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ABSTRACT

Exploring noise distributions beyond Gaussian in diffusion models remains an
open challenge. While Gaussian-based models succeed within a unified SDE
framework, recent studies suggest that heavy-tailed noise distributions, like α-
stable distributions, may better handle mode collapse and effectively manage
datasets exhibiting class imbalance, heavy tails, or prominent outliers. Recently,
Yoon et al. (NeurIPS 2023), presented the Lévy-Itô model (LIM), directly extend-
ing the SDE-based framework to a class of heavy-tailed SDEs, where the injected
noise followed an α-stable distribution, a rich class of heavy-tailed distributions.
However, the LIM framework relies on highly involved mathematical techniques
with limited flexibility, potentially hindering broader adoption and further devel-
opment. In this study, instead of starting from the SDE formulation, we extend the
denoising diffusion probabilistic model (DDPM) by replacing the Gaussian noise
with α-stable noise. By using only elementary proof techniques, the proposed
approach, Denoising Lévy Probabilistic Model (DLPM), boils down to vanilla
DDPM with minor modifications. As opposed to the Gaussian case, DLPM and
LIM yield different training algorithms and different backward processes, leading
to distinct sampling algorithms. These fundamental differences translate favorably
for DLPM as compared to LIM: our experiments show improvements in coverage
of data distribution tails, better robustness to unbalanced datasets, and improved
computation times requiring smaller number of backward steps.

1 INTRODUCTION

The evolution of generative models has introduced several approaches, with diffusion models emerg-
ing as one of the most prominent. These models transform a data distribution into a Gaussian distri-
bution via a forward noising process and then learn to reverse it. The foundational work on denoising
in this context was presented by Sohl-Dickstein et al. (2015), where the goal is to reverse a Markov
chain that progressively adds Gaussian noise to the data. This framework culminated in denoising
diffusion probabilistic models (DDPM) by Ho et al. (2020), which demonstrated state-of-the-art
performance in image generation, while drawing connections to score matching techniques (Song &
Ermon (2020)). A unified theoretical framework, based on stochastic differential equations (SDEs),
further integrated score matching and the denoising framework (Song et al. (2021)). Various gener-
ative models build up on this framework, improving its performance (Dhariwal & Nichol (2021a);
Karras et al. (2022)).

Despite their success, diffusion models exhibit limitations, such as requiring a large number of steps
(Ho et al. (2020)) and empirically struggling with imbalanced datasets (Zhang et al. (2024); Yoon
et al. (2023)), often leading to mode collapse (Dhariwal & Nichol (2021a); Deasy et al. (2022)).
Tackling heavy-tailed datasets also presents a challenge for diffusion models, as the finite-time dif-
fusion processes generate finite variance data distributions, which are ill-suited for modeling heavy-
tailed data. Such datasets, like financial datasets, could benefit from extensions beyond the Gaussian
setting, as demonstrated in Borak et al. (2005). Moreover, although many techniques exist to im-
prove quality at the expense of diversity (Dhariwal & Nichol (2021b); Song et al. (2023)), by only
using Gaussian noise, the methods typically require highly nontrivial setups in order to obtain im-
proved diversity while maintaining a reasonable quality (e.g., FID score) (Sadat et al. (2024); Nobis
et al. (2024)).

Several approaches have been explored to address the limitations of diffusion models, particularly
through the use of non-Gaussian, heavy-tailed noise distributions. The motivation behind this is
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that heavy-tailed distributions, which can take on larger values, may reduce the number of sampling
steps and better capture multimodal data distributions by identifying isolated modes through large
noise injections (Yoon et al. (2023)). These distributions are also capable of modeling extreme
events or rare occurrences in the tails, making them suitable for tasks such as audio generation
(Chen et al. (2020); Kong et al. (2021)), where rare but important variations in amplitude or pitch
(e.g., prosodies) can enhance sample quality and diversity. An early attempt at using heavy-tailed
noise distributions was made by Nachmani et al. (2021), who replaced Gaussian noise with Gamma-
distributed noise, reducing the number of diffusion steps and improving data diversity. Similarly,
Deasy et al. (2022) employed generalized Gaussian distributions in a score-matching formulation
to improve robustness on unbalanced datasets. However, despite these promising directions, the
performance boosts are limited, since both approaches fail to provide a time-reversal formula, either
using annealed Langevin dynamics when the score is available, or using heuristics based on the
Gaussian approach.

Very recently, partially inspired by Simsekli (2017); Huang et al. (2020b), who employ heavy-tailed
SDEs in Monte Carlo sampling for challenging distributions, Yoon et al. (2023) extended the SDE
framework by replacing the light-tailed Brownian motion with a heavy-tailed driving process, in-
troducing the Lévy-Itô model (LIM), improving performance on image data, particularly for unbal-
anced datasets, offering gains in metrics like FID and diversity. The tail index α controls the degree
of tail heaviness, enabling tunable performance based on the characteristics of the data. When α = 2
the noising process reduces to the Brownian motion (light-tailed), however, whenever α < 2, the
process becomes heavy-tailed with infinite variance (notably, heavier-tailed than the distributions
explored by Nachmani et al. (2021), Deasy et al. (2022)).

While injecting heavy-tailed, infinite-variance noise might seem natural when the data distribution
itself is also heavy-tailed, Yoon et al. (2023) further illustrated that the heavy-tailed noise can also be
beneficial when sampling from compactly supported data distributions (e.g., generating images), es-
pecially in the presence of class imbalances (i.e., the large ‘jumps’ introduced by the heavy tails can
help finding weakly represented modes). Indeed, perhaps being counter-intuitive, it has been shown
that a heavy-tailed process can indeed converge to a light-tailed distribution with appropriate care
Simsekli (2017); Simsekli et al. (2020); Huang et al. (2020a), making them suitable for sampling
from a broad range of data distributions.

Motivation. While LIM demonstrates promising results, the technical complexity of the time-
reversed SDE presents significant challenges. The Lévy process with α < 2 has discontinuous
paths and no variance, preventing the use of standard analysis tools. The proof techniques rely on
fractional calculus and estimations for pseudo-differential operators, which might not be accessible
for the broader community of diffusion-based generative models. While the theory is elegant, we
argue that the highly technical nature of LIM, originated due to the use of continuous-time processes,
might hinder its development. For instance, it is highly non-trivial to use arbitrary noise schedules.

Moreover, the loss function used in LIM presents some shortcomings: the theory requires a squared
ℓ2 loss, assuming the loss remains finite for the considered neural network. However, this may not
always hold, as the noise term is heavy-tailed and admits no variance, potentially leading to infinite
loss values. As a result, LIM experiments must revert to an ℓ1 loss for stable training, suggesting that
the original loss function may indeed be unworkable. Additionally, LIM is constrained to isotropic
noise, further limiting its flexibility.

To overcome these issues, we propose a simpler yet effective alternative for incorporating heavy-
tailed distributions, focusing on a discrete-time framework that leverages more elementary mathe-
matical tools while maintaining performance improvements over Gaussian-based models.

DDPM Score-based SDE

DLPM (This study) LIM (Yoon et al. (2023))

unified

α-stable noise α-stable noise

×
not unified

Figure 1: Illustration of available methods.

Contributions. As opposed to LIM
which extended the SDE-based frame-
work, here, we take a step back and di-
rectly work on the discrete-time DDPM
process and replace the Gaussian noise
with α-stable noise. More precisely, we
propose the following Markov process as
noising process:

Xt = γtXt−1 + σtϵ
(α)
t , (1)
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where ϵ
(α)
t follows a multivariate α-stable distribution. When α = 2, the process recovers the

standard Gaussian DDPM, but for α < 2, it introduces heavy-tailed noise with infinite variance. A
comparison between DLPM and LIM is provided in Figure 1. Our contributions are as follows.

• Simplified mathematical framework. Leveraging a property of stable distributions (cf. Theo-
rem 1), we decompose ϵ

(α)
t into a product of a one-dimensional random variable and a Gaussian

vector. This transformation reduces the forward process to a Gaussian one with modified scaling,
allowing us to approximate the reverse process using only elementary tools. We call the resulting
generative model Denoising Lévy Probabilistic Model (DLPM).
• Extension to deterministic sampling. Building on the DDIM framework (Song et al. (2020)),
we introduce a deterministic sampler for DLPM, termed DLIM, which further reduces the number
of sampling iterations, boosting efficiency.
• Compatibility with existing methods. DLPM maintains compatibility with existing DDPM im-
plementations, requiring only minor modifications, making it a practical and flexible alternative to
LIM. This simplicity extends for instance to noise schedules, which are difficult to manipulate in the
continuous-time LIM framework.
• Distinct Algorithms from LIM. Unlike the Gaussian case, where DDPM and the score-based
SDE formulation are two sides of the same coin (Song et al. (2021)), we demonstrate that DLPM
and LIM result in different training algorithms and distinct backward processes. Indeed, heavy-tail
distributions should prevent the simple use of the square ℓ2 loss, as they admit no variance, problem
which DLPM carefully addresses. These differences lead to unique algorithms for each method,
highlighting the divergence between the two approaches.
• Improved performances. Thanks to our conditionally Gaussian representation strategy, our net-
works are only modeling conditional densities given the heavy-tailed variables. Hence the network is
not learning a heavy-tailed distribution directly, but a light-tailed conditional distribution, intuitively
an easier task. These fundamental differences work in favor of DLPM across several performance
aspects, particularly where heavy-tailed noise injections are already known to offer advantages. Our
experiments show that DLPM provides (i) better coverage of the tails of the data distribution, (ii)
improved generation of unbalanced datasets, and (iii) faster computation times, as it requires signif-
icantly fewer backward steps.

2 BACKGROUND ON α-STABLE DISTRIBUTIONS

The family of α-stable distributions appears as the limiting distribution in the generalized cen-
tral limit theorem (Gnedenko & Kolmogorov (1968)). In the one dimensional case, an α-stable
distributed random variable X is defined through its characteristic function (Samorodnitsky et al.
(1996)): for u ∈ R

E
[
eiuX

]
= exp{iuµ− |σu|α(1− iφβ sgn(u))} , where φ =

{
tan(πα/2) if α ̸= 1

−(2/π) log |σu| otherwise .

Here, (i) µ ∈ R is the location parameter (ii) α ∈ (0, 2] is the tail index (iii) σ > 0 the scale
parameter (iv) β ∈ [−1, 1] determines the right- or left-skewness, and sgn is the sign function. We
denote the α-stable distribution by Sα,β(µ, σ).
In the case where α < 1 and β = 1, the support of the distribution becomes the positive real line
(i.e., the random variable is positive), hence we call this distribution ‘positive stable’. On the other
hand, in the case where β = 0, the distribution Sα,0(µ, σ) is symmetric around µ, and denoted
by Sα(µ, σ). Furthermore, in the case α = 2, the distribution reduces to a Gaussian Sα(µ, σ) =
N (µ, 2σ2), hence it is light-tailed. However, whenever α < 2, Sα(µ, σ) has heavy tails, i.e., the
decay rate of its tail distribution satisfies P(|X| > r) ∼ r−α as r →∞ (see (Nolan, 2020, Theorem
1.2)). This implies that E[|X|p] <∞ if and only if p < α < 2.

As opposed to Gaussians, there are multiple ways of extending the α-stable distributions to the mul-
tivariate setting. In this paper, we will be interested in two major cases: (i) the isotropic (also called
rotationally invariant)1 and (ii) the non-isotropic with independent components. These distributions

1The noise distribution used in LIM is the isotropic α-stable distribution. Note that our framework allows
for different types of α-stable distributions by following a single mathematical recipe.
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are also defined through their respective characteristic functions. The random variable X ∈ Rd

is isotropic α-stable if its characteristic function is given by: for all u ∈ Rd, E[exp(iu⊤X)] =
exp(iµ⊤u − σα∥u∥α), where µ ∈ Rd is the location parameter and σId plays the role of a covari-
ance matrix2. We denote it by X ∼ S i

α(µ, σId). Similarly, X follows the non-isotropic α-stable
distribution Sn

α(µ, σId), if for any u ∈ Rd, E[exp(iu⊤X)] = exp(iµ⊤u − σα
∑d

i=1 |ui|α). While
both of these distributions share similar characteristics, such as having power-law tails with the same
exponent, the components of the isotropic case are dependent, which results in a significant differ-
ence compared to the non-isotropic case, which has independent coordinates. When α = 2 both
options coincide with a multivariate Gaussian.

The following property of stable distributions will form the backbone of our algorithm.
Theorem 1 (See (Samorodnitsky et al., 1996, Equation 2.5.3)). Let α < 2, and let X ∼ S i

α(µ, σId).

Then, X d
=µ + σA1/2G, where d

= denotes equality in distribution, A ∼ Sα/2,1(0, cA) is a one-
dimensional positive stable random variable with cA := cos2/α(πα/4), and G ∼ N (0, Id).

This theorem shows that a zero-mean, unit-scale isotropic stable random-vector can be equivalently
written as the product of a one dimensional positive stable random variable and a standard Gaussian
random vector. This fundamental property will have a significant impact in terms of incorporating
α-stable noise in DDPMs in a simple way as, conditioned on A, the distribution of X is just a
Gaussian. We conclude this section by noting that a similar decomposition for the non-isotropic
case: if X ∼ Sn

α(µ, σId), then X
d
=µ+σA1/2⊙G, where⊙ is the component-wise multiplication

and A1/2 = {A1/2
i }di=1 ∈ Rd is a vector with i.i.d. components with Ai ∼ Sα/2,1(0, cA).

3 DENOISING LÉVY PROBABILISTIC MODELS

In this section, we develop our algorithm by following a similar route to the development on DDPM:
we identify the forward and backward processes associated with (1) and construct a variational
approximation for the backward chain for sampling. Here, we focus on isotropic α-stable noise;
however, adaptation to non-isotropic α-stable noise is straightforward, as all our derivations rely on
Theorem 1, hence it is omitted.

3.1 MARKOVIAN FORWARD PROCESS

Recall that DLPM is based on the following recursion (restatement of (1)):

X0 ∼ p⋆ , and Xt = γtXt−1 + σtϵ
(α)
t , (2)

where p⋆ is the data distribution and {ϵ(α)t }Tt=1 are independent and distributed as S i
α(0, Id).

Thanks to the ‘stability’ property of α-stable distributions, i.e., the sum of two α-stable random
variables is still α-stable (see Appendix B for details), we can explicitly characterize the con-
ditional distribution of Xt given X0. Setting for any t ∈ {1, . . . , T}, γ1→t :=

∏t
i=1 γt, and

σ1→t := (
∑t

i=1(γ1→tσi/γ1→i)
α)1/α, we show in Proposition 4 that:

Xt
d
= γ1→tX0 + σ1→tεt ,

where εt ∼ S i
α(0, Id). Similarly to DDPM, the noising schedule parameters {(γt, σt)}Tt=1 and

the horizon T are set so that the final distribution of XT is approximately equal to S i
α(0, σ1→tId),

choosing either (i) γ1→t → 0 as t increases, or (ii) γ1→t = 1 and σ1→t increasing with t. Following
the terminology used in DDPM3, we refer to schedule (i) as scale preserving and schedule (ii) as
scale exploding.

3.2 GENERATIVE PROCESS

Once the forward process is run for large enough time-steps T , it is clear that XT will be approxi-
mately stable-distributed. Hence, to go back to the data distribution p⋆, we now need to time-revert

2in this isotropic case the components are not independent even though the covariance matrix is diagonal.
3In the DDPM literature, these noising schedules are referred to as variance preserving, or variance explod-

ing. We use the term ‘scale’ instead of the variance here, since the variance does not exist when α < 2.
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the forward process so that the reversed process can take some α-stable noise and generate a sample
from p⋆, which is our ultimate goal. More precisely, we aim to find a backward process associated to

the Markov chain {Xt}Tt=0, i.e., a Markov chain {
←
Xt}Tt=0 such that the two processes {

←
XT−t}Tt=0

and {Xt}Tt=0 have the same distributions. Since, by (Nolan, 2010, Theorem 1.9), any non-degenerate
α-stable distribution has a smooth density with respect to the Lebesgue measure, the Markov chain
(2) admits a transition density denoted by k

(α)
t|t−1. In addition, Xt admits a density as well, denoted

by p
(α)
t . Then, it can be easily verified that a Markov process starting from p

(α)
T and with transition

densities, for t ∈ {0, . . . , T − 1},
←−
k

(α)
t−1|t(xt−1|xt) ∝ p

(α)
t−1(xt)k

(α)
t|t−1(xt, xt−1) for any xt−1, xt,

is a backward process associated with {Xt}Tt=0, where ∝ denotes equality up to a normalization
constant. As in the case of DDPM, this backward transition densities are unfortunately intractable,
hence, we will develop a variational scheme for their approximation.

3.2.1 APPROXIMATION OF THE BACKWARD TRANSITION DENSITIES IN DDPM

To ease the introduction of our approach, let us first recall the strategy taken in DDPM, which
approximates the backward kernels by relying on a variational approximation for

←−
k

(α)
0:T (x0:T ) :=

p
(α)
T (xT )

∏1
t=T

←−
k

(α)
t−1|t(xt−1|xt), where α = 2 and x0:T := (x0, . . . , xT ) ∈ Rd×(T+1). More

precisely, the goal is to find the ‘closest’ distribution to
←−
k

(α)
0:T in a family of distributions {←−q θ

0:T :
θ ∈ Θ}, indexed by a parameter θ taking values in some parameter space Θ (typically taken as a
neural network).

The variational family is assumed to have the same decomposition as
←−
k

(α)
0:T (x0:T ), thus such

that ←−q θ
0:T (x0:T ) := ←−q θ

T (xT )
∏1

t=T
←−q θ

t−1|t(xt−1|xt), where ←−q θ
T is chosen to be the density of

N (0, σ2
1→tId) as an approximation of p(α)T . Then, θ is obtained by minimizing the following objec-

tive function (Ho et al., 2020, Equation 5):

L D(θ) :=

T∑
t=2

L D
t−1(θ) with L D

t−1(θ) = E[KL(k
(α)
t−1|0,t(·|X0, Xt)∥←−q θ

t−1|t(·|Xt))] , (3)

where KL denotes the Kullback-Leibler divergence and k
(α)
t−1|0,t denotes the conditional density of

Xt−1 given X0 and Xt. As α = 2 in this case, k(α)t−1|0,t is Gaussian (Ho et al., 2020, Equation 6,7),
motivating the choice of Gaussian densities←−q θ

t−1|t(xt−1|xt) as elements of the variational family
at hand, since one obtains a closed-form formula for the KL terms, i.e.,

←−q θ
t−1|t(xt−1|xt) = ϕd

(
xt−1|m̂θt−1(xt), Σ̂

θ
t−1(xt)

)
, (4)

where (x, m,Σ) 7→ ϕd(x|m,Σ) is the density of the d-dimensional Gaussian distribution with mean
m and covariance matrix Σ, and m̂θt−1, Σ̂

θ
t−1 are functions of xt parameterized by θ. This approach

relies on the fact that k(α)t−1|0,t is analytically tractable. Unfortunately, when α < 2, it is not the case
anymore. We now expose our methodology to address this limitation.

3.2.2 A DATA AUGMENTATION APPROACH

To obtain a tractable objective function for learning a variational approximation of the backward
transition densities, we rely on a data augmentation approach, which is a classical MCMC technique
(see Brooks et al. (2011), Chapter 10). Consider the Markov chain Y0 ∼ p⋆ , and for t ∈ {1, . . . , T},

Yt = γtYt−1 + σtA
1/2
t Gt , (5)

where {Gt}Tt=1 and {At}Tt=1 are independent random variables, distributed according to Gt ∼
N (0, Id), and At ∼ Sα/2,1(0, cA) with cA = cos2/α(πα/4). From Theorem 1, {Yt}Tt=0 is a Markov
chain that admits the same distribution as {Xt}Tt=0. As a result, conditioned on {At}Tt=1 and Y0,
{Yt}Tt=1 is a Markov chain with Gaussian transition densities:

k
(α)
1:T |0,a(y1:T |y0, a1:T ) =

∏T

t=1
ϕd(yt|γtyt−1, σ2

t at) .

5
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Again, we can explicitly characterize the conditional distribution of Yt given Y0, {At}Tt=1. Setting
for any t ∈ {1, . . . , T}, Σ1→t(a1:t) :=

∑t
k=1(γ1→ta

1/2
k σk/γ1→k)

2, we show in Proposition 5 that:

Yt
d
= γ1→tY0 +Σ1→t(A1:t)εt , (6)

where εt ∼ S i
α(0, Id). We propose approximating the backward process associated to {Yt}Tt=0,

given {At}Tt=1, adapting the DDPM approach. This time, for the backward process, we use the
conditional density of Yt−1 given Y0, Yt and A1:T :

←−
k

(α)
1:T |0,a(y1:T |y0, a1:T ) := p

(α)
T (yT )

∏2

t=T
k
(α)
t−1|0,t,a(yt−1|yt, y0, a1:t),

where k
(α)
t−1|0,t,a(·|yt, y0, a1:t) is now the tractable density of a Gaussian distribution:

Proposition 1. The density of the backward process associated to {Yt}Tt=0 given Y0, {At}Tt=1, de-
noted by k(α)t−1|t,0,a(·|yt, y0, a1:t), is the density of a Gaussian distributionN (m̃t−1, Σ̃t−1), with mean

m̃t−1 and variance Σ̃t−1 equal to:

m̃t−1(yt, y0, a1:t) =
1

γt
(yt − Γt(a1:t)σ1→tϵt(yt, y0)) , Σ̃t−1(a1:t) = Γt(a1:t)Σ1→t−1(a1:t−1) ,

where Σ1→t is as in (6), Γt = 1− γtΣ1→t−1/Σ1→t, and ϵt(yt, y0) = (yt − γ1→ty0)/σ1→t.

See Appendix C.3 for the derivations required for Proposition 1. For our generative model, we recon-
sider the family of Gaussian variational approximation introduced in (4), modified to account for an
iid. sequence {At}Tt=1: ←−q θ

0:T (y0:T ) :=
∫ ←−q θ

T (yT )
∏1

t=T
←−q θ

t−1|t,a(xt−1|xt, a1:t)ψ
(α)
1:T (a1:T )da1:T ,

where ψ(α)
1:T (a1:T ) =

∏T
t=1ψ

(α)(at) and ψ(α) denotes the density of Sα/2,1(0, cA), and

←−q θ
t−1|t,a(yt−1|yt, a1:t) = ϕd(yt−1|m̂θt−1(yt, a1:t), Σ̂θ

t−1(yt, a1:t)) .

3.3 VARIATIONAL INFERENCE OBJECTIVE

We consider the following loss function:

L L(θ) := E

[
T∑

t=2

(
L L

t−1(θ,A1:T )
)r]

, where (7)

L L
t−1(θ,A1:t) := E

[
KL
(
k
(α)
t−1|t,0,a(·|Yt, Y0, A1:t) ∥ ←−q θ

t−1|t,a(·|Yt, A1:t)
) ∣∣∣A1:t

]
,

and r > 0, k(α)t−1|0,t,A denotes the conditional density of Yt−1 given Y0, Yt and A1:T . In order
to ensure that the expectations with respect to A1:T are finite, we need to choose r < α

2 when
α ∈ (1, 2). For simplicity, in the rest of the paper, we will use r = 1

2 .

A comparison with DDPM’s loss function L D (cf. (3)) immediately illustrates that, thanks to The-
orem 1, L L is almost identical to L D up to taking expectations with respect to one-dimensional
random variables and the taking square-root of the summands4. We show in Appendix C.4.3 that,
alike DDPM, our loss is obtained from a KL minimization principle, serving as an upper bound to:

E
[(

KL(k
(α)
0|a (·|A1:T )|←−q θ

0|a(·|A1:T ))
)r]

,

when r ∈ (0, 1]. This additionally shows how any zero of the loss corresponds to a perfect generative
model, while maintaining a similar objective function. The crucial property of (7) is that, since both
k
(α)
t−1|t,0,a and←−q θ

t−1|t,a are Gaussian (thanks to the conditioning), the KL term admits a closed-form
analytical formula, as in the case of DDPM.

From a practical perspective, (7) suggests that we can use the same software architecture as for
DDPM, with a slight modification to compute the outer expectation, which can be simply estimated
by a Monte Carlo, or median-of-means procedure (Lugosi & Mendelson (2019)). In order to obtain

4We note that, with the choices of α = 2 and r = 1, we exactly recover DDPM.
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a final denoising training loss, we provide three design choices, for which the full details are given
in Appendix C.4. They are similar to what is classically done in diffusion models (Ho et al. (2020);
Nichol & Dhariwal (2021); Karras et al. (2022)):

D1. We set a fixed variance Σ̂θ
t = Σ̃t for the reverse process.

D2. We reparameterize the model to predict the value of ϵt(yt, y0) with a network ϵ̂θt , setting

m̂θt−1(Yt, A1:t) =
1

γt

(
Yt − σ1→tΓt(A1:t)ϵ̂

θ
t (Yt, A1:t)

)
.

Moreover, we drop the dependency of ϵ̂θt on {At}Tt=1, making ϵ̂θt only a function of Yt. This enables
re-using classical diffusion models network architectures.

D3. Assuming D1, D2, we obtain L L
t−1(θ) = E

[
λ2
t,A1:t

∥ϵ̂θt (Yt, A1:t)− ϵt(Yt, Y0)∥2
]

where
λt,a1:t = Γt(a1:t)σ1→t/2γtΣ̃t, and ϵt(yt, y0) = (yt − γ1→ty0)/σ1→t. We then fix λt,a1:t = 1.
Proposition 2 (Simplified denoising loss). With the design choices D1, D2, D3, we obtain the
simplified denoising objective function:

L Simple(θ) =

T∑
t=1

E
[
E
(
∥ϵ̂θt (Yt)− ϵt(Yt, Y0)∥2

∣∣ A1:t

)1/2]
, (8)

where the model ϵ̂θt is designed to fit the noise ϵt(Yt, Y0) = (Yt − γ1→tY0)/σ1→t added at time-step
t, and γ1→t, σ1→t are as given in Proposition 4. Thus the model is not learning a heavy-tailed
distribution directly, but the light-tailed conditional distribution.

See Appendix C.4.2 for the derivations required for Proposition 2. Finally, in Appendix C.5, we
show that on some conditions, satisfied under design choices D1, D2, D3, the expectation of each
term in L L can be rewritten as an expectation with respect to only one univariate random variable (as
opposed to t variables, i.e., A1:t), reducing the additional computational burden of accommodating
heavy tails. As we will estimate the expectations by Monte Carlo averaging, reducing the number of
random variables in the expectation is equally important to reduce the error in the estimation. The
resulting loss is given in Proposition 9.

3.4 DETERMINISTIC SAMPLING

Using the same techniques as in denoising diffusion implicit models (DDIM, Song et al. (2020)),
we can recover a deterministic sampling scheme. We call this algorithmic extension Denoising
Lévy Implicit Models (DLIM), which details are given in Appendix D. We recapitulate our various
sampling and training algorithms in Appendix A. We note that by using an ordinary differential
equation (ODE) approach, LIM was extended similarly by Yoon et al. (2023), obtaining LIM-ODE,
which encompasses a deterministic sampling scheme.

3.5 COMPARING DLPM TO LIM

The objective function (7) is slightly different from the one obtained in the continuous setting of
LIM by Yoon et al. (2023). The training equations are very similar, and can be reformulated to
involve a denoising loss (see Appendix E.1, and (28)):

Lt−1 : θ 7→ E
(
∥ϵ̂θt (Xt)− ϵt(Xt, X0)∥ηp

)
.

As a refresher, in the case of DDPM, one sets p = 2, η = 2. In the case of DLPM, our discussion
leads us to the choice p = 2, η = 1 (see (8)). In the case of LIM, the theory relies on a squared
ℓ2 loss, setting p = 2, η = 2 in order to properly derive the loss and effectively approximate the
true score of the data, at various noisescales. One must therefore make the assumption that Lt−1
is not infinite for each parameter θ considered, which may not hold since ϵt(Xt, X0) is α-stable
distributed and admits no variance. In the experiments for LIM, one is forced to revert to an ℓ1 loss,
by setting η = 1, p = 1, to obtain a stable training, potentially indicating that the loss is infinite.

Additionally, DLPM and LIM yield different backward processes, which in turn lead to distinct sam-
pling algorithms – cf. Table 4 in the Appendix. Finally, the LIM framework can only accommodate
isotropic noise. We refer to Appendix E.1 for a detailed comparison between DLPM and LIM.
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4 EXPERIMENTS

After the groundwork of the previous sections, we design experiments to demonstrate the practical
strengths of our DLPM approach as compared to LIM, apart from its technical simplicity. We recall
that setting α = 2 simply reverts LIM to classical diffusion, and DLPM reverts to DDPM, appart
from the square-root in the loss function. As specified in (Yoon et al. (2023), Appendix G), LIM
relies on gradient and noise clipping, which introduces extra hyperparameters that must be fine-
tuned for each dataset. In the experiments, we use these clipping parameters only when specified.
The experimental details relative to this section are available in Appendix G.

As our loss function (7) involves an expectation with respect to A1:T , we propose estimating it by
using the median-of-means estimator, which is known to have better performance for heavy-tailed
distributions (Lugosi & Mendelson (2019)). For an integer M , this approach requires sampling M2

many A1:T terms, then split them into M groups of size M . To approximate the expectation, we take
the sample mean of each group, and finally take the median of the computed M sample means. In
our experiments, we explore M = 1 (approximating the expectation with only one sample), denoted
simply by DLPM, and M = 5, denoted by DLPM5. Similarly, we denote DLIM and DLIM5 for the
corresponding deterministic sampling schemes.

Finally, we consider the range 1.5 ⩽ α ⩽ 2.0. In our experiments on images, we make use of the
dataset CIFAR10−LT (long tail), that has been introduced in Yoon et al. (2023) as an unbalanced
modification of the CIFAR10 dataset.

4.1 DATA COVERAGE AND MODE COLLAPSE IN TWO-DIMENSIONAL DATA

Before progressing to higher dimensional problems, we start with easily controlled and visualized
two-dimensional datasets, in order to validate the competitiveness of our method in the contexts
where heavy-tailed diffusions are of interest. In particular, we consider heavy-tailed and unbalanced
multi-modal datasets. See Appendix G.1 for details about the experimental setup in these settings.

Figure 2: DLPM with α = 1.7 and
α = 2.. The lighter-tailed process fails
to capture the distribution’s tail.

Enhancing data coverage: capturing the tail of the dis-
tribution. We set d = 2 and generate data points dis-
tributed as S i

α(0, 0.05 · Id), with α = 1.7. Our aim is to
test the ability of each method to cover the dataset cor-
rectly; the main challenge is to correctly capture the tails.
As we can visually observe in Figure 2, the backward dif-
fusion process in the Gaussian case cannot produce truly
heavy-tailed data, mainly stemming from the fact that its
variance is always finite. As expected, we see improve-
ments when using noise with α < 2.

To quantify this behaviour, we utilize the mean square
logarithmic error (MSLE) metric, which compares the
relative error between the higher quantiles (i.e., the quan-
tiles corresponding to the tail region that has probability
1− ξ) of the true and the generated data distribution (see Appendix G.3 for detailed definitions). We
observe in Table 1 how, as α gets smaller, one gets better tail approximation. Furthermore, DLPM
consistently outperforms LIM, indicating that the generation process benefits from the heavy-tailed
denoising formulation, rather than the continuous-time one, in this setting.

Method α = 1.5 α = 1.6 α = 1.7 α = 1.8 α = 1.9 α = 2.0

DLPM 0.160 ± 0.128 0.081 ± 0.078 0.071 ± 0.028 0.099 ± 0.044 0.132 ± 0.101 0.798 ± 0.601
DDPM - - - - - 0.528 ± 0.400

1.0e-1
LIM 0.743 ± 0.290 0.497 ± 0.311 0.267 ± 0.077 0.653 ± 0.413 2.444 ± 1.067 1.239 ± 0.240

1.0e-08 8.6e-06 1.3e-10 8.8e-06 7.9e-09 5.0e-3

Table 1: MSLEξ=0.95 ↓ averaged over 20 runs. Figures below scores corresponds to p-values from
Welch’s t-test (assuming unequal variances), comparing the mean of DLPM with the given method.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Figure 3: Gaussian
grid

Enhancing data coverage: addressing mode collapse. To assess the ro-
bustness of DLPM to mode collapse, we consider an unbalanced mixture of
nine Gaussian distributions. We set their standard deviation to 0.05 and ar-
range them in a grid-like pattern with equal spacing, in the square [−1, 1]2.
Their mixture weights range from .01 to .3 5. We use the F pr

1 score (i.e.,
the harmonic mean of precision and recall, see Appendix G.3) to assess, in a
single summary statistic, the quality and diversity in the generated data. As
shown in Table 2, we are able to achieve improved scores by choosing a tail
index α < 2 with DLPM. This is not necessarily the case for LIM, which
is consistently outperformed. Finally, DLPM5 shows its strengths with better
performance over all the range of α, though at the cost of 5 times the run time.

Method α = 1.5 α = 1.6 α = 1.7 α = 1.8 α = 1.9 α = 2.0

DLPM 0.933 ± 0.018 0.923 ± 0.005 0.933 ± 0.028 0.923 ± 0.024 0.907 ± 0.034 0.862 ± 0.028
DLPM5 0.944 ± 0.013 0.943 ± 0.021 0.943 ± 0.010 0.941 ± 0.014 0.928 ± 0.016 -

9.0e-3 1.6e-05 7.4e-2 9.0e-4 3.9e-3
LIM 0.842 ± 0.039 0.850 ± 0.046 0.868 ± 0.034 0.874 ± 0.030 0.884 ± 0.017 0.874 ± 0.027

1.7e-14 1.3e-09 5.7e-11 3.9e-09 1.9e-3 9.6e-2
DDPM - - - - - 0.867 ± 0.029

5.0e-1

Table 2: F pr
1 ↑ score, averaged over 30 runs. Figures below scores corresponds to p-values from

Welch’s t-test (assuming unequal variances), comparing the mean of DLPM with the given method.

4.2 EXPERIMENTS ON IMAGE DATA

To fairly illustrate the differences between LIM and DLPM, we use the same improved DDPM neu-
ral network architecture, as designed in Nichol & Dhariwal (2021). The specific configuration for
each dataset is carefully described in Appendix G.2. Our experiments are designed to compare deter-
ministic and stochastic generation methods under varying conditions. As a visual check, examples
of generated images are listed in Appendix G.4.

Table 3: FID↓, 1000 sampling steps for LIM and DLPM, 25 sampling
steps for LIM-ODE and DLIM.

MNIST α = 1.5 α = 1.7 α = 1.8 α = 1.9 α = 2.0

DDPM - - - - 3.43
LIM 14.37 11.54 11.18 13.75 11.69

w/ clipping 4.08 5.17 6.81 11.20
DLPM5 3.80 3.03 2.51 2.71 -
DLPM 5.39 2.94 2.93 3.24 3.63

DDIM - - - - 5.16
LIM-ODE 49.63 78.59 92.93 109.48 29.04

w/ clipping 45.72 68.15 85.09 113.20
DLIM5 3.37 2.93 3.44 4.31 -
DLIM 3.38 2.81 3.18 3.27 5.18

CIFAR10_LT

DDPM - - - - 19.05
LIM 75.38 35.15 31.14 21.68 21.56

w/ clipping 16.13 16.21 17.67 19.24
DLPM 16.10 18.00 19.94 20.21 21.07

DDIM - - - - 23.44
LIM-ODE 42.07 91.64 105.95 407.79 32.00

w/ clipping 30.17 65.78 84.55 101.70
DLIM 20.69 20.77 21.96 22.79 23.99

Figure 4: FID↓, α = 1.7

Convergence speed. Consistent with existing literature Song et al. (2020), our findings as shown
in Figure 4 confirm that deterministic generation outperforms its stochastic counterpart significantly,

5The exact mixture weights are {.01, .02, .02, .05, .05, .1, .1, .15, .2, .3}.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

DLIM, 5 steps 10 steps 25 steps LIM, 5 steps 10 steps 25 steps

Figure 5: DLIM and LIM-ODE with small number of steps, on the Gaussian grid of Figure 3.

especially when fewer than 100 diffusion steps are used, on both MNIST and CIFAR10_LT. As the
number of diffusion steps increases, both of these sampling methods produce similar results. This
observation highlights that the advantages of the diffusion process do not only stem from increased
randomness at sampling time. These heavy-tailed processes may define more appropriate vector
field on which the noise is transported back to the original data distribution, which would lead to
improved model performance (see Karras et al. (2022) for similar discussions on DDPM vs DDIM).

The previous observations are quantitatively supported in Table 3, where we present results for both
deterministic and stochastic sampling strategies. We compare both methods on stochastic generation
at a high step count, to compare their performance at their best regime, and on deterministic gener-
ation at a small step count, to assess the tradeoff in computations/quality offered by both methods.
As we can see, DLPM surpasses LIM on both datasets. Moreover, these results show that LIM’s
performance deteriorates significantly when clipping is not used, raising questions about whether
the framework of LIM is inherently well-suited for heavy-tailed distributions. More interestingly,
we observe in Table 3 that DLPM consistently outperforms LIM and offers satisfying image quality
at low number of steps, both for stochastic and deterministic sampling.

Generated images after 25 steps achieve a FID score of 2.81 on MNIST and of 20.69 on CI-
FAR10_LT, as compared to respectively 45.72 and 30.17 for LIM-ODE with clipping. On MNIST,
with α = 1.7, DLIM is able to match the sample quality of DLPM with 40 times less diffusion
steps, further proving its efficacy. To visualize these behaviours, we display on Figure 5 different
generation with varying time horizon T . We can see how the backward process defined by DLIM is
able to approach the true data distribution more accurately.

Eventhough lower α usually entails lower FID in this table, LIM-ODE shows worse performance
than the Gaussian diffusion at 25 reverse steps; since the image quality is still monotonically decreas-
ing with α except for α = 2, we can conjecture that the initial instability introduced by heavy-tails
are finally counterbalanced by the various benefits of heavy-tailed diffusion. DLPM5 shows con-
sistent improvement over baseline, more particularly for stochastic sampling. We provide results
for non-isotropic generation, and additional F pr

1 metrics on image data in Appendix G.4, further
supporting our claims.

5 CONCLUSION

In this study, we proposed DLPM and DLIM, as heavy-tailed generalizations of DDPM and DDIM.
Compared to state-of-the-art, we believe that our approach would be more accessible to the commu-
nity, thanks to its elementary tools. The various experiments we have conducted suggest that DLPM
is more effective in leveraging the characteristics of heavy-tailed distributions, providing robust per-
formance across heavy-tailed data, unbalanced datasets and requiring a lower number of diffusion
steps.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

REFERENCES

Michaël Allouche, Stéphane Girard, and Emmanuel Gobet. EV-GAN: Simulation of extreme events
with ReLU neural networks. Journal of Machine Learning Research, 23(150):1–39, 2022. URL
https://hal.science/hal-03250663.

Szymon Borak, Wolfgang Karl Härdle, and Rafał Weron. Stable distributions. Statistical Tools for
Finance and Insurance, 04 2005. doi: 10.1007/3-540-27395-6_1.

Steve Brooks, Andrew Gelman, Galin Jones, and Xiao-Li Meng. Handbook of Markov Chain Monte
Carlo. CRC press, 2011.

Nanxin Chen, Yu Zhang, Heiga Zen, Ron J. Weiss, Mohammad Norouzi, and William Chan. Waveg-
rad: Estimating gradients for waveform generation, 2020. URL https://arxiv.org/abs/
2009.00713.

Jacob Deasy, Nikola Simidjievski, and Pietro Liò. Heavy-tailed denoising score matching, 2022.

Prafulla Dhariwal and Alex Nichol. Diffusion models beat gans on image synthesis, 2021a.

Prafulla Dhariwal and Alex Nichol. Diffusion models beat gans on image synthesis, 2021b. URL
https://arxiv.org/abs/2105.05233.

B. V. Gnedenko and A. N. Kolmogorov. Limit distributions for sums of independent random vari-
ables. Translated from the Russian, annotated, and revised by K. L. Chung. With appendices
by J. L. Doob and P. L. Hsu. Revised edition. Addison-Wesley Publishing Co., Reading, Mass.-
London-Don Mills., Ont., 1968.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models, 2020.

William Holt and Duy Nguyen. Essential aspects of bayesian data imputation. SSRN, 2023, jun 2023.
doi: 10.2139/ssrn.4494314. URL http://dx.doi.org/10.2139/ssrn.4494314.

Lu-Jing Huang, Mateusz B. Majka, and Jian Wang. Approximation of heavy-tailed distributions via
stable-driven sdes, 2020a. URL https://arxiv.org/abs/2007.02212.

Lu-Jing Huang, Mateusz B. Majka, and Jian Wang. Approximation of heavy-tailed distributions via
stable-driven sdes, 2020b. URL https://arxiv.org/abs/2007.02212.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models, 2022.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.

Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. Diffwave: A versatile
diffusion model for audio synthesis, 2021. URL https://arxiv.org/abs/2009.09761.

Gábor Lugosi and Shahar Mendelson. Mean estimation and regression under heavy-tailed distribu-
tions: A survey. Foundations of Computational Mathematics, 19(5):1145–1190, 2019.

Eliya Nachmani, Robin San Roman, and Lior Wolf. Denoising diffusion gamma models, 2021.

Alex Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models, 2021.

Gabriel Nobis, Maximilian Springenberg, Marco Aversa, Michael Detzel, Rembert Daems, Rod-
erick Murray-Smith, Shinichi Nakajima, Sebastian Lapuschkin, Stefano Ermon, Tolga Birdal,
Manfred Opper, Christoph Knochenhauer, Luis Oala, and Wojciech Samek. Generative fractional
diffusion models, 2024. URL https://arxiv.org/abs/2310.17638.

J. P. Nolan. Stable Distributions - Models for Heavy Tailed Data. Birkhäuser, Boston, 2010. In
progress, Chapter 1 online at academic2.american.edu/∼jpnolan.

John P Nolan. Univariate stable distributions. Springer Series in Operations Research and Financial
Engineering, 10:978–3, 2020.

11

https://hal.science/hal-03250663
https://arxiv.org/abs/2009.00713
https://arxiv.org/abs/2009.00713
https://arxiv.org/abs/2105.05233
http://dx.doi.org/10.2139/ssrn.4494314
https://arxiv.org/abs/2007.02212
https://arxiv.org/abs/2007.02212
https://arxiv.org/abs/2009.09761
https://arxiv.org/abs/2310.17638


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Manuel D Ortigueira, Taous-Meriem Laleg-Kirati, and J A Tenreiro Machado. Riesz potential ver-
sus fractional laplacian. Journal of Statistical Mechanics: Theory and Experiment, 2014(9):
P09032, sep 2014. doi: 10.1088/1742-5468/2014/09/P09032. URL https://dx.doi.org/
10.1088/1742-5468/2014/09/P09032.

Seyedmorteza Sadat, Jakob Buhmann, Derek Bradley, Otmar Hilliges, and Romann M. Weber. Cads:
Unleashing the diversity of diffusion models through condition-annealed sampling, 2024. URL
https://arxiv.org/abs/2310.17347.

Mehdi S. M. Sajjadi, Olivier Bachem, Mario Lucic, Olivier Bousquet, and Sylvain Gelly. Assessing
generative models via precision and recall, 2018.

Gennady Samorodnitsky, Murad S Taqqu, and RW Linde. Stable non-gaussian random processes:
stochastic models with infinite variance. Bulletin of the London Mathematical Society, 28(134):
554–555, 1996.

Umut Simsekli. Fractional Langevin Monte carlo: Exploring Levy driven stochastic differen-
tial equations for Markov chain Monte Carlo. In Doina Precup and Yee Whye Teh (eds.),
Proceedings of the 34th International Conference on Machine Learning, volume 70 of Pro-
ceedings of Machine Learning Research, pp. 3200–3209. PMLR, 06–11 Aug 2017. URL
https://proceedings.mlr.press/v70/simsekli17a.html.

Umut Simsekli, Lingjiong Zhu, Yee Whye Teh, and Mert Gurbuzbalaban. Fractional underdamped
langevin dynamics: Retargeting sgd with momentum under heavy-tailed gradient noise. In Inter-
national conference on machine learning, pp. 8970–8980. PMLR, 2020.

Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsuper-
vised learning using nonequilibrium thermodynamics, 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. CoRR,
abs/2010.02502, 2020. URL https://arxiv.org/abs/2010.02502.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution,
2020.

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations, 2021.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models, 2023. URL
https://arxiv.org/abs/2303.01469.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2023.

Pascal Vincent. A connection between score matching and denoising autoencoders. Neural Comput.,
23(7):1661–1674, jul 2011. ISSN 0899-7667. doi: 10.1162/NECO_a_00142. URL https:
//doi.org/10.1162/NECO_a_00142.

Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao, Wentao Zhang,
Bin Cui, and Ming-Hsuan Yang. Diffusion models: A comprehensive survey of methods and
applications, 2024.

Eun Bi Yoon, Keehun Park, Sungwoong Kim, and Sungbin Lim. Score-based gen-
erative models with lévy processes. In A. Oh, T. Neumann, A. Globerson,
K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural Information Pro-
cessing Systems, volume 36, pp. 40694–40707. Curran Associates, Inc., 2023. URL
https://proceedings.neurips.cc/paper_files/paper/2023/file/
8011b23e1dc3f57e1b6211ccad498919-Paper-Conference.pdf.

Tianjiao Zhang, Huangjie Zheng, Jiangchao Yao, Xiangfeng Wang, Mingyuan Zhou, Ya Zhang, and
Yanfeng Wang. Long-tailed diffusion models with oriented calibration. In The Twelfth Interna-
tional Conference on Learning Representations, 2024. URL https://openreview.net/
forum?id=NW2s5XXwXU.

12

https://dx.doi.org/10.1088/1742-5468/2014/09/P09032
https://dx.doi.org/10.1088/1742-5468/2014/09/P09032
https://arxiv.org/abs/2310.17347
https://proceedings.mlr.press/v70/simsekli17a.html
https://arxiv.org/abs/2010.02502
https://arxiv.org/abs/2303.01469
https://doi.org/10.1162/NECO_a_00142
https://doi.org/10.1162/NECO_a_00142
https://proceedings.neurips.cc/paper_files/paper/2023/file/8011b23e1dc3f57e1b6211ccad498919-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/8011b23e1dc3f57e1b6211ccad498919-Paper-Conference.pdf
https://openreview.net/forum?id=NW2s5XXwXU
https://openreview.net/forum?id=NW2s5XXwXU


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

APPENDIX

The Appendix is organized as follows:

• In Appendix A, we provide the pseudo-code for the training and sampling algorithms of
DLPM and DLIM.

• In Appendix B, we characterize the stability property of the α-stable distribution, and we
give explicit formulas for the distribution of the sum of two α-stable random variables.

• In Appendix C, we provide the detailed theory and derivations of the DLPM framework.
Working on the process {Xt}Tt=0 defined in (2), and its data augmentation counterpart
{Yt}Tt=0 defined in (5), we start in Appendix C.2 by characterizing the distribution of Xt

given X0 from a given noise schedule {(γt, σt)}Tt=1, as this defines the characteristic loca-
tion γ1→t and scale σ1→t of the process at time t. Likewise we characterize the distribution
of Yt given Y0, {At}Tt=1, as this defines the characteristic location γ1→t and variance Σ1→t

of the augmented process at time t.
In Appendix C.3, we focus on the Gaussian trick exploited by the process {Yt}Tt=0 defined
in (5). This leads us to the an explicit formula for the Gaussian density of the backward
process conditioned on a sequence {At}Tt=1 of α-stable random variables.
In Appendix C.4, we further put this characterization into good use by obtaining a closed-
form formula for the loss function . Follows a discussion on design choices for the model
and the loss function at hand, which leads us to the simplified training loss (8) correspond-
ing to the denoising loss for α-stable diffusion.
In Appendix C.4.3 we provide a more principled approach to derive the loss function at
hand.
Finally, in Appendix C.5, we provide a faster sampling strategy for training DLPM, com-
puting each loss term L L

t−1 using only two heavy-tailed random variables per datapoint,
instead of t random variables.

• In Appendix D, we adapt the setting for deterministic sampling in classical denoising diffu-
sion DDIM (Song et al. (2020)) to our α-stable framework. We naturally call this extension
DLIM. Alike DDIM, it is true that the same neural networks can be used for both the DLIM
and DLPM generation procedures.

• In Appendix E, we compare in more details the two discrete and continuous frameworks
DLPM and LIM, underlining how they offer two distinct loss functions, training and sam-
pling algorithms.

• In Appendix F, we give proofs relative to our technique for faster training, as introduced in
Appendix C.5.

• In Appendix G, we provide additional experimental details.

A ALGORITHMS FOR DLPM AND DLIM

In this section, we explicitly provide the algorithms needed to train and sample from the DLPM and
DLIM generative methods.

A.1 TRAINING

The same models can be shared between DLPM and DLIM, as underlined in Appendix D.3. We
introduce the values σ1→t, γ1→t determined by the noise schedule, as presented in Proposition 4:

γ1→t =

t∏
i=1

γt , σ1→t =

[
t∑

i=1

(
γ1→t

γ1→i
σi

)α
]1/α

.

We define cA = cos2/α(πα/4) as in Theorem 1. We make the design choices D1, D2, D3 for our
model, as described in Appendix C.4.2. Finally, we use the method for faster sampling as described
in Appendix C.5, Proposition 9. The resulting training algorithm is given in Algorithm 2.
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Algorithm 2 DLPM training - simplified loss

Require: model {ϵ̂θt }Tt=1, noise schedule {(γt, σt)}Tt=1, data Y0

1: Sample t ∼ U [1, T ]
2: Sample Āt ∼ Sα/2,1(0, cA)
3: Sample Gt ∼ N (0, Id)

4: Yt ← γ1→tY0 + σ1→tĀ
1/2
t Gt

5: Lt−1 ← ∥ϵ̂θt (Yt)− Ā
1/2
t Gt∥2

return Lt−1

A.2 SAMPLING

Given the noise schedule and a sequence {At}Tt=1 of α-stable random variables we define:

Σ1→t(A1:t) =

t∑
k=1

(
γ1→t

γ1→k

√
Akσk

)2

, Γt(A1:t) = 1− γ2
tΣ1→t−1(A1:t−1)

Σ1→t(A1:t)
, (9)

see Proposition 6 and Equation (12) from Proposition 5 for precise statements. We give our sampling
algorithm for DLPM in Algorithm 3.

Algorithm 3 Stochastic sampling (DLPM)

Require: model {ϵ̂θt }Tt=1, noise schedule {(γt, σt)}Tt=1
1: Sample YT ∼ S(0, σ1→T Id)
2: Sample {At}Tt=1 i.i.d., At ∼ Sα/2,1(0, cA)
3: for t← T to 1 do
4: Compute Σ1→t,Σ1→t−1,Γt as in (9)
5: Sample Gt ∼ N (0, Id)

6: Σ̂θ
t−1 ← ΓtΣ1→t−1

7: Yt−1 ←
Yt

γt
− Γtσ1→tϵ̂

θ
t (Yt) +

√
Σ̂θ

t−1Gt

8: end for
return Y0

For DLIM, one can potentially provide YT as input, in order to use the support of the noise dis-
tribution as a latent space, alike what is done by Song et al. (2020). We give our DLIM sampling
algorithm in Algorithm 4.

Algorithm 4 Deterministic sampling (DLIM)

Require: model {ϵ̂θt }Tt=1, noise schedule {(γt, σt)}Tt=1
1: Sample YT ∼ S i

α(0, Id)
2: for t← T to 1 do
3: Yt−1 ←

Yt

γt
−
(
σ1→t

γt
− σ1→t−1

)
ϵ̂θt (Yt)

4: end for
return Y0

B ADDITIONAL REMARK ON α-STABLE DISTRIBUTIONS

Stable distributions are closed under convolution for a fixed value of α. Since convolution is equiv-
alent to multiplication of the Fourier-transformed function, it follows that the product of two stable
characteristic functions with the same α will yield another such characteristic function. We precisely
characterize this stability property in the following proposition:

14
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Proposition 3 (See (Nolan, 2020, Proposition 1.3)). Let X1, X2 be two random variables respec-
tively distributed as X1 ∼ Sα,β1

(µ1, σ1) and X2 ∼ Sα,β2
(µ2, σ2), with µ1, µ2, β1, β2 ∈ R and

σ1, σ2 > 0. Then, X = X1 +X2 is distributed as Sα,β(µ, σ) where:

µ = µ1 + µ2 , σ = (σα
1 + σα

2 )
1/α , β =

β1σ
α
1 + β2σ

α
2

σα
1 + σα

2

.

In particular, when X1, X2 are such that X1 ∼ Sα(0, σ1), X2 ∼ Sα(0, σ2), then X = X1 +X2 ∼
Sα(0, (σα

1 + σα
2 )

1/α), which is the key relation used in the later characterizations of the distribution
of our forward process.

C THEORETICAL DERIVATIONS FOR DLPM

In this section, we provide the detailed theory and associated derivations of the DLPM framework.

C.1 SETTING AND NOTATIONS

We will denote by ϕd(·|µ,Σ) the density ofN (µ,Σ), where µ ∈ Rd and Σ ∈ Rd×d. We will denote
by ψ(α) the density of Sα/2,1(0, cA), where cA = cos2/α(πα/4).

Forward process. We reintroduce the setting presented in Section 3, with the noising schedule
being denoted by {(γt, σt)}Tt=1, and the following forward process on which DLPM is based:

X0 ∼ p⋆ , and Xt = γtXt−1 + σtϵ
(α)
t , (10)

where p⋆ is the data distribution and {ϵ(α)t }Tt=1 are independent random variables distributed as
S i
α(0, Id).

Data augmentation process. We also introduce the associated data augmentation process:

Y0 ∼ p⋆ , and Yt = γtYt−1 + σtA
1/2
t Gt , (11)

where {Gt}Tt=1 and {At}Tt=1 are independent random variables distributed according to Gt ∼
N (0, Id) and At ∼ Sα/2,1(0, cA), with cA = cos2/α(πα/4). From Theorem 1, {Yt}Tt=0 is a Markov
chain that admits the same distribution as {Xt}Tt=0. We will denote by p

(α)
t the distribution of Yt,

and by k
(α)
t|t−1(·|·) the transition density associated to the Markov chain (10).

Backward process. A backward process associated to the Markov chain {Yt}Tt=0 is a Markov
chain {

←−
Y ′t}Tt=0 such that the two processes {

←−
Y ′T−t}Tt=0 and {Yt}Tt=0 have the same distribution. For

ease of presentation and following classical notations, we will rather consider {
←−
Y t}Tt=0 where

←−
Y t =←−

Y ′T−t. We will denote by
←−
k

(α)
t−1|t(·|·) the transition densities associated to the process {

←−
Y t}Tt=0.

Since the true backward process is never available to us, we will focus on an approximation induced
by a variational family. We consider the process {

←−
Y θ

t }Tt=0 where
←−
Y θ

T is distributed as S(0, σ1→tId),
and the density of the distribution of

←−
Y θ

t−1 conditioned on
←−
Y θ

t are given by ←−q θ
t−1|t(·|·), where

θ ∈ RD parameterizes a neural network. We also denote by←−q θ
0:T the joint distribution of {

←−
Y θ}Tt=0

and by←−q θ
t the marginal distribution of

←−
Y θ

t .

Further notations. Finally, we denote by pαt (·|a1:t), k
(α)
t|t−1,a(·|·, a1:t), and ←−q θ

t−1|t,a(·|·, a1:t)
the densities/transition densities associated to the processes {Yt}Tt=0, {

←−
Y θ

t }Tt=0 given At = at for
1 ⩽ t ⩽ T . We we will also write pαt (·|y0, a1:t), k

(α)
t|t−1,0,a(·|·, y0, a1:t), and←−q θ

t−1|t,0,a(·|·, y0, a1:t)
when further conditioning on Y0.
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C.2 FORWARD PROCESS

Let us now characterize the distribution of Xt given X0, and Yt given Y0, {At}Tt=1, which are
tractable thanks to Proposition 3. These will come in handy, for instance when working on the
backward process in Appendix C.3.
Proposition 4 (Distribution of Xt given X0). Let {Xt}Tt=0 be the forward process as given in (10),
and {(γt, σt)}Tt=1 the noise schedule. Then the distribution of Xt given X0 is given for any t by

Xt
d
= γ1→tX0 + σ1→tϵ̄t

where ϵ̄t ∼ S i
α(0, Id), and γ1→t, σ1→t are given by:

γ1→t =

t∏
k=1

γk , σ1→t =

(
t∑

k=1

(
γ1→t

γ1→k
σk

)α
)1/α

.

The proof is an elementary induction based on Proposition 3.
Proposition 5 (Distribution of Yt given Y0, {At}Tt=1). Let {Yt}Tt=0 be the forward process as given
in (11), {(γt, σt)}Tt=1 the noise schedule, and {At}Tt=1 the associated α/2-stable random variables,
parameterizing the variance of the Gaussian noise increments. Then the distribution of Yt given
Y0, {At}Tt=1 is the Gaussian distribution with mean γ1→tY0 and covariance matrix Σ1→tId, i.e.,

Yt
d
= γ1→tY0 +Σ1→t(A1:t)

1/2Ḡt ,

where Ḡt ∼ N (0, Id), and

γ1→t =

t∏
k=1

γk , Σ1→t(a1:t) =

t∑
k=1

(
γ1→t

γ1→k

√
akσk

)2

. (12)

The proof is elementary and omitted. It is worth mentioning the following recurrence, to speedup
the computation of the sequence {Σ1→t(a1:t)}Tt=1:

Σ1→t(a1:t) = σ2
t at + γ2

tΣ1→t−1(a1:t−1) .

C.3 BACKWARD PROCESS

Consider the setting of the data augmentation approach as given in (11). By the same arguments
used in Section 3, it can be verified that a process starting from p

(α)
T and with transition densities

←−
k

(α)
t−1|t(yt−1|yt) ∝ p

(α)
t (yt−1)k

(α)
t|t−1(yt|yt−1) for any yt−1, yt is a backward process associated

with {Yt}Tt=0. However, it raises two main problems. First (i), we cannot characterize the distribu-
tion of

←−
k

(α)
t−1|t(yt−1|yt), since we do not know the data distribution. Second (ii), in the case where

α < 2, we do not have access to an explicit expression for
←−
k

(α)
t−1|t,0(yt−1|yt, y0).

Regarding (i), we have access to the distribution of Yt given Y0, so a valid strategy consists in
devising a method relying on characterizing the backward of the process {Yt}Tt=0 given Y0. This is
the classical strategy used in DDPM (Ho et al. (2020)), which is possible in the case α = 2 since
←−
k

(α)
t−1|t,0(yt−1|yt, y0) admits an analytical expression for any y0, yt−1, yt, thanks to the properties

of the Gaussian distribution.

Regarding (ii), in the case where α < 2, we make use of the trick introduced in Theorem 1, justifying
the data augmentation approach. We will rather characterize the density of the Markov kernels
associated to the backward of the process {Yt}Tt=0 given Y0 and {At}Tt=1. This time, since we
manage Gaussian noise increments, we can fall back to the classical strategy, as we further develop
in the following proposition.
Proposition 6 (Density of the backward process associated to {Yt}Tt=0 given Y0, {At}Tt=1). Con-
sider the setting of the data augmentation approach as given in (11). Let {(γt, σt)}Tt=1 be the noise
schedule at hand. Let k(α)t−1|0,t,a(·|yt, y0, a1:t) be the density of the backward process associated to
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{Yt}Tt=0 given Y0 and {At}Tt=1. Then k
(α)
t−1|t,0,a(·|yt, y0, a1:t) is the density of a Gaussian distribu-

tion N (m̃t−1, Σ̃t−1) with mean m̃t−1 and variance Σ̃t−1 such that

m̃t−1(yt, y0, a1:t) =
1

γt
(yt − Γt(a1:t)σ1→tϵt(yt, y0)) , Σ̃t−1(a1:t) = Γt(a1:t)Σ1→t−1(a1:t−1) ,

(13)
where

Σ1→t(a1:t) =

t∑
k=1

(
γ1→t

γ1→k

√
akσk

)2

ϵt(yt, y0) =
yt − γ1→ty0

σ1→t

Γt(a1:t) = 1− γ2
tΣ1→t−1(a1:t−1)

Σ1→t(a1:t)
.

Eventhough Γt involves multiple heavy-tailed random variables, it is nonetheless bounded: 0 ⩽
Γt ⩽ 1.

Proof. To determine k(α)t−1|t,0,a(·|yt, y0, a1:t), we need to work on the joint distribution of (Yt−1, Yt)

conditioned on Y0, {At}Tt=1, which is a Gaussian vector for which classical techniques will let us
derive the distribution of Yt−1 given Yt. Before doing so we need to compute ρt the covariance of
Yt−1 and Yt given Y0, {At}Tt=1, which we do thanks to Proposition 5:

ρt = Cov(Yt, Yt−1|Y0, A1:T ) = γtCov(Yt−1, Yt−1|Y0, A1:T ) = γtΣ1→t−1Id.

Denote by k
(α)
t−1,t|0,a the density of (Yt−1, Yt) conditioned on Y0, A1:T . Denote by ϕd(·|µ,Σ) the

density of a d-dimensional Gaussian distribution with mean µ and covariance Σ. From the results
of Proposition 5, we can write

k
(α)
t−1,t|0,a(yt−1, yt|y0, a1:t) = ϕd

((
yt−1
yt

) ∣∣∣∣ (γ1→t−1y0
γ1→ty0

)
,

(
Σ1→t−1(a1:t−1)Id ρtId

ρtId Σ1→t(a1:t)Id

))
Then the distribution of Yt−1 given Yt, Y0, A1:T is a Gaussian distribution N (m̃t−1, Σ̃t−1) (Holt &
Nguyen, 2023, Theorem 3) with mean m̃t−1 and variance Σ̃t−1 satisfying:

m̃t−1(yt, y0, a1:t) = γ1→t−1y0 +
ρt

Σ1→t(a1:t)
(yt − γ1→ty0)

Σ̃t−1(a1:t) = Σ1→t−1(a1:t−1)−
ρ2t

Σ1→t(a1:t)
.

By defining

ϵt(yt, y0) =
yt − γ1→ty0

σ1→t
, Γt(a1:t) = 1− γ2

tΣ1→t−1(a1:t−1)

Σ1→t(a1:t)
,

we give the final expression for the mean m̃t−1 and variance Σ̃t−1 of the distribution of Yt−1 given
Yt, Y0 and {At}Tt=1:

m̃t−1(yt, y0, a1:t) =
1

γt
(yt − σ1→tΓt(a1:t)ϵt(yt, y0)) (14)

Σ̃t−1(a1:t) = Γt(A1:t)Σ1→t−1(a1:t−1) .

Since Γt(a1:t) = 1−γ2
tΣ1→t−1(a1:t−1)/Σ1→t(a1:t) = atσ

2
t /Σ1→t(a1:t) and at, γt,Σ1→t, σ1→t >

0, we have 0 ⩽ Γt ⩽ 1.
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Case α = 2 As we set α = 2, the random variables {At}Tt=1 become deterministic, equal to 2.
One can check that in this case, with the variance preserving schedule

γt =
√

1− βt , γ1→t =
√
αt , σt =

√
βt , σ1→t =

√
1− αt ,

then:
Σ1→t = 2σ2

1→t = 2(1− αt) .

Further noticing that γt = γ1→t/γ1→t−1, one computes

Γt = 1−
σ2
1→t−1αt/αt−1

σ2
1→t

= 1− (1− αt−1)αt/αt−1

1− αt

=
1− αt/αt−1

1− αt
,

so that one recovers the famous equations made popular in the seminal DDPM paper (Ho et al.,
2020, Equation 7):

m̃t−1 =

√
αt−1√
αt

(
Yt −

1− αt/αt−1√
1− αt

ϵt(Yt, Y0)

)
(15)

Σ̃t−1 = (1− αt−1)
1− αt/αt−1

1− αt
,

with ϵt(Yt, Y0) = (Yt −
√
αtY0)/

√
1− αt.

Model for the reverse process. We propose approximating the backward process associated to
{Yt}Tt=0, given {At}Tt=1, adapting the DDPM approach. This time, for the backward process, we
characterized the conditional density of Yt−1 given Y0, Yt and {At}Tt=1:

←−
k

(α)
1:T |0,a(y1:T |y0, a1:T ) := p

(α)
T (yT )

∏1

t=T
k
(α)
t−1|0,t,a(yt−1|yt, y0, a1:t) ,

where k
(α)
t−1|0,t,a(·|yt, y0, a1:t) is the tractable density of a Gaussian distribution, as we have just

proved in Proposition 6. We similarly reconsider the family of Gaussian variational approximation
introduced in (4), modified to account for an i.i.d. sequence {At}Tt=1:

←−q θ
t−1|t,a(yt−1|yt, a1:t) = ϕd(yt−1|m̂θt−1(yt, a1:t), Σ̂θ

t−1(yt, a1:t)) , (16)

where ϕd is the density of the multivariate Gaussian distribution, so that the overall model for the
backward process is the following:

←−q θ
0:T (y0:T ) =

∫
ψ

(α)
1:T (a1:T )pT (yT )

∏T

t=1

←−q θ
t−1|t,a(yt−1|yt, a1:t)da1:T ,

where ψ(α)
1:T (a1:T ) =

∏T
i=1ψ

(α)(ai).

C.4 TRAINING LOSS

In this section, we draw inspiration from DDPM (Ho et al. (2020)) to obtain a loss function admitting
a closed-form formula. We further provide three design choices which lead to a simplified training
loss, corresponding to the denoising loss for α-stable diffusion.

C.4.1 CLASSICAL LOSS FOR DDPM, α = 2

We start by reviewing what is classically done for DDPM, i.e., the case α = 2. The variational
approximation {←−q θ

0:T : θ ∈ Θ}, for some parameter space Θ, is designed to admit the same
decomposition as

←−
k

(2)
0:T , i.e.,←−q θ

0:T (x0:T ) =
←−q θ

T (xT )
∏1

t=T
←−q θ

t−1|t(xt−1|xt), where←−q θ
T is chosen

to be the density of S i
α(0, σ1→tId) as an approximation of p(α)T . Then, it is trained on a classical

upper bound of the KL loss L D : θ 7→ KL(p⋆∥←−q θ
0) between the true and the generated distribution,
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which is a form of evidence lower bound loss (Ho et al., 2020, Equation 5). Thus one resorts to
optimize the following sum:

L D(θ) ⩽ L D
T +

T∑
t=2

L D
t−1(θ) + L D

0 (θ) + C (17)

where C is a constant that does not depend on θ, and

L D
T = E

[
KL
(
k
(2)
T |0(·|X0) ∥ ϕd(·|0, σ1→T Id)

)]
L D

0 (θ) = −E
[
log
(←−q θ

0|1(X0|X1)
)]

L D
t−1(θ) = E

[
KL
(
k
(2)
t−1|0,t(·|X0, Xt) ∥ ←−q θ

t−1|t(·|Xt)
)]

,

where {Xt}Tt=0 is the process defined in (10), and k
(2)
t−1|0,t is the conditional density of Xt−1 given

X0, Xt. We make the following classical remarks on the terms of this loss (Sohl-Dickstein et al.
(2015), Yang et al. (2024)). The term L D

T does not depend on θ but only on the chosen time
horizon for the forward process, that determines the final variance of the Gaussian distribution
N (0, σ1→T Id). It is neglected. The effect of optimizing the first term L D

0 (θ) is negligible too.

More importantly, for the term L D
t−1(θ), when using Gaussian variational approximations, i.e., as

←−q θ
t−1|t(xt−1|xt) = ϕd

(
xt−1|m̂θt−1(xt), Σ̂

θ
t−1(xt)

)
,

where (x, m,Σ) 7→ ϕd(x|m,Σ) is the d-dimensional density of the Gaussian distribution with mean
m and covariance matrix Σ, m̂θt−1, Σ̂

θ
t−1 are some functions of xt parameterized by θ, it turns out that

L D
t−1 admits a closed-form expression. For a fixed variance Σ̂θ

t−1 = Σ̃t−1, with Σ̃t−1 given in (15),
one resorts to optimize a convenient L2 loss function:

L D
t−1(θ) = λt∥m̃t−1(xt, x0)− m̂θt−1(xt)∥2, (18)

where λt, m̃t depend on the noise schedule (γt, σt) and xt, x0.

Unfortunately, as we mentioned in Section 3.2.2, this solution cannot be used as such to learn the
backward transitions associated to {Xt}Tt=0 for α < 2. The main issue that we face stems from
the fact that the density of α-stable distributions are in most cases unknown, in contrast to Gaussian
distributions. As a result, the conditional density xt−1, x0, xt 7→ k

(α)
t−1|0,t(xt−1|x0, xt) is unknown

for α < 2, which prevents us to have an explicit expression for θ 7→ L D
t−1(θ).

Moreover, the absence of a second order moment for α-stable distributions challenges the most
straightforward adaptation we can make to the previous loss considering the data augmentation
setting. Indeed, to fit θ to the data distribution, we aim to rely on Kullback-Leibler minimization,
a.k.a. the maximum likelihood principle, and some associated upper bounds. A naive solution would
consist in considering the bounds obtained applying the Jensen inequality:

KL(p⋆∥←−q θ
0) ⩽ E

[
KL
[
p⋆(·)∥←−q θ

0|a(·|A1:T )
]]

,

and fall back to the expression obtained in (17), only with conditioning on {At}Tt=1. However,
as we see in (18), this expression would involve taking expectation of At, while it is distributed
as Sα/2,1(0, cA) and admits no first order moment. We are not aware of any bounds on KL(p⋆ ∥
←−q θ

0|a(·|A1:T )) that would lead to a meaningful optimization problem due to the heavy tailed nature
of the distribution of {At}Tt=1.

C.4.2 LOSS FOR DLPM, FOR ANY α

We now expose our methodology to address this limitation. We keep the structure of the classical
loss and aim at minimizing the error between the backward process {

←−
Y t}Tt=0 and its variational

approximation {
←−
Y θ

t }Tt=0. To do so we consider the same loss structure as before, but take the square
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root of individual KL terms. See Appendix C.4.3 for a more principled approach leading to a similar
loss. Thus we consider the following valid loss function:

L L : θ 7→ L L(θ) = E

[
T∑

t=2

(
L L

t−1(θ,A1:t)
)r]

, (19)

where r > 0,

L L
t−1(θ,A1:t) = E

[
KL
(
k
(α)
t−1|t,0,a(·|Yt, Y0, A1:t) ∥ ←−q θ

t−1|t,a(·|Yt, A1:t)
) ∣∣∣∣ A1:t

]
,

and k
(α)
t−1|0,t,a denotes the conditional density of Yt−1 given Y0, Yt and {At}Tt=1. In order to ensure

that the expectations with respect to A1:T are finite, we need to choose r < α
2 when α ∈ (1, 2). For

simplicity, in the rest of the paper, we will use r = 1
2 .

Proposition 7 (Training loss for DLPM). The loss L L admits a closed-form expression, such that
one resorts to optimize the following loss for 1 ⩽ t ⩽ T :

L L
t−1(θ,A1:t) = E

[
1

2
log

Σ̂θ
t−1

Σ̃t−1
+

Σ̃t−1 + ∥m̃t−1 − m̂θt−1∥2

2Σ̂θ
t−1

− 1

2

∣∣∣∣ A1:t

]
where

m̃t−1(Yt, Y0, A1:t) =
1

γt
(Yt − σ1→tΓt(A1:t)ϵt(Yt, Y0))

Σ̃t−1(A1:t) = Γt(A1:t)Σ1→t−1(A1:t−1)

ϵt(Yt, Y0) =
Yt − γ1→tY0

σ1→t

Σ1→t(A1:t) =

t∑
k=1

(
γ1→t

γ1→k

√
Akσk

)2

Γt(A1:t) = 1− γ2
tΣ1→t−1(A1:t−1)

Σ1→t(A1:t)
,

where m̂θt−1, Σ̂
θ
t−1 are the mean and variance of the backward transition kernels←−q θ

t−1|t. We have
omitted the arguments of the mean and variance functions for clarity.

Proof. Recall (Proposition 6) that the backward process Yt−1 conditioned on {At}Tt=1, Yt, Y0 at time
t is distributed as N (m̃t−1, Σ̃t−1), and, by design (Section 3.2.2), the backward transition kernels←−q θ

t−1|t,a of each element of the variational family describe a Gaussian transition kernel of mean

m̂θt−1 and variance Σ̂θ
t−1 at time t, as defined in 14. Since the KL term in L L

t−1(θ,A1:t) corresponds
to a KL divergence between two Gaussian distributions, a closed-form formula is readily available.
Here we rewrite the equation with all the functions arguments written out explicitly:

L L
t−1(θ,A1:t) = E

[
1

2
log

Σ̂θ
t−1(A1:t)

Σ̃t−1(A1:t)
− 1

2
(20)

+
Σ̃t−1(A1:t) + ∥m̃t−1(Yt, Y0, A1:t)− m̂θt−1(Yt, A1:t)∥2

2Σ̂θ
t−1(A1:t)

∣∣∣∣ A1:t

]

Now we discuss further design choices for L L
t−1(θ,A1:t),←−q θ

t−1|t,a, leading to a simplified denois-
ing loss, as is usually done in the literature. We denote them by D1, D2 and D3.

D1. We set a fixed variance Σ̂θ
t = Σ̃t for the reverse process , but we expect a study on the effect

of learning variance to yield similar results as in original DDPM (Ho et al. (2020)), and especially
its improved version (Nichol & Dhariwal (2021)).
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D2. Following our own experimental results and the usual recommendation for denoising diffu-
sion models (see, e.g., Yang et al. (2024); Karras et al. (2022)), we reparameterize the output of the
model to predict the value ϵt(yt, y0) at time-step t rather than m̃t−1(yt, y0, a1:t). Since

m̃t−1(Yt, Y0, A1:t) =
1

γt
(Yt − σ1→tΓt(A1:t)ϵt(Yt, Y0)) ,

we re-parameterize m̂θt−1 to be equal to

m̂θt−1(Yt, A1:t) =
1

γt

(
Yt − σ1→tΓt(A1:t)ϵ̂

θ
t (Yt, A1:t)

)
.

with ϵ̂θt being the output of the model. Following experimental results (see the introduction of
Appendix G), we drop the dependency of ϵ̂θt on {At}Tt=1, which is reasonable since it approximates
ϵt : (Yt, Y0) 7→ ϵt(Yt, Y0). Thus ϵ̂θt only depends on t, Yt. This choice achieves better performance
in our experiments, allows further computational tricks (introduced in Appendix C.5), and enables
one to re-use existing neural network architectures.

D3. Assuming D1, D2, L L
t−1(θ) becomes

L L
t−1(θ) = E

[
λ2
t,A1:t

∥ϵ̂θt (Yt, A1:t)− ϵt(Yt, Y0)∥2
]
, (21)

where λt,a1:t
= Γt(a1:t)σ1→t/2γtΣ̃t−1, and ϵt(Yt, Y0) = (Yt − γ1→tY0)/σ1→t. The methodologi-

cal knowledge of diffusion models motivates making specific choices for λ, different from its defined
value, resulting in a classical technique for improving performances (e.g., see Karras et al. (2022);
Ho et al. (2020); Nichol & Dhariwal (2021); Yang et al. (2024)). We will stick to the classical choice
of choosing λt,a1:t = 1, which experimentally works better and draws similarities to the score-based
perspective (see Appendix E). Other choices and optimizations are left to further work.

The proof of Proposition 2 follows immediately from these design choices, hence omitted.

C.4.3 A PRINCIPLED APPROACH FOR DERIVING THE LOSS FUNCTION

In this section, we provide a more principled approach to derive the loss function for DLPM, as
initially given in (19). We show the derivation for r = 1/2; however, the same derivation applies for
any r ∈ (0, 1].

Noting that Y0 is independent of {At}Tt=1 in (5), p⋆ is the equal to k
(α)
0|a (·|a1:T ), the conditional

density of Y0 given At = at for any t ∈ {1, . . . , T}, and therefore, we consider the valid loss
function

L L(θ) : θ 7→
∫

da1:Tψ
(α)
1:T (a1:T )

[
KL(k

(α)
0|a (·|a1:T )∥

←−q θ
0|a(·|a1:T ))

]1/2
.

While this function is still intractable, we can provide an upper bound which we can minimize.
Indeed, using Jensen inequality twice, we bound this function by

L L(θ) =
∫
da1:Tψ

(α)
1:T (a1:T )

{∫
dy0k

(α)
0|a (y0|a1:T )(log k

(α)
0|a (y0|a1:T )− log←−q θ

0|a(y0|a1:T ))
}1/2

⩽
∫
da1:Tψ

(α)
1:T (a1:T )

{
−
∫
dy0:T k

(α)
0:T |0,a(y0:T |a1:T ) log

←−q θ
0:T |a(y0:T |a1:T )

k
(α)

1:T |0,a(y1:T |y0,a1:T )
+Cst1

}1/2

=
∫
da1:Tψ

(α)
1:T (a1:T ){

∑T−1
t=0 L L

t (θ, a1:T ) + Cst1 +Cst2}1/2

⩽
∫
da1:Tψ

(α)
1:T (a1:T ){

∑T−1
t=0 L L

t (θ, a1:T )
1/2 +Cst

1/2
1 +Cst

1/2
2 } ,

where we used
√
a+ b <

√
a +

√
b when a, b ⩾ 0 and L L

0 (θ, a1:T ) =
E[− log pθ(Y0|Y1, a1:T )|{At}Tt=1 = {at}Tt=1] for t > 0,

L L
t (θ, a1:T ) = E

[
KL(k

(α)
t|t+1,0,a(·|Yt, Y0, a1:T )∥←−q θ

t|t+1,a(·|Yt, a1:T ))|{At}Tt=1 = {at}Tt=1

]
,

and Cst1 =
∫
dy0p⋆(y0) log p⋆(y0)dy0 and Cst2 = E[KL(k

(α)
1:T |0,a(·|Y0, a1:T )|←−q θ

T )|{At}Tt=1 =

{at}Tt=1] does not depend on θ since←−q θ
T is chosen as Sα(0, σ1→tId). Regarding L L

0 , we neglect this
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term, replacing the distribution←−q θ
0|1,a(·|y1, a1:T ) by a deterministic Dirac. One could alternatively

employ the strategy of the discrete decoder for image data as described by Ho et al. (2020). We end
up with the final loss function:

L L(θ) =
∫
da1:Tψ

(α)
1:T (a1:T ){

∑T−1
t=0 L L

t (θ, a1:T )
1/2} .

We can then provide an explicit expression for L L
t (θ, a1:T ) based on the result of Proposition 6.

C.5 REDUCING THE COMPUTATIONAL COST WITH FASTER SAMPLING AT EACH TIMESTEP

In this section, we provide a faster algorithm for training DLPM, computing each loss term L L
t−1

using only two heavy-tailed random variables per datapoint, instead of t random variables.

Consider again the process {Yt}Tt=0. We replace the loss function (19) by an equivalent one:

L L
time(θ) = E

[
L L

t−1(θ,A1:t)
1/2
]
, (22)

where t ∼ U [2, T ] = (
∑T

i=2 δi)/(T − 1). The standard technique for computing the loss consists
in the following loop:

1. Take a batch of B datapoints {Y i
0 }Bi=1.

2. For each datapoint Y i
0 , draw a random ti,as suggested by the alternative loss (22). Indeed,

for a single datapoint, (i) training on all timesteps rather than just one yields equal to in-
ferior results, for a much higher computational cost, (ii) it is beneficial for the model to
proportionally spend more time learning specific time ranges (iii) thus the distribution of t
can be optimized and is a matter of ongoing methodological research, e.g., see Karras et al.
(2022).

3. Draw sequences {Ai
t}

ti
t=1 of heavy-tailed random variables.

4. Compute the noised datapoints {Y i
ti}

B
i=1.

5. Compute the batch loss

L̂ L(θ) =
1

B

B∑
i=1

L L
ti−1(θ, Y

i
ti , A

i
1:ti) ,

such that L̂ L(θ) ≈ L L
time(θ).

6. Do an optimization step.

Step 3 can be expensive, since one has to sample on average O(T ) d-dimensional heavy-tailed
random variables to compute a single noised datapoint Yt from Y0. This is all the more inefficient
as T can be quite large (indeed, on image datasets we can have T = 4000, see Appendix G).

One can guess that this is abusive, especially since characterizing the distribution of Yt given Y0

only requires a single heavy-tailed random variable:

Yt
d
= γ1→tY0 + σ1→tĀ

1/2Ḡt ,

where Ā ∼ Sα/2,1(0, cA), Ḡt ∼ N (0, Id). As we formalize in the next proposition, it is indeed
possible to bypass the sampling of a whole sequence. Since we manipulate the joint distribution of
(Y0, Yt−1, Yt) for the loss term L L

t−1(θ), we will actually need to sample two heavy-tailed random
variables.
Proposition 8 (Sampling two heavy-tailed r.v for each loss term). Suppose that the functions
m̂θt−1, Σ̂

θ
t−1 satisfy for any yt, a1:t:

m̂θt−1(yt, a1:t) = Mθ
t−1

(
yt, at,

Σ1→t−1(a1:t−1)

σ2
1→t−1

)
Σ̂θ

t−1 = Sθ
t−1

(
yt, at,

Σ1→t−1(a1:t−1)

σ2
1→t−1

)
,
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for some functions Mθ
t−1, S

θ
t−1, and where

Σ1→t(a1:t) =

t∑
k=1

(
γ1→t

γ1→k

√
akσk

)2

,

as given in (12). Then each term E[L L
t−1(θ,A1:t)]

1/2 of the loss can be computed sampling only
two independent random variables Āt

0, Ā
t
1 distributed as Sα/2,1(0, cA):

E
[
L L

t−1(θ,A1:t)
]1/2

= E
[
L Less

t−1 (θ, Āt
0,1)
]1/2

,

where Āt
0,1 := (Āt

0, Ā
t
1), and

L Less
t−1 (θ, Āt

0,1) = E
[
1

2
log

Sθ
t−1(Zt, Ā

t
0,1)

Σ̃t−1(Āt
0,1)

− 1

2
(23)

+
Σ̃t−1(Ā

t
0,1) + ∥m̃′t−1(Zt, Z0, Ā

t
0,1)−Mθ

t−1(Zt, Ā
t
0,1)∥2

2Sθ
t−1(Zt, Āt

0,1)

∣∣∣∣ Āt
0,1

]
,

with {Zt}Tt=0 being a stochastic process defined as

Z0 = Y0 , Zt = γ1→tZ0 +Σ
′1/2
t Ḡt ,

where {Gt}Tt=1 is an i.i.d. sequence distributed as N (0, Id), and

Σ′t−1(Ā
t
0) = σ2

1→t−1Ā
t
0

Σ′t(Ā
t
0,1) = σ2

t Ā
t
1 + γ2

tΣ
′
t−1(Ā

t
0)

Γ′t(Ā
t
0,1) = 1−

γ2
tΣ
′
t−1(Ā

t
0)

Σ′t(Ā
t
0,1)

,

such that Zt
d
=Yt, and:

m̃t−1(Zt, Z0, Ā
t
0,1) =

1

γt

(
Zt − σ1→tΓ

′
t(Ā

t
0,1)ϵt(Zt, Z0)

)
Σ̃t−1(Ā

t
0,1) = Γ′t(Ā

t
0,1)Σ

′
t−1(Ā

t
0)

ϵt(Zt, Z0) =
Zt − γ1→tZ0

σ1→t
.

In order to keep the notations similar for all t ⩾ 2, in the case of L Less
1 , we always set Ā2

0 = 0.

Proof. Remember the full equation for the loss, first given in Proposition 7 (20):

L L
t−1(θ,A1:t) = E

[
1

2
log

Σ̂θ
t−1(A1:t)

Σ̃t−1(A1:t)
− 1

2

+
Σ̃t−1(A1:T ) + ∥m̃t−1(Yt, Y0, A1:T )− m̂θt−1(Yt, A1:T )∥2

2Σ̂θ
t−1(A1:t)

∣∣∣∣ A1:t

]
.

Now, all the required variables and computations only depend on At,Σ1→t−1; this is the case for
m̂θt−1, Σ̂

θ
t−1 by hypothesis, and this is the case for m̃t−1, Σ̃t−1 as one can see in (13). Rewriting the

previous loss as

L L
t−1(θ,A1:t) = E

[
1

2
log

Sθ
t−1

(
Zt, At,

Σ1→t−1(A1:t−1)
σ2
1→t−1

)
Σ̃t−1(A1:T )

− 1

2

+
Σ̃t−1(A1:t)

2Sθ
t−1

(
Zt, At,

Σ1→t−1(A1:t−1)
σ2
1→t−1

)
+
∥m̃t−1(Yt, Y0, A1:t)−Mθ

t−1

(
Zt, At,

Σ1→t−1(A1:t−1)
σ2
1→t−1

)
∥2

2Sθ
t−1

(
Zt, At,

Σ1→t−1(A1:t−1)
σ2
1→t−1

) ∣∣∣∣ At,Σ1→t−1

]
,
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it becomes clear how the expectation can be taken on the joint distribution of(
Y0, Yt−1, Yt, At,

Σ1→t−1(A1:t−1)

σ2
1→t−1

)
.

A direct application of Lemma 1 shows that this expectation can be taken on the joint distribution
of the five random variables (Z0, Zt−1, Zt, Ā

t
1, Ā

t
0), which only necessitates sampling two heavy-

tailed random variables Āt
0, Ā

t
1. Using the formulas for Z0, Zt−1 and Zt given Āt

0, Ā
t
1 as defined in

Lemma 1, we obtain the equivalent loss (23).

As we will prove in the next proposition, the conditions of Proposition 8 are always satisfied under
design choices D1, D2. Under design choice D3, we can also rewrite the simplified denoising loss
given in Proposition 2.

Proposition 9 (Sampling one heavy-tailed r.v in the simplified loss). Assume the design choices D1,
D2, D3 are satisfied. Then one can obtain the following simplified denoising objective function from
the full objective function given in (23):

L SimpleLess(θ) =

T∑
t=1

E
[
E
(
∥ϵ̂θt (Zt)− Ā

1/2
t Ḡt∥2 |Āt

)1/2]
,

where {Āt}Tt=1 is an i.i.d. sequence distributed as Sα/2,1(0, cA), and

Zt = γ1→tZ0 + σ1→tĀ
1/2
t Ḡt ,

with {Ḡt}Tt=1 an i.i.d. sequence distributed as N (0, Id).

Proof. Let us recall design choice D1:

Σ̂θ
t−1(A1:) = Γt(A1:t)Σ1→t(A1:t) ,

and design choice D2:

m̂θt−1(Zt, A1:t) =
1

γt

(
Zt − σ1→tΓt(A1:t)ϵ̂

θ
t (Zt)

)
.

Since Γ only depends on Σ1→t and Σ1→t−1, both m̂θt−1, Σ̃t−1 can be expressed as functions of zt, at
and Σ1→t(a1:t). Thus the assumptions of Proposition 8 are satisfied. Using the same notations, we
can apply the same algebraic transformations as in (21), and by design choice D3, obtain:

L Less(θ) =

T∑
t=1

E
[
E
(
∥ϵ̂θt (Zt)− ϵt(Zt, Z0)∥2 |Āt

0, Ā
t
1

)1/2]
.

Finally, we apply Lemma 2 to Σ′t to affirm that Σ′t
d
=σ2

1→tĀt, where Āt ∼ Sα/2,1(0, cA), and obtain
the final loss we presented.

We stress that this denoising training loss is similar to that of LIM (Yoon et al., 2023, Theorem 4.3),
but elevated to the necessary power to guarantee that the loss is finite. See Appendix E.1 for a more
detailed discussion.

D DENOISING LÉVY IMPLICIT MODELS (DLIM)

Using the same techniques as in DDIM (Song et al. (2020)), we obtain a deterministic sampling
process which we naturally call Denoising Levy Implicit Models (DLIM). Alike the Gaussian case
treated in the original DDIM work, we will show that both DLPM and DLIM can share the same
neural network.
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D.1 NON-MARKOVIAN FORWARD PROCESS

Let {ρt}Tt=1 be an alternative noise schedule, proper to DLIM, that will ultimately tend to zero
for deterministic generation. In the same way as in Section 3.2.2, we take a data augmentation
approach. We consider a process {Zt}Tt=1 defined by Z0 ∼ p⋆, where p⋆ is the data distribution,
ZT ∼ S(γ1→TZ0, σ1→T Id) and, for 1 < t ⩽ T

Zt−1 = γ1→t−1Z0 + (σα
1→t−1 − ραt )

1/αϵt(Zt, Z0) + ρtA
1/2
t Gt

where ϵt(Zt, Z0) = (Zt−γ1→tZ0)/σ1→t, and {At}Tt=1, {Gt}Tt=1 are independent random variables
distributed according to At ∼ Sα/2,1(0, cA) and Gt ∼ N (0, Id).

Proposition 10. The distribution of Zt given Z0 is the same as that of Yt given Y0.

Proof. This is a simple proof by induction, where one can re-adapt the technique of (Song et al.,
2020, Lemma B.1) with the property for addition of α-stable variable as we introduced in Propo-
sition 3. The case t = T is true by construction. Suppose now that the property is veri-
fied at timestep t, where 1 ⩽ t ⩽ T . Then, focusing on the distribution of Zt−1 given Z0,
ϵt(Zt, Z0) = (Zt − γ1→tZ0)/σ1→t is distributed as S i

α(0, Id) by hypothesis, and thus by Proposi-
tion 3 and since A

1/2
t Gt ∼ S i

α(0, Id), we can write

Zt−1
d
= γ1→t−1Z0 + σ1→t−1ϵ̄t ,

where ϵ̄t ∼ S i
α(0, Id), which shows that indeed Zt−1 given Z0 admits the same distribution as Yt−1

given Y0.

The design of this process makes the distribution of Zt given Z0 match that of Yt given Y0, where
{Yt}Tt=0 is the forward process of DLPM (5). The task of sampling from it is thus efficient and
straightforward.

D.2 GENERATIVE PROCESS

We similarly reconsider the family of Gaussian variational approximation introduced in (4), which
accounts for an i.i.d. sequence {At}Tt=1:

←−q θ
0:T (y0:T ) =

∫
ψ

(α)
1:T (a1:T )pT (yT )

∏T

t=1

←−q θ
t−1|t,a(yt−1|yt, a1:t)da1:T ,

where ψ(α)
1:T (a1:T ) =

∏T
i=1ψ

(α)(ai), ψ(α) is the density of Sα/2,1(0, cA), and pT is the density of
S(0, σ1→T Id). This time, we set

←−q θ
t−1|t,a(zt−1|zt, a1:t) = ϕd

(
zt−1|m̂θt−1(zt), ρ2tat

)
,

withϕd being the density of the multivariate Gaussian distribution: the variance is fixed, determined
by the alternative noise schedule {ρt}Tt=1. For deterministic sampling, one will ultimately choose
ρt = 0 for all t and sample the chain {

←−
Z θ

t }Tt=0 as follows:

←−
Z θ

T ∼ S(0, σ1→T Id) ,
←−
Z θ

t−1 = m̂θt (
←−
Z θ

t ) for t ∈ {T, · · · , 1} .

As zt is available as input, the model can be fit to approximate the value of ϵt(zt, z0), and we
reparameterize m̂θt as follows:

m̂θt (zt) =
zt − σ1→tϵ̂

θ
t (zt)

γt
+ (σα

1→t−1 − ραt )
1/αϵ̂θt (zt) . (24)

This is alike design choice D2 in Appendix C.4.2.
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D.3 LOSS FUNCTION AND EQUIVALENCE WITH DLPM

We denote by h
(α)
t−1|t,0,a the density of Zt−1 given Zt, Z0 and A1:T , which is the density of the

Gaussian distribution with mean γ1→t−1Z0 +(σα
1→t−1− ραt )

1/αϵt(Zt, Z0) and covariance ρ2tAtId.
Since this distribution is now a given, we are inclined to use the loss function introduced in (7),
which is:

L L(θ) := E

[
T∑

t=1

(
L L

t−1(θ,A1:t)
)1/2]

, where

L L
t−1(θ,A1:t) := E

[
KL
(
h
(α)
t−1|t,0,a1:t

(·|Zt, Z0, A1:t) ∥ ←−q θ
t−1|t,a(·|Zt, A1:t)

) ∣∣∣A1:T

]
.

Since for 1 ⩽ t ⩽ T , h(α)
t−1|t,0,a and ←−q θ

t−1|t,a are the densities of Gaussian distributions, we can
analytically compute each term of the loss, as in (19):

L L
t−1(θ,A1:t) =

1

2ρ2tAt
∥γ1→t−1Z0 + (σα

1→t−1 − ραt )
1/αϵt(Zt, Z0) − m̂θt (Zt, A1:t)∥2

where ϵt(Zt, Z0) = (Zt − γ1→tZ0)/σ1→t. Since the variance of the elements of our variational
family {←−q θ

0:T } have been designed to match that of the backward process given Z0, A1:T , the ex-
pression for the loss is readily in a simpler format. Finally, using the reparameterization given in
(24), The loss term L L

t−1(θ,A1:T ) becomes:

L L
t−1(θ,A1:t) = λ′t,At

∥ϵt(Zt, Z0)− ϵ̂θt (Zt)∥2 ,

where λ′t,at
= (σ1→t − (σα

1→t−1 − ραt )
1/α)2/(2ρ2tat). By comparing with the simpler DLPM loss

(21) with design choices D1, D2, as introduced in Appendix C.4.2, we realize we obtained the same
loss term, with a different multiplicative factor λ′t,at

instead of λt,a1:t
in (21). Finally, considering

the alternative loss where λ′t,at
= 1 for all t, alike the design choice D3 in Appendix C.4.2, we fall

back to the same simplified objective function obtained for DLPM:

L Simple(θ) =

T∑
t=1

E
[
E
(
∥ϵ̂θt (Yt)− ϵt(Yt, Y0)∥2

∣∣ A1:t

)1/2]
,

E ADDITIONAL INFORMATION ON LEVY-ITO MODELS (LIM)

Here we briefly recapitulate the work done by Yoon et al. (2023), introducing continuous diffusion
models with α-stable heavy-tailed noise. Using notations closer to ours, we define the noising
schedule as any locally bounded continuous functions γ : (t,X) 7→ γ(t,X) and σ : (t) 7→ σ(t). We
denote by Lα

t the Levy process for which the increments between time s < t follow a symmetric
isotropic α-stable distribution S i

α(0, (t − s)Id). In this setting, the forward process Xt, with X0 ∼
p⋆, is written

dXt = γ(t,Xt−)dt+ σ(t)dLα
t , (25)

where Xt− denotes the left limit of X at time t. Similarly, Xt is distributed as S i
α(γ1→tX0, σ1→tId)

when using Euler steps. This defines the cadlag (right continuous with left limits) solution, which in
the case of α < 2 a.s admits discontinuous jumps. We then consider the following backward process
←
Xt:

d
←
Xt =

(
−γ(t,

←
Xt+)− ασα(t,

←
Xt+)S

(α)
t (

←
Xt+)

)
dt+ σ(t)dL̄α

t + dZ̄t (26)

where Z̄t is the backward version of a Levy-type stochastic integral Zt s.t E[Zt] = 0 with finite
variation, and S

(α)
t is the fractional score function, defined to be

S
(α)
t (x) =

∆
α−2
2 ∇pt(x)
pt(x)

,

where ∆η/2 denotes the fractional Laplacian of order η/2 (Ortigueira et al. (2014)). More precisely,
∆η/2f(x) = F−1{∥u∥ηF{f}(u)}, where F ,F−1 are the Fourier and inverse Fourier transforms.
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The training loss is obtained using the classical technique of denoising score matching (Vincent
(2011)), where the following losses

L : θ 7→ E∥sθ(Xt, t)− S
(α)
t (Xt)∥2 , L′ : θ 7→ E∥sθ(Xt, t)− S

(α)
t (Xt|X0)∥2 , (27)

are proven to be equivalent objective functions, with sθ being the score approximation given by the
model.

E.1 COMPARING LIM AND DLPM

Let (Xt)0⩽t⩽T be the forward process introduced in (25). As stressed initially, the framework of
LIM is not straightforward to manipulate, thus we do not characterize explicitly the distribution of
Xt given X0 for an arbitrary noise schedule in the continuous case. Since the work done for LIM
by Yoon et al. (2023) only provides the formulas for the scale-preserving schedule, we stick to them
in the following: we keep the notation γ1→t, σ1→t for the continuous time regime equivalent of the
scale preserving schedule we introduce in Appendix G, and they match on integer times t.

Considering an Euler scheme to obtain discretization for the forward and backward process, and
using our own notations, both LIM and DLPM admit the same forward process {Xt}Tt=1, X0 ∼ p⋆
and

Xt = γtXt−1 + σtϵ
(α)
t ,

where {ϵ(α)t }Tt=1 is an iid sequence of random variable distributed as S i
α(0, Id). We denote by

{
←−
X θ

t }0t=T the backward process associated to the Euler discretization of (26), where we use a neural
network sθ to approximate the true score S

(α)
t . Since the true score of the data S

(α)
t (xt|x0) can be

expressed as

S
(α)
t (xt|x0) = −

1

ασα−1
1→t

ϵt(xt, x0) ,

where ϵt(xt, x0) = (xt − γ1→tx0)/σ1→t, we write

sθ(xt, t) = −
1

ασα−1
1→t

ϵ̂θt (xt, x0) ,

so that we rather work with ϵ̂θt , with the same intention that led us to the design choices given in
Appendix C.4.2.

Moreover, we denote by {
←−
Y θ

t }Tt=0 the backward process of DLPM, as introduced in (16). As em-
phasized in Table 4, the sampling strategies for LIM and DLPM differ fundamentally when α ̸= 2.
This is also the case for the training procedure.

Stochastic sampling. The DLPM approach introduces the bounded random variable 0 ⩽ Γt ⩽ 1,
interacting with the mean and variance of the Gaussian conditional at hand. Three points: when
α = 2, Γt becomes deterministic and one recovers DDPM formulas. Second, Γt brings additional
stochasticity in the sampling process. Third, it does so in the interesting manner than it simultane-
ously scales both (i) the magnitude of the noise added at time t − 1 and (ii) the output of the noise
model.

Deterministic sampling. In the case of the scale-preserving schedule, these two equations do not
describe the same sampling procedure.

Training. Alike the Gaussian case (α = 2), the score S
(α)
t (xt|x0) is a linear expression of the

noise term ϵt(xt, x0), so the training equations are very similar, and can be reformulated to involve
a denoising loss:

Lt−1 : θ 7→ E
(
∥ϵ̂θt (Xt)− ϵt(Xt, X0)∥ηp

)
. (28)

• In the case of DLPM, our discussion leads us to the choice p = 2 and η = 1 (see (8)).

• In the case of LIM, the theory must rely on the choice p = 2 and η = 2 in order to
obtain the denoising score matching loss equivalence (i.e., L,L′ are equivalent in (27)).
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Stochastic Deterministic

Continuous (LIM)
←−
X θ

t

γt
− α(1/γt − 1)

σα−1
1→t

ϵ̂θt + (
1

γα
t

− 1)1/αϵ′t

←−
X θ

t

γt
−
(
σ1−α
1→t

γt
− σ1−α

1→t

)
ϵ̂θt

Denoising (DLPM)
←−
Y θ

t

γt
− Γtσ1→tϵ̂

θ
t +

√
ΓtΣ1→t−1G

′
t

←−
Y θ

t

γt
−
(
σ1→t

γt
− σ1→t−1

)
ϵ̂θt

Table 4: Distribution of
←−
X θ

t−1,
←−
Y θ

t−1. {G′t}1t=T are independent random variables distributed as
N (0, Id), {ϵ′t}1t=T are independent random variables distributed as S i

α(0, Id). ϵ̂θt is the model at
hand at time t, the formula for Σ1→t is given in (12), and Γt = 1− γ2

tΣ1→t−1/Σ1→t. Eventhough
Γt involves two heavy-tailed random variables, it is bounded: 0 ⩽ Γt ⩽ 1 (see Appendix C.3).

One must make the assumption that the losses L,L′ are not infinite for some θ, which
is not necessarily realistic because St(Xt), St(Xt|X0) are heavy-tailed random variables
involving α-stable noise, and as such admit no variance.

• In the case of LIM, in the experiments the parameters p = 1 and η = 1 are chosen, instead
of the previous squared loss, in order to obtain more stable training, potentially indicating
that indeed L,L′ (27) might be infinite.

F TECHNICAL RESULTS

In this section, we give the proofs relative to our technique for faster training, as introduced in
Appendix C.5.
Lemma 1. Let Āt

0, Ā
t
1 bet two independent random variables distributed as Sα/2,1(0, cA). Define

Z0 = Y0, and
Zt = γ1→tZ0 + σ1→t

(
Āt

1

)1/2
Gt .

Moreover, let Zt−1 be equal to

Zt−1 =
1

γt

(
Zt − Γ′t(Ā

t
0,1)σ1→tϵt(Zt, Z0)

)
+Σ′t(Ā

t
0,1)Gt−1 ,

where

Σ′t(Ā
t
0,1) = Γ′t(Ā

t
0,1)σ1→t−1

(
Āt

0

)1/2
Γ′t(Ā

t
0,1) =

Āt
1σ

2
t

Āt
1σ

2
t + γ2

t σ
2
1→t−1Ā

t
0

ϵt(Zt, Z0) =
Zt − γ1→tZ0

σ1→t
.

Then the joint distribution of (Z0, Zt−1, Zt, Ā
t
1, Ā

t
0) matches the joint distribution of(

Y0, Yt−1, Yt, At,
Σ′t(Ā

t
0,1)

σ2
1→t

)
.

Proof. Consider the setting of Proposition 6. The distribution of Yt−1 given Yt, Y0, A1:T is charac-
terized by the values of Σ1→t,Γt:

m̃t−1 =
1

γt
(Yt − Γtσ1→tϵt(Yt, Y0)) , Σ̃t−1(A1:t) = Γt(A1:t)Σ1→t−1(A1:t−1) ,

where

Σ1→t(A1:t) = σ2
tAt + γ2

tΣ1→t−1(A1:t−1)

ϵt(Yt, Y0) =
Yt − γ1→tY0

σ1→t

Γt(A1:t) = 1− γ2
tΣ1→t−1(A1:t−1)

Σ1→t(A1:t)
.
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Directly applying the result of Lemma 2, we can affirm that

Σ1→t−1(A1:t−1)
d
=σ2

1→t−1Ā
t
0 ,

where Āt
0 ∼ Sα/2,1(0, cA). In this conditions, the distribution of Γt(A1:t) is equal to that of

Γ′t(Ā
t
0,1), where

Γ′t(Ā
t
0,1) = 1−

γ2
t σ

2
1→t−1Ā

t
0

σ2
tAt + γ2

t σ
2
1→t−1Ā

t
0

Since the distribution of Zt does not change if we draw another independent Āt
1 instead of At, this

ends the proof.

Lemma 2 (Sampling Σ1→t with a single heavy-tailed r.v). Consider the setting of the data augmen-
tation approach in Section 3.2.2, where in particular {At}Tt=1 are independent random variables
distributed according to At ∼ S1α/2,1(0, cA), with cA = cos2/α(πα/4). Consider the random
variable Σ1→t(A1:t), as defined in (12):

Σ1→t(A1:t) =

t∑
k=1

(
γ1→t

γ1→k

√
Akσk

)2

.

Then
Σ1→t(A1:t)

d
= σ2

1→tA,

where A ∼ S1α/2,1(0, cA).

Proof. By Proposition 5, Yt given Y0, A1:t is a random variable distributed as a Gaussian of variance
Σ1→t(A1:t):

Yt
d
= γ1→tY0 +

√
Σ1→t(A1:t)Ḡt ,

where Ḡt is distributed as a standard Gaussian. Remember that Yt and Xt admit the same distribu-
tion, with Xt =

d
= γ1→tX0 + ϵ̄t where ϵ̄t is distributed as a S i

α(0, Id).

In the same spirit we can define a third sequence of random variables {Zt}Tt=0 with Z0 = X0, and

Zt = γ1→tZ0 + σ1→t

√
A′tḠt ,

where {A′t}Tt=0 are independent random variables distributed according to A′t ∼ S1α/2,1(0, cA). It is
then quite clear from Section 2 that Zt and Yt admit the same distribution; in particular,√

Σ1→tGt
d
=σ1→t

√
A′tG

′
t .

From there, we use Lemma 3 to conclude that
√
Σ1→t

d
=σ1→t

√
A′t, which ends the proof.

Lemma 3. Let A,A′ be positive real random variables, let Z be a real continuous random variable
with density pZ . Suppose that AZ and A′Z admit the same distribution. Then A, A′ admit the same
distribution too.

Proof. Let h be a measurable function. Then E(h(A)) = E(h(AZ/Z)) = E(h(A′Z/Z)) =
E(h(A′)). This shows that A,A′ have the same distribution.

G ADDITIONAL EXPERIMENTAL DETAILS

All experiments are conducted using PyTorch. We use linear timesteps during training and sampling,
and the scale-preserving process6, being the only forward process readily provided by LIM. This
entails choosing a sequence {βt}Tt=1 such that

γt = (1− βt)
1/α, σt = (1− γα

t )
1/α ,

6we mention again that it is traditionally called the variance preserving process
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resulting in σ1→t = (1−γα
1→t)

1/α and γ1→t =
∏t

i=1 γi. With this choice, we obtain approximately
XT ∼ Sα(0, Id). We choose {βi}Ti=1 as the cosine schedule, as introduced by Nichol & Dhariwal
(2021).

We do not give any of the heavy-tailed random variables {At}Tt=1 as input to the neural network ar-
chitecture, as we have witnessed worse performance in every scenarios we tried: learned embedding
added to each model layer, concatenation to model input, concatenation at each layer, or feeding
log(A1:T ) instead of A1:T to better manage large jumps. This corresponds to the design choice D2
in Appendix C.4.2.

For image data generation with LIM, we use the same clipping hyper-parameters specified in Yoon
et al. (2023).

All the training and experiments are conducted on four NVIDIA RTX8000 GPU and four NVIDIA
V100 GPU, where a single training run on MNIST or CIFAR10_LT takes approximately 1 day per
GPU, and requires about 4-12GB of VRAM for the batch sizes we use. Generating 5000 images
with 1000 backward steps takes approximately 3-4 hours on one RTX8000 GPU.

G.1 2D DATA

In the case of 2D data, we use 32000 datapoints for training, a batch size of 1024, and 25000 points
for evaluation. Since we do not focus on the effect of diffusion steps, we set it to 100, where all
methods have been observed to perform optimally.

The optimizer is Adam (Kingma & Ba (2017)) with learning rate 5e-3. We use a neural network
consisting of four time-conditioned MLP blocks with skip connections, each of which consisting of
two fully connected layers of width 64. The time t passes through two fully connected layers of size
32x32, and is fed to each time conditioned block, where it passes through an additional 32x64 fully
connected layer before being component-wise added to the middle layer.

We use a mean squared logarithmic error (MSLE) loss designed to assess the fit to tails of distribu-
tions, and the precision/recall metric for our 2D datasets, as presented in Appendix G.3.

G.2 IMAGE DATA

We work on the MNIST and the CIFAR10_LT dataset. CIFAR10_LT consists of the CIFAR10
images were artificial class unbalance has been introduced. The specific class counts we use are
[5000, 2997, 1796, 1077, 645, 387, 232, 139, 83, 50].

The optimizer is Adam (Kingma & Ba (2017)) with learning rate 1e-3 for MNIST and 2e-4 for
CIFAR10_LT. We use the StepLR scheduler which scales the learning rate by γ = .99 every N =
1000 steps for CIFAR10_LT and N = 400 for MNIST.

To establish a fair comparison, LIM and DLPM use the same network model. We use a U-Net
following the implementation of Nichol & Dhariwal (2021) available in https://github.com/
openai/improved-diffusion. We dimension the network as follows: we set the hidden
layers to [128, 256, 256, 256], fix the number of residual blocks to 2 at each level, and add self-
attention block at resolution 16x16, using 4 heads. We use an exponential moving average with a
rate of 0.99 for MNIST and 0.9999 for CIFAR10_LT. We use the silu activation function at every
layer. Diffusion time t is rescaled to (0, 1) and fed to the model through the Transformer sinusoidal
position embedding (Vaswani et al. (2023)). We train MNIST for 120000 steps with batch size 256
with a time horizon T = 1000, and CIFAR_LT for 400000 steps with batch size 100 with a time
horizon T = 4000.

We use the FID metric for assessing the quality of our generative models, computing this metric
between 5000 using images and 5000 generated images.

G.3 METRICS FOR GENERATIVE MODELS

MSLE we use a mean squared logarithmic error (MSLE) metric tailored to measure the fit on
the tails of the distribution at hand. Drawing inspiration from Allouche et al. (2022), we define the
MSLE as the squared distance between the logarithm of the inverse cumulative distributions of the

30

https://github.com/openai/improved-diffusion
https://github.com/openai/improved-diffusion


1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

original and generated data. If F, F̂ denote respectively the cumulative distribution function of the
original data and the empirical cumulative distribution function of the generated data, then

MSLE(ξ) =
∫ 1

ξ

(
logF−1(p)− log F̂−1(p)

)2
dp ,

where ξ is chosen the be 0.95.

Precision/recall These metrics are introduced in the setting of generative models by Sajjadi et al.
(2018), and assess the overlap of sample distributions using local geometric structures. Precision
measures how much the generated distribution is contained in the original data distribution (mea-
suring quality), and recall measured how much of the original data distribution is covered by the
generated distribution (diversity). We also consider the F pr

1 score which we define as the harmonic
mean of these two values:

F pr
1 = 2 · precision · recall

precision + recall
.

G.4 ADDITIONAL RESULTS

We provide some more results on MNIST and CIFAR10_LT, with FID for non-isotropic noise, and
with the F pr

1 metric for other methods (with clipping enabled in LIM and LIM-ODE). We also
provide grid images in order to visually check the performance of DLPM.

MNIST α = 1.5 α = 1.7 α = 1.8 α = 1.9 α = 2.0

DLPMni 44.17 14.06 5.74 3.62 -
DLIMni 14.96 51.58 59.84 76.03 -

Table 5: FID↓, 1000 sampling steps for DLPMni, 25 sampling steps for DLIMni.

DLIM DLPM LIM LIM-ODE DDPM
α

1.7 0.884 0.887 0.857 0.869 -
1.8 0.874 0.881 0.821 0.875 -
1.9 0.877 0.878 0.700 0.808 -
2.0 0.820 0.871 0.694 0.772 0.881

Table 6: MNIST, F pr
1 ↑

DLIM DLPM LIM LIM-ODE DDPM
α

1.7 0.676 0.675 0.679 0.677 -
1.8 0.669 0.680 0.677 0.673 -
1.9 0.667 0.669 0.661 0.669 -
2.0 0.664 0.667 0.660 0.665 0.666

Table 7: CIFAR10_LT, F pr
1 ↑
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Figure 6: MNIST, DLPM (α = 1.7)

Figure 7: CIFAR10_LT, DLPM (α = 1.7)
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