
terministic transformation of an outsourced variable. This
relies on a basic measure-theoretic fact regarding the trans-
formation of density functions under pushforward measures:

Proposition 3.1. Suppose that (𝑍, Σ𝑍 ) and (𝑋, Σ𝑋) are
measurable spaces and 𝑓 : 𝑍 → 𝑋 is measurable. If 𝜇 is
a 𝜎-finite measure on 𝑍 and 𝜈 is a 𝜎-finite measure on 𝑋

2In diffusion models (SDEs), the prior model can also be fine-
tuned to sample from the posterior using objectives closely related
to those proposed here; see Appendix A.1.

with 𝜈 ≪ 𝑓∗𝜇, then 𝑓∗
((

𝑑𝜈
𝑑 𝑓∗𝜇
◦ 𝑓

)
· 𝜇

)
= 𝜈.

In particular, if 𝜇 is a probability measure and ℎ : 𝑋 →
R≥0 is 𝑓∗𝜇-integrable, then 𝜆 := 1∫

ℎ 𝑑 ( 𝑓∗𝜇)
(ℎ ◦ 𝑓 ) · 𝜇 is a

probability measure on 𝑍 , and 𝑓∗𝜆 = 1∫
ℎ 𝑑 ( 𝑓∗𝜇)

(ℎ · 𝑓∗𝜇) is

a probability measure on 𝑋 .

(See Appendix A.2 for the proof.) In common terms,
in terms of densities, the relevance of the proposition
of our setting is as follows. Let 𝑓 : R𝑑noise → R𝑑data be
a function from the noise space to the data space. A
prior density 𝑝(z) in the noise space, transformed via
x = 𝑓 (z), defines a prior 𝑝(x) (a density with respect to
some reference measure, such as the volume measure on
the image of 𝑓 ). If ℎ(x) = 𝑟 (x, y) is a constraint function
with

∫
𝑟 (x, y)𝑝(x) 𝑑x < ∞, then if z′ is a variable in

the noise space distributed with density proportional to
𝑝(z′)𝑟 ( 𝑓 (z′), y), and x′ = 𝑓 (z′), then x′ is distributed with
density proportional to 𝑝(x′)𝑟 (x′, y) in the data space. This
means that to sample the posterior in latent space, we can
sample from the posterior in noise space (with density
𝑝(z)𝑟 ( 𝑓 (z), y)) and transform the sample by 𝑓 . (Note that
such sampling does not require computation of the push-
forward density. Indeed, 𝑓 need not be injective or smooth,
as would typically be required for such computations.)

Amortizing outsourced posterior sampling. Although
noise space posteriors might be simpler than the distribution
in target space (Figs. 1 and 2), they can still be multimodal
and high-dimensional. MCMC methods have been used to
sample from noise spaces of NFs and GANs (Che et al.,
2020; Cannella et al., 2021), but suffer from long mixing
times. In addition, many MCMC methods assume that the
target density 𝑝(z)𝑟 ( 𝑓 (z), y) is (efficiently) differentiable,
which is not the case when 𝑓 is a CNF.

Instead, it can be desirable to use amortized variational
inference to fit a fast sampler to the latent posterior, that is, to
approximate it by a parametric model. We have no samples
from this posterior, but have access to its unnormalized
density 𝑅(z | y) := 𝑝(z)𝑟 ( 𝑓 (z), y).

We call such a model an outsourced sampler, a name moti-
vated by the fact that the factors of variation in the posterior
are ‘outsourced’ to the noise space via the pullback opera-
tion. We shall use diffusion models as the variational family,
as will be discussed in §4.2.

4. Outsourced Diffusion Sampling
4.1. Diffusion Samplers for Amortized Inference

Diffusion sampling is the variational inference problem of
approximating a distribution over R𝑑 , with a given unnor-
malized density 𝑅 : R𝑑 → R>0, by a diffusion model.
Samples from the target distribution, which has density
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𝑝target (z) = 1
𝑍
𝑅(z), are not available, nor do we have access

to the normalizing constant 𝑍 ; however, we have the ability
to query for the unnormalized density 𝑅(z) at any point z.
The goal is to train a neural stochastic differential equation

z0 ∼ N(0, 𝐼𝑑) 𝑑z𝑡 = 𝑢𝜙 (z𝑡 , 𝑡) 𝑑𝑡 + 𝜎𝑡 𝑑B𝑡 , (2)

where 𝑢𝜙 is a neural network, 𝜎𝑡 is a scalar function of time,
and B𝑡 is standard Brownian motion, so that the induced
distribution over z1 = z is close to the target distribution
𝑝target (z) in some measure of divergence. (Note that, unlike
for diffusion models trained from data, it is standard for
generation to proceed in increasing time (from noise at
𝑡 = 0 to the target at 𝑡 = 1.) The model can be sampled
by simulating (2) in a time discretization, e.g., using the
Euler-Maruyama method.

Training diffusion samplers is more difficult than training
typical diffusion models, i.e., maximizing a variational
bound on log-likelihood of a dataset. Various objectives
have been proposed, including: (1) ones that rely on differ-
entiable simulation of the generative process during training
(Li et al., 2020; Kidger et al., 2021; Zhang & Chen, 2022;
Vargas et al., 2023) and are linked with optimal control
(Berner et al., 2024; Vargas et al., 2024), (2) ones using
biased but asymptotically consistent Monte Carlo estimates
of the score function (Vargas et al. (2022); Huang et al.
(2024); Akhound-Sadegh et al. (2024)), and (3) ‘off-policy’
divergences that can be optimized on arbitrary generative
trajectories not necessarily sampled from the current itera-
tion of the model (Richter et al., 2020; Nüsken & Richter,
2021; Sendera et al., 2024, inter alia). A unifying perspec-
tive on these methods and analysis in the continuous-time
limit were recently given by Berner et al. (2025).

In this work, we adopt training methods of the third kind,
using off-policy divergences, as they have have two notable
advantages. First, they treat the target 𝑅 as a black-box re-
ward function and do not require access to the score ∇ log 𝑅,
as differentiable simulation methods and some Monte Carlo
methods do. Second, they can be trained off-policy, on
trajectories obtained through exploration, allowing the flexi-
ble use of exploration strategies and thus promoting mode
discovery, as demonstrated for continuous-space samplers
by Malkin et al. (2023); Sendera et al. (2024); Phillips &
Cipcigan (2024); Kim et al. (2025). The exact form of the
off-policy divergence will be described in §4.2.

4.2. Diffusion Sampling in Noise Space

Diffusion models are an attractive choice of variational
family due to their ability to sample from complex high-
dimensional distributions. We train outsourced diffusion
samplers by using the methods introduced in §4.1 to approx-
imate posteriors in outsourced noise spaces (§3.2).

The target density we wish to sample takes the form 𝑅(z |

y) := 𝑝(z)𝑟 ( 𝑓 (z), y). The sampler can be conditioned on
the auxiliary variable y (taking it as an input, resulting in
amortization over y and the possibility of generalizing to
new y) or can be trained for a single, fixed value of y to
sample the corresponding posterior.

Training objective. To train a diffusion model to sample
from the target density 𝑅(z | y), we use the trajectory bal-
ance objective (TB; Malkin et al., 2022). TB was first intro-
duced in the context of (discrete) generative flow networks
(GFlowNets; Bengio et al., 2021; 2023) and generalized to
the continuous setting in Lahlou et al. (2023); it is also a
close relative of the VarGrad objective (Richter et al., 2020).
It was comprehensively evaluated for diffusion samplers
in Sendera et al. (2024) and its asymptotic consistency in
the continuous-time limit was established in Berner et al.
(2025). We briefly review the TB objective and refer to
those works for further details.

A diffusion model – a neural network with parameters 𝜙 and
possibly conditioned on y – defines a Markovian distribution
over denoising trajectories 𝜏 = (z0 → zΔ𝑡 → · · · → z1),
where Δ𝑡 = 1

𝑇
is the time step of the discretization of the

SDE (2), via

𝑝
𝜙

𝐹
(𝜏 | y) = 𝑝(z0)

𝑇∏
𝑖=1

𝑝
𝜙

𝐹
(z𝑖Δ𝑡 | z(𝑖−1)Δ𝑡 , y). (3)

Here 𝑝(z0) is the density of a fixed distribution over the
initial noise (recall that generation goes forward in time)
and 𝑝

𝜙

𝐹
is the density of the transition kernel defined by the

model, i.e., the probability of transitioning from a sample at
a given noise level to a sample at the next-lowest noise level.
Similarly, the (fixed) noising process defines a distribution
over noising trajectories conditioned on their terminal end-
point: 𝑝𝐵 (𝜏 | z1) =

∏𝑇
𝑖=1 𝑝𝐵 (z(𝑖−1)Δ𝑡 | z𝑖Δ𝑡 ). The TB ob-

jective associated with a trajectory 𝜏 is a squared log-ratio:

LTB (𝜏; y, 𝜙) =
(
log

𝑍𝜙 (y)𝑝𝜙

𝐹
(𝜏 | y)

𝑅(z1 | y)𝑝𝐵 (𝜏 | z1)

)2

, (4)

where 𝑍𝜙 is a learned model that, at optimality, estimates
the partition function

∫
𝑅(z | y) 𝑑z. This objective aims

to match two distributions over trajectories: the one defined
by the denoising model and that defined by the target dis-
tribution and the noising kernel. If the two distributions are
equal, then their marginal densities at 𝑡 = 1 also coincide.

For training, one draws trajectories 𝜏 from some training
distribution (which is not necessarily the current model 𝑝𝜙

𝐹
)

and optimizes (4) with respect to the parameters 𝜙. If the TB
loss is optimized to 0 for every trajectory 𝜏 in the continuous-
time limit, the model 𝑝𝜙

𝐹
asymptotically samples from the

target density 𝑅(z | y) (Berner et al., 2025). The training
loop is described in Algorithm 1.

5



Outsourced Diffusion Sampling: Efficient Posterior Inference in Latent Spaces of Generative Models

Figure 3. (a) Flow paths of a CNF trained with OT-CFM
(Tong et al., 2024) from a source distribution (•) to the ‘2
moons’ distribution (•). The source is Gaussian (top row) or
a mixture of 8 Gaussians (bottom row). (b) The constraint
is constructed such that the posterior is the lower moon.
CNF flow paths from the lower moon (target posterior) to
the source latents (outsourced posterior). (c) Flow paths
from naive application of Adjoint Matching (Domingo-
Enrich et al., 2024), which is is biased for OT flows and
non-Gaussian sources. (d) Flows starting at samples from
an outsourced diffusion model, which samples the latent
posterior, give target samples close to the ground truth. (a) OT-CFM prior (b) True Posterior (c) Adj. Matching (d) Ours

Algorithm 1 Training loop for Outsourced Diffusion Sam-
pling

1: Initialize: deterministic prior function 𝑓 , randomly
initialized noise posterior model 𝑝𝜙

𝐹
, randomly initial-

ized 𝑍 𝜙 (y), VP-SDE backward policy 𝑝𝐵, log reward
function log 𝑟 (x, y), on-policy update fraction 𝑝.

2: for each step 𝑛 = 1, 2, . . . , 𝑁 do
3: Sample a batch of trajectories: {𝜏 (𝑖) }𝐵

𝑖=1 ∼ 𝑝
𝜙

𝐹
(𝜏 | y)

4: for 𝑖 = 1, . . . , 𝐵 do
5: Compute log density:

log 𝑅 (𝑖) ← logN(z(𝑖) ; 0, I) + 𝑟
(
𝑓 (z(𝑖) ), y

)
6: Store experience (𝜏 (𝑖) , log 𝑅 (𝑖) ) in buffer D
7: end for
8: Draw 𝑢 ∼ Uniform(0, 1)
9: if 𝑢 ≤ 𝑝 then

10: Keep on-policy batch {(𝜏 (𝑖) , log 𝑅 (𝑖) )}𝐵
𝑖=1

11: else
12: Sample off-policy batch {(𝜏 (𝑖) , log 𝑅 (𝑖) )}𝐵

𝑖=1 ∼ D
13: end if
14: Compute LTB (𝜏; y, 𝜙) for batch using Equation 4.
15: Update 𝑝

𝜙

𝐹
, 𝑍 𝜙 (y) using ∇𝜙LTB (𝜏; y, 𝜙).

16: end for

Exploration and credit assignment techniques. We bor-
row a number of off-policy exploration techniques (such as
replay buffers), as well as methods to make training more
stable (such as temperature annealing) from the diffusion
samplers literature. For details, see Appendix B.

5. Experiments
The goal of our experiments is to demonstrate the general
applicability of outsourced sampling, highlighting tasks
which lack specialized techniques for posterior inference.
We list the different tasks, alongside the sources of priors,
constraints, and the dimension of noise sampled by the
outsourced diffusion model in Table 2.

5.1. Class-Conditional Sampling

Setup. The prior model 𝑝𝜃 (x) is an off-the-shelf uncon-
ditional image generator trained on the CIFAR-10 dataset
(Krizhevsky, 2009). Using a CIFAR-10 classifier 𝑝(y | x),
we train a posterior class-conditioned generative model
𝑝(x | y) ∝ 𝑝𝜃 (x)𝑝(y | x). For our experiments we work
with two priors which achieve high fidelity unconditional
generation: a flow matching (CNF) model trained with inde-
pendent coupling and linear interpolants (I-CFM; Tong et al.,
2024), and a spectrally normalized GAN (SN-GAN; Miy-
ato et al., 2018). We use a 13-layer VGG-net model as the
classifier (Simonyan & Zisserman, 2015). We compare out-
sourced diffusion sampling against a powerful MCMC base-
line and a recent method for fine-tuning flow-based models:

• Hamiltonian Monte Carlo (HMC; Brooks et al., 2011)
applied in the noise spaces of both the SN-GAN and CFM
priors to sample the outsourced posterior. We highlight
that HMC with CNF priors can be quite slow, since it
requires differentiating through the ODE integrator.

• Adjoint Matching (Domingo-Enrich et al., 2024): see
§3.1 and Fig. 3 for discussion. Note that adjoint matching
requires access to the gradient of the constraint function.

For the SN-GAN prior, we train an outsourced diffusion
model to sample generator noise z ∈ R512. For the CFM
prior, we sample the initial noise latent at 𝑡 = 0, where
z ∈ R3×32×32. See details in Appendix B.2.

Results. We report average log-reward (classifier log-
likelihood) of samples and FID scores (computed with the
dataset images of the given class) in Table 3. The CFM
posteriors consistently outperform SN-GAN posteriors, re-
flecting the superior quality of the CFM prior. Among the
methods evaluated, adjoint matching with the CFM prior
achieves the best performance – as expected, since it is
specifically designed for fine-tuning I-CFM models with a
Gaussian source (samples in Fig. 8). Outsourced diffusion, a
more general approach, also delivers strong conditional gen-
eration (visualized in Fig. 4). Unlike adjoint matching and
HMC, outsourced diffusion does not rely on gradient infor-
mation from either the classifier or the prior. Additionally,
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Table 2. The priors and constraints studied in §5. Outsourced diffusion sampling works in noise spaces of a wide range of generative
models and is agnostic to their specific form.

Task Constraint Prior Prior type 𝑑noise 𝑑data

CIFAR-10 classifer guidance CIFAR-10 classifer SN-GAN GAN 128 3 × 32 × 32
I-CFM CNF 3 × 32 × 32 3 × 32 × 32

FFHQ text conditioning ImageReward StyleGAN3 GAN 512 3 × 256 × 256
NVAE Hierarchical VAE 4 × 20 × 8 × 8 3 × 256 × 256

Text-to-Image model RLHF ImageReward Stable Diffusion 3 Latent-CNF 16 × 64 × 64 3 × 512 × 512

Protein structure Structure Diversity FoldFlow 2 Riemannian CNF 7 × 64 7 × 64

(a) SN-GAN Prior (b) Posterior (Dog) (c) Posterior (Car)

(d) I-CFM Prior (e) Posterior (Dog) (f) Posterior (Car)

Figure 4. CIFAR-10 samples generated using SN-GAN (top row)
and CFM (bottom row) priors and posterior samples from trained
outsourced diffusion models for the ‘Dog’ and ‘Car’ classes.

the outsourced diffusion model offers significant advantages
in training efficiency, requiring approximately 5 hours on
an A100 GPU compared to 12 hours for adjoint matching
(see Appendix C.2). Moreover, we show how we can distill
one-step outsourced diffusion samplers in Appendix C.1,
with no performance degradation and significant sampling
speed advantage.

5.2. Conditional High-Resolution Face Generation

Setup. Given a generator of high-resolution (256 × 256)
human face images trained on the FFHQ dataset (Karras
et al., 2021b) as the prior 𝑝𝜃 (x), we aim to generate faces
aligned with a specified text caption y. To achieve this,
we use a constraint function given by ImageReward (Xu
et al., 2023), a text-image reward model built on the BLIP
backbone (Li et al., 2022) that scores images based on
their alignment with the provided text prompt and aesthetic
quality. The ImageReward score serves as the log-constraint
function log 𝑟 (x, y) in our formulation, enabling us to frame
the text-conditional face generation problem as posterior
inference. For the prior models, we employ NVAE (Vahdat

Table 3. CIFAR-10 posterior sampling results for GAN and CNF
priors. We report expected classifier log probability and FID scores
for the class posteriors, averaged over all 10 classes.

Prior Sampler E[log 𝑝(y | x)] (↑) FID (↓)

SN-GAN
Prior −5.37 97.14
Latent HMC −3.26 75.33
Outsourced Diff. −3.84 68.12

I-CFM

Prior −5.88 84.79
Latent HMC −2.80 46.69
Adj. Matching −3.09 19.45
Outsourced Diff. −3.35 34.28

& Kautz, 2020) and StyleGAN3 (Karras et al., 2021a), both
of which achieve high-fidelity unconditional generation.

NVAE is a deep hierarchical VAE with a large number of
latents of different scales. Vahdat & Kautz (2020, Appendix
B.6) notes that almost all the feature variance is captured
by the first 4 levels of the latent hierarchy. We train the
outsourced diffusion model to sample noise z ∈ R4×20×8×8

for these levels, which turns out to be sufficient for condi-
tional generation. For StyleGAN3, we sample the generator
noise space z ∈ R512. Due to the absence of specialized
variational techniques for posterior inference with GANs
and VAEs, we use HMC sampling of the outsourced noise,
targeting the same distribution as the outsourced diffusion
sampler, as the baseline. More details in Appendix B.3.

Results. We report average ImageReward score and diver-
sity, measured as average cosine distance of CLIP (Radford
et al., 2021) embeddings for 100 generated images from the
posterior, for 4 different prompts in Table 4. We find HMC
for StyleGAN3 can get stuck in bad reward modes, but some-
times obtains high reward. HMC is consistently poor with
the NVAE prior, which we attribute to a combination of di-
mensionality and high energy barriers. Outsourced diffusion
samplers consistently generate prompt-accurate posterior
samples. Illustrative samples are displayed in Fig. 5 and
more uncurated samples in Appendix D. StyleGAN3 pos-
teriors are of higher quality than NVAE posteriors, likely
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Brown
haired child

Figure 5. Sampled images from the FFHQ priors and outsourced diffusion
posteriors for different prompts. More examples in Appendix D.

Table 4. FFHQ text-conditioning results for NVAE
and StyleGAN3 priors. We report average log-reward
and CLIP cosine distance (diversity) for posteriors,
averaged over the prompts shown in Fig. 5.
Prior Sampler E[log 𝑟 (x, y)] (↑) CLIP Diversity (↑)

NVAE
Prior −1.94 0.30
Latent HMC −1.2 0.30
Outsourced Diff. 0.98 0.26

StyleGAN3
Prior −1.52 0.36
Latent HMC −0.62 0.31
Outsourced Diff. 1.23 0.26

because the prior is also stronger.

5.3. Text-to-Image RLHF

Setup. Diffusion and flow matching models that gener-
ate images conditioned on textual prompts often struggle
with complex prompts that involve compositional relation-
ships. A promising strategy to address this limitation is
to fine-tune such models using reward functions that quan-
tify image-caption alignment. In previous work, Fan et al.
(2023); Venkatraman et al. (2024) used Stable-Diffusion-
1.5 (Rombach et al., 2021) as a caption-conditioned prior
𝑝(x | y) and ImageReward as the unnormalized log-
likelihood log 𝑟 (x, y). In both of those works, the prior
diffusion model was tuned to sample approximately from
the posterior 𝑝aligned (x | y) ∝ 𝑝(x | y)𝑟 (x, y). In our experi-
ments, we instead align Stable Diffusion 3 (SD3; Esser et al.,
2024), which is a CNF, not a diffusion model, and is thus
unsuitable for fine-tuning using the mentioned techniques.

We train outsourced diffusion samplers of the CNF’s 16 ×
64 × 64-dimensional noise space. Gradient-based posterior
inference techniques, such as adjoint matching and HMC,
are prohibitive for a flow model at the scale of SD3, since
they involve differentiating through the reward model, high
resolution multiscale decoder, and ODE integrator. Instead,
as a baseline, we tune the classifier-free-guidance weight
(Ho & Salimans, 2022) individually for each prompt and
report the best performance. See Appendix B.4 for details.

Results. We report the ImageReward score and the average
CLIP cosine distance averaged over 4 prompts in Table 5.
We present illustrative examples in Fig. 6, with further un-
curated samples provided in Appendix E. We find that latent
sampling greatly improves reward (and our qualitative as-
sessments) compared to the prior. These results, along with
the analysis in §5.2, demonstrate the effectiveness of our pro-
posed method to fine-tune high-dimensional image priors.

Table 5. RLHF finetuning results for SD3 prior. We report ex-
pected log reward and CLIP cosine distance (diversity) for posteri-
ors, averaged over the prompts listed in Fig. 6.

Sampler E[log 𝑟 (x, y)] (↑) CLIP diversity (↑)
Prior 0.791 0.19
CFG 0.84 0.17
Outsourced Diff. 1.27 0.16

A cat and a dog. A cat riding a llama.

Prior Posterior Prior Posterior

Quiet village disrupted by
meteor strike.

A human with a horse face
and a human with a wolf face.

Figure 6. Sampled images from the SD3 prior and outsourced dif-
fusion posterior for different prompts. More examples in Ap-
pendix E.

5.4. Protein Secondary Structure Diversity

Setup. Many protein generative models have been proposed
to tackle the problem of designing novel yet realistic protein
structures (Watson et al., 2023; Bose et al., 2024). They
learn to produce proteins of 𝑁 residues by sampling ro-
tations and translations applied to each residue backbone
(the space SE(3)𝑁 ). As our prior 𝑝𝜃 (x), we use the recent
FoldFlow 2 model, which is a Riemannian CNF (on the man-
ifold SE(3)𝑁 embedded in R7×𝑁 ) trained with minibatch
OT coupling (Huguet et al., 2024).

Protein residues fold into patterns called secondary struc-
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Table 6. Results for protein structure experiments. We report the
average log-reward, as well as the pairwise TM-Score (as a mea-
sure of sample diversity), averaged over 64 samples. Standard
deviation over 3 seeds is reported.
Method E[log 𝑟div (x)] (↑) Pairwise TM-Score (↓)
Prior −1.325 ± 0.014 0.4480 ± 0.0044
RW MCMC −0.640 ± 0.073 0.4181 ± 0.0057
Outsourced Diff. 0.422 ± 0.225 0.4407 ± 0.0706

tures, which include 𝛼-helices, 𝛽-sheets, and coils. Many
protein generative models have issues producing proteins
with diverse secondary structures, typically under-sampling
proteins with 𝛽-sheets. A natural problem is to produce
samples which are both probable under the prior model
and exhibit this structural diversity. This can be framed as
sampling from 𝑝𝜃 (x)𝑟div (x), where the constraint function
𝑟div (x) assigns high-values to proteins with diverse sec-
ondary structures (in-particular, the presence of 𝛽-sheets).

Let 𝑝 = [𝑝𝛼, 𝑝𝛽 , 𝑝𝑐] be a vector representing the proportion
of residues that are in 𝛼-helices, 𝛽-sheets or coils. The
particular constraint function that we use, adapted from
Huguet et al. (2024), is 𝑟div (x) = 𝑒−1.2𝑤⊤ 𝑝

1.2−H[𝑝] , where 𝑤 =

[1, 2, 0.5] is a weight vector, andH[𝑝] is the entropy of 𝑝.

This problem poses two challenges. First, since the model is
a Riemannian CNF, the flow ODE cannot be converted into
a diffusion SDE, so that adjoint matching and diffusion fine-
tuning techniques are not applicable. Second, the constraint
function is not differentiable with respect to the generative
model’s output, ruling out methods such as HMC. We there-
fore compare our method to a gradient-free MCMC method
in the noise space z. We fix the protein length to 64 residues,
and evaluate the model achieving the highest diversity score
during training. See Appendix B.5 for details.

Results. We report the average log 𝑟div (x), as well as a di-
versity metric (the pairwise TM-Score) in Table 6. The latter
calculates the similarity between pairs of proteins, averaged
across a set of generated samples (Zhang & Skolnick, 2004).
Uncurated protein samples are shown in Fig. 7. We find
that our proposed method samples diverse protein structures
rich in 𝛽-sheets more frequently than the baselines, while
maintaining a TM-Score comparable to the prior.

6. Conclusion
We have proposed outsourced diffusion samplers for effi-
cient posterior inference in the noise spaces of generative
models. These samplers take advantage of the expressive-
ness of diffusion models and the flexibility of off-policy
training algorithms for black-box target distributions and
can be applied to any model that can be written as a deter-
ministic transformation of noise. While we have demon-

(a) CFM Prior

(b) Outsourced Diffusion Posterior
Figure 7. Protein samples with pertinent secondary structures high-
lighted: 𝛼-helices (blue), 𝛽-sheets (red), and coils (green).

strated the effectiveness of this method in a variety of set-
tings, there are many questions for future work. One natural
direction is to extend the method to discrete problems, where
the noise space is discrete or the transformation involves
discretization. Another is to adapt outsourced diffusion
sampling to general probabilistic programs, where the gen-
erative model includes both stochasticity and nontrivial con-
trol flow, and where current inference methods use MCMC
sampling in outsourced noise spaces (Dash et al., 2023).
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A. Theory and Method Details
A.1. Outsourced Sampling for Diffusion Priors

We describe posterior sampling, outsourced posterior inference and diffusion sampling when the prior generative model is
itself a diffusion model.

Monte Carlo methods. The ‘guidance’ term in diffusion posteriors – the difference between the scores of the noised
prior and posterior distributions – can be estimated by Monte Carlo integration (Song et al., 2023; Cardoso et al., 2024)
or using approximations specialized for constraints arising from linear inverse problems (Kawar et al., 2021; Kadkhodaie
& Simoncelli, 2021; Song et al., 2022; Chung et al., 2023). Posterior estimation can also be achieved through stochastic
optimization (Graikos et al., 2022; Mardani et al., 2024)

Methods related to sequential Monte Carlo, which treat a modification to the denoising transition kernel as a proposal, have
also been proposed (Doucet et al., 2022; Dou & Song, 2024; Chen et al., 2025).

Amortized methods. Because generation proceeds in a long sequence of sampling steps, and the modes of the posterior
are not known a priori, these methods use reinforcement learning techniques to discover regions of high posterior density.
Asymptotically unbiased methods include ELEGANT (Uehara et al., 2024) and relative trajectory balance (Venkatraman
et al., 2024).

Outsourcing noise in diffusion models. Generation of data x = x0 is modeled as a Markov process x𝑇 → · · · → x1 → x0,
where x𝑇 ∼ N(0, 𝐼𝑑data ) and the transition from x𝑡 to x𝑡−1 is conditionally spherical-Gaussian. Via the reparametrization
trick, the trajectory of latent variables can be expressed as a function of the initial sample x𝑇 and the 𝑇 standard Gaussian
noises injected at each step of sampling, just as in a VAE. Thus a diffusion model is a generative model with outsourced
noise in R𝑑data · (𝑇+1) (see (6) below).

Generalizing this setting, a typical latent diffusion model chains a diffusion model in a latent space R𝑑latent , w𝑇 → · · · →
w1 → w0, with a Gaussian decoder w0 → x of the same form as a VAE decoder. Combining the two, the data x is a
deterministic transformation of the concatenation of the initial latent variable w𝑇 , the 𝑇 standard Gaussian noises injected at
each step of sampling, and the noise in the final decoder. Thus a latent diffusion model is a generative model with outsourced
noise in R𝑑latent · (𝑇+1)+𝑑data .

(Note the similarity to the outsourced interpretation of HVAEs above: a diffusion model indeed be understood as a deep
hierarchical VAE. However, a diffusion model is also a neural stochastic differential equation (Tzen & Raginsky, 2019;
Song et al., 2021b) integrated in discrete time. In this view, in the continuous-time limit, the outsourced noise is a sample of
Brownian motion, and indeed an Itô integral is a deterministic transformation of a Brownian noise random variable.)

Outsourced autoregressive sampling under diffusion priors recovers relative trajectory balance. Venkatraman et al.
(2024) studied the problem of fine-tuning a diffusion model 𝑝𝜃 – seen as a transition policy 𝑝𝜃 (x𝑖Δ𝑡 | x(𝑖−1)Δ𝑡 ) – to yield a
diffusion model 𝑝post

𝜙
that samples the product of the distribution 𝑝𝜃 (x1) defined by the prior model with a constraint 𝑟 (x1),

where the prior and posterior diffusion model share the noising process and standard Gaussian noise distribution 𝑝(x0). The
relative trajectory balance (RTB) objective was proposed; for a trajectory 𝜏,

LRTB (𝜏; 𝜙) =
(
log

𝑍𝜙

𝑟 (x1)
+

𝑇∑︁
𝑖=1

log
𝑝

post
𝜙
(x𝑖Δ𝑡 | x(𝑖−1)Δ𝑡 )

𝑝𝜃 (x𝑖Δ𝑡 | x(𝑖−1)Δ𝑡 )

)2

, (5)

where 𝑍𝜙 is a learned scalar (note the resemblance to (4)).

Let 𝜉𝑖 be the standard Gaussian noise injected in sampling 𝑥𝑖Δ𝑡 conditionally on 𝑥 (𝑖−1)Δ𝑡 , so that the prior model can be
rewritten as a deterministic function of the noises 𝜉0, 𝜉1, . . . , 𝜉𝑇 via

x0 = 𝜉0, x𝑖Δ𝑡 = x(𝑖−1)Δ𝑡 + 𝑣 𝜃 (x(𝑖−1)Δ𝑡 , (𝑖 − 1)Δ𝑡)Δ𝑡 + 𝜎𝑖Δ𝑡

√
Δ𝑡𝜉𝑖 , (6)

where 𝜇𝜃 outputs the drift of the generative SDE. Similarly, let 𝜇post
𝜙

be the drift of the posterior generative SDE. For a
trajectory 𝜏 sampled using a sequence of noises 𝜉0, 𝜉1, . . . , 𝜉𝑇 under the prior model, the RTB loss (5) can then be rewritten
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in terms of the noises:

LRTB (𝜏; 𝜙) =
(
log

𝑍𝜙

𝑟 (x1)
+

𝑇∑︁
𝑖=1

log
N(x𝑖Δ𝑡 − x(𝑖−1)Δ𝑡 ; 𝜇

post
𝜙
(x(𝑖−1)Δ𝑡 , (𝑖 − 1)Δ𝑡)Δ𝑡, 𝜎2

𝑖Δ𝑡
Δ𝑡)

N (x𝑖Δ𝑡 − x(𝑖−1)Δ𝑡 ; 𝜇𝜃 (x(𝑖−1)Δ𝑡 , (𝑖 − 1)Δ𝑡)Δ𝑡, 𝜎2
𝑖Δ𝑡

Δ𝑡)

)2

=

(
log

𝑍𝜙

𝑟 (x1)
+

𝑇∑︁
𝑖=1

log
N(𝜉𝑖; 𝜇diff (x(𝑖−1)Δ𝑡 , (𝑖 − 1)Δ𝑡)

√
Δ𝑡/𝜎𝑖Δ𝑡 , 𝐼𝑑data )

N (𝜉𝑖; 0, 𝐼𝑑data )

)2

=

(
log

𝑍𝜙N(𝜉0; 0, 𝐼𝑑data )
∏𝑇

𝑖=1N(𝜉𝑖; 𝜇diff (x(𝑖−1)Δ𝑡 , (𝑖 − 1)Δ𝑡)
√
Δ𝑡/𝜎𝑖Δ𝑡 , 𝐼𝑑data )

𝑟 (x1)
∏𝑇

𝑖=0N(𝜉𝑖; 0, 𝐼𝑑data )

)2

(7)

where 𝜇diff (x, 𝑡) := 𝜇
post
𝜙
(x, 𝑡) − 𝜇𝜃 (x, 𝑡).

Consider now an amortized sampler of the outsourced noises 𝜉0, 𝜉1, . . . , 𝜉𝑇 that generates the variables autoregressively
(𝜉0 from a standard Gaussian, then subsequently each 𝜉𝑖 from a Gaussian with unit variance and mean conditioned on the
previously sampled noises). The transition policy density of this sampler can be written

𝑝𝐹 (𝜉𝑖 | 𝜉0, . . . , 𝜉𝑖−1) = N(𝜉𝑖; 𝜇outsourced (𝜉0, . . . , 𝜉𝑖−1), 𝐼𝑑data ).

Under a model parametrization in which the policy takes as input the intermediate state x(𝑖−1)Δ𝑡 , computed as a function of
the noises 𝜉0, . . . , 𝜉𝑖−1 using the prior model,

𝜇outsourced (𝜉0, . . . , 𝜉𝑖−1) = 𝜇diff (x(𝑖−1)Δ𝑡 , (𝑖 − 1)Δ𝑡)
√
Δ𝑡/𝜎𝑖Δ𝑡 ,

the numerator in (7) is precisely 𝑍𝜙𝑝𝐹 (𝜏), where 𝜏 is the sampling trajectory of the autoregressive sampler generating
𝜉0, 𝜉1, . . . , 𝜉𝑇 . The denominator is 𝑟 (x1) multiplied with the prior density of the noise, which is the target density for the
sampler (the unnormalized density of the outsourced posterior).

Thus we see that (7) exactly recovers the trajectory balance objective (Malkin et al., 2022) for an autoregressive sampler of
outsourced noise.

A.2. Proof of Prop. 3.1

Proposition A.1. Suppose that (𝑍, Σ𝑍 ) and (𝑋, Σ𝑋) are measurable spaces and 𝑓 : 𝑍 → 𝑋 is measurable. If 𝜇 is a 𝜎-finite
measure on 𝑍 and 𝜈 is a 𝜎-finite measure on 𝑋 with 𝜈 ≪ 𝑓∗𝜇, then 𝑓∗

((
𝑑𝜈

𝑑 𝑓∗𝜇
◦ 𝑓

)
· 𝜇

)
= 𝜈.

In particular, if 𝜇 is a probability measure and ℎ : 𝑋 → R≥0 is 𝑓∗𝜇-integrable, then 𝜆 := 1∫
ℎ 𝑑 ( 𝑓∗𝜇)

(ℎ ◦ 𝑓 ) · 𝜇 is a probability

measure on 𝑍 , and 𝑓∗𝜆 = 1∫
ℎ 𝑑 ( 𝑓∗𝜇)

(ℎ · 𝑓∗𝜇) is a probability measure on 𝑋 .

Proof of Prop. 3.1. Let ℎ = 𝑑𝜈
𝑑 𝑓∗𝜇

; we must show that 𝑓∗ ((ℎ ◦ 𝑓 ) · 𝜇) = ℎ · 𝑓∗𝜇. Let 𝐸 ∈ Σ𝑋 and 𝐷 = 𝑓 −1 (𝐸) ∈ Σ𝑍 . By
definitions and properties of pushforward measures,

𝑓∗ ((ℎ ◦ 𝑓 ) · 𝜇) (𝐸) = ((ℎ ◦ 𝑓 ) · 𝜇) (𝐷)

=

∫
𝑍

(ℎ ◦ 𝑓 )1𝐷 𝑑𝜇

=

∫
𝑍

(ℎ1𝐸) ◦ 𝑓 𝑑𝜇

=

∫
𝑋

ℎ1𝐸 𝑑𝑓∗𝜇

= (ℎ · 𝑓∗𝜇) (𝐸),

as required.

For the second part of the proposition, if 𝜈 = ℎ · 𝑓∗𝜇, then 𝑑𝜈
𝑑 𝑓∗𝜇

= ℎ 𝑓∗𝜇-almost everywhere, and the result follows easily
from the first part by linearity of the pushforward. □
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B. Experiment Details
Code for our experiments is available at https://github.com/HyperPotatoNeo/Outsourced_Diffusion_
Sampling.

B.1. Diffusion model

For all experiments, we use a convolutional UNet architecture (Ronneberger et al., 2015) for the diffusion model. This
architecture is naturally well-suited for latent spaces structured as image feature maps. However, for other types of latent
representations, we found that simply reshaping them into 𝐻 ×𝑊 × 𝐶 feature maps and treating them as images yielded
surprisingly effective results.

We use the variance preserving SDE (Song et al., 2021b) as backward policy 𝑃𝐵 for the trajectory balance loss in (4), with a
discretisation of 25 steps. For all of the experiments, we use off-policy training with a replay buffer similar to Sendera et al.
(2024). Specifically, for every training update we randomly sample either from the replay buffer, or generate new on-policy
samples which are added to the replay buffer according to the buffer probability 𝛼 – whose value specific to experiments is
provided in the following sections.

B.2. Class-Conditional Sampling

We set the classifier inverse temperature 𝛽 = 4 for all our baselines, otherwise the soft logits of the classifier results in a
fuzzy posterior. We provide some additional information regarding implementation of the baselines below:

Outsourced Diffusion. We learn to sample the 128 dimensional generator noise with the outsourced sampler. To keep
architectures consistent across experiments, we used the convolutional UNet to sample this noise by reshaping them to
2 × 8 × 8 feature maps. For sampling from the CNF prior, we use 45 Euler steps to discretise the ODE. The outsourced
sampler operates on the noise space which the same dimensionality as the output image – 3 × 32 × 32.

Adjoint Matching. To fine-tune flow matching models with a classifier, we use adjoint matching following the approach
described in Domingo-Enrich et al. (2024). Due to the unavailability of the open source code at this time, we made our own
implementation which we found works extremely well. First, we convert the ODE inference of conditional flow matching
into a memoryless SDE, ensuring that both have the same marginal distribution as outlined in the referenced paper. Next,
we apply the adjoint matching method for the stochastic optimal controls of the memoryless SDE. This process requires
gradient information of the log-reward (i.e., the classifier’s log-likelihood), which we compute using PyTorch’s autograd
functionality.

All hyperparameters remain identical to those of the outsourced diffusion sampler, including the learning rate, except for the
number of training iterations and the temperature annealing schedule. Training is significantly slower because it requires
computing the log-reward gradients and simulating the full trajectory for adjoint matching. Therefore, we set a total of 2,500
iterations with 1,000 linear temperature annealing steps. This configuration results in similar or reduced wall time compared
to the outsourced diffusion sampler while achieving stable convergence and high performance on CIFAR-10. Figure 8 shows
the qualitative results of applying adjoint matching to the CIFAR-10 task.

Note that for Stable Diffusion 3, the actual implementation of the inference pipeline—which involves a diffusion transformer
with various combinations of language embedding fusion for multimodality—is not fully open-sourced. Implementing a
memoryless SDE on top of this pipeline is non-trivial and requires careful tuning and integration with the internal processes
of Stable Diffusion’s inference mechanisms.

Temperature Annealing. We anneal the inverse temperature from 𝛽 = 2 to the final 𝛽 = 4. We tune the schedule linearly
over the first 2, 000 steps of training for outsourced diffusion, and 1, 000 steps for adjoint matching.

HMC baselines. We use hamiltorch (Cobb & Jalaian, 2021) to implement HMC. We use step size of 10−2, with 5 leapfrog
integration steps. We use a burn-in chain of length 100 before starting to collecting samples, spaced out by 10 samples.
Chains are run for 1, 000 samples, after which we reset the seed to help diversity. The runtime of HMC is quite slow with the
CNF prior due to gradient computation. A chain of 1, 000 samples takes close to an hour on 𝐴100 GPUs. We only keep 90
samples from this chain to preserve diversity, but these are still correlated. It would take close to 10 hours to generate 1, 000
samples for FID computation, but using extra resources we can run parallel chains. For comparison, outsourced diffusion
takes close to 5 hours for full training, after which sample generation is extremely cheap due to amortization. Despite the
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(a) Adj. (Dog) (b) Adj. (Car)

Figure 8. CIFAR-10 samples generated Adjoint Matching (Adj.) for the Dog and Car classes.

need to train a model, outsourced diffusion is actually more memory-efficient than even a single HMC chain, as it eliminates
the need to compute gradients through the ODE integrator. We visualize samples from a latent HMC chain in Fig. 40.

Our results for each class are listed in Table 7 and Table 8. We additionally evaluate the ELBO for I-CFM posteriors in
Table 9.

Table 7. SN-GAN results on CIFAR-10
Class Prior HMC Outsourced Diff.

Reward FID Reward FID Reward FID

Airplane -5.82 100.28 -2.53 82.56 -3.89 79.55
Car -5.36 125.16 -3.91 94.81 -4.22 85.88
Bird -5.40 71.30 -4.86 52.14 -3.91 59.76
Cat -5.40 68.30 -2.21 67.55 -3.97 55.05
Deer -5.40 70.10 -3.67 51.10 -3.38 43.04
Dog -5.32 95.62 -4.00 82.32 -4.23 68.52
Frog -4.98 93.00 -4.20 68.12 -3.91 74.70
Horse -5.23 97.53 -3.21 64.60 -3.70 52.87
Ship -5.19 116.89 -2.11 94.45 -3.76 79.73
Truck -5.59 133.23 -2.25 97.88 -3.50 82.07

AVG -5.37 97.14 -3.26 75.33 -3.847 68.117

B.3. Conditional High-Resolution Face Generation

For all prompts we use fixed inverse temperature 𝛽 = 100, which we found to be a suitable reward scale.

Outsourced Diffusion. StyleGAN3 uses 512 dimensional generator noise. Similar to our SN-GAN experiment for CIFAR,
we reshape this into a 2 × 16 × 16 feature map to be passed to the UNet model. The NVAE prior for FFHQ is a very
deep latent variable model, having 36 total latent groups starting from 8 × 8 scale all the way up to 128 × 128. The joint
dimensionality of this latent space is extremely large, making joint posterior inference very challenging. Luckily most
variable features of interest are captured in the first 4 latent groups of size 20 × 8 × 8 each. We stack the noise groups to
create 80 × 8 × 8 feature maps jointly diffused by the UNet. We use 25 steps for diffusion sampling.

HMC baseline. We use 5 · 10−3 as the step size for StyleGAN3, and 10−2 as the step size for NVAE. We use 5 leapfrog
integration steps. We only require 100 samples for evaluation in this task (unlike 1000 needed for FID in CIFAR), and so we
can afford to only collect 2 samples for every 1000 length chain. We collect the samples at 𝑡 = 500 and 𝑡 = 1000. This takes
around 3 hours for StyleGAN3 and 5 hours for NVAE without parallelism. We only sample the first 4 latent groups with
NVAE prior.

We find that unlike the CIFAR-10 priors, HMC struggles to obtain high reward with these priors, but performs better with
StyleGAN3 than NVAE. We attribute the particularly poor performance of NVAE to the high dimensionality and high energy
barriers. Interestingly, outsourced diffusion performs significantly better for sampling these posteriors. We suspect that it is
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Table 8. I-CFM results on CIFAR-10
Class Prior HMC Adj. Matching Outsourced Diff.

Reward FID Reward FID Reward FID Reward FID

Airplane -5.81 73.09 -2.45 62.24 -3.30 27.64 -3.36 47.61
Car -6.22 92.07 -2.12 24.85 -2.93 17.51 -3.02 19.12
Bird -5.94 73.48 -2.93 60.75 -3.16 23.09 -3.11 41.04
Cat -5.53 70.33 -3.60 54.32 -3.33 20.11 -3.57 43.66
Deer -5.59 72.19 -2.72 49.46 -3.08 15.52 -3.78 31.87
Dog -5.83 89.38 -3.89 41.13 -3.21 23.11 -3.57 34.33
Frog -6.06 93.08 -3.36 55.64 -3.27 20.86 -3.98 34.74
Horse -6.13 82.88 -2.10 46.22 -2.79 16.59 -2.95 31.85
Ship -5.85 102.33 -2.28 37.80 -3.09 18.00 -2.92 32.13
Truck -5.82 99.10 -2.55 34.48 -2.55 12.34 -3.20 26.46

AVG -5.88 84.79 -2.80 46.69 -3.09 19.45 -3.35 34.28

Table 9. Additional comparisons against the training-free DPS (Chung et al., 2023) and diffusion fine-tuning with RTB (Venkatraman
et al., 2024). For methods where it is applicable, we also report the estimated ELBO.

Model Sampler E[log 𝑝(y | x)] (↑) FID (↓) ELBO (↑)

I-CFM

Prior −5.88 84.79 −24.04
DPS −2.22 84.96 -
RTB −4.20 90.77 −147.69
Latent HMC −2.80 46.69 -
Adj. Matching −3.09 19.45 −17.23
Outsourced Diff. −3.35 34.28 −20.36

primarily the nice mode mixing properties of the diffusion annealing path that facilitate this. However, an additional factor
might be the benefits of amortization, which is an interesting direction for future work to investigate. We present the results
for different prompts in Table 10, and showcase the first 10 samples for each prompt, generated from a fixed random seed, in
Appendix D.

Table 10. StyleGAN3 results on FFHQ

Prompt Prior HMC Outsourced Diff.

Reward Diversity Reward Diversity Reward Diversity

An old man -1.02 0.35 -0.60 0.3 1.62 0.32
A young Asian girl with glasses -1.97 0.36 -0.81 0.32 1.13 0.21
A bald man with a black beard -1.89 0.38 -0.71 0.32 1.02 0.27
A brown-haired child -1.2 0.36 -0.35 0.28 1.14 0.23

AVG -1.52 0.36 -0.62 0.31 1.23 0.26

B.4. Text-To-Image RLHF

We intentionally choose prompts that pose a challenge for Stable Diffusion 3 while still receiving reliable feedback from
ImageReward. Since SD3 is generally a more powerful model than ImageReward, this approach is not applicable to
most prompts. However, in a real-world scenario, we anticipate the use of a better preference model trained with human
feedback, which would offer more reliable guidance for improving the generative model. For training, we use a fixed inverse
temperature 𝛽 = 30.

Outsourced Diffusion. We learn to sample from the noise space of SD3, which is a latent CNF. This means we can
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Table 11. StyleGAN3 results on FFHQ

Prompt Prior HMC Outsourced Diff.

Reward Diversity Reward Diversity Reward Diversity

An old man. -1.74 0.30 -1.24 0.32 1.38 0.31
A young Asian girl with glasses. -2.12 0.30 -0.95 0.31 0.70 0.25
A bald man with a black beard. -2.16 0.29 -1.40 0.29 1.32 0.26
A brown-haired child. -1.76 0.30 -1.21 0.31 0.53 0.23

AVG -1.94 0.30 -1.20 0.30 0.98 0.26

sample at a reduced dimensionality from the full image (of size 3 × 512 × 512), however the latent space is still fairly high
dimensional with shape 16 × 64 × 64.

Classifier-Free Guidance. Since SD3 is trained as both an unconditional and conditional model, we can use CFG to
approximately sample from lowered temperature conditional distribution:

v̂𝜃 (x𝑡 , y) = (1 + 𝑤)v𝜃 (x𝑡 , y) − 𝑤v𝜃 (x𝑡 ) (8)

Increasing the guidance scale 𝑤 generally guides the model to be more prompt accurate at the cost of diversity and if
increased too much, image fidelity. We find tuning the CFG weight slightly improves score with ImageReward. Increasing
𝑤 resulted in degraded performance (”A cat riding a llama.”), so we report score with the default guidance scale 𝑤 = 5.0
(same as prior).

We present the results for different prompts in Table 12, and showcase the first 10 samples for each prompt, generated from
a fixed random seed, in Appendix E. We set 𝑤 = (6.0, 5.0, 5.5, 5.5) for the prompts ordered as in the table.

Additionally, we train Outsourced Diffusion posteriors using Stable Diffusion 1.5 with the same prompts as in (Venkatraman
et al., 2024). We compare our results against those reported in their paper in Table 13.

Table 12. SD3 RLHF results for each prompt
Prompt Prior CFG Outsourced Diff.

Reward Diversity ELBO Reward Diversity ELBO Reward Diversity ELBO

A cat and a dog. 0.50 0.14 3.55 0.61 0.10 - 1.24 0.09 27.25
A cat riding a llama. 0.79 0.18 1.01 0.79 0.18 - 1.53 0.14 10.83
A quiet village is disrupted by a meteor strike. 0.65 0.24 1.30 0.71 0.20 - 0.94 0.21 23.20
A human with a horse face and a human with a wolf face. 1.22 0.20 19.32 1.26 0.22 - 1.36 0.18 26.10

AVG 0.79 0.19 6.29 0.84 0.17 - 1.27 0.16 21.85

Table 13. SD 1.5 RLHF results, averaged across prompts

Sampler E[log 𝑟 (x, y)] (↑) CLIP diversity (↑)
Prior -0.17 0.18
DDPO 1.37 0.09
DPOK 1.23 0.13
RTB 1.4 0.11
Outsourced Diff. 1.26 0.14

B.5. Protein Structure Prediction

The specific form of the constraint function 𝑟div (x) (which can also be thought of as a reward) is adapted from (Huguet et al.,
2024). It is a monotonic function of the entropy over secondary structure proportions (restricted to 𝛼-helices, 𝛽-sheets and
coils). The non-linear transformation increases the discrepancy between the rewards of samples with and without 𝛽-sheets.
The expression is adjusted so that it is positive, to allow us to take the logarithm.
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The 𝑒−1.2 multiplier ensures the log-constraint function is roughly centered around 0. We found this to improve numerical
stability in the diffusion training.

Outsourced Diffusion. In the outsourced diffusion experiments, an inverse temperature of 𝛽 = 400.0 was used to allow for
improvement in this sparse reward setting. The diffusion sampler used 20 sampling steps.

The SE(3)𝑁 elements representing protein structure were parameterized as R7×𝑁 vectors, with the first 4 coordinates being
a quaternion representation for a rotation matrix and the 3 other numbers representing the translation vector. For the UNet
model, the protein coordinates were shaped into 7×8×8 vectors. Additionally, the diffusion sampler was first pre-trained (for
200 epochs) using the denoising score matching objective (Ho et al., 2020), with samples fromU(SO(3)𝑁 ) × N (0, 102𝐼3)
(whereU is the Haar measure, i.e., the unique invariant probability measure on SO(3)𝑁 ), the initial x0 distribution used for
training the CNF prior model. All inference parameters for the flow model were based on the default configuration from the
FoldFlow 2 paper, including 50 steps for integrating the flow ODE (Huguet et al., 2024).

For TB training, we used a replay buffer, where 1/4 of the samples are drawn proportional to their reward, and the rest are
sampled uniformly. The buffer is used at each iteration with a probability of 0.2 (𝛼 = 0.2). The reason for the modification
from the standard uniform buffer used in other experiments is to make the best use of high reward samples, which are rare
especially early on in training. A learning rate of 10−5, and a batch size of 16 was used. Gradient 𝑙2 norms were clipped to
0.05.

Due to policy collapse and training instability, models were saved every 100 training iterations, and the model with highest
reward was selected for evaluation. The diffusion model was trained for 4 A100 GPU hours.

Random Walk MCMC baseline. A Gaussian proposal, 𝑝(z′ | z) = N(z′; z, 0.012𝐼) (i.e., a step-size of 0.01). The
quaternion dimensions are normalized to have unit norm (projected back to SO(3)𝑁 ).

Note this proposal is symmetric. The MCMC chain was run for 1000 iterations, with 32 chains in parallel. Metrics were
evaluated on samples from the iterations 900 and 1000 (to reduce sample correlation). This was run for 8 A100 GPU hours.
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Figure 9. Posterior samples via the original outsourced diffusion sampler and the distilled one-step sampler in three experiments. We use
the prompt ”A cat and a dog.” for the stable diffusion experiments, and ”An old man” for the SN-GAN experiments.

C. Additional Experiments
C.1. Distillation and One-Step Outsourced Samplers

Table 14. FID scores of
standard and distilled
outsourced diffusion
samplers for a CFM
prior on CIFAR-10.

Sampler FID

SDE 38.65
ODE 36.71
Distilled 33.85

Training outsourced samplers of the kind described in this paper may have the downside of an
increase in the number of sampling steps necessary to produce posterior samples of interest. We
perform further experiments to show how we can mitigate these side effects via distillation. We
distill outsourced models for the CMF posterior on the ‘car’ class in CIFAR-10, the SN-GAN
posterior for “A dog and a cat”, and a stable diffusion posterior for a “A green car”. We train
distilled one-step samplers equivalent in architecture and size to our original diffusion samplers.
We use the trained outsourced samplers as teacher models and employ a simple training regime
whereby we sample z0 ∼ N(0, 𝐼𝑑), use an ODE sampling scheme to sample z1, and then learn
a one-step mapping from z0 to z1 with the student model. We use Mean Square Error (MSE) loss
and a simple variance agnostic regularizer to train the student model and encourage diversity.

We report in Fig. 9 original and posterior samples for all experiments. We observe high-quality distilled samples, undistin-
guishable from the original outsourced diffusion sampler. Furthemore, we report in Table 14 the FID score computed from
samples from the original and distilled sampler, with respect to the original CIFAR-10 samples of the class of interest. We
observe comparable, if not improved, FID for our distilled model. In line with the results in the main paper, we posit that the
ability to fit high fidelity one-step samplers is due to the simplicity of the properties of the target distribution in latent space,
often smoother and lower dimensional than the distribution in data space, leading to easy-to-learn transforms from z0 to z1.

C.2. Efficiency Analysis

The results in Appendix C.1 show that the diffusion sampler can be distilled into a single-step generator, enabling inference
of the fine-tuned model without incurring additional sampling time. As a result, the inference efficiency remains comparable
to that of direct finetuning methods.

On the CIFAR-10 dataset, our method achieves approximately twice the training speed of adjoint matching when using an
NVIDIA A100 GPU. This performance advantage is expected to grow for higher-dimensional outputs. It is important to
note that the requirement for gradient computation not only raises training memory costs but also limits the flexibility of the
method. For tasks where the reward gradient is unavailable, such as many protein or molecule tasks, Adjoint Matching is
not applicable. In contrast, the outsourced diffusion sampler can be efficiently applied to arbitrary black-box tasks where the
reward (or prior) is not differentiable.
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D. FFHQ Samples
D.1. Prior.

Figure 10. NVAE prior

Figure 11. StyleGAN3 prior

D.2. An old man.

Figure 12. NVAE HMC

Figure 13. NVAE Outsourced Diffusion

Figure 14. StyleGAN3 HMC

Figure 15. StyleGAN3 Outsourced Diffusion
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D.3. An asian girl with glasses.

Figure 16. NVAE HMC

Figure 17. NVAE Outsourced Diffusion

Figure 18. StyleGAN3 HMC

Figure 19. StyleGAN3 Outsourced Diffusion
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D.4. Bald man with black beard.

Figure 20. NVAE HMC

Figure 21. NVAE Outsourced Diffusion

Figure 22. StyleGAN3 HMC

Figure 23. StyleGAN3 Outsourced Diffusion
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D.5. Brown haired child.

Figure 24. NVAE HMC

Figure 25. NVAE Outsourced Diffusion

Figure 26. StyleGAN3 HMC

Figure 27. StyleGAN3 Outsourced Diffusion
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E. Stable Diffusion 3 Samples
E.1. A cat and a dog.

Figure 28. Prior

Figure 29. Classifer-Free Guidance

Figure 30. Outsourced Diffusion

E.2. A cat riding a llama.

Figure 31. Prior

Figure 32. Classifer-Free Guidance

Figure 33. Outsourced Diffusion
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E.3. A quiet village is disrupted by a meteor strike.

Figure 34. Prior

Figure 35. Classifer-Free Guidance

Figure 36. Outsourced Diffusion

E.4. A human with a horse face and a human with a wolf face.

Figure 37. Prior

Figure 38. Classifer-Free Guidance

Figure 39. Outsourced Diffusion
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F. CIFAR-10 HMC Chain

(a) t=100 (b) t=150 (c) t=200 (d) t=250 (e) t=300

(f) t=350 (g) t=400 (h) t=450 (i) t=500 (j) t=550

(k) t=600 (l) t=650 (m) t=700 (n) t=750 (o) t=800

(p) t=850 (q) t=900 (r) t=950 (s) t=1000

Figure 40. Samples from HMC chain of length 1000 after 100 steps of burn-in, for CIFAR class ’Airplane’ with CNF prior. We find that
in the latent space, MCMC smoothly traverses through different modes. The samples (d,o,q,r,s) are distinctly identifiable as airplanes and
(c) is partially identifiable as an airplane. The samples approach the correct class after long mixing time.
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