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ABSTRACT

Recently, when dealing with high-resolution images, dominant large multimodal
models (LMMs) usually divide them into multiple local images and one global im-
age, which will lead to a large number of visual tokens. In this work, we introduce
AVG-LLaVA, an LMM that can adaptively select the appropriate visual granular-
ity based on the input image and instruction. This approach not only reduces the
number of visual tokens and speeds up inference, but also improves the overall
model performance. Specifically, we introduce the following modules based on
LLaVA-NeXT: (a) a visual granularity scaler that includes multiple pooling layers
to obtain visual tokens with different granularities; (b) a visual granularity router,
which includes a Transformer layer, an MLP layer, and a voter layer, used to
select the appropriate visual granularity based on the image and instruction. Fur-
thermore, we propose RGLF, a novel training paradigm that aims at aligning the
granularity predicted by the router with the preferences of the LMM, without the
need for additional manually annotated data. Extensive experiments and analysis
show that AVG-LLaVA achieves superior performance across 11 benchmarks, as
well as significantly reduces the number of visual tokens and speeds up inference
(e.g., an 85.3% reduction in visual tokens and a 2.53× increase in inference speed
on the AI2D benchmark). 1

1 INTRODUCTION

Recently, the field of artificial intelligence (AI) has witnessed a significant advancement in large
multimodal models (LMMs) (OpenAI, 2023b; Zhu et al., 2023; Dai et al., 2023; Liu et al., 2023a;
2024a), marking a further step toward artificial general intelligence (AGI). Most existing LMMs
follow the structure of LLaVA (Liu et al., 2023a; 2024a), which includes a vision encoder to embed
images into visual tokens and a connector to map them into the word embedding space. Subse-
quently, these visual tokens are fed into a large language model (LLM) (Touvron et al., 2023; Ope-
nAI, 2023a; Chiang et al., 2023) for multimodal understanding and reasoning, alongside the word
embeddings.

Figure 1: An example of VQA that requires information at
different visual granularities. The image is from MSCOCO
(Lin et al., 2014) dataset.

Due to the limitations imposed by
the fixed aspect ratio (e.g., 1:1) and
low resolution (e.g., 336×336) used
by visual encoders (e.g., CLIP-ViT
(Radford et al., 2021)), earlier LMMs
face challenges in processing high-
resolution images with different as-
pect ratios. To deal with this lim-
itation, dominant models, such as
LLaVA-NeXT (Liu et al., 2024b),
dynamically divide each input high-
resolution image into multiple local
images. These local images are en-
coded separately, and their tokens are
then concatenated with the tokens of the original global image. This approach will lead to longer

1We will release our source code and model upon the acceptance of our paper.
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visual token sequences, such as 2880 visual tokens for a 672×672 image. However, in practice, such
fine-grained visual information is not always necessary, and in some cases, coarse-grained visual
information can even be more beneficial for model predictions. For instance, as shown in Figure 1,
when the model is asked to recognize the number on the jersey, it requires relatively fine-grained
visual information. In contrast, determining the color of the jersey only necessitates coarse-grained
visual information.

In this paper, we propose Adaptive Visual Granularity LLaVA (AVG-LLaVA), an LMM that can adap-
tively select the appropriate visual granularity based on the input image and instruction. The basic
intuition behind our model is that humans only scrutinize images carefully when answering difficult
questions; otherwise, a brief glance is sufficient. As displayed in Figure 2, AVG-LLaVA extends
LLaVA-NeXT with a visual granularity scaler and a visual granularity router. The visual granular-
ity scaler performs multiple rounds of pooling on visual tokens without training, each time halving
the number of visual tokens, thus obtaining a series of visual features with different granularities.
The visual granularity router adaptively selects the appropriate visual granularity features based on
the input multi-granularity visual features and text features. By doing so, for images and instructions
that do not require fine-grained details, the number of visual tokens can be reduced, which not only
speeds up inference but also improves performance. This performance enhancement likely stems
from the reduction of redundant information, as selecting the appropriate visual granularity makes
it easier for the model to answer questions based on images effectively.

Besides, we observe that it is challenging to train the visual granularity router directly through visual
instruction tuning (Liu et al., 2023a). This may be because the router cannot learn the distinctions
between different visual granularities from visual instruction tuning, making it difficult to learn how
to select the most appropriate visual granularity based on the image and instruction. To deal with
this issue, we propose a novel training paradigm called Ranking Granularity to align LMM Feedback
(RGLF). This paradigm aligns router probabilities of multiple granularities with LMM preferences
by a ranking loss (Hadsell et al., 2006; Hopkins & May, 2011; Liu et al., 2022), effectively aiding
the router in distinguishing between different visual granularities and selecting the appropriate one.

We further evaluate AVG-LLaVA on 11 benchmarks including tasks from various types (e.g., general
VQA and text-oriented VQA, etc.). Extensive experimental results show that AVG-LLaVA can
effectively reduce the number of visual tokens and improve inference speed (e.g., an 85.3% reduction
in visual tokens and a 2.53× increase in inference speed on the AI2D benchmark) while achieving
better performance under the same base LLM.

2 RELATED WORK

Large Multimodal Models LLMs such as GPT-4 (OpenAI, 2023a), LLaMA (Touvron et al.,
2023), and Gemini (Team et al., 2023) have achieved significant success in language understanding
and generation. Benefiting from this, multimodal large models (LMMs) have garnered widespread
attention. Flamingo (Alayrac et al., 2022), BLIP-2 (Li et al., 2023b), and LLaMA-adapter (Zhang
et al., 2023) integrate a frozen visual encoder and trainable modules into a LLM, extending it into
a LMMs. These models are then fine-tuned using plain image-text pairs, enabling them to process
and perceive visual content. To further improve instruction-following abilities and response quality,
LLaVA (Liu et al., 2023a) fine-tunes the entire model using visual instruction data generated by
GPT-4. However, since these LMMs rely on CLIP-ViT to process images at a fixed resolution (e.g.
336x336), it hinders the LMMs from perceiving image details at higher resolutions.

High-Resolution LMMs To perceive images with higher resolutions, Qwen-VL (Bai et al., 2023)
increases the input resolution of the visual encoder to 448×448 and introduces an additional training
stage. Along this line, both Vary (Wei et al., 2023) and Mini-Gemini (Li et al., 2024a) include two
vision encoders: one is an additional introduced high-resolution vision encoder, and the other is the
original low-resolution vision encoder. Unlike the methods mentioned above, SPHINX (Lin et al.,
2023) and Monkey (Li et al., 2024b) enlarge the input image to a high resolution, and then divide
it into a fixed number of local images, which are individually encoded using an image encoder to
obtain local image tokens. Subsequently, the original global image tokens are concatenated with all
local image tokens to feed into the LLM. Furthermore, LLaVA-NeXT (Liu et al., 2024b) enumer-
ates various resolutions and adaptively selects the one that most closely matches the input image
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Figure 2: The architecture of AVG-LLaVA. AVG-LLaVA additionally introduces two modules based
on LLaVA-NeXT: (1) Visual granularity scaler. This module consists of multiple pooling layers
that progressively increase the granularity of visual features, thereby reducing the number of visual
tokens; (2) Visual granularity router. This module includes a Transformer layer, an MLP layer, and a
voter layer, which are used to select the appropriate granularity of visual features based on the input
multi-granularity visual tokens and instruction tokens.

resolution. Although these methods can achieve better performance, they significantly increase the
number of visual tokens, as the computational complexity scales quadratically with the number of
input tokens, resulting in higher inference costs.

Vision Token Reduction for LMMs Recently, several methods are proposed to reduce the visual
tokens for LMMs, including visual token pruning and merging. For example, CrossGET (Shi et al.,
2023) introduces a cross-modal token for leveraging cross-modal information to make decisions on
token selection and merging. LLaVA-PruMerge (Shang et al., 2024) employs the similarity between
the class token and other tokens as a key criterion for pruning and merging vision tokens. Unlike the
aforementioned methods, FastV (Chen et al., 2024b) finds that most image tokens receive inefficient
attention after the second decoder layer, and thus prunes half of the image tokens. Similarly, VTW
(Lin et al., 2024b) adopts a more aggressive strategy to prune all visual tokens at a certain layer.
Unfortunately, despite the above methods effectively reducing the number of visual tokens, they
often lead to a certain degree of decline in model performance. More recently, LLaVA-M3 (Cai et al.,
2024) obtains multi-granularity visual features by merging visual tokens through pooling, enabling
manual control of the tradeoff between inference cost and performance. Significantly different from
these methods, our model can adaptively select the appropriate visual granularity based on the input
image and instruction, improving model performance while reducing visual tokens.

3 OUR MODEL

3.1 MODEL ARCHITECTURE

As shown in Figure 2, in addition to the visual encoder, visual-language connector, and LLM, AVG-
LLaVA introduces two additional modules on top of LLaVA-NeXT: the visual granularity scaler and
the visual granularity router. The key components will be elaborated in the following.

High-Resolution Image Encoding Given an input image I ∈RH×W×3, we follow common prac-
tice (Liu et al., 2024b) to divide it into multiple smaller local images Ilocal ∈ RHv×Wv×3, where Hv

and Wv are the resolution that the vision encoder is originally trained for. Then, these local images
are individually encoded into a Hp ×Wp grid of visual tokens Xlocal ∈ RHp×Wp×C by the image
encoder, where C is the dimension of the visual encoder. To preserve the global context information
of the input image, we resize the original image to (Hv , Wv) and encode it as global visual tokens.
Finally, we map both global visual tokens and local visual tokens to the word embedding space
through an MLP-based vision-language connector.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 3: The overview of multi-stage training. Note that visual granularity scaler does not contain
any parameters that require training.

Visual Granularity Scaler This module sequentially stacks 1×2 and 2×1 average pooling layers,
thereby obtaining visual features at multiple granularities and preserving the spatial information. In
this work, we consider CLIP-ViT-L-336 (Radford et al., 2021) as the visual encoder, and thus each
image is encoded into 24×24 grid of visual tokens. Then, these visual tokens are fed into the
visual granularity scaler, obtaining visual tokens with a grid of 24×12, 12×12, 12×6 and 6×6,
respectively. In this way, we can obtain visual tokens of different granularities in a fine-to-coarse
manner without training.

Visual Granularity Router Different visual granularity features can be considered as different
experts, so the Mixture of Experts (MoE) (Shazeer et al., 2017; Komatsuzaki et al., 2023; Lin et al.,
2024a) structure is particularly well-suited for selecting the appropriate visual granularity. Unlike
the previous MoE studies that use linear layers as routers, we propose a multi-layer structure as
illustrated in Figure 2 to select the appropriate visual granularity based on the input image and the
instruction. Specifically, when dealing with an image, we first flatten and concatenate its visual
tokens of all granularities to form multi-granularity visual tokens Xv = [X1

v;X
2
v; ...;X

N
v ], where

Xi
v represents the visual tokens of the i-th granularity, and N is the number of visual granularities2.

Then, these visual tokens are concatenated with the filtered instruction tokens Xinstruct to serve
as the input for the visual granularity router. Here, Xinstruct is obtained by calculating the co-
sine similarity between the original instruction tokens Xinstruct and the visual tokens with original
granularity Xv , retaining the top-k most relevant ones. Afterwards, we apply a single Transformer
(Vaswani et al., 2017) layer to facilitate the fusion of visual tokens at different granularities with
instruction tokens. Subsequently, an MLP is applied to each token to predict the appropriate vi-
sual granularity, resulting in the logits Zout ∈ RL×N , where L is the number of both visual and
instruction tokens. To vote for the most appropriate visual granularity, we use a learnable weight
matrix (Voter) W ∈ R1×L to aggregate the logits predicted by all tokens, yielding the final logits
Zfinal ∈ R1×N . Finally, we use softmax to calculate the probability distribution of each visual
granularity, where the visual tokens corresponding to the granularity with the highest probability are
fed into the LLM.

3.2 MULTI-STAGE TRAINING

To effectively train our model, we carefully design a multi-stage training strategy, which consists of
four stages, as illustrated in Figure 3.

Stage 1: Pretraining During this stage, we only pretrain the vision-language connector on a
plain image-caption dataset. Formally, we define the following cross-entropy loss for the next token
prediction:

L1 = −
T∑

t=1

logP (xt|Xv,Xc,<t), (1)

2To simplify the explanation, we use a single image as an example. In practice, we include a global image
and multiple local images, and each image will go through the following steps. The final result will be obtained
by averaging the results of all the images.
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Figure 4: The overview of RGLF. Visual tokens of each granularity are concatenated with instruction
tokens and then processed by the LMM to estimate the corresponding rewards. Visual granularity
router optimizes the score (log probability) of each granularity based on the feedback from the
LMM.

where Xc,<t are the caption tokens before the current prediction token xt, and T is the length of
target text tokens. Note that we fix the parameters of the vision encoder and large language model,
both of which have been pre-trained on large-scale data. Through this stage of training, the image
features can be aligned with the pre-trained LLM word embeddings.

Stage 2: Visual Instruction Tuning In the second stage, we jointly train the visual encoder,
vision-language connector, and LLM on high-quality visual instruction data. In this way, the LLM
can be converted into an LMM, which is able to complete various multimodal tasks. Specifically,
we perform next-token predictions with the following cross-entropy loss only on the answering part

L2 = −
T∑

t=1

logP (xt|Xv,Xinstruct,Xa,<t), (2)

where Xa denotes the answer tokens.

Stage 3: Multi-Granularity Visual Instruction Tuning Following the previous stages, we in-
troduce the visual granularity scaler. As described in Section 3.1, this module does not contain
trainable parameters and thus does not need to be trained. Therefore, we use the same data as in the
stage 2 to train the visual encoder, vision-language connector, and LLM, enabling them to perceive
and process visual features of N different granularities. Formally, the loss at this stage is formulated
as

L3 = − 1

N

N∑
i=1

T∑
t=1

logP (xt|Xi
v,Xinstruct,Xa,<t). (3)

Stage 4: Ranking Granularity to Align LMM Feedback Lastly, we introduce the visual gran-
ularity router into the model training, where all other modules are frozen, and only the router is
trained. This stage allows the model to select the appropriate visual granularity based on the input
image and instruction. Intuitively, a straightforward approach to training the router is to use the same
visual instruction fine-tuning method as in previous stages. However, we find that the router trained
with this method performs poorly. This could be due to the difficulty of visual instruction fine-tuning
in effectively enabling the router to learn the differences between different visual granularities.

To address the above issue, we propose RGLF, as illustrated in Figure 4, where the router is trained
with a ranking loss, utilizing the feedback from the LMM fine-tuned with multi-granularity visual
instructions as the ranking criterion. Concretely, for the given image and instructions, we let the
LMM predict answers using visual tokens of different granularity Xi

v and calculate their respective
log probabilities. Then, based on these log probabilities, we sort X1

v;X
2
v; ...;X

N
v in a descending

order to obtain X1
v̂;X

2
v̂; ...;X

N
v̂ . Given the visual tokens Xi

v̂ of the i-th granularity, we directly
consider those tokens (X1

v̂; X2
v̂; ...; Xi−1

v̂ ) ranked above it as positive examples and the remaining

5
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tokens (Xi+1
v̂ ; Xi+2

v̂ ; ...; XN
v̂ ) as negative ones. Afterwards, we use the router to give scores (log

probability) si for each Xi
v̂:

si = logP (gi|Xv,Xinstruct), (4)
where gi denotes the i-th granularity predicted by the router based on multi-granularity visual tokens
Xv and filtered instruction tokens Xinstruct. Since we expect the router to assign higher probabili-
ties to more appropriate visual granularities, the ranking loss is defined as follows:

Lrank =
∑
i=1

∑
j>i

max(0, sj − si + λij), (5)

where λij is the margin calculated as the difference in log probabilities between the answers pre-
dicted by the LLM using visual tokens of the i-th and j-th granularities:

λij =
j − i

|T |

T∑
t=1

(logP (xt|Xi
v̂,Xinstruct,Xa,<t)− logP (xt|Xj

v̂,Xinstruct,Xa,<t)). (6)

When the preference of Xj
v is only slightly worse than Xi

v , the margin will be small. Conversely,
when Xj

v is significantly worse than Xi
v , the margin will correspondingly increase. In this way, we

can dynamically adjust the margin to obtain adaptively penalty degrees between different pairs.

In addition to aligning with the LMM preference ranking, it is also desirable for the router to select
the optimal visual granularity. Therefore, we add a cross-entropy loss to let the router learn the
prediction of granularity with the highest log probability from the LMM, defined as follows:

k = argmax
i

T∑
t=1

logP (xt|Xi
v,Xinstruct,Xa,<t), (7)

Lce = −logP (gk|Xv,Xinstruct). (8)

In summary, the total loss is defined as the weighted sum of two losses:
L4 = Lrank + αLce, (9)

where α is the hyperparameters used to maintain the balance between the ranking loss Lrank and
cross-entropy loss Lce.

4 EXPERIMENTS

4.1 SETTINGS

Training Datasets Note that in this work, we mainly focus on investigating the effectiveness of
automatic visual granularity selection in reducing the number of visual tokens and improving model
performance. Therefore, during the first stage, we also use CC-595K image-text pairs for model
training, as implemented in LLaVA-NeXT (Liu et al., 2024b). In the subsequent training stages,
we also hope to use the same data as LLaVA-NeXT. However, the real user interaction data used
for visual instruction fine-tuning in LLaVA-NeXT are not open-sourced, so we opt to extract 200K
samples from ALLaVA (Chen et al., 2024a) dataset as a substitute. Although LLaVA-NeXT re-
places TextVQA (Singh et al., 2019) with DocVQA (Mathew et al., 2021) and SynDog-EN (Kim
et al., 2022), the TextVQA has already been included in the training data of most existing LMMs.
Consequently, we choose to retain it to ensure a fair comparison with other models.3 In total, the
visual instruction fine-tuning data we use contains 1M image-text pairs.

Implementation Details Following Liu et al. (2024b), we use CLIP ViT-L/14 as the visual en-
coder, Vicuna-7B (Chiang et al., 2023) as the LLM. We set the filtered instruction token number k
to 32 and the cross-entropy loss weight α to 0.1. The impact of these two hyperparameters on model
performance is discussed in Section 4.6. In our first two stages, we adopt the same training settings
as LLaVA-NeXT for pre-training and visual instruction fine-tuning. In the third stage, the learning
rates for the visual encoder and other modules are set to 2×10−5 and 1×10−5, respectively, with
a batch size of 128. In the fourth stage, the learning rate for the visual granularity router is set to
1×10−3, with a batch size of 128. More details of the training process are provided in Appendix
A.2.

3Our data recipe follows Open-LLaVA-NeXT (Lin & Long, 2024).
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Table 1: Comparison with LMMs of the same size on general VQA benchmarks and text-oriented
VQA benchmarks. The best results are marked in bold, and the second best results are underlined.

Model LLM General VQA Text-oriented VQA
GQA ScienceQA VizWiz TextVQA ChartQA DocVQA AI2D

Standard-resolution LMMs

InstructBLIP (Dai et al., 2023) Vicuna-7B 49.2 60.5 34.5 - - - -
IDEFICS-9B (Team, 2023) LLaMA-7B 38.4 - 35.5 25.9 - - -
Qwen-VL (Bai et al., 2023) Qwen-7B 59.3 67.1 35.2 63.8 65.7 65.1 62.3
Qwen-VL-Chat (Bai et al., 2023) Qwen-7B 57.5 68.2 38.9 61.6 66.3 62.6 57.7
InternVL-Chat (Chen et al., 2023) Vicuna-7B 62.9 - 52.5 57.0 - - -
mPLUG-Owl2 (Ye et al., 2023) LLaMA2-7B 56.1 68.7 54.5 58.2 - - -
MQT-LLAVA (Hu et al., 2024) Vicuna-7B 61.6 67.6 53.1 - - - -
LLaVA-1.5 (Liu et al., 2024a) Vicuna-7B 62.0 66.8 50.0 58.2 - - -

High-resolution LMMs

SPHINX-2k (Lin et al., 2023) LLaMA2-7B 63.1 70.6 44.9 61.2 - - -
TextMonkey (Liu et al., 2024c) Qwen-VL-7B - - - 65.9 58.2 64.3 -
Mini-Gemini-HD (Li et al., 2024a) Vicuna-7B - - - 68.4 - - -
LLaVA-NeXT (Liu et al., 2024b) Vicuna-7B 64.2 70.1 57.6 64.9 54.8 74.4 66.6
LLaVA-NeXT-M3 (Cai et al., 2024) Vicuna-7B - 72.5 - 63.1 59.0 72.6 66.7

AVG-LLaVA Vicuna-7B 63.0 71.1 59.8 67.1 66.3 74.6 67.3

Table 2: Comparison with LMMs of the same size on general multimodal benchmarks. The best
results are marked in bold, and the second best results are underlined.

Model LLM MME MMEC MMB MMBCN POPE MMMU

Standard-resolution LMMs

InstructBLIP (Dai et al., 2023) Vicuna-7B 1084.0 229.0 - - - 30.6
Qwen-VL-Chat (Bai et al., 2023) Qwen-7B 1487.6 360.7 60.6 - - -
InternVL-Chat (Chen et al., 2023) Vicuna-7B 1525.1 - - - 86.4 -
mPLUG-Owl2 (Ye et al., 2023) LLaMA2-7B 1450.2 - 64.5 - - -
MQT-LLAVA (Hu et al., 2024) Vicuna-7B 1434.5 353.6 64.3 - 84.4 34.8
LLaVA-1.5 (Liu et al., 2023a) Vicuna-7B 1510.7 - 64.3 58.3 87.3 -

High-resolution LMMs

SPHINX-2k (Lin et al., 2023) LLaMA2-7B 1470.6 326.8 65.9 - 87.2 -
OtterHD-8B (Li et al., 2023a) Fuyu-8B 1223.4 331.4 58.3 - 86.0 -
Mini-Gemini-HD (Li et al., 2024a) Vicuna-7B 1546.0 319.0 65.8 - - 36.8
LLaVA-NeXT (Liu et al., 2024b) Vicuna-7B 1519.0 332.0 67.4 60.6 86.5 35.8
LLaVA-NeXT-M3 (Cai et al., 2024) Vicuna-7B - - 68.0 - 87.2 34.0

AVG-LLaVA Vicuna-7B 1557.4 366.8 69.9 61.8 87.4 37.4

Evaluations We evaluate our model on three kinds of benchmarks: (1) general VQA bench-
marks: GQA (Hudson & Manning, 2019), SciQA-Img (Lu et al., 2022), and VizWiz (Gurari et al.,
2018); (2) text-oriented VQA benchmarks: TextVQA (Singh et al., 2019), ChartQA (Masry et al.,
2022), DocVQA (Mathew et al., 2021), and AI2D (Kembhavi et al., 2016); and (3) general multi-
modal benchmarks: MME (Fu et al., 2023), MMB (Liu et al., 2023b), MMBCN (Liu et al., 2023b),
POPE (Li et al., 2023c), and MMMU (Yue et al., 2023).

4.2 MAIN RESULTS

General VQA Benchmarks The results in Table 1 show that AVG-LLaVA outperforms all
standard-resolution LMMs on the General VQA benchmarks and other high-resolution LMMs on
VizWiz. Although it does not achieve the best results on GQA and ScienceQA, it is important to
note that AVG-LLaVA uses fewer visual tokens compared to other high-resolution models, and this
comparison will be detailed in Section 4.3.

Text-oriented VQA Benchmarks In this category of benchmarks, as illustrated in Table 1, ex-
cept for TextVQA, AVG-LLaVA outperforms all other comparison models. Back to TextVQA,
AVG-LLaVA achieves the second-best result, only trailing behind Mini-Gemini-HD. Notably, Mini-
Gemini-HD utilizes more than twice the amount of data during the pretraining and approximately
1.5 times the amount of data during the visual instruction fine-tuning compared to AVG-LLaVA.
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General Multimodal Benchmarks Compared to traditional VQA datasets, this type of bench-
mark covers a broader range of evaluation aspects, requiring models to possess more complex per-
ception and reasoning capabilities. As summarized in Table 2, AVG-LLaVA surpasses all other
models, exhibiting superior overall performance and highlighting its adaptability and effectiveness
across various disciplines. Specifically, AVG-LLaVA outperforms the second best model by 9.4
and 6.1 on MME and MMEC , respectively, and by 1.9 and 1.2 on MMB and MMBCN , respec-
tively. Moreover, AVG-LLaVA’s performance on the POPE and MMMU benchmarks demonstrates
its ability to reduce hallucinations and perform complex reasoning.

4.3 COMPUTATIONAL EFFICIENCY

Table 3: Comparisons of AVG-LLaVA and LLaVA-NeXT in terms of the number of visual tokens
and actual inference speed, both of which are tested on 8 V100 GPUs with a batch size of 1. AVG-
LLaVA can reduce the number of visual tokens by up to 85.3% and is up to 2.53× faster than
LLaVA-NeXT.

Metric General VQA Text-oriented VQA MLLM Benchmarks
GQA ScienceQA VizWiz TextVQA ChartQA AI2D MME MMB MMMU

Token Per Grid ↓ 80.0% 26.4% 54.9% 92.3% 99.1% 14.7% 69.3% 30.0% 29.9%
Speed ↑ 1.14× 1.77× 1.41× 1.04× 0.97× 2.53× 1.19× 1.87× 1.79×

To validate the effectiveness of dynamic visual granularity selection, we compare AVG-LLaVA with
LLaVA-NeXT in terms of visual token number and inference speed across multiple benchmarks.
Specifically, for each type of benchmark, we select three benchmarks for comparison, and report
the reduction in the number of visual tokens per grid and the actual speedup during inference. As
shown in Table 3, except for text-intensive VQA benchmarks that require very fine-grained visual
information, such as TextVQA and ChartVQA, AVG-LLaVA significantly reduces the number of
visual tokens and improves inference speed across other benchmarks. Particularly, on the AI2D
benchmark, AVG-LLaVA achieves better performance than LLaVA-NeXT while using only 14.7%
of the visual tokens, and the inference speed increased by 2.53 ×.4 Notably, even with the addition of
two extra modules, there is no significant slowdown in inference speed on the ChartVQA benchmark
when using a comparable number of visual tokens. Moreover, AVG-LLaVA only increases the
number of parameters by 1.66% compared to LLaVA-NeXT.

4.4 ROUTING VISUALIZATION

To further understand the differences in the granularity selection of AVG-LLaVA across different
benchmarks, we visualize the proportion of visual tokens selected at each granularity level for all
benchmarks. Figure 5 shows the visualization results, it is evident that different tasks tend to favor
different visual granularity, which is consistent with our expectations. In the case of text-intensive
benchmarks like TextVQA, ChartQA, and DocVQA, the model requires fine-grained visual infor-
mation, so the router predominantly selects the finest visual granularity. On the other hand, for
benchmarks involving object-level questions, such as AI2D and MMMU, the model may find it eas-
ier to answer correctly by utilizing coarse-grained visual information. Additionally, we observe that
the granularities with 72 and 288 visual tokens are rarely selected. However, we find that incorpo-
rating these granularities of visual tokens helps the model progressively learn to utilize visual tokens
with different granularity and allows it to more fully understand the differences between various
visual granularities. Further verifications are detailed in Section 4.5.

4.5 ABLATION STUDY

In order to validate the effectiveness of our designed modules and training paradigm, we conduct
the following ablation analysis.

Adaptive Visual Granularity vs. Fixed Visual Granularity We first delve into the proposed
adaptive visual granularity router and report results in Table 4(a). It is clear that, compared to fixed

4We also present qualitative results in Appendix A.3 and illustrate the effectiveness of adaptive visual gran-
ularity.
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Figure 5: Visualization of the proportion for different granularity visual tokens.

Table 4: Ablation results on multiple benchmarks.

Ablated Setting Ablated Details Original Value → Changed Value ScienceQA ChartQA MME MMB

AVG-LLaVA 71.1 66.3 1557.4 69.9

Architecture

(a) Visual Granularity Adaptive Fixed 70.0 66.4 1554.5 68.7
(b) Granularity Selection Router Random 69.7 56.8 1535.7 67.9
(c) Router Input Image + Instruction Image 70.1 53.9 1525.2 69.0
(d) Granularity Range {36, 72, 144, 288, 576} {36, 144, 576} 69.8 65.3 1547.7 66.3

Training
(e) Router Training Feedback from LMM Visual Instruction

Fine-tuning 70.5 50.9 1514.8 68.6

(f) Ranking Loss ! % 70.1 64.8 1534.6 68.6
(g) Cross-entropy Loss ! % 70.2 66.3 1550.8 69.4

visual granularity, adaptive visual granularity shows significant improvement on ScienceQA, MME,
and MMB. It is worth noting that, in addition to performance improvement, adaptive visual granu-
larity can also significantly reduce the number of visual tokens and increase the model’s inference
speed, as reported in Section 4.3.

Router Granularity Selection vs. Random Granularity Selection In Table 4(b), we replace the
granularity selected by the router with randomly-selected granularity. The results show that visual
granularity router can indeed select a relatively appropriate granularity based on the input image and
instruction, thereby significantly enhancing model performance.

Impact of Router Input The instruction plays a crucial role in granularity selection. To validate
this, we remove the instruction from the router input. As shown in Table 4(c), a clear performance
degradation rises when solely using image as input (e.g, -12.4 on ChartQA), illustrating the impor-
tance of choosing granularity based on input image and instruction.

Impact of Granularity Range In Section 4.4, we observe that granularities with 72 and 288 visual
tokens are rarely selected, therefore we remove the visual tokens of these two granularities. As
shown in Table 4(d), this change leads to a decrease in model performance, proving that introducing
these granularities benefits the model’s progressive learning to utilize features of different visual
granularities and distinguish among various visual granularities.

9
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Impact of Router Training Methods We directly train the router using visual instructions fine-
tuning, applying the same loss function as in Stage 2. Unlike our original approach where the router
is directly supervised by LMM feedback, this variant computes the loss on the LMM and backpropa-
gates the gradient to the router using the Gumbel-Softmax technique (Jang et al., 2017). The results
in Table 4(e) show that direct feedback from the LMM allows the router to better distinguish the
advantages and disadvantages of different granularities, thereby enabling it to select an appropriate
granularity.

Importance of Ranking Granularity In Table 4(f) and Table 4(g), we remove the cross-entropy
loss and ranking loss during the fourth stage, respectively. The results indicate that both types of loss
are beneficial to model training and are complementary to each other, between which the ranking
loss is more crucial. This underscores the necessity to train the router by ranking granularity to align
LMM feedback.

4.6 HYPERPARAMETER ANALYSIS

Figure 6: Influence of the filtered instruction to-
ken number k on model performance, measured
on ChartQA and MMB benchmarks.

Figure 7: Influence of the cross-entropy loss
weight α on model performance, measured on
ChartQA and MMB benchmarks.

We experimentally explore the influence of the filtered instruction token number k and the cross-
entropy loss weight α on model performance. As shown in Figure 6, the model performance is
significantly affected when k is too small or too large. This may be due to the fact that too few
instruction tokens provide insufficient text information, while too many tokens will introduce more
noise. Figure 7 indicates that our approach is relatively robust to α and setting a smaller α is able to
consistently enhance model performance, making our training method easy to apply.

5 CONCLUSION

In this work, we propose AVG-LLaVA, an LMM that can adaptively select appropriate visual granu-
larity based on input image and instruction. AVG-LLaVA builds upon LLaVA-NeXT by introducing
a visual granularity scaler and a visual granularity router, which are used to obtain multi-granularity
visual features and select the appropriate visual granularity based on image and instruction, re-
spectively. Besides, we introduce RGLF, which aligns router-predicted probabilities of multiple
granularities with LMM preferences by a ranking loss, effectively helping the model learn to distin-
guish between different granularities based on image and instruction. Experimental results show that
AVG-LLaVA not only exhibits superior performance across 11 benchmarks, but also significantly
reduce the number of visual tokens and speed up inference in tasks that do not require fine-grained
information. Particularly, on the AI2D benchmark, it reduces the number of visual tokens by 85.3%
and speeds the inference by 2.53×. We hope our work can inspire more attention to the visual
granularity in LMMs.

While AVG-LLaVA has achieved good results, there is still considerable potential to be further ex-
plored. On text-intensive benchmarks, the model tends to select the finest-grained visual tokens,
which may be due to the pooling directly reducing half of the tokens, resulting in significant differ-
ences in granularity size. In the future, we plan to design a more suitable granularity scaling network
to provide richer visual granularities.
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A APPENDIX

A.1 VISUAL GRANULARITY SELECTION ALGORITHM

In algorithm 1, we provide the detailed process of the router’s granularity selection.

Algorithm 1 Visual Granularity Selection Algorithm

Require: Multi-granularity visual tokens Xv = [X1
v;X

2
v; ...;X

N
v ], Instruction tokens Xinstruct,

Visual tokens of original granularity Xv

Ensure: Selected granularity visual tokens Xselected
v .

1: Obtain the filtered instruction tokens Xinstruct = Top-k(cosine sim(Xinstruct,Xv))
2: Concatenate Xv and Xinstruct to form the input for the router
3: Apply a Transformer layer to facilitate token fusion Zfusion = Transformer([Xv;Xinstruct]).
4: Use an MLP to predict logits for each token Zout = MLP(Zfusion)
5: Aggregate the logits using a learnable weight matrix Zfinal = WZout.
6: Compute the probability distribution using softmax P = softmax(Zfinal).
7: Identify the granularity with the highest probability selected = argmax(P).
8: return Xselected

v

A.2 TRAINING DETAILS

We list the training hyperparameters for all stages in Table 5.

Hyperparameter Stage 1 Stage 2 Stage 3 Stage 4

Data size 595K 1M 1M 1M
Batch size 256 128 128 128
lr 1e-3 2e-5 1e-5 1e-3
Vision encoder lr - 2e-6 2e-5 -
lr schedule cosine decay
lr warmup ratio 0.03
Weight decay 0
Epoch 1
Optimizer AdamW
DeepSpeed stage 2 3 3 3
Training cost (#Hours) 4 17 65 14

Table 5: Hyperparameters of AVG-LLaVA.

A.3 QUALITATIVE EVALUATION

As shown in Figures 8 and 9, we compare the visual granularity selected by the router and other vi-
sual granularities. In Figure 8, given the user-provided image and instruction, AVG-LLaVA selects
the coarsest visual granularity through the router. It can be observed that compared to other gran-
ularities, the model’s response with the coarsest granularity does not vary significantly. However,
in Figure 9, with the given image and instruction, AVG-LLaVA selects the finest visual granularity.
We find that coarser visual granularities could not generate a reasonably accurate poster descrip-
tion. These two examples demonstrate that AVG-LLaVA can adaptively select the appropriate vi-
sual granularity based on the image and instruction, thereby reducing the number of visual tokens,
accelerating inference, and even improving model performance.

Figure 10 further shows several conversations between users and AVG-LLaVA.
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Figure 8: Example of the finest visual granularity selected by the router compared to other visual
granularities. The number in parentheses indicates the number of visual tokens. In this example,
the responses from the model using both fine-grained and coarse-grained visual tokens show little
difference, indicating that the model can adopt coarse visual granularity to significantly reduce the
number of visual tokens and accelerate inference.
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Figure 9: Example of the coarsest visual granularity selected by the router compared to other visual
granularities. The number in parentheses indicates the number of visual tokens. In this example,
when coarse-grained visual tokens are used, the model generates incorrect descriptions. This sug-
gests that the model should select fine visual granularity for the image and instructions in order to
achieve better accuracy.
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Figure 10: More Examples of conversations between users and AVG-LLaVA.
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A.4 ATTENTION MAP VISUALIZATION

Figure 11: Attention maps of AVG-LLaVA at different visual granularities. The instruction is “How
many sheep are there? Answer the question with a single word.”. The number of visual tokens per
grid selected by the router is 32.

To further understand how the appropriate granularity benefits the model in generating better an-
swers, we visualize the attention map between the generated tokens and the visual tokens. The
attention weights are calculated by accumulating the attention scores between image tokens and
generated tokens across all layers and heads. As shown in Figure 11, when the instruction is “How
many sheep are there? Answer the question with a single word,” the attention weights for the vi-
sual granularity selected by the router are primarily focused on the two sheep, while the attention
weights for other visual granularities are dispersed across the background. This means that selecting
the appropriate visual granularity results in a clearer attention map with fewer noise points in the
background area, indicating more precise focus on the relevant regions, thereby improving model
performance.

A.5 VISUALIZATION OF ROUTER SELECTION FOR DIFFERENT INSTRUCTIONS

Figure 12: Visualization of granularity selection using different instructions.

As shown in Figure 12, we input the same image with different instructions and then visualize the
selected visual granularity on the image, i.e., the number of patches. As can be seen, even for the
same image, the router selects different visual granularities for different instructions. When asking
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about the color of the car, the model does not require such fine-grained visual information, whereas
when asking whether there is a cat, the model requires finer-grained visual information.
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