
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LEARNING THE KOOPMAN OPERATOR USING
ATTENTION FREE TRANSFORMERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Learning Koopman operators with autoencoders enables linear prediction in a la-
tent space, but long-horizon rollouts often drift off the learned manifold, leading
to phase and amplitude errors on systems with switching, continuous spectra, or
strong transients. We introduce two complementary components that make Koop-
man predictors substantially more robust. First, we add an attention-free latent
memory (AFT) block that aggregates a short window of past latents to produce
a corrective residual before each Koopman update. Unlike multi-head attention,
AFT operates in linear time with nearly identical parameter count to the base-
line, yet captures the local temporal context needed to suppress error divergence.
Second, we propose dynamic re-encoding: lightweight, online change-point trig-
gers (EWMA, CUSUM, and sequential two-sample tests) that detect latent drift
and project predictions back onto the autoencoder manifold. Across three bench-
mark systems—Duffing oscillator, Repressilator, IRMA—our model consistently
reduces error accumulation compared to a Koopman autoencoder and matched-
capacity multi-head attention. We also compare against GRU and Transformer au-
toencoders, evaluated both from initial conditions and with a 50-step context, and
find that Koopman+AFT (with optional re-encoding) attains markedly lower long-
horizon error while maintaining substantially lower inference latency. We report
improvements over horizons up to 1000 steps, together with ablations over trig-
ger policies. The resulting predictors are fast, compact, and geometry-preserving,
providing a practical path to long-term forecasting with Koopman methods.

1 INTRODUCTION

The Koopman operator offers a principled way to analyze nonlinear dynamics with linear tools by
lifting states to an observable space where evolution is linear (Koopman, 1931). Neural implementa-
tions of this idea—most commonly, Koopman autoencoders (KAE) that learn an encoder φ, a linear
map K, and a decoder φ−1—often deliver strong single-step accuracy, but drift in long rolls: phases
slip in oscillators, amplitudes decay or explode, and trajectories peel away from attractors (Lusch
et al., 2018). Empirically, failures are pronounced in settings with (i) continuous or mixed spectra
(e.g., undamped oscillators), (ii) switching between metastable basins, and (iii) transient regimes
where small errors compound. This motivates mechanisms that (a) use short-term temporal context
to correct local errors, akin to delay-embedding ideas in Hankel DMD / HAVOK (Arbabi & Mezic,
2017; Brunton et al., 2017), and (b) periodically project predictions back onto the learned manifold
before drift becomes catastrophic. Robustness over long horizons is therefore critical: predictors
that remain near the learned manifold accumulate fewer errors and are easier to certify and use in
downstream control.

Approach overview and intuition. We augment a standard KAE with two complementary pieces.
(i) An attention-free latent memory (AFT) block aggregates a short window of past latents and adds a
corrective residual before each Koopman update, achieving linear time/memory in the context length
while capturing the local correlations that drive phase and amplitude drift (Zhai et al., 2021). (ii) Dy-
namic re-encoding uses lightweight streaming triggers (EWMA, CUSUM, sequential two-sample,
and simple threshold/window tests) to detect latent drift and apply an encode–decode–encode (E–D–
E) projection that snaps predictions back to the autoencoder manifold (Roberts, 2000; Moustakides,
1986; Ross & Adams, 2012). Intuitively, AFT addresses how we step—reducing local error before

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

propagation by K—while re-encoding addresses where we step—bounding accumulated drift. The
mechanisms are orthogonal: one prevents growth, the other bounds it.

Relation to prior work. Our approach builds on data-driven Koopman learning from EDMD with
fixed dictionaries to learned latent embeddings with linearly recurrent bottlenecks (Li et al., 2017;
Otto & Rowley, 2019; Lusch et al., 2018). Short time-delay context has long been used to stabilize
prediction (Hankel DMD, HAVOK) (Arbabi & Mezic, 2017; Brunton et al., 2017), motivating our
lightweight latent memory. Compared to transformer-style attention used in recent hybrids (Lu
et al., 2024; Wang et al., 2022), our attention-free block achieves linear cost while targeting the local
correlations that drive phase/amplitude drift. Orthogonally, projection/consistency ideas (Nayak
et al., 2025; Frion et al., 2025; Noack et al., 2015; Dylewsky et al., 2019; Guan et al., 2024) inspire
our encode–decode–encode snap-back mechanism. For triggering, we adopt classic streaming drift
detectors (EWMA, CUSUM, sequential two-sample) (Roberts, 2000; Moustakides, 1986; Ross &
Adams, 2012). Broader lines on inputs and control (KIC, Koopman MPC, safety/verification) are
discussed in Appendix B, along with domain-specific applications in biology and fluid mechanics.

Benchmarks. We target three representative systems that stress long-horizon stability in comple-
mentary ways: (i) the Duffing oscillator in the unforced, undamped regime, which exhibits closed
orbits, switching between wells at higher energies, and commonly a continuous or mixed Koopman
spectrum that stresses linear predictors (Otto & Rowley, 2019; Li et al., 2017; Pan & Duraisamy,
2020; Alford-Lago et al., 2022; Köhne et al., 2025); (ii) the Repressilator, a synthetic three-gene
negative-feedback oscillator with a canonical limit cycle (Elowitz & Leibler, 2000), widely used to
evaluate identification and control (Boddupalli et al., 2019; Sootla et al., 2018; Balakrishnan et al.,
2022; Perez-Carrasco et al., 2018); and (iii) IRMA (In vivo Reverse-engineering and Modelling As-
sessment), a five-gene yeast circuit constructed as a benchmark for modeling and control (Cantone
et al., 2009; Marucci et al., 2009; Menolascina et al., 2014; di Bernardo et al., 2011) and repre-
sentative of multi-gene regulatory dynamics where deep Koopman approaches have shown promise
(Hasnain et al., 2019). These three cover, respectively, mixed spectra and switching (Duffing), clean
oscillatory behavior with phase sensitivity (Repressilator), and higher-dimensional regulatory dy-
namics with intertwined feedback (IRMA).

Empirical summary. We evaluate on the three primary benchmarks (Duffing, Repressilator, IRMA)
and report both MSE and a long-horizon mean cumulative absolute error (MCAE) that is sensitive to
error accumulation. The latent memory block outperforms matched-capacity MHA (4 and 10 heads)
on these systems, and coupling it with dynamic re-encoding yields the most robust rollouts. GRU
and Transformer autoencoders, evaluated both from initial conditions and with a 50-step context,
underperform on long horizons despite their added context.

Contributions.

• Attention-free latent memory for Koopman prediction. A linear-time, low-overhead
block (Zhai et al., 2021) aggregates a short history of latents to produce a corrective residual
before each Koopman update, substantially reducing error accumulation on long rollouts.

• Dynamic re-encoding via streaming change detection. An encode–decode–encode pro-
jection with online triggers (EWMA, CUSUM, sequential two-sample, threshold/window)
detects latent drift and snaps predictions back to the learned manifold (Roberts, 2000;
Moustakides, 1986; Ross & Adams, 2012).

• Comprehensive evaluation and ablations on three representative systems. On Duff-
ing (unforced, undamped), Repressilator, and IRMA, latent memory outperforms matched
MHA; latent memory + re-encoding attains the lowest MSE over 200/500/1000-step hori-
zons; and gains persist across Koopman operator sizes.

2 METHODS

2.1 BASELINE KOOPMAN AUTOENCODER (KAE)

Model. Let xt ∈ Rp denote the observed state at time t and let φ : Rp→Rd and φ−1 : Rd→Rp

be an encoder/decoder pair that maps to a d–dimensional latent space. The KAE posits a linear

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

//

Reconstruction
loss

Linearization
loss

Prediction
loss

Initial
Condition

Reencoding

Attention

Dynamic Reencoding

Koopman Operator

Predicted
Trajectory

c) Prediction Processa) Sampled Trajectories b) Koopman AE

d) Predicted Trajectories

Figure 1: Workflow of the Koopman autoencoder with AFT and Dynamic Re-encoding. (a)
Sampled trajectories from a Duffing Oscillator serve as input. (b) The core Koopman autoen-
coder learns a linear latent representation by minimizing reconstruction, linearization, and predic-
tion losses. (c) The prediction process uses a Dynamic Re-encoding module with AFT attention
to refine the latent state (zt → z̃t), which is then evolved by the learned Koopman operator K. (d)
The final output shows predicted trajectories that accurately replicate the system’s dynamics.

latent evolution governed by a learned Koopman matrix K ∈ Rd×d:

zt = φ(xt), zt+1 = K zt, x̂t = φ−1(zt), (1)

so that an i–step rollout from an initial latent y0 is zi = Kiz0 with decoded prediction x̂i =
φ−1(Kiφ(x0)). We use the standard linearly recurrent bottleneck architecture (Otto & Rowley,
2019; Lusch et al., 2018) and learn (φ,φ−1,K) end-to-end.

Training losses. Given an input segment (x0, . . . , xT), we minimize a weighted sum of (i) recon-
struction error, (ii) linearity consistency in the latent space, (iii) decoded prediction error over the
rollout, and (iv) a unitary regularizer on K to discourage exploding/vanishing spectra (cf. Enyeart
& Lin, 2024):

L = α1(Lrecon + Lpred) + Llin + α2Lunitary, (2a)

Lrecon =
1

T + 1

T∑
t=0

∥xt − φ−1(φ(xt))∥22, (2b)

Llin =
1

T

T∑
i=1

∥φ(xi)−Kiφ(x0)∥22, (2c)

Lpred =
1

T

T∑
i=1

∥xi − φ−1(Kiφ(x0))∥22, (2d)

Lunitary = ∥KK⊤ − I∥F . (2e)

with weights α1, α2>0. Lrecon enforces an information-preserving autoencoding, Llin encourages
consistency of the latent trajectory with powers of K, and Lpred measures decoded multi-step ac-
curacy. The unitary penalty mildly biases K toward near-orthogonality to improve long-horizon
stability (Enyeart & Lin, 2024). We train by unrolling equation 1 for T steps from x0, comput-
ing all four losses on the same segment. The formulation in equation 2 matches common KAE
practice (Otto & Rowley, 2019; Lusch et al., 2018) while making the stability prior explicit.

2.2 ATTENTION-FREE LATENT MEMORY (AFT)

Setup. To mitigate local phase/amplitude drift, we augment the KAE with a lightweight latent
memory that aggregates the last T latents before each Koopman step (here, T denotes the AFT

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

context length, not the training segment length in equation 2). Let the latent history at time t be
Ht = [zt−T , . . . , zt−1] ∈ RT×d (we use causal indexing and T ≪ rollout length). The AFT block
produces a residual ∆zt from Ht and updates

z̃t−1 = zt−1 +∆zt, zt = K z̃t−1, (3)

so the Koopman propagator advances a corrected latent.

Computation. This variant is a plug-in replacement for Multi-Head Attention (MHA) and can
be considered an element-wise linear attention mechanism. We use the AFT-full variant of this
approach introduced by Zhai et al. (2021), where given a latent representation of xt in the Koopman
subspace Zt. We apply learned linear maps WQ,WK ,WV ∈ Rd×d,

Qt = ztWQ ∈ Rd, Kt = HtWK ∈ RT×d, Vt = HtWV ∈ RT×d, (4)

then performs the following operation:

∆Z = f(Z); ∆zt = σq(Qt)⊙
∑T

t′=1 exp(Kt′ + wt,t′)⊙ Vt′∑T
t′=1 exp(Kt′ + wt,t′)

(5)

where σq(·) represents sigmoid activation on queries, w ∈ RT×T denotes learnable positional bi-
ases, and ⊙ indicates element-wise multiplication. The mechanism computes attention weights
from keys and positional biases, applies them to values, and then combines the result with activated
queries through element-wise operations. This provides the benefits of attention mechanisms while
maintaining linear computational complexity with respect to sequence length. In addition to that,
we also added a key/value scaling by

√
dmodel to ensure numerical stability.

Use in the predictor. We apply equation 5 at every step with a rolling window Ht (see Algorithm 1
in Appendix F for the full predictor). The block is drop-in: it changes neither the decoder nor
the Koopman loss structure in equation 2. Empirically, the residual ∆zt corrects local phase and
amplitude errors before propagation by K, reducing error accumulation over long rollouts while
preserving speed and model compactness.

2.3 DYNAMIC RE-ENCODING (E–D–E PROJECTION AND STREAMING TRIGGERS)

Encode–Decode–Encode projection. Let P(z) := φ
(
φ−1(z)

)
denote the autoencoder-induced

projection of a latent z back onto the learned manifold (idempotent by construction). During rollout,
at each step, we form a pre-update latent z̃t−1. We compute two one-step predictions:

zpredt = K z̃t−1, zre−predt = K P(z̃t−1).

Their discrepancy defines a drift proxy

δt ≜
∥∥ zre−predt − zpredt

∥∥2
2
, (6)

which grows when the iterate leaves the learned manifold. If a streaming trigger (below) fires at
time t, we snap the latent back by replacing zt−1 ← P(z̃t−1) before propagating. This keeps the
Koopman update on-manifold while leaving K and the autoencoder unchanged.

Streaming drift triggers. We instantiate four inexpensive, streaming tests on the scalar {δt}:

1. Windowed Z-score (mean+std): maintain µt, σt over a sliding window of size w and
trigger if δt > µt + τ σt (hyperparameter τ > 0).

2. EWMA (Roberts, 2000): update Zt = (1− λ)Zt−1 + λ δt with Z0 = δ1 and trigger when
|Zt − µZ | >LσZ (streaming estimates for µZ , σZ ; hyperparameters λ ∈ (0, 1), L > 0).

3. CUSUM (Moustakides, 1986): compute the standardized cumulative sum s̃t =∑t
i=1(δi−µ0)√

t σ
and derive the p-value pt = 2 [1− Φ (|s̃t|)], where Φ is the standard normal

CDF.

4. Sequential two-sample (Ross & Adams, 2012): compare a reference buffer R and a cur-
rent buffer C (disjoint, size w) using a nonparametric test (e.g., KS or Lepage); re-encode
if pt < α (hyperparameter α).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

All tests have low computational overhead per step: windowed Z-score is O(w) for window size w,
EWMA is O(1), and CUSUM is O(1) for time step t with incremental updates. They are comple-
mentary: windowed Z-score/EWMA react quickly to level shifts, CUSUM accumulates small per-
sistent deviations, and two-sample tests capture broader distributional changes. In our experiments,
we use fixed hyperparameters per system and evaluate several trigger families (see Appendix 4.3).
We use triggers only at inference; training proceeds without re-encoding.

3 EXPERIMENTS

3.1 BENCHMARKS AND DATA GENERATION

We evaluate three primary systems that emphasize long-horizon stability in complementary ways:
(i) the Duffing oscillator, (ii) the Repressilator, and (iii) IRMA (introduced above). Further details
about these systems are provided in Appendix A.1. To assess generality without excessive tuning,
we additionally report results on a nonlinear pendulum, Goodwin oscillator, Lotka–Volterra, Rössler,
and a reduced-order fluid-flow model (Goodwin, 1965; Fathi et al., 2023; Rössler, 1976; Noack
et al., 2003). These are sanity checks performed with the finalized architecture to test out-of-the-
box behavior; unlike the core trio, we did not perform extensive ablations or per-system tuning.
Full details and additional figures are provided in the in the Appendix G.4. Parameterizations, time
steps, numbers of trajectories, and training/prediction horizons follow Table 9 (data splits and any
deviations are detailed in the Appendix). Full ODEs, solvers, parameter values, and initial-condition
ranges for all systems are provided in Appendix H.

3.2 PROTOCOLS AND METRICS

Rollout protocol. Unless stated otherwise, models are trained on fixed-length segments and eval-
uated by free (open-loop) rollouts from test-set initial conditions. We report errors at horizons
{200, 500, 1000} steps on the three primary systems, and 200-step errors on the additional bench-
marks.

Metrics. We report mean-squared error (MSE) at a fixed horizon and a long-horizon mean cumula-
tive absolute error (MCAE) that captures accumulation of deviations. Given a rollout of length H ,
MCAE averages, across trajectories and state dimensions, the cumulative absolute error curve:

MCAEt =
1
d

d∑
j=1

t∑
k=1

|x̂k,j − xk,j | (7)

MCAEoverall =
1
H

H∑
t=1

MCAEt (8)

We plot MCAE over steps to reveal error growth dynamics.

Hyperparameters & selection. We fix the autoencoder bottleneck dimension and AFT context
(d=100, T=10) across systems unless otherwise noted, and select early stopping and trigger thresh-
olds on the validation set. The Koopman operator is dense by default.

3.3 BASELINES AND ABLATIONS

We compare:

1. GRU: the baseline GRU autoencoder (§E.1).
2. Transformer: the baseline transformer autoencoder (§E.2)
3. KAE: the baseline Koopman autoencoder (§2.1).
4. KAE + AFT: our latent-memory augmentation (§2.2).
5. KAE + MHA: matched-capacity multi-head attention with 4 or 10 heads (same bottleneck

d, similar projection sizes).
6. KAE + AFT + Re-enc: dynamic re-encoding with streaming triggers (§2.3). We evaluate

the sequential two-sample tests as the Dynamic Re-encoding Method using per-system
validation-tuned thresholds, alongside periodic re-encoding from Fathi et al. (2023).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Ablations vary (i) the Koopman operator size, (ii) the AFT context T , and (iii) the trigger fam-
ily/thresholds. For fairness, all baselines share the same autoencoder structure and training schedule.

4 RESULTS

4.1 PRIMARY COMPARISON ON THREE REPRESENTATIVE SYSTEMS

We conducted a comprehensive testing of our three primary systems for long-term horizon pre-
diction. Our evaluation encompasses the reference models mentioned in §3.3. Additionally, we
assessed GRU and Transformer architectures under two experimental conditions. Given that GRU
and Transformer models require contextual information, we evaluated them first using only initial
conditions, and then subsequently with a context of 50 time steps, which means in the Repressilator
and IRMA escaping a large part of the transient state. Results are shown in Table 1.

Duffing Oscillator. Dynamic re-encoding is best at 200/500 steps (MSE 0.0113/0.0960), improving
on AFT (0.0427/0.1536) and periodic re-encoding (0.0156/0.1187). At 1000 steps, AFT slightly
leads (0.1947 vs. 0.2019), consistent with small snap-back–induced phase shifts accumulating over
very long horizons. The vanilla KAE drifts (0.1286/0.2245/0.2471), and GRU/Transformer benefit
from context yet remain far off Koopman variants (e.g., GRU 0.0862 vs. AFT 0.0427 at 200 steps).
Timely snap-backs help at switching transitions; for very long horizons, a small causal memory
(AFT) often suffices.

Repressilator. All Koopman variants handle the limit cycle, but AFT is decisively best across hori-
zons (0.0001/0.0002/0.0005). Dynamic/periodic re-encoding degrade to ∼!4!×!10−3 by injecting
unnecessary phase resets. KAE is competitive at 200 steps (0.0002) but worsens by 1000 (0.0077).
GRU/Transformer improve with context (e.g., GRU 0.0019 at 200) yet remain 10–100× worse than
AFT. On smooth limit cycles, prefer AFT-only; snap-backs are rarely needed and can be harmful.

IRMA. Dynamic re-encoding is strongest and most stable (0.0001/0.0001/0.0003), with periodic
close behind (0.0002/0.0004/0.0008). AFT is very good at short horizons (0.0004) but continues
to degrade by the same rate (0.0009/0.0012). KAE collapses (10.1847 at 1000). GRU with context
is competitive (0.0001/0.0003/0.0004) but from initial conditions is much worse (e.g., 0.0102 at
200). GRU(+Ctx) benefits from being placed near the attractor; Koopman+AFT with snap-backs
attains similar robustness without long input contexts.

Table 1: Prediction performance comparison (MSE ↓) over different time steps across different
system configurations. Best results for each system are highlighted in bold. Context provided for
the GRU and Transformer is 50 time steps, while other results are from initial conditions, indicated
as +Ctx and Init respectively.

Steps GRU Transformer Koopman Koopman AFT+Re-encoding
Init +Ctx Init +Ctx AE AFT Dynamic Periodic

Duffing Oscillator
200 0.2677 0.0862 0.2467 0.1868 0.1286 0.0427 0.0113 0.0156
500 0.2641 0.1981 0.3037 0.2441 0.2245 0.1536 0.0960 0.1187

1000 0.2556 0.2210 0.3196 0.2510 0.2471 0.1947 0.2019 0.2203

Repressilator
200 0.0081 0.0019 0.0079 0.0035 0.0002 0.0001 0.0041 0.0042
500 0.0090 0.0073 0.0193 0.0061 0.0028 0.0002 0.0041 0.0035

1000 0.0098 0.0092 0.0269 0.0085 0.0077 0.0005 0.0062 0.0067

IRMA
200 0.0102 0.0001 0.0109 0.0091 0.0171 0.0004 0.0001 0.0002
500 0.0076 0.0003 0.0404 0.0202 0.0935 0.0009 0.0001 0.0004

1000 0.0044 0.0004 0.0495 0.0251 10.1847 0.0012 0.0003 0.0008

4.2 ATTENTION VS AFT COMPARISON

We compare the latent-memory augmentation (AFT) to matched-capacity multi-head attention
(MHA; 4 and 10 heads) on Duffing, Repressilator, and IRMA using both MSE and long-horizon

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

(a) Repressilator — multi-traj (b) IRMA — multi-traj (c) Duffing — switching dynamics

Figure 2: Multi-trajectory rollouts on dynamical systems. AFT reduces phase drift across initial
conditions and enables accurate detection of switching dynamics in bistable systems.

MCAE. Figure 3 shows representative trajectories (top) and MCAE curves (bottom); summary met-
rics appear in Table 2.

Duffing Oscillator. AFT achieves the lowest error by a wide margin (MSE 0.0124 vs. 0.0957 /
0.1137 for 10/4-head MHA; ∼ 8–9× lower), and flattens error growth (MCAE 10.95 vs. 49.09
/ 52.98; ∼ 4.5–4.8× lower). This matches the intuition that short, causal context suppresses
phase/amplitude drift induced by the mixed/continuous spectrum and switching dynamics better
than quadratic-cost attention.

Repressilator. On the clean limit cycle, AFT again dominates (MSE 3×10−4 vs. 1.6×10−3 /
1.8×10−3;∼5–6× lower). MCAE is likewise reduced (1.80 vs. 5.26 / 5.66;∼3×). The small, causal
window corrects local misalignments before they accumulate into phase slips, yielding smoother,
phase-consistent rollouts than MHA.

IRMA. AFT yields the best single-model accuracy (MSE 1×10−4 vs. 1.2×10−3 / 1.5×10−3;
∼ 12–15×). MCAE also favors AFT (0.98 vs. 4.54 / 4.90; ∼ 4.6–5.0×), but the remaining long-
horizon drift motivates using AFT + re-encoding (Sec. 4.3) on this higher-dimensional, feedback-
rich system.

Overall, AFT consistently outperforms matched-capacity MHA across systems and metrics while
retaining linear cost in the context length (cf. Sec. G.1), making it both more accurate and more
scalable for long-horizon prediction.

Table 2: Performance comparison of attention mechanisms across different dynamical systems.
Lower MSE and CMAE values indicate better performance. Best results are highlighted in bold.

Model MSE (↓) MCAE (↓)

4MHA 10MHA AFT 4MHA 10MHA AFT

Duffing Oscillator 0.1137 0.0957 0.0124 52.9835 49.0874 10.9522
Repressilator 0.0018 0.0016 0.0003 5.6606 5.2564 1.7998
IRMA 0.0012 0.0015 0.0001 4.9036 4.5401 0.9786

4.3 EFFECT OF DYNAMIC RE-ENCODING (STREAMING TRIGGERS)

We study the dynamic re-encoding with streaming triggers on the Duffing oscillator (§2.3). Ta-
ble 3 shows that the sequential two-sample detector attains the lowest error (0.0113), followed
by EWMA and CUSUM, and Fig. 4 shows the sensitivity and accuracy of the methods. The
two-sample method relies on statistical distribution changes, which account for better detection,
whereas EWMA/CUSUM uses aggregated statistics that can smooth over subtle but meaningful
shifts. Threshold-based methods are prone to false positives/negatives, as they do not fully account
for prediction memory, and drift proxies incorporate not only manifold distance but also recon-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(a) IRMA — sample trajectory
(b) Duffing — sample trajec-
tory

(c) Repressilator — sample
trajectory

(d) IRMA — MCAE (e) Duffing — MCAE (f) Repressilator — MCAE

Figure 3: AFT vs. MHA (4 and 10 heads) on the three primary systems. The top row shows
sampled trajectories, and the bottom row shows the MCAE curves. AFT reduces error growth and
outperforms matched-capacity MHA.

struction error. While periodic re-encoding can achieve good performance, it primarily targets drift
frequency and does not consider when or where the change occurs, limiting its responsiveness.

Table 3: Overall MSE per trajectory for different re-encoding methods.

Method AFT Threshold Window Periodic CUSUM EWMA TwoSample

MSE 0.0427 0.0290 0.0186 0.0156 0.0151 0.0144 0.0113

0 25 50 75 100 125 150 175 200
Time Step

0

5

10

15

20

25

M
ea

n
Cu

m
m

ul
at

iv
e

Ab
so

lu
te

 E
rro

r (
M

CA
E)

Dynamic Reencoding Methods Comparison
predict_AFT
predict_periodic_Reencoding
predict_threshold_Reencoding
predict_window_variance_Reencoding
predict_with_cusum
TwoSample
EWMA

(a) Cumulative MAE per timestep

0.6 0.4 0.2 0.0 0.2 0.4 0.6
X Coordinate

0.6

0.4

0.2

0.0

0.2

0.4

0.6

Y
Co

or
di

na
te

Predicted Trajectories Comparison
Ground Truth
AFT
Periodic Re-encoding
Threshold Re-encoding
Window Re-encoding
CUSUM
TwoSample
EWMA
Start Point

(b) State-space comparison

Figure 4: Comparison of re-encoding methods. (a) Cumulative MAE per timestep comparison
across methods. (b) Comparison in latent state space for a sampled trajectory.

5 DISCUSSION

What the latent memory buys. Across Duffing, Repressilator, and IRMA, the attention-free latent
memory (§2.2) consistently reduces phase slippage and amplitude drift over long horizons relative
to the plain KAE and to a matched-capacity multi-head attention (MHA) baseline, lowering both
MCAE and MSE (see §4.2, Table 2, Fig. 3; and §4.1, Table 1). Empirically, a short, causal context
(T=10; §G.5) is sufficient to capture the local temporal correlations that most affect error accumu-
lation, and doing so in O(Td) time/memory per step yields stable rollouts without the quadratic
attention overhead (complexity details in App. G.1; context ablation in Fig. 8, right). This is a

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

pragmatic complement to spectral-accuracy pursuits in Koopman learning (Korda & Mezić, 2018;
Mezić, 2022; Giannakis & Valva, 2024; Colbrook & Townsend, 2024): even when the learned K
is an imperfect global surrogate, local residual correction can substantially improve long-horizon
behavior. Conceptually, the AFT residual acts like a short learned delay-embedding/HAVOK-style
forcing term (Arbabi & Mezic, 2017; Brunton et al., 2017), while re-encoding is a latent-space
analogue of windowed/recursive DMD projections (Noack et al., 2015; Guan et al., 2024).

When and why re-encoding helps. The dynamic re-encoding mechanism (§2.3) improves robust-
ness primarily on systems with switching or stiff transients (e.g., Duffing at higher energies) or
higher-dimensional, intertwined feedback (IRMA), where drifting off the autoencoder manifold can
be abrupt and compounding. Quantitatively, triggers based on sequential two-sample tests attain the
lowest MSE on Duffing, followed by EWMA and CUSUM (Table 3; Fig. 4; see also §4.3 and Alg. 2
in App. F). On clean, phase-sensitive oscillators (e.g., Repressilator), re-encoding can occasionally
hurt when a trigger fires near a delicate phase region: the E–D–E projection introduces a small phase
shift that the Koopman update then propagates (Table 1). Practical guidance: AFT-only for smooth
limit cycles; AFT+EWMA/CUSUM for intermittent regime changes; and two-sample tests when
residual distributions clearly separate nominal vs. drifted behavior.

Sensitivity and hyperparameters. Performance is most sensitive to (i) the quality of the autoen-
coder manifold, (ii) the AFT context T , and (iii) trigger thresholds. Too large a T brings diminishing
returns and mild over-smoothing (Fig. 8, right). Thresholds selected on validation data transfer well
across test horizons in our runs, but overly aggressive settings can over-trigger and degrade smooth
oscillations. A dense K offered the strongest accuracy (consistent with prior observations), whereas
structured variants (diagonal, banded, Jordan) trade accuracy for interpretability; we include these
ablations for completeness (Fig. 8, left).

Applications and impact. Where long-horizon forecasting is needed under tight computational
budgets (embedded monitoring, rapid what-if simulation), theO(Td) latent memory and occasional
E–D–E snaps provide a practical path that keeps the standard KAE backbone intact and reproducible.
Compared to GRU and Transformer autoencoders (architectures in App. E), Koopman-based predic-
tors deliver both stronger long-horizon fidelity (Table 1) and substantially lower latency (Table 5).
Breadth checks across additional dynamical systems indicate out-of-the-box gains where appropri-
ate (App. G.4; Table 7, Fig. 7).

6 LIMITATIONS AND FUTURE WORK

Our stability claims are empirical: we do not provide convergence or spectral-error guarantees for
the learned K despite relevant theory (Korda & Mezić, 2018; Mezić, 2022; Giannakis & Valva,
2024; Colbrook & Townsend, 2024). Effectiveness depends on the autoencoder manifold; if φ−1 is
lossy, the E–D–E projection can bias latents. Trigger policies introduce hyperparameters (thresholds,
windows) and can degrade performance on clean limit cycles (Table 1, Repressilator) even while
helping on systems with switching or stiff transients (Duffing, IRMA; Tables 1, 3, Fig. 4). Dynamic
re-encoding is used only at inference, so the model is not co-trained with snaps. Some configurations
still degrade at very long horizons (e.g., AFT on IRMA at 1000 steps in Table 1), and vanilla KAE
can collapse. Our experiments focus on autonomous systems; inputs/control are out of scope here.
Additional benchmarks suggest “out-of-the-box” generality, but we did not target per-system SOTA.

Future directions include bridging empirical robustness with guarantees (resolvent/residual-
minimization objectives and stability-biased constraints for K; EDMD diagnostics during training
(Giannakis & Valva, 2024; Colbrook & Townsend, 2024; Mezić, 2022; Korda & Mezić, 2018)),
training curricula that transition from one-step to free rollouts, uncertainty-aware or learned trig-
gers that retain the two-sample sensitivity benefits on Duffing (Table 3) while avoiding false snaps
on smooth cycles, and adaptive memory that learns/gates the AFT context T (cf. Fig. 8). Extend-
ing AFT and re-encoding to controlled settings (DMDc/EDMDc/KIC) and evaluating in receding-
horizon MPC is natural, as is studying partial/noisy/hybrid systems. Finally, exploring structured K
for interpretability with minimal loss, and fusing AFT with decoders for hardware-efficient deploy-
ment, are promising for resource-constrained use (Table 5).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 REPRODUCIBILITY STATEMENT

We have made every effort to ensure the reproducibility of our results. The paper provides de-
tailed descriptions of the model architecture, training setup, and evaluation protocols. Hyperparam-
eters, dataset generation, and experimental settings are included in the Appendix. We have also
provided a detailed reproducibility checklist in the Appendix C, which outlines the entire experi-
mental process step by step. To further support replication, we have made the code available at
https://anonymous.4open.science/r/Attended-Koopman-3E85 for review. We
will release the final version publicly upon publication.

REFERENCES

Daniel J Alford-Lago, Christopher W Curtis, Alexander T Ihler, and Opal Issan. Deep learning en-
hanced dynamic mode decomposition. Chaos: An Interdisciplinary Journal of Nonlinear Science,
32(3), 2022.

Hassan Arbabi and Igor Mezic. Ergodic theory, dynamic mode decomposition, and computation of
spectral properties of the koopman operator. SIAM Journal on Applied Dynamical Systems, 16
(4):2096–2126, 2017.

Shara Balakrishnan, Aqib Hasnain, Robert Egbert, and Enoch Yeung. Data-driven observability
decomposition with koopman operators for optimization of output functions of nonlinear systems.
arXiv preprint arXiv:2210.09343, 2022.

Nibodh Boddupalli, Aqib Hasnain, Sai Pushpak Nandanoori, and Enoch Yeung. Koopman operators
for generalized persistence of excitation conditions for nonlinear systems. In 2019 IEEE 58th
Conference on Decision and Control (CDC), pp. 8106–8111. IEEE, 2019.

Steven L Brunton, Bingni W Brunton, Joshua L Proctor, Eurika Kaiser, and J Nathan Kutz. Chaos
as an intermittently forced linear system. Nature communications, 8(1):19, 2017.

Irene Cantone, Lucia Marucci, Francesco Iorio, Maria Aurelia Ricci, Vincenzo Belcastro, Mukesh
Bansal, Stefania Santini, Mario Di Bernardo, Diego Di Bernardo, and Maria Pia Cosma. A yeast
synthetic network for in vivo assessment of reverse-engineering and modeling approaches. Cell,
137(1):172–181, 2009.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint arXiv:1406.1078, 2014.

Matthew J. Colbrook and Alex Townsend. Rigorous data-driven computation of spectral proper-
ties of koopman operators for dynamical systems. Communications on Pure and Applied Math-
ematics, 77:221–283, Jul 2024. ISSN 0010-3640. doi: 10.1002/cpa.22125. URL https:
//doi.org/10.1002/cpa.22125.

Diego di Bernardo, Lucia Marucci, Filippo Menolascina, and Velia Siciliano. Predicting synthetic
gene networks. In Synthetic Gene Networks: Methods and Protocols, pp. 57–81. Springer, 2011.

Daniel Dylewsky, Molei Tao, and J Nathan Kutz. Dynamic mode decomposition for multiscale
nonlinear physics. Physical Review E, 99(6):063311, 2019.

Jeffrey L Elman. Finding structure in time. Cognitive science, 14(2):179–211, 1990.

Michael B Elowitz and Stanislas Leibler. A synthetic oscillatory network of transcriptional regula-
tors. Nature, 403(6767):335–338, 2000.

Dustin Enyeart and Guang Lin. Loss terms and operator forms of koopman autoencoders. arXiv
preprint arXiv:2412.04578, 2024.

Mahan Fathi, Clement Gehring, Jonathan Pilault, David Kanaa, Pierre-Luc Bacon, and Ross
Goroshin. Course correcting koopman representations. arXiv preprint arXiv:2310.15386, 2023.

10

https://anonymous.4open.science/r/Attended-Koopman-3E85
https://doi.org/10.1002/cpa.22125
https://doi.org/10.1002/cpa.22125

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Anthony Frion, Lucas Drumetz, Mauro Dalla Mura, Guillaume Tochon, and Abdeldjalil Aı̈ssa-El-
Bey. Augmented invertible koopman autoencoder for long-term time series forecasting. arXiv
preprint arXiv:2503.12930, 2025.

Dimitrios Giannakis and Claire Valva. Consistent spectral approximation of koopman operators
using resolvent compactification. Nonlinearity, 37:075021, Jun 2024. ISSN 0951-7715. doi:
10.1088/1361-6544/ad4ade. URL https://doi.org/10.1088/1361-6544/ad4ade.

Brian C Goodwin. Oscillatory behavior in enzymatic control processes. Advances in enzyme regu-
lation, 3:425–437, 1965.

Wei Guan, Longlei Dong, Ao Zhang, and Yinshan Cai. Output-only modal identification with
recursive dynamic mode decomposition for time-varying systems. Measurement, 224:113852,
2024.

Aqib Hasnain, Subhrajit Sinha, Yuval Dorfan, Amin Espah Borujeni, Yongjin Park, Paul Maschhoff,
Uma Saxena, Joshua Urrutia, Niall Gaffney, Diveena Becker, et al. A data-driven method for
quantifying the impact of a genetic circuit on its host. In 2019 IEEE Biomedical Circuits and
Systems Conference (BioCAS), pp. 1–4. IEEE, 2019.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Eurika Kaiser, J. Nathan Kutz, and Steven L. Brunton. Data-driven approximations of dynamical
systems operators for control. Lecture Notes in Control and Information Sciences, pp. 197–234,
Jan 2020. ISSN 0170-8643. doi: 10.1007/978-3-030-35713-9\ 8. URL https://doi.org/
10.1007/978-3-030-35713-9_8.

Mason Kamb, Eurika Kaiser, Steven L. Brunton, and J. Nathan Kutz. Time-delay observables
for koopman: Theory and applications. SIAM Journal on Applied Dynamical Systems, 19:886–
917, Jan 2020. ISSN 1536-0040. doi: 10.1137/18m1216572. URL https://doi.org/10.
1137/18m1216572.

Frederik Köhne, Friedrich M Philipp, Manuel Schaller, Anton Schiela, and Karl Worthmann. -
error bounds for approximations of the koopman operator by kernel extended dynamic mode
decomposition. SIAM journal on applied dynamical systems, 24(1):501–529, 2025.

Bernard O. Koopman. Hamiltonian systems and transformation in hilbert space. Proceedings of
the National Academy of Sciences, 17(5):315–318, 1931. doi: 10.1073/pnas.17.5.315. URL
https://doi.org/10.1073/pnas.17.5.315.

Milan Korda and Igor Mezić. On convergence of extended dynamic mode decomposition
to the koopman operator. Journal of Nonlinear Science, 28:687–710, Nov 2018. ISSN
0938-8974. doi: 10.1007/s00332-017-9423-0. URL https://doi.org/10.1007/
s00332-017-9423-0.

Milan Korda and Igor Mezić. Koopman model predictive control of nonlinear dynamical systems.
Unknown journal, pp. 235–255, Feb 2020. doi: 10.1007/978-3-030-35713-9\ 9. URL https:
//doi.org/10.1007/978-3-030-35713-9_9.

Qianxiao Li, Felix Dietrich, Erik M Bollt, and Ioannis G Kevrekidis. Extended dynamic mode
decomposition with dictionary learning: A data-driven adaptive spectral decomposition of the
koopman operator. Chaos: An Interdisciplinary Journal of Nonlinear Science, 27(10), 2017.

Fan Lu, Ksenia Zlobina, Sebastian Osorio, Hsin-ya Yang, Alexandra Nava, Michelle D Bagood,
Marco Rolandi, Roslyn Rivkah Isseroff, and Marcella Gomez. Deepmapper: attention-based
autoencoder for system identification in wound healing and stage prediction. bioRxiv, pp. 2024–
12, 2024.

Bethany Lusch, J Nathan Kutz, and Steven L Brunton. Deep learning for universal linear embeddings
of nonlinear dynamics. Nature communications, 9(1):4950, 2018.

11

https://doi.org/10.1088/1361-6544/ad4ade
https://doi.org/10.1007/978-3-030-35713-9_8
https://doi.org/10.1007/978-3-030-35713-9_8
https://doi.org/10.1137/18m1216572
https://doi.org/10.1137/18m1216572
https://doi.org/10.1073/pnas.17.5.315
https://doi.org/10.1007/s00332-017-9423-0
https://doi.org/10.1007/s00332-017-9423-0
https://doi.org/10.1007/978-3-030-35713-9_9
https://doi.org/10.1007/978-3-030-35713-9_9

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Lucia Marucci, David AW Barton, Irene Cantone, Maria Aurelia Ricci, Maria Pia Cosma, Stefania
Santini, Diego di Bernardo, and Mario di Bernardo. How to turn a genetic circuit into a synthetic
tunable oscillator, or a bistable switch. PloS one, 4(12):e8083, 2009.

Filippo Menolascina, Gianfranco Fiore, Emanuele Orabona, Luca De Stefano, Mike Ferry, Jeff
Hasty, Mario Di Bernardo, and Diego Di Bernardo. In-vivo real-time control of protein expression
from endogenous and synthetic gene networks. PLoS computational biology, 10(5):e1003625,
2014.

Igor Mezić. On numerical approximations of the koopman operator. Mathematics, 10:1180, Apr
2022. ISSN 2227-7390. doi: 10.3390/math10071180. URL https://doi.org/10.3390/
math10071180.

George V Moustakides. Optimal stopping times for detecting changes in distributions. the Annals
of Statistics, 14(4):1379–1387, 1986.

Indranil Nayak, Ananda Chakrabarti, Mrinal Kumar, Fernando L Teixeira, and Debdipta Goswami.
Temporally-consistent koopman autoencoders for forecasting dynamical systems. Scientific Re-
ports, 15(1):22127, 2025.

Evangelos-Marios Nikolados, Andrea Y Weiße, Francesca Ceroni, and Diego A Oyarzún. Growth
defects and loss-of-function in synthetic gene circuits. ACS synthetic biology, 8(6):1231–1240,
2019.

Bernd R Noack, Konstantin Afanasiev, Marek Morzyński, Gilead Tadmor, and Frank Thiele. A
hierarchy of low-dimensional models for the transient and post-transient cylinder wake. Journal
of Fluid Mechanics, 497:335–363, 2003.

Bernd R Noack, Witold Stankiewicz, Marek Morzynski, and Peter J Schmid. Recursive dynamic
mode decomposition of a transient cylinder wake. arXiv preprint arXiv:1511.06876, 2015.

Samuel E Otto and Clarence W Rowley. Linearly recurrent autoencoder networks for learning
dynamics. SIAM Journal on Applied Dynamical Systems, 18(1):558–593, 2019.

Shaowu Pan and Karthik Duraisamy. Physics-informed probabilistic learning of linear embeddings
of nonlinear dynamics with guaranteed stability. SIAM Journal on Applied Dynamical Systems,
19(1):480–509, 2020.

Ruben Perez-Carrasco, Chris P Barnes, Yolanda Schaerli, Mark Isalan, James Briscoe, and Karen M
Page. Combining a toggle switch and a repressilator within the ac-dc circuit generates distinct
dynamical behaviors. Cell systems, 6(4):521–530, 2018.

Joshua L. Proctor, Steven L. Brunton, and J. Nathan Kutz. Generalizing koopman theory to al-
low for inputs and control. SIAM Journal on Applied Dynamical Systems, 17:909–930, Jan
2018. ISSN 1536-0040. doi: 10.1137/16m1062296. URL https://doi.org/10.1137/
16m1062296.

Stuart W Roberts. Control chart tests based on geometric moving averages. Technometrics, 42(1):
97–101, 2000.

Gordon J Ross and Niall M Adams. Two nonparametric control charts for detecting arbitrary distri-
bution changes. Journal of Quality Technology, 44(2):102–116, 2012.

Otto E Rössler. An equation for continuous chaos. Physics Letters A, 57(5):397–398, 1976.

Anastasiya Salova, Jeffrey Emenheiser, Adam Rupe, James P. Crutchfield, and Raissa M. D’Souza.
Koopman operator and its approximations for systems with symmetries. Chaos: An Inter-
disciplinary Journal of Nonlinear Science, 29:093128, Sep 2019. ISSN 1054-1500. doi:
10.1063/1.5099091. URL https://doi.org/10.1063/1.5099091.

Lu Shi, Masih Haseli, Giorgos Mamakoukas, Daniel Bruder, Ian Abraham, Todd Murphey, Jorge
Cortes, and Konstantinos Karydis. Koopman operators in robot learning. ArXiv, abs/2408.04200,
Aug 2024. doi: 10.48550/arxiv.2408.04200. URL https://doi.org/10.48550/arxiv.
2408.04200.

12

https://doi.org/10.3390/math10071180
https://doi.org/10.3390/math10071180
https://doi.org/10.1137/16m1062296
https://doi.org/10.1137/16m1062296
https://doi.org/10.1063/1.5099091
https://doi.org/10.48550/arxiv.2408.04200
https://doi.org/10.48550/arxiv.2408.04200

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Aivar Sootla, Alexandre Mauroy, and Damien Ernst. Optimal control formulation of pulse-based
control using koopman operator. Automatica, 91:217–224, 2018.

Rui Wang, Yihe Dong, Sercan Ö Arik, and Rose Yu. Koopman neural forecaster for time series with
temporal distribution shifts. arXiv preprint arXiv:2210.03675, 2022.

Andrea Y Weiße, Diego A Oyarzún, Vincent Danos, and Peter S Swain. Mechanistic links be-
tween cellular trade-offs, gene expression, and growth. Proceedings of the National Academy of
Sciences, 112(9):E1038–E1047, 2015.

Shuangfei Zhai, Walter Talbott, Nitish Srivastava, Chen Huang, Hanlin Goh, Ruixiang Zhang, and
Josh Susskind. An attention free transformer. arXiv preprint arXiv:2105.14103, 2021.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A SYSTEMS AND DATA GENERATION

A.1 DYNAMICAL SYSTEMS

A.1.1 DUFFING OSCILLATOR

The Duffing oscillator represents a paradigmatic example of nonlinear dynamics described by the
second-order differential equation

ẍ+ δẋ+ αx+ βx3 = γ cos(ωt).

This system has been studied in the context of data-driven modelling and Koopman operator theory
due to its rich dynamical behaviour and analytical tractability (Otto & Rowley, 2019; Li et al., 2017;
Alford-Lago et al., 2022; Pan & Duraisamy, 2020; Köhne et al., 2025).

In this work, we focus on the unforced and undamped case governed by

ẍ = x− x3, (9)

which captures essential features such as switching dynamics between stable states and
(mixed/)continuous spectrum characteristics, making it ideal for showcasing our proposed method-
ology. The state-space representation is

ẋ1 = x2,

ẋ2 = x1 − x3
1.

(10)

Here x1 denotes position and x2 velocity. Initial conditions are sampled uniformly from (x1, x2) ∈
[−2, 2] with fixed step size as in Table 9. This configuration admits two stable centers at (x1, x2) =
(±1, 0) and an unstable fixed point at the origin (0, 0). The system is Hamiltonian and trajectories
form closed orbits in phase space: low-energy orbits are confined to individual potential wells, while
high-energy orbits encircle both wells, exhibiting switching behavior as trajectories periodically
transition between states.

The continuous-spectrum nature of this system poses significant challenges for traditional Koopman
operator approximation methods, as there is no straightforward finite-dimensional approximation in
terms of a small number of eigenfunctions. Additionally, the switching dynamics between potential
wells create computational difficulties even for short-term prediction.

A.1.2 REPRESSILATOR

The Repressilator, a popular synthetic gene circuit (Elowitz & Leibler, 2000), has become a canon-
ical model for studying oscillatory dynamics that emerge from negative feedback regulation. The
circuit is composed of three transcriptional repressor genes arranged in a cyclic negative feedback
loop, where each gene encodes a protein that inhibits the transcription of the next gene in the cycle,
creating a ring-like structure. Many studies extensively analysed data-driven modelling and control
of such systems in (Boddupalli et al., 2019; Sootla et al., 2018; Balakrishnan et al., 2022; Perez-
Carrasco et al., 2018). Here, we focus on the case where the genetic circuit is isolated from bacterial
host (Weiße et al., 2015; Nikolados et al., 2019) and admits a limit cycle in the phase portrait with a
single basin of attraction centered at the origin. We define the system as:

dm(i)

dt
= −δmm(i) +

α

1 + (p(j)/K)n
+ α0,

dp(i)

dt
= −δpp(i) + βm(i),

(11)

where mi and pi denotes the concentration of mRNA and protein of gene i, respectively. The
indices (i, j) cycles through the repressor pairs {(lacI, cI), (tetR, lacI), (cI, tetR)}. The model
parameters represent basal and maximal transcription rates (α0, α), Hill repression characteristics
(K,n), degradation rates (δm, δp), and the translation rate (β). We used the parameter values α0 =
0.03, α = 10, K = 40, n = 2, δm = 0.3466, δp = 0.0693, and β = 10 in dimensionless units.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.1.3 IRMA

The IRMA (In vivo Reverse-engineering and Modelling Assessment) network is a well-
characterised synthetic gene circuit in Saccharomyces cerevisiae, constructed explicitly as a bench-
mark for modelling and control. IRMA consists of five yeast transcription-factor genes (CBF1,
GAL4, SWI5, ASH1, GAL80) with a topology containing both positive and negative feedback loops
(Marucci et al., 2009; di Bernardo et al., 2011). It was designed to be insulated from native regu-
lation and to respond specifically when cells are cultured in galactose. This network has been used
to test system-identification and control methods. For example, Menolascina et al. (2014) applied
closed-loop control to regulate IRMA’s reporter output, and Cantone et al. (2009) used IRMA time-
series data to validate reverse-engineering algorithms. These studies demonstrate IRMA’s predictive
modelling value.

The mathematical model of IRMA is characterised by the following system of equations:

ẋ1 = α1 + v1 ·
kh1
1

kh1
1 + xh1

5

− d1x1,

ẋ2 = α2 + v2 ·
xh2
1

kh2
2 + xh2

1

− d2x2,

ẋ3 = α3 + v3 ·
xh3
2

kh3
3 + xh3

2

(
1 +

x
h6
4

γh6

) − d3x3,

ẋ4 = α4 + v4 ·
xh4
3

kh4
4 + xh4

3

− d4x4,

ẋ5 = α5 + v5 ·
xh5
3

kh5
5 + xh5

3

− d5x5.

(12)

where x1, x2, x3, x4, x5 represent CBF1, GAL4, SWI5, GAL80, and ASH1 respectively, param-
eters follow the implementation in Marucci et al. (2009) and states are sampled from a uniform
distribution over the interval [0, 1].

The parameters of the model include the basal expression rates αi, the maximum expression rates
vi, the half-saturation constants ki, the Hill coefficients hi, the degradation rates di, and the inhi-
bition constant γ. Together, these parameters govern the nonlinear gene regulatory interactions and
degradation dynamics of the IRMA circuit.

A.2 ADDITIONAL DYNAMICAL SYSTEMS

In addition to the three main benchmark systems (A.1, we also consider a collection of classical
dynamical systems as benchmarks. These systems are commonly used in the literature for system
identification tasks, as they display diverse and rich dynamical behaviors. We briefly describe each
of them below.

Nonlinear Pendulum. The pendulum represents a freely swinging pole. Unlike the linear small-
angle approximation, the full nonlinear pendulum exhibits richer dynamics. As the system energy
increases, oscillations become strongly anharmonic, leading to a continuous Koopman spectrum.
The dynamics are given by:

ẋ1 = x2, (13)
ẋ2 = − sin(x1). (14)

Initial conditions with angular positions θ0 from a uniform distribution over [−π, π] radians, with
angular velocities fixed at ω0 = 0.0.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Parabolic Attractor. Adopted from Lusch et al. (2018), this simple dynamical system has a single
fixed point and a discrete eigenvalue spectrum:

ẋ1 = µx1, (15)

ẋ2 = λ
(
x2 − x2

1

)
. (16)

The system exhibits a slow manifold for stable eigenvalues λ < µ < 0, asymptotically attracted to
the parabola x2 = x2

1. We set λ = −1.0 and µ = −0.1, with initial conditions sampled uniformly
from x1, x2 ∈ [−1, 1].

Goodwin Oscillator. The three-state Goodwin oscillator (Goodwin, 1965) is a prototypical bio-
chemical feedback model demonstrating how delayed negative feedback generates self-sustained
oscillations. It consists of three variables (commonly interpreted as mRNA, protein, and inhibitor),
where the inhibitor suppresses mRNA production. The system is governed by:

ẋ1 =
α

κ+ kxn
3

− βx1, (17)

ẋ2 = γx1 − δx2, (18)
ẋ3 = ηx2 − θx3, (19)

where (x1, x2, x3) denote the concentrations of the three states and are sampled from uniform distri-
butions over [−2, 2] for each state variable and used the following parameters to generate oscillation:
a1 = 360, κ1 = 43, k1 = 1.0, n = 12, b1 = 0.6, α1 = 1.0, β1 = 1.0, γ1 = 1.0, and δ1 = 0.8.

Lotka–Volterra System. The Lotka–Volterra equations describe a classical predator-prey model
whose populations can undergo sustained oscillations:

ẋ1 = αx1 − βx1x2, (20)
ẋ2 = δx1x2 − γx2. (21)

The system admits two fixed points: extinction at (0, 0) and coexistence at
(
γ
δ ,

α
β

)
. We follow the

setup of Fathi et al. (2023) and set α = β = γ = δ = 0.2, with initial conditions sampled uniformly
from x1, x2 ∈ [0.02, 3.0].

Rössler System. The Rössler system (Rössler, 1976) is a three-dimensional chaotic system de-
fined by:

ẋ1 = −x2 − x3, (22)
ẋ2 = x1 + ax2, (23)
ẋ3 = b+ x3(x1 − c). (24)

With the canonical parameter set (a, b, c) = (0.2, 0.2, 5.7), the system yields the well-known strange
attractor characterized by oscillations in the (x1, x2)-plane and intermittent growth/decay along x3.

Fluid Flow Model. A reduced-order model of fluid flow past a circular cylinder at Reynolds num-
ber 100 (Noack et al., 2003) is given by:

ẋ1 = µx1 − ωx2 +Ax1x3, (25)
ẋ2 = ωx1 + µx2 +Ax2x3, (26)

ẋ3 = −λ
(
x3 − x2

1 − x2
2

)
. (27)

With parameters µ = 0.1, ω = 1.0, A = −0.1, and λ = 10, this system serves as a benchmark
for fluid dynamics, exhibiting self-sustained von Kármán vortex shedding. We consider trajectories
starting both on and off the slow manifold.

B EXTENDED RELATED WORK

B.1 KOOPMAN OPERATOR LEARNING

Data-driven approximations of the Koopman operator (Koopman, 1931) have matured from
dictionary-based linear models to learned latent embeddings. Extended DMD (EDMD) introduces

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

a finite dictionary of observables and performs linear regression in the lifted space (Li et al., 2017).
Rigorous analyses quantify when EDMD converges and how spectra are approximated (Korda &
Mezić, 2018; Mezić, 2022; Giannakis & Valva, 2024; Colbrook & Townsend, 2024). Neural formu-
lations replace hand-crafted dictionaries with encoders/decoders that learn Koopman-invariant co-
ordinates end-to-end, often with a linearly recurrent bottleneck (Otto & Rowley, 2019; Lusch et al.,
2018). These approaches have been used on canonical nonlinear systems—including Duffing-type
oscillators—to demonstrate improved single-step prediction and limited-horizon rollout accuracy
(Otto & Rowley, 2019; Li et al., 2017; Alford-Lago et al., 2022; Pan & Duraisamy, 2020; Köhne
et al., 2025). Unlike black-box recurrent-based neural network models such as LSTM and GRU (El-
man, 1990; Hochreiter & Schmidhuber, 1997; Cho et al., 2014), Koopman-based methods yield
interpretable latent coordinates and preserve better system dynamics in extrapolation. Regulariz-
ers that bias the learned propagator toward (near-)unitary dynamics have been explored to stabilize
long-horizon rollouts (Enyeart & Lin, 2024). Symmetry-aware variants study how equivariances
shape Koopman spectra and model structure (Salova et al., 2019).

B.2 DELAY EMBEDDINGS AND MEMORY

A parallel line of work augments Markov predictors with short-term memory via time-delay embed-
dings. Hankel DMD constructs a block-Hankel snapshot matrix to expose linear evolution in delay
coordinates (Arbabi & Mezic, 2017); related theory develops universal, system-independent time-
delay observables (Kamb et al., 2020). HAVOK (Hankel Alternative View of Koopman) further
separates a low-dimensional linear model from a data-driven forcing term that captures intermittent
or chaotic dynamics (Brunton et al., 2017). These methods show that short windows of history
can substantially reduce phase slippage and amplitude drift, motivating lightweight latent-memory
mechanisms in neural Koopman models.

B.3 ATTENTION AND HYBRID KOOPMAN MODELS

Recent models couple Koopman structure with attention to aggregate recent context or to adapt
locally. Lu et al. (2024) employ temporal attention inside an autoencoder to attenuate noise
and improve forecasting; Wang et al. (2022) pair a global (stationary) Koopman map with a
local transformer-based operator to handle nonstationarity and transients. We follow the same
spirit—leveraging short temporal context for robust prediction—while replacing quadratic-cost
multi-head attention with a linear-cost, attention-free aggregation in latent space.

B.4 INPUTS, CONTROL, AND MPC

Complementary work integrates inputs and control: KIC extends Koopman predictors to systems
with inputs (Proctor et al., 2018); LNCIS surveys detail operator-learning pipelines for control
(Kaiser et al., 2020); Koopman MPC demonstrates closed-loop planning in lifted coordinates (Ko-
rda & Mezić, 2020); and recent surveys emphasize applications in robot learning (Shi et al., 2024).
These applications motivate robustness over long horizons, as models that remain near the learned
manifold are easier to certify and use in downstream control.

B.5 PROJECTION, CONSISTENCY, AND RECURSIVE/LOCAL MODELING

To limit compounding errors, several practices periodically project or reconcile predictions with the
learned manifold. Temporal consistency regularization encourages smooth, self-consistent multi-
step predictions (Nayak et al., 2025); delayed-input concatenation provides a simple memory buffer
for low-dimensional series (Frion et al., 2025). In the classical setting, windowed/recursive DMD
maintains local linear surrogates from sliding subsets of recent data (Noack et al., 2015; Dylewsky
et al., 2019), and recent variants use windowed outputs to update local linear models online (Guan
et al., 2024). We operationalize a complementary idea in latent space: a cheap encode–decode–
encode projection that snaps predictions back to the autoencoder manifold when drift is detected.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B.6 STREAMING DRIFT DETECTION

Change-point detection from statistical process control offers streaming triggers that are inexpen-
sive and interpretable. CUSUM tests cumulative deviations against a nominal mean (Moustakides,
1986); EWMA emphasizes recent residuals through exponential smoothing (Roberts, 2000); and
sequential two-sample procedures compare reference and current windows to detect broader distri-
butional shifts (Ross & Adams, 2012). We instantiate all three as latent-drift monitors to decide
when to re-encode.

B.7 BIOLOGICAL CIRCUITS AND BROADER BENCHMARKS

Synthetic gene networks furnish controlled, nonlinear testbeds with oscillations and feedback. The
Repressilator (Elowitz & Leibler, 2000) and the IRMA network (In vivo Reverse-engineering and
Modelling Assessment) (Marucci et al., 2009; di Bernardo et al., 2011) have been repeatedly used
for modeling and closed-loop control (Menolascina et al., 2014; Cantone et al., 2009). Koopman-
based predictors and controllers have also been explored for genetic circuits (Hasnain et al., 2019).
Beyond biology, standard dynamical-systems benchmarks probe complementary difficulties: the
Goodwin oscillator (Goodwin, 1965), Rössler attractor (Rössler, 1976), and reduced-order cylinder
flow (Noack et al., 2003), as well as pedagogical systems such as the parabolic attractor (Lusch
et al., 2018) and Lotka–Volterra (Fathi et al., 2023). In our experiments, we focus our most rigorous
evaluation on three representative systems (Duffing, Repressilator, IRMA) and use the remaining
benchmarks to sanity-check generalization of the finalized architecture.

C REPRODUCIBILITY CHECKLIST

Code and data. We release code, configuration files, and scripts to (i) generate datasets for all
systems, (ii) train/evaluate each model variant (KAE, KAE+AFT, KAE+MHA, KAE+AFT+Re-
enc), and (iii) reproduce all tables/figures. Re-encoding triggers (EWMA, CUSUM, windowed
Z-score, two-sample) are provided as modular components.

Training and evaluation protocol. We fix optimizer, learning-rate schedule, batch size, rollout
horizons, and early-stopping criteria as in §H. Models are evaluated by free rollouts from held-
out initial conditions; we report MSE and MCAE as defined in §3.2. All reported means are over
multiple random initial-condition with 95% CIs for MCAE curves.

Hyperparameters. Architecture and training hyperparameters are summarized in Tables 8 and
9. Unless otherwise noted, the bottleneck is d=100, AFT context T=10, and K is dense. Any
deviations are stated near the corresponding results.

Determinism and versions. We provide exact library versions (PyTorch, CUDA, numpy, scipy)
and OS details. Where relevant, we disable non-deterministic CuDNN kernels.

Table 4: Checklist of key reproducibility items and where they are specified.

Item Status Where

Datasets & generation scripts Provided App. H, App. A
Train/eval protocols Specified §H
Architectures & losses Specified §2.1, §2.2, equation 2
Re-encoding triggers Specified §2.3, Alg. 2
Hyperparameters (per system) Tabulated Tables 8, 9
Baselines & ablations Enumerated §3.3
Metrics (MSE, MCAE) Defined §3.2
Code Provided § 7

Data generation. All ODE systems were integrated with scipy.integrate.odeint, a
wrapper of ODEPACK’s LSODA solver that automatically detects stiffness and switches between
a variable–order Adams method (non-stiff) and a BDF/Gear method (stiff), with adaptive internal
step sizes and default error control (relative and absolute tolerances left at SciPy/LSODA defaults)
following common practice in prior Koopman and system-identification studies (see §B). Solutions

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

were returned at user–specified sample times t0, . . . , tT (uniform linspace per dataset), so the re-
ported ∆t in tables refers to output sampling, not the solver’s internal step. We did not supply
Jacobians or event functions; LSODA formed finite–difference Jacobians as needed. Initial condi-
tions were sampled from the ranges stated in Appendix A and, for each system, we generate separate
train/validation/test sets by sampling initial conditions.

D DYNAMIC RE-ENCODING METHODS

To implement dynamic re-encoding, we considered a set of online change-point detection methods
that can identify shifts in the drift error and decide when re-encoding is beneficial. These approaches
vary in complexity, from simple threshold-based rules to more sophisticated statistical tests, but they
all share the goal of adapting the model to evolving data. Below, we provide a brief description of
each method:

1. Cumulative Sum (CUSUM): Originating from the work of Moustakides (1986), CUSUM
is a sequential analysis technique that monitors cumulative deviations of observations from
a target mean. We employ a probabilistic variant that standardizes the observed MSE dif-
ference between predictions with and without re-encoding, computes the cumulative sum,
and converts it into a standard normal statistic. We then derive a p-value

pT = 2
[
1− Φ

(
|s̃T |

)]
,

where Φ denotes the standard normal CDF. This p-value quantifies the improbability of the
observed cumulative deviation under the no-change hypothesis.

2. Threshold Re-encoding: We quantify the discrepancy between the original latent predic-
tion Ypred and the re-encoded prediction Ypred-after using a normalized mean squared differ-
ence:

∆ =
∥Ypred − Ypred-after∥2

∥Ypred∥2 + ϵ
.

A re-encode is triggered when ∆ exceeds a predefined threshold.
3. Window Re-encoding: We track the MSE difference between the standard and re-encoded

predictions in a fixed-size sliding window. Re-encoding is activated if the most recent MSE
exceeds the window’s mean plus a configurable multiple of its standard deviation, enabling
adaptive response to abnormal fluctuations while balancing stability and efficiency.

4. Exponentially Weighted Moving Average (EWMA): Introduced in Roberts (2000), the
EWMA method computes a smoothed statistic that emphasizes recent observations. The
update rule is

Zt = (1− λ)Zt−1 + λ δt, λ ∈ (0, 1),

Where a new observation is δt , the smoothing parameter is λ. The method maintains
running estimates of the mean µt and the standard deviation σZ of the EWMA statistic. A
change point is declared if

|Zt − µt|
L

> σZ ,

with L being a sensitivity scaling factor.
5. Sequential Two-Sample Test: Extending the methods of Ross & Adams (2012), this ap-

proach partitions the data stream into a “reference” and a “current” window buffer and
applies nonparametric tests (e.g., Kolmogorov–Smirnov, Lepage, Mann–Whitney) to de-
tect distributional shifts beyond mean changes—such as variance or skewness deviations.

E GRU AND TRANSFORMER ARCHITECTURES

We use GRUs and transformers in an autoencoder architecture as a baseline to compare with the
Koopman autoencoders. We chose these as baselines due to their ability to model the temporal and
spatial dependence from the training data. We use simple model architectures to allow the model to
be as expressive as possible to learn from the provided data. A description of each autoencoder is
provided below.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

E.1 GRU AUTOENCODER

Model. Let Xt = (xt, xt + 1, . . . , xt+T−1) ∈ Rp×T denote the observed window of length T
of states at time t and let Egru : Rp→ Rd be an n-layer GRU encoder and Dmlp : Rd→ Rp be
a one-layer MLP decoder. Together, Egru maps the input window of length T to a d-dimensional
latent space and Dmlp decodes back to a next-step prediction in Rp:

x̂t+T = Dmlp(Egru(Xt)) (28)

so that an i–step rollout from an initial observed window X0 is i autoregressive applications of the
autoencoder, shown in algorithm 3.

Training losses. Given an input window X0 of length T , we minimize the autoregressive predic-
tion error over a rollout of Tpred steps. Let fgru ar : X0 → X̂T denote the algorithm described in 3
for a Tpred-step model rollout with context length T .

L =
1

Tpred

∥∥XT − fgru ar(X0)
∥∥2
2
, (29a)

We train by using this loss function over the training data.

E.2 TRANSFORMER AUTOENCODER

The transformer autoencoder is almost identical to the GRU autoencoder described in E.1 except that
the encoder is now an n-layer GRU followed by an m-layer transformer encoder. The GRU head is
used to embed the input data to a higher dimension before being passed through the transformer.

Model. Let Xt = (xt, xt + 1, . . . , xt+T−1) ∈ Rp×T denote the observed window of length T
of states at time t and let Etr : Rp → Rd be an (n + m)-layer transformer encoder with and
Dmlp : Rd→Rp be a one-layer MLP decoder. Together, Etr maps the input window of length T to
a d-dimensional latent space and Dmlp decodes back to a next-step prediction in Rp:

x̂t+T = Dmlp(Etr(Xt)) (30)

so that an i–step rollout from an initial observed window X0 is i autoregressive applications of the
autoencoder, shown in algorithm 3.

Training losses. Given an input window X0 of length T , we minimize the autoregressive predic-
tion error over a rollout of Tpred steps. Let ft ar : X0 → X̂T denote the algorithm described in 3
for a Tpred-step model rollout with context length T .

L =
1

Tpred

∥∥XT − ft ar(X0)
∥∥2
2
, (31a)

We train by using this loss function over the training data.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

F ALGORITHMS

Algorithm 1: AFT–Koopman rollout (no re-encoding)
Input: initial state x0, horizon Tpred, context length T

Output: predicted states {x̂t}
Tpred

t=0
Data: encoder φ, decoder φ−1, Koopman map K, AFT params WQ,WK ,WV , position bias

B, causal mask M
1 z0 ← φ(x0); x̂0 ← x0;
2 for t← 1 to Tpred do

// Assemble latent history (causal, chronological, length T)
3 build Ht−1 = [zt−T , . . . , zt−1] (truncate if t<T);

// AFT projections
4 q ← zt−1WQ; Kt ← Ht−1WK ; Vt ← Ht−1WV ;

// Residual aggregation in latent space
5 αi,j ← exp(kj +Wi,j) ·Mi,j for all i, j;

6 ∆zi ← qi ⊙
∑

j αi,j⊙vj∑
j αi,j

for all i;

// Koopman propagation + decode
7 zt← K (zt− 1 + ∆zt−1); x̂t ← φ−1(zt);
8 end
9 return {x̂t}

Tpred

t=0

Algorithm 2: AFT–Koopman rollout with dynamic re-encoding (inference only)
Input: initial state x0, horizon Tpred, context length T , trigger config Θ

Output: predicted states {x̂t}
Tpred

t=0 , re-encode stepsR
Data: encoder φ, decoder φ−1, Koopman map K, AFT params WQ,WK ,WV , position bias

B, causal mask M
1 z0 ← φ(x0); x̂0 ← x0; R ← ∅;
2 for t← 1 to Tpred do

// Get original and re-encoded versions of zt−1

3 zorigt−1 ← zt−1; zre−enct−1 ← φ(φ−1(zt−1));
// Apply AFT function to both versions

4 build Ht−1 = [zt−T , . . . , zt−1] (truncate if t<T);
5 ∆zorig ← AFT(zorigt−1 , Ht−1);
6 ∆zre−enc ← AFT(zre−enct−1 , Ht−1);

// Update both versions with their residuals
7 zorigt−1 ← zorigt−1 +∆zorig;
8 zre−enct−1 ← zre−enct−1 +∆zre−enc;

// Apply Koopman operator to both updated versions
9 zorigt ← K zorigt−1 ;

10 zre−enct ← K zre−enct−1 ;
// Calculate difference after Koopman propagation

11 δt ← ∥zre−enct − zorigt ∥22;
// Streaming triggers (EWMA / CUSUM / window / two-sample)

12 if TriggerFires(δt; Θ) then
13 zt ← zre−enct ; R ← R∪ {t};
14 end
15 else
16 zt ← zorigt ;
17 end
18 x̂t ← φ−1(zt);
19 end
20 return {x̂t}

Tpred

t=0 ,R

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Algorithm 3: GRU and Transformer rollout
Input: initial window X0 = (x0, x1, . . . , xT−1), horizon Tpred, context length T

Output: predicted states X̂T = {x̂t}
T+Tpred

t=T
Data: encoder E (either Egru or Etr), decoder Dmlp

1 Xtmp ← X0;
2 for t← 1 to Tpred do

// Encode the input sequence
3 Zt ← E(Xtmp);

// Decode the latent space
4 x̂t+T−1 = Dmlp(Zt);

// Autoregressively prepare the next input
5 Xtmp = (xt, xt+1, . . . , xt+T−1);
6 end
7 return X̂T = {x̂t}

T+Tpred

t=T

G ADDITIONAL RESULTS AND ANALYSES

G.1 COMPLEXITY AND PARAMETER FOOTPRINT

Attention-free latent memory vs. MHA. Let d be the latent (bottleneck) dimension and T the
AFT history length. The AFT block adds three linear maps WQ,WK ,WV ∈ Rd×d and a learned
position-only bias B ∈ RT×T , for a total of 3d2 + T 2 parameters. With the settings used in most
experiments (d=100, T=10), this is ≈ 30,100 parameters. The aggregation cost per step is linear
in window length, O(Td), since we compute a weighted sum over the last T key/value pairs with a
fixed (causal) position bias (Zhai et al., 2021). By contrast, dot-product multi-head attention over a
window of size T requires forming attention scores over all pairs, yieldingO(T 2d) time andO(T 2)
memory for the attention map, in addition to comparable linear projections.

Total inference cost. Per time step, the KAE backbone incurs one d×d Koopman multiply and one
decode; AFT adds one extra d × d projection and a windowed O(Td) aggregation. The dynamic
re-encoding step introduces an additional encode-decode-encode (φ−1 then φ) per time step, so we
incur additional (cost[φ] + cost[φ−1]). All triggers operate in O(1) time per step with respect to
rollout length (the two-sample test maintains fixed-size buffers, i.e., O(w) per update for constant
w).

Memory footprint. We store the last T latents (O(Td)) and no dense T × T attention maps at
inference time. This linear memory scaling enables long rollouts with a small fixed context.

G.2 INFERENCE TIME EVALUATION

When deploying machine learning models from offline forecasting to real-time control of dynamical
systems, computational efficiency becomes as critical as prediction accuracy, since control systems
operate under strict timing constraints where inference delays can destabilize the entire system. We
evaluated our models and inference methods on the IRMA dynamical system, predicting 100 time
steps from 10 initial conditions and 5 trials per method to ensure statistical reliability of timing
measurements. We report four metrics: (i) Time [s], the average wall-clock time per trial; (ii)
Throughput [traj/s], the number of trajectories predicted per second; (iii) Latency [ms], the average
inference time per trajectory; and (iv) Efficiency [MFLOPS], the floating-point operations executed
per second, as measured using PyTorch profiler on M3 CPU hardware. These metrics reflect real
executed operations rather than theoretical complexity estimates.

Table 5 presents the inference time evaluation results for all methods on the IRMA dynamical sys-
tem. The Koopman-based approaches demonstrate superior computational efficiency, with Koop-
man AE achieving the lowest average inference time of 0.11s per trial and the highest throughput
of 94.4 trajectories per second. The AFT variants, while slightly slower than the AE formulation,
still offer good performance with throughput rates of 74.8-76.5 trajectories per second and notably
higher computational efficiency, achieving 6774-6915 MFLOPS compared to 694 MFLOPS for the
AE method. This indicates that AFT methods perform more intensive computations while maintain-

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 5: Table of runtime performance for different models and inference methods.

Method Time [s] Throughput [traj/s] Latency [ms] MFLOPS
Koopman AE 0.11 ± 0.16 94.4 10.6 694
Koopman AFT 0.13 ± 0.04 76.5 13.1 6915
Periodic AFT 0.13 ± 0.03 74.8 13.4 6774
Dyn. Reenc. AFT (Window Var) 0.21 ± 0.05 47.6 21.0 4864
Dyn. Reenc. AFT (Two Sample) 0.38 ± 0.08 26.4 37.9 4881
Transformer 4.91 ± 1.15 2.04 491 518
GRU 6.08 ± 2.59 1.65 608 144

ing fast inference times. In contrast, traditional sequence models exhibit significantly higher latency,
with the Transformer and GRU requiring 491ms and 608ms per trajectory, respectively.

G.3 SEED ROBUSTNESS, PHASE-PLANE VIEWS, AND ERROR ACCUMULATION FOR THE
CORE TRIO SYSTEMS

Table 6 reports mean ± std MSE across random seeds (values scaled by ×100) for the Koopman
baselines and our re-encoding variants. On Duffing, dynamic re-encoding yields the lowest error
at all horizons (e.g., 1.66±0.60 at 200 steps), reducing both mean and variance relative to KAE
and AFT, and maintaining a gap through 1000 steps (19.04±0.95 vs. 25.63±0.97 for KAE). This
aligns with the switching-sensitive dynamics where timely snaps curb manifold drift (cf. Table 1,
Fig. 2c). On the Repressilator, AFT without re-encoding is consistently best (0.01±0.00, 0.07±0.05,
0.19±0.20 at 200/500/1000), while snap-backs degrade performance (∼ 0.40–0.71), corroborating
that triggers can inject phase resets on clean limit cycles (see §4.1). For IRMA, dynamic (and
periodic) re-encoding dominate across horizons (e.g., 0.01±0.01 at 200 and 0.04±0.01 at 1000),
with AFT close but consistently worse, reflecting the benefit of guarding against gradual manifold
drift in higher-dimensional feedback systems.

Table 6: Mean Squared Error (MSE) over different time steps for Koopman methods running on
different seed values, scaled by 100, with best values highlighted.

Steps Koopman Koopman AFT+Re-encoding
AE AFT Dynamic Periodic

MSE over different time steps

Duffing Oscillator
200 11.24± 0.84 7.43± 2.24 1.66± 0.60 1.92± 0.54
500 23.01± 1.89 22.05± 3.89 11.35± 2.64 11.93± 1.47

1000 25.63± 0.97 27.54± 7.48 19.04± 0.95 21.82± 0.97

Repressilator
200 0.01± 0.00 0.01± 0.00 0.40± 0.05 0.42± 0.05
500 0.23± 0.05 0.07± 0.05 0.45± 0.03 0.35± 0.01

1000 1.37± 0.83 0.19± 0.20 0.71± 0.04 0.71± 0.07

IRMA
200 1.18± 0.20 0.03± 0.00 0.01± 0.01 0.01± 0.01
500 3.13± 1.31 0.08± 0.04 0.02± 0.02 0.02± 0.01

1000 3.22± 1.17 0.12± 0.03 0.04± 0.01 0.06± 0.01

Figure 5 complements these statistics: phase-plane/3D rollouts illustrate that re-encoding prevents
rare-but-catastrophic divergence and preserves switching structure on Duffing, while remaining
faithful to the attractors on Repressilator and IRMA. The MCAE curves in Fig. 6 further expose
error-growth dynamics: on Duffing and IRMA, dynamic re-encoding flattens cumulative error rela-
tive to KAE and AFT, whereas on Repressilator the AFT-only curve remains lowest and most stable,
consistent with Table 1 and our guidance in §5 (“When and why re-encoding helps”).

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

(a) Repressilator — 3D prediction (b) IRMA — 3D prediction (c) Duffing — multi-traj

Figure 5: Phase Plane Visualization of the systems. Dynamic re-encoding prevents rare-but-
catastrophic divergence on long rollouts and provides robust trajectory prediction across different
initial conditions.

(a) Duffing oscillator (b) IRMA system (c) Repressilator system

Figure 6: Mean cumulative absolute error (MCAE) results for our three dynamical systems, comple-
menting the quantitative results presented in Table 1. The plots show prediction error accumulation
over time for (a) the Duffing oscillator, (b)IRMA, and (c) the Repressilator.

G.4 ADDITIONAL DYNAMICAL SYSTEMS

To assess out-of-the-box robustness, we hold architecture and training protocols fixed across tasks
(varying only loss weights) and evaluate on a diverse suite spanning continuous spectra, limit cy-
cles, and chaos. The suite includes: the nonlinear pendulum (anharmonic, continuous spectrum),
the Goodwin oscillator (sustained biochemical oscillations; complementary 200/500-step horizons),
the parabolic attractor (fully linearizable by standard Koopman coordinates), the Rössler system
(canonical 3D chaos), Lotka–Volterra (predator–prey oscillations), and a reduced-order fluid-flow
model capturing von Kármán vortex shedding. These systems cover regimes from simple discrete
spectra to chaotic attractors, providing a stringent test of generalization. Quantitative 200-step MSE
results (plus 500-step for Goodwin) appear in Table 7; representative rollouts are shown in Fig. 7.

Table 7: Prediction performance comparison (MSE ↓) over 200 prediction steps across different
system configurations. Lower values indicate better performance. Best results for each system are
highlighted in bold.

Model Koopman AE AFT AFT with Re-encoding
– – Dynamic Periodic

Pendulum 0.1016 0.0870 0.0687 0.0695
Parabolic Attractor 0.0009 0.0009 0.0011 0.0010
Goodwin Oscillator - 200 steps 0.0001 0.0002 0.0026 0.0033
Goodwin Oscillator - 500 steps 0.0091 0.0009 0.0032 0.0035
Lotka Volterra 0.0112 0.0095 0.0038 0.0031
FluidFlow 0.0026 0.0019 0.0013 0.0017
Rossler 0.0085 0.0055 0.0012 0.0014

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Broadly, AFT improves or matches the Koopman AE baseline, and AFT+re-encoding helps where
drift accumulates (pendulum, Lotka–Volterra, fluid flow, Rössler), while offering no benefit on triv-
ially linearizable dynamics (parabolic) or very clean short-horizon oscillations (Goodwin at 200).
No per-system tuning beyond the loss weights was performed.

(a) FluidFlow (b) Goodwin Oscillator (c) Rössler

(d) Pendulum (e) Lotka–Volterra (f) Parabolic Attractor

Figure 7: Additional Dynamical systems. AFT (and AFT+Re-enc where helpful) improves or
matches the baseline across diverse regimes. We did not perform additional, extensive per-system
tuning.

G.5 ABLATIONS: OPERATOR SIZE AND AFT CONTEXT

During training, re-encoding is disabled and only activated during inference (Algorithm 1). Mod-
els with larger operator sizes consistently achieve better performance than their smaller counter-
parts, though this performance gap narrows with the introduction of AFT. This difference is most
pronounced in the Repressilator experiments (Fig 8; left). For context length, short windows
(T ∈ [8, 16]) perform best (Fig 8; right). This is likely because using very long attention spans
introduces memory into a system that is intended to be memoryless, and we use memory primarily
for detecting drift.

H ADDITIONAL TRAINING DETAILS AND HYPERPARAMETERS

Rollout loss and supervision. Given an input chunk (x0, . . . , xT), we encode z0 = φ(x0) and
roll forward with K (and AFT when enabled), decoding x̂t = φ−1(zt) at each step. We minimize
the composite objective in equation 2: Lrecon enforces autoencoder fidelity, Llin encourages linear
evolution zi ≈ Kiz0 in latent space, Lpred supervises decoded trajectories, and Lunitary regularizes
K. We use the full-horizon weighting (no temporal discount) to emphasize long-range accuracy.

Optimization and schedules. We train with AdamW (initial learning rate 10−3), a step scheduler
(epochs 30/60/90, factor 0.8), batch size 128, and early stopping on validation MSE. For systems
with chaotic or stiff transients, we use shorter prediction horizons during training (Table 9) for sta-
bility; inference uses the full trajectory length, and loss weights follow Table 9 (α1, α2 per system)
and we use full-horizon weighting in equation 2 without temporal discount. The AFT block uses a
causal position-only bias with a learned T × T matrix; multi-head attention baselines use identical

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

0 200 400 600 800 1000
Timestep

10 2

10 1

100

101

102

Av
er

ag
e

Cu
m

ul
at

iv
e

Ab
so

lu
te

 E
rro

r (
Lo

g
Sc

al
e)

Prediction Performance Across Models
Koopman AFT 10
Koopman AFT 20
Koopman AFT 30
Koopman AFT 50

Figure 8: Ablation studies on Koopman and AFT parameters. Left: AFT robustness vs. Koop-
man with different operator sizes on Repressilator. Dense K achieves the best accuracy; constrained
forms need larger widths for parity. Right: AFT with different context lengths. Small context length
enable learning temporal changes while longer context might lead to noise updates.

bottleneck d and comparable per-head key/value sizes. Unless otherwise stated, the AFT context is
T=10 and K is dense. We report means over multiple random initial conditions; 95% CIs are shown
on MCAE curves. Re-encoding is disabled during training and enabled only at inference (Alg. 2).

Network Architecture.We employ a symmetric autoencoder architecture with encoder and decoder
networks each containing 2-4 hidden layers of equal width. We use Leaky ReLU activation func-
tions after each hidden layer except the pre-bottleneck layer, which uses linear activation. The
bottleneck dimension was initially determined from repressilator experiments and fixed at 100 di-
mensions across all subsequent models to ensure consistent comparison between the Koopman Au-
toencoder (KAE) and attention-augmented variants. This standardized architecture allows us to
focus on comparing the prediction capabilities between the Koopman Autoencoder (KAE) and our
attention-augmented variant.

We employed a consistent architectural framework across all dynamical systems, as detailed in Table
8. Modifications to this baseline architecture were implemented only when performance proved
inadequate, with adjustments confined to operator dimensionality (bottleneck width) or the depth
of hidden layers. The selection of 2–4 hidden layers was informed by preliminary experiments
demonstrating that increased network depth yielded marginal performance gains while substantially
elevating training instability for the dynamical systems we tested. However, this architectural choice
may not generalize to dynamical systems with more complex dynamics or higher-dimensional input
spaces, where deeper networks could prove beneficial.

Table 8: Architectural parameters of the models. Values are fixed unless otherwise specified.

Parameter Value

Bottleneck size 100 (120 for IRMA and 128 for Rössler)
Autoencoder hidden layer width 100 (128 for Rössler)
Autoencoder number of hidden layers 2 (4 for Rössler)
AFT context length 10
Scheduler epochs 30, 60, 90
Optimizer AdamW

Koopman Operator Forms. We tested several variations of the Koopman operator, including
dense, tridiagonal, diagonal, and Jordan forms. The dense form consistently outperformed the al-
ternatives. This might be due to the additional constraints imposed by other forms, such as sparsity,
block structure, or independence assumptions, which appear to limit representational capacity. Ad-
ditionally, achieving complete feature disentanglement requires a larger operator size. The dense
form provides maximum representational flexibility, which motivated its use throughout our experi-
ments.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Data Pipeline. We divided the data into 80% training, 10% validation, and 10% testing. Model
inputs for training consist of either complete trajectories or trajectory chunks, where the chunk
length equals the prediction horizon, as shown in Figure 9.

Figure 9: Trajectory segmentation for training

For complex dynamical systems exhibiting chaotic behavior, switching dynamics, or continuous
spectra, we employ shorter prediction lengths during training, as this approach yields better perfor-
mance and more stable training dynamics. The model unrolls predictions from the initial condition
x0 across the specified prediction horizon, computing both latent space predictions and their corre-
sponding observation space reconstructions for loss evaluation. For GRU and Transformer training,
the models require contextual information to learn effectively; therefore, instead of using only the
initial condition X0 to predict X1, . . . , XT , we use X0, . . . , Xc to predict Xc+1, . . . , XT . System-
specific dataset and training settings—including sampling interval ∆t, number of trajectories, Tpred,
and total trajectory length—are summarized in Table 9.

Table 9: System-specific training and dataset parameters. Learning rate is fixed at 1× 10−3.

System α1 α2 ∆t # Trajectories Pred. length Traj. length

Pendulum 0.1 10 0.2 6000 40 200
Isolated repress. 1 10 1.25 15000 200 200
Duffing oscillator 0.01 10 0.05 6000 50 200
Goodwin oscillator 0.1 10 0.2 6000 200 200
Lotka–Volterra 0.01 10 1 6000 50 200
IRMA 2.5 7.4 2 3000 40 400
Rössler 0.1 10 0.05 2000 30 1000
Fluid flow 0.01 10 0.2 6000 50 200

27

	Introduction
	Methods
	Baseline Koopman Autoencoder (KAE)
	Attention-Free Latent Memory (AFT)
	Dynamic Re-Encoding (E–D–E projection and streaming triggers)

	Experiments
	Benchmarks and data generation
	Protocols and metrics
	Baselines and ablations

	Results
	Primary comparison on three representative systems
	Attention vs AFT comparison
	Effect of dynamic re-encoding (streaming triggers)

	Discussion
	Limitations and Future Work
	Reproducibility Statement
	Systems and Data Generation
	Dynamical Systems
	Duffing Oscillator
	Repressilator
	IRMA

	Additional Dynamical Systems

	Extended Related Work
	Koopman operator learning
	Delay embeddings and memory
	Attention and hybrid Koopman models
	Inputs, control, and MPC
	Projection, consistency, and recursive/local modeling
	Streaming drift detection
	Biological circuits and broader benchmarks

	Reproducibility Checklist
	Dynamic Re-encoding Methods
	GRU and Transformer Architectures
	GRU Autoencoder
	Transformer Autoencoder

	Algorithms
	Additional Results and Analyses
	Complexity and parameter footprint
	Inference Time Evaluation
	Seed Robustness, Phase-Plane Views, and Error Accumulation for the core trio systems
	Additional Dynamical Systems
	Ablations: operator size and AFT context

	Additional Training Details and Hyperparameters

