

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 LEARNING THE KOOPMAN OPERATOR USING ATTENTION FREE TRANSFORMERS

Anonymous authors

Paper under double-blind review

ABSTRACT

Learning Koopman operators with autoencoders enables linear prediction in a latent space, but long-horizon rollouts often drift off the learned manifold, leading to phase and amplitude errors on systems with switching, continuous spectra, or strong transients. We introduce two complementary components that make Koopman predictors substantially more robust. First, we add an *attention-free latent memory* (AFT) block that aggregates a short window of past latents to produce a corrective residual before each Koopman update. Unlike multi-head attention, AFT operates in linear time with nearly identical parameter count to the baseline, yet captures the local temporal context needed to suppress error divergence. Second, we propose *dynamic re-encoding*: lightweight, online change-point triggers (EWMA, CUSUM, and sequential two-sample tests) that detect latent drift and project predictions back onto the autoencoder manifold. Across three benchmark systems—Duffing oscillator, Repressilator, IRMA—our model consistently reduces error accumulation compared to a Koopman autoencoder and matched-capacity multi-head attention. We also compare against GRU and Transformer autoencoders, evaluated both from initial conditions and with a 50-step context, and find that Koopman+AFT (with optional re-encoding) attains markedly lower long-horizon error while maintaining substantially lower inference latency. We report improvements over horizons up to 1000 steps, together with ablations over trigger policies. The resulting predictors are fast, compact, and geometry-preserving, providing a practical path to long-term forecasting with Koopman methods.

1 INTRODUCTION

The Koopman operator offers a principled way to analyze nonlinear dynamics with linear tools by lifting states to an observable space where evolution is linear (Koopman, 1931). Neural implementations of this idea—most commonly, Koopman autoencoders (KAE) that learn an encoder φ , a linear map K , and a decoder φ^{-1} —often deliver strong single-step accuracy, but drift in long rolls: phases slip in oscillators, amplitudes decay or explode, and trajectories peel away from attractors (Lusch et al., 2018). Empirically, failures are pronounced in settings with (i) continuous or mixed spectra (e.g., undamped oscillators), (ii) switching between metastable basins, and (iii) transient regimes where small errors compound. This motivates mechanisms that (a) use short-term temporal context to correct local errors, akin to delay-embedding ideas in Hankel DMD / HAVOK (Arbabi & Mezic, 2017; Brunton et al., 2017), and (b) periodically project predictions back onto the learned manifold before drift becomes catastrophic. Robustness over long horizons is therefore critical: predictors that remain near the learned manifold accumulate fewer errors and are easier to certify and use in downstream control.

Approach overview and intuition. We augment a standard KAE with two complementary pieces. (i) An *attention-free latent memory* (AFT) block aggregates a short window of past latents and adds a corrective residual before each Koopman update, achieving linear time/memory in the context length while capturing the local correlations that drive phase and amplitude drift (Zhai et al., 2021). (ii) *Dynamic re-encoding* uses lightweight streaming triggers (EWMA, CUSUM, sequential two-sample, and simple threshold/window tests) to detect latent drift and apply an encode–decode–encode (E–D–E) projection that snaps predictions back to the autoencoder manifold (Roberts, 2000; Moustakides, 1986; Ross & Adams, 2012). Intuitively, AFT addresses *how* we step—reducing local error before

054 propagation by K —while re-encoding addresses *where* we step—bounding accumulated drift. The
 055 mechanisms are orthogonal: one *prevents* growth, the other *bounds* it.
 056

057 **Relation to prior work.** Our approach builds on data-driven Koopman learning from EDMD with
 058 fixed dictionaries to learned latent embeddings with linearly recurrent bottlenecks (Li et al., 2017;
 059 Otto & Rowley, 2019; Lusch et al., 2018). Short time-delay context has long been used to stabilize
 060 prediction (Hankel DMD, HAVOK) (Arbabi & Mezic, 2017; Brunton et al., 2017), motivating our
 061 lightweight latent memory. Compared to transformer-style attention used in recent hybrids (Lu
 062 et al., 2024; Wang et al., 2022), our attention-free block achieves linear cost while targeting the local
 063 correlations that drive phase/amplitude drift. Orthogonally, projection/consistency ideas (Nayak
 064 et al., 2025; Frion et al., 2025; Noack et al., 2015; Dylewsky et al., 2019; Guan et al., 2024) inspire
 065 our encode–decode–encode snap-back mechanism. For triggering, we adopt classic streaming drift
 066 detectors (EWMA, CUSUM, sequential two-sample) (Roberts, 2000; Moustakides, 1986; Ross &
 067 Adams, 2012). Broader lines on inputs and control (KIC, Koopman MPC, safety/verification) are
 068 discussed in Appendix B, along with domain-specific applications in biology and fluid mechanics.
 069

070 **Benchmarks.** We target three representative systems that stress long-horizon stability in comple-
 071 mentary ways: (i) the **Duffing oscillator** in the unforced, undamped regime, which exhibits closed
 072 orbits, switching between wells at higher energies, and commonly a continuous or mixed Koopman
 073 spectrum that stresses linear predictors (Otto & Rowley, 2019; Li et al., 2017; Pan & Duraisamy,
 074 2020; Alford-Lago et al., 2022; Köhne et al., 2025); (ii) the **Repressilator**, a synthetic three-gene
 075 negative-feedback oscillator with a canonical limit cycle (Elowitz & Leibler, 2000), widely used to
 076 evaluate identification and control (Boddupalli et al., 2019; Sootla et al., 2018; Balakrishnan et al.,
 077 2022; Perez-Carrasco et al., 2018); and (iii) **IRMA** (*In vivo Reverse-engineering and Modelling As-*
 078 *sessment*), a five-gene yeast circuit constructed as a benchmark for modeling and control (Cantone
 079 et al., 2009; Marucci et al., 2009; Menolascina et al., 2014; di Bernardo et al., 2011) and repre-
 080 sentative of multi-gene regulatory dynamics where deep Koopman approaches have shown promise
 081 (Hasnain et al., 2019). These three cover, respectively, mixed spectra and switching (Duffing), clean
 082 oscillatory behavior with phase sensitivity (Repressilator), and higher-dimensional regulatory dy-
 083 namics with intertwined feedback (IRMA).
 084

085 **Empirical summary.** We evaluate on the three primary benchmarks (Duffing, Repressilator, IRMA)
 086 and report both MSE and a long-horizon *mean cumulative absolute error* (MCAE) that is sensitive to
 087 error accumulation. The latent memory block outperforms matched-capacity MHA (4 and 10 heads)
 088 on these systems, and coupling it with dynamic re-encoding yields the most robust rollouts. GRU
 089 and Transformer autoencoders, evaluated both from initial conditions and with a 50-step context,
 090 underperform on long horizons despite their added context.
 091

092 Contributions.

- 093 • **Attention-free latent memory for Koopman prediction.** A linear-time, low-overhead
 094 block (Zhai et al., 2021) aggregates a short history of latents to produce a corrective residual
 095 before each Koopman update, substantially reducing error accumulation on long rollouts.
- 096 • **Dynamic re-encoding via streaming change detection.** An encode–decode–encode pro-
 097 jection with online triggers (EWMA, CUSUM, sequential two-sample, threshold/window)
 098 detects latent drift and snaps predictions back to the learned manifold (Roberts, 2000;
 099 Moustakides, 1986; Ross & Adams, 2012).
- 100 • **Comprehensive evaluation and ablations on three representative systems.** On Duff-
 101 ing (unforced, undamped), Repressilator, and IRMA, latent memory outperforms matched
 102 MHA; latent memory + re-encoding attains the lowest MSE over 200/500/1000-step hori-
 103 zons; and gains persist across Koopman operator sizes.

104 2 METHODS

105 2.1 BASELINE KOOPMAN AUTOENCODER (KAE)

106 **Model.** Let $x_t \in \mathbb{R}^p$ denote the observed state at time t and let $\varphi : \mathbb{R}^p \rightarrow \mathbb{R}^d$ and $\varphi^{-1} : \mathbb{R}^d \rightarrow \mathbb{R}^p$
 107 be an encoder/decoder pair that maps to a d -dimensional latent space. The KAE posits a *linear*

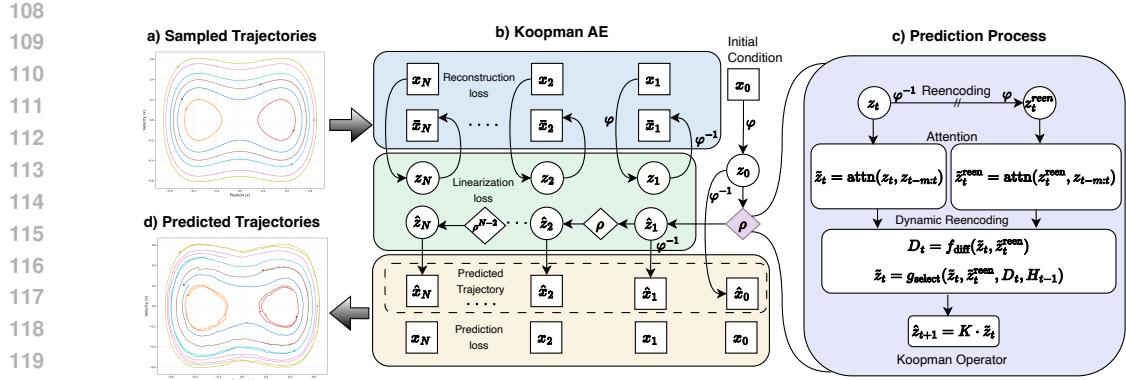


Figure 1: **Workflow of the Koopman autoencoder with AFT and Dynamic Re-encoding.** (a) Sampled trajectories from a Duffing Oscillator serve as input. (b) The core **Koopman autoencoder** learns a linear latent representation by minimizing reconstruction, linearization, and prediction losses. (c) The prediction process uses a **Dynamic Re-encoding** module with **AFT attention** to refine the latent state ($z_t \rightarrow \tilde{z}_t$), which is then evolved by the learned **Koopman operator** K . (d) The final output shows predicted trajectories that accurately replicate the system’s dynamics.

latent evolution governed by a learned Koopman matrix $K \in \mathbb{R}^{d \times d}$:

$$z_t = \varphi(x_t), \quad z_{t+1} = K z_t, \quad \hat{x}_t = \varphi^{-1}(z_t), \quad (1)$$

so that an i -step rollout from an initial latent y_0 is $z_i = K^i z_0$ with decoded prediction $\hat{x}_i = \varphi^{-1}(K^i \varphi(x_0))$. We use the standard linearly recurrent bottleneck architecture (Otto & Rowley, 2019; Lusch et al., 2018) and learn $(\varphi, \varphi^{-1}, K)$ end-to-end.

Training losses. Given an input segment (x_0, \dots, x_T) , we minimize a weighted sum of (i) reconstruction error, (ii) linearity consistency in the latent space, (iii) decoded prediction error over the rollout, and (iv) a unitary regularizer on K to discourage exploding/vanishing spectra (cf. Enyeart & Lin, 2024):

$$\mathcal{L} = \alpha_1(\mathcal{L}_{\text{recon}} + \mathcal{L}_{\text{pred}}) + \mathcal{L}_{\text{lin}} + \alpha_2 \mathcal{L}_{\text{unitary}}, \quad (2a)$$

$$\mathcal{L}_{\text{recon}} = \frac{1}{T+1} \sum_{t=0}^T \|x_t - \varphi^{-1}(\varphi(x_t))\|_2^2, \quad (2b)$$

$$\mathcal{L}_{\text{lin}} = \frac{1}{T} \sum_{i=1}^T \|\varphi(x_i) - K^i \varphi(x_0)\|_2^2, \quad (2c)$$

$$\mathcal{L}_{\text{pred}} = \frac{1}{T} \sum_{i=1}^T \|x_i - \varphi^{-1}(K^i \varphi(x_0))\|_2^2, \quad (2d)$$

$$\mathcal{L}_{\text{unitary}} = \|KK^\top - I\|_F. \quad (2e)$$

with weights $\alpha_1, \alpha_2 > 0$. $\mathcal{L}_{\text{recon}}$ enforces an information-preserving autoencoding, \mathcal{L}_{lin} encourages consistency of the latent trajectory with powers of K , and $\mathcal{L}_{\text{pred}}$ measures decoded multi-step accuracy. The unitary penalty mildly biases K toward near-orthogonality to improve long-horizon stability (Enyeart & Lin, 2024). We train by unrolling equation 1 for T steps from x_0 , computing all four losses on the same segment. The formulation in equation 2 matches common KAE practice (Otto & Rowley, 2019; Lusch et al., 2018) while making the stability prior explicit.

2.2 ATTENTION-FREE LATENT MEMORY (AFT)

Setup. To mitigate local phase/amplitude drift, we augment the KAE with a lightweight latent memory that aggregates the last T latents before each Koopman step (here, T denotes the *AFT*

162 *context length*, not the training segment length in equation 2). Let the latent history at time t be
 163 $H_t = [z_{t-T}, \dots, z_{t-1}] \in \mathbb{R}^{T \times d}$ (we use causal indexing and $T \ll$ rollout length). The AFT block
 164 produces a residual Δz_t from H_t and updates

$$165 \quad \tilde{z}_{t-1} = z_{t-1} + \Delta z_t, \quad z_t = K \tilde{z}_{t-1}, \quad (3)$$

166 so the Koopman propagator advances a *corrected* latent.

169 **Computation.** This variant is a plug-in replacement for Multi-Head Attention (MHA) and can
 170 be considered an element-wise linear attention mechanism. We use the AFT-full variant of this
 171 approach introduced by Zhai et al. (2021), where given a latent representation of x_t in the Koopman
 172 subspace Z_t . We apply learned linear maps $W_Q, W_K, W_V \in \mathbb{R}^{d \times d}$,

$$173 \quad Q_t = z_t W_Q \in \mathbb{R}^d, \quad K_t = H_t W_K \in \mathbb{R}^{T \times d}, \quad V_t = H_t W_V \in \mathbb{R}^{T \times d}, \quad (4)$$

174 then performs the following operation:

$$175 \quad \Delta Z = f(Z); \quad \Delta z_t = \sigma_q(Q_t) \odot \frac{\sum_{t'=1}^T \exp(K_{t'} + w_{t,t'}) \odot V_{t'}}{\sum_{t'=1}^T \exp(K_{t'} + w_{t,t'})} \quad (5)$$

179 where $\sigma_q(\cdot)$ represents sigmoid activation on queries, $w \in \mathbb{R}^{T \times T}$ denotes learnable positional
 180 biases, and \odot indicates element-wise multiplication. The mechanism computes attention weights
 181 from keys and positional biases, applies them to values, and then combines the result with activated
 182 queries through element-wise operations. This provides the benefits of attention mechanisms while
 183 maintaining linear computational complexity with respect to sequence length. In addition to that,
 184 we also added a key/value scaling by $\sqrt{d_{model}}$ to ensure numerical stability.

185 **Use in the predictor.** We apply equation 5 at every step with a rolling window H_t (see Algorithm 1
 186 in Appendix F for the full predictor). The block is *drop-in*: it changes neither the decoder nor
 187 the Koopman loss structure in equation 2. Empirically, the residual Δz_t corrects local phase and
 188 amplitude errors before propagation by K , reducing error accumulation over long rollouts while
 189 preserving speed and model compactness.

191 2.3 DYNAMIC RE-ENCODING (E–D–E PROJECTION AND STREAMING TRIGGERS)

193 **Encode–Decode–Encode projection.** Let $\mathcal{P}(z) := \varphi(\varphi^{-1}(z))$ denote the autoencoder-induced
 194 projection of a latent z back onto the learned manifold (idempotent by construction). During rollout,
 195 at each step, we form a pre-update latent \tilde{z}_{t-1} . We compute two one-step predictions:

$$196 \quad z_t^{\text{pred}} = K \tilde{z}_{t-1}, \quad z_t^{\text{re-pred}} = K \mathcal{P}(\tilde{z}_{t-1}).$$

198 Their discrepancy defines a *drift proxy*

$$199 \quad \delta_t \triangleq \|z_t^{\text{re-pred}} - z_t^{\text{pred}}\|_2^2, \quad (6)$$

200 which grows when the iterate leaves the learned manifold. If a streaming trigger (below) fires at
 201 time t , we *snap* the latent back by replacing $z_{t-1} \leftarrow \mathcal{P}(\tilde{z}_{t-1})$ before propagating. This keeps the
 202 Koopman update on-manifold while leaving K and the autoencoder unchanged.

204 **Streaming drift triggers.** We instantiate four inexpensive, streaming tests on the scalar $\{\delta_t\}$:

- 206 **Windowed Z-score (mean+std):** maintain μ_t, σ_t over a sliding window of size w and
 207 trigger if $\delta_t > \mu_t + \tau \sigma_t$ (hyperparameter $\tau > 0$).
- 208 **EWMA** (Roberts, 2000): update $Z_t = (1 - \lambda)Z_{t-1} + \lambda \delta_t$ with $Z_0 = \delta_1$ and trigger when
 209 $|Z_t - \mu_Z| > L \sigma_Z$ (streaming estimates for μ_Z, σ_Z ; hyperparameters $\lambda \in (0, 1), L > 0$).
- 210 **CUSUM** (Moustakides, 1986): compute the standardized cumulative sum $\tilde{s}_t =$
 211 $\frac{\sum_{i=1}^t (\delta_i - \mu_0)}{\sqrt{t} \sigma}$ and derive the p-value $p_t = 2 [1 - \Phi(|\tilde{s}_t|)]$, where Φ is the standard normal
 212 CDF.
- 214 **Sequential two-sample** (Ross & Adams, 2012): compare a reference buffer R and a cur-
 215 rent buffer C (disjoint, size w) using a nonparametric test (e.g., KS or Lepage); re-encode
 if $p_t < \alpha$ (hyperparameter α).

216 All tests have low computational overhead per step: windowed Z-score is $\mathcal{O}(w)$ for window size w ,
 217 EWMA is $\mathcal{O}(1)$, and CUSUM is $\mathcal{O}(1)$ for time step t with incremental updates. They are complementary:
 218 windowed Z-score/EWMA react quickly to level shifts, CUSUM accumulates small persistent deviations,
 219 and two-sample tests capture broader distributional changes. In our experiments, we use fixed hyperparameters per system and evaluate several trigger families (see Appendix 4.3).
 220 We use triggers only at *inference*; training proceeds without re-encoding.
 221

223 3 EXPERIMENTS

225 3.1 BENCHMARKS AND DATA GENERATION

227 We evaluate three primary systems that emphasize long-horizon stability in complementary ways:
 228 (i) the **Duffing oscillator**, (ii) the **Repressilator**, and (iii) **IRMA** (introduced above). Further details
 229 about these systems are provided in Appendix A.1. To assess generality without excessive tuning,
 230 we additionally report results on a nonlinear pendulum, Goodwin oscillator, Lotka–Volterra, Rössler,
 231 and a reduced-order fluid-flow model (Goodwin, 1965; Fathi et al., 2023; Rössler, 1976; Noack
 232 et al., 2003). These are *sanity checks* performed with the finalized architecture to test out-of-the-
 233 box behavior; unlike the core trio, we did not perform extensive ablations or per-system tuning.
 234 Full details and additional figures are provided in the in the Appendix G.4. Parameterizations, time
 235 steps, numbers of trajectories, and training/prediction horizons follow Table 9 (data splits and any
 236 deviations are detailed in the Appendix). Full ODEs, solvers, parameter values, and initial-condition
 237 ranges for all systems are provided in Appendix H.

238 3.2 PROTOCOLS AND METRICS

240 **Rollout protocol.** Unless stated otherwise, models are trained on fixed-length segments and eval-
 241 uated by free (open-loop) rollouts from test-set initial conditions. We report errors at horizons
 242 $\{200, 500, 1000\}$ steps on the three primary systems, and 200-step errors on the additional bench-
 243 marks.

244 **Metrics.** We report mean-squared error (MSE) at a fixed horizon and a long-horizon *mean cumula-*
 245 *tive absolute error* (MCAE) that captures accumulation of deviations. Given a rollout of length H ,
 246 MCAE averages, across trajectories and state dimensions, the cumulative absolute error curve:

$$247 \quad 248 \quad 249 \quad \text{MCAE}_t = \frac{1}{d} \sum_{j=1}^d \sum_{k=1}^t |\hat{x}_{k,j} - x_{k,j}| \quad (7)$$

$$250 \quad 251 \quad 252 \quad \text{MCAE}_{\text{overall}} = \frac{1}{H} \sum_{t=1}^H \text{MCAE}_t \quad (8)$$

253 We plot MCAE over steps to reveal error growth dynamics.

254 **Hyperparameters & selection.** We fix the autoencoder bottleneck dimension and AFT context
 255 ($d=100$, $T=10$) across systems unless otherwise noted, and select early stopping and trigger thresh-
 256 olds on the validation set. The Koopman operator is dense by default.

258 3.3 BASELINES AND ABLATIONS

260 We compare:

- 262 1. **GRU**: the baseline GRU autoencoder (§E.1).
- 263 2. **Transformer**: the baseline transformer autoencoder (§E.2)
- 264 3. **KAE**: the baseline Koopman autoencoder (§2.1).
- 265 4. **KAE + AFT**: our latent-memory augmentation (§2.2).
- 266 5. **KAE + MHA**: matched-capacity multi-head attention with 4 or 10 heads (same bottleneck
 d , similar projection sizes).
- 268 6. **KAE + AFT + Re-enc**: dynamic re-encoding with streaming triggers (§2.3). We evaluate
 269 the sequential two-sample tests as the Dynamic Re-encoding Method using per-system
 validation-tuned thresholds, alongside periodic re-encoding from Fathi et al. (2023).

270 Ablations vary (i) the Koopman operator size, (ii) the AFT context T , and (iii) the trigger family/thresholds. For fairness, all baselines share the same autoencoder structure and training schedule.
 271
 272

273 4 RESULTS

274 4.1 PRIMARY COMPARISON ON THREE REPRESENTATIVE SYSTEMS

277 We conducted a comprehensive testing of our three primary systems for long-term horizon pre-
 278 diction. Our evaluation encompasses the reference models mentioned in §3.3. Additionally, we
 279 assessed GRU and Transformer architectures under two experimental conditions. Given that GRU
 280 and Transformer models require contextual information, we evaluated them first using only initial
 281 conditions, and then subsequently with a context of 50 time steps, which means in the Repressilator
 282 and IRMA escaping a large part of the transient state. Results are shown in Table 1.
 283

284 **Duffing Oscillator.** Dynamic re-encoding is best at 200/500 steps (MSE 0.0113/0.0960), improving
 285 on AFT (0.0427/0.1536) and periodic re-encoding (0.0156/0.1187). At 1000 steps, AFT slightly
 286 leads (0.1947 vs. 0.2019), consistent with small snap-back-induced phase shifts accumulating over
 287 very long horizons. The vanilla KAE drifts (0.1286/0.2245/0.2471), and GRU/Transformer benefit
 288 from context yet remain far off Koopman variants (e.g., GRU 0.0862 vs. AFT 0.0427 at 200 steps).
 289 *Timely snap-backs help at switching transitions; for very long horizons, a small causal memory
 (AFT) often suffices.*

290 **Repressilator.** All Koopman variants handle the limit cycle, but AFT is decisively best across hori-
 291 zons (0.0001/0.0002/0.0005). Dynamic/periodic re-encoding degrade to $\sim 4! \times 10^{-3}$ by injecting
 292 unnecessary phase resets. KAE is competitive at 200 steps (0.0002) but worsens by 1000 (0.0077).
 293 GRU/Transformer improve with context (e.g., GRU 0.0019 at 200) yet remain 10–100× worse than
 294 AFT. *On smooth limit cycles, prefer AFT-only; snap-backs are rarely needed and can be harmful.*

295 **IRMA.** Dynamic re-encoding is strongest and most stable (0.0001/0.0001/0.0003), with periodic
 296 close behind (0.0002/0.0004/0.0008). AFT is very good at short horizons (0.0004) but continues
 297 to degrade by the same rate (0.0009/0.0012). KAE collapses (10.1847 at 1000). GRU with context
 298 is competitive (0.0001/0.0003/0.0004) but from initial conditions is much worse (e.g., 0.0102 at
 299 200). *GRU(+Ctx) benefits from being placed near the attractor; Koopman+AFT with snap-backs
 300 attains similar robustness without long input contexts.*

301 Table 1: Prediction performance comparison (MSE \downarrow) over different time steps across different
 302 system configurations. Best results for each system are highlighted in **bold**. Context provided for
 303 the GRU and Transformer is 50 time steps, while other results are from initial conditions, indicated
 304 as +Ctx and Init respectively.
 305

306 Steps	307 GRU		308 Transformer		309 Koopman		310 Koopman		311 AFT+Re-encoding	
	312 Init	313 +Ctx	314 Init	315 +Ctx	316 AE	317 AFT	318 Dynamic	319 Periodic	320	321
Duffing Oscillator										
310 200	0.2677	0.0862	311 500	0.2641	0.1981	0.2467	0.1868	0.1286	0.0427	0.0113
311 1000	0.2556	0.2210	312 500	0.3037	0.2441	0.3196	0.2510	0.2471	0.1947	0.2019
312 1000	0.2203		313 1000							
Repressilator										
313 200	0.0081	0.0019	314 500	0.0090	0.0073	0.0079	0.0035	0.0002	0.0001	0.0041
314 1000	0.0098	0.0092	315 500	0.0093	0.0269	0.0061	0.0028	0.0002	0.0041	0.0035
315 1000	0.0067		316 1000					0.0005	0.0062	
IRMA										
317 200	0.0102	0.0001	318 500	0.0076	0.0003	0.0109	0.0091	0.0171	0.0004	0.0001
318 1000	0.0044	0.0004	319 500	0.0404	0.0202	0.0495	0.0251	0.0935	0.0009	0.0001
319 1000	0.0008		320 500					0.0012	0.0003	

321 4.2 ATTENTION VS AFT COMPARISON

322 We compare the latent-memory augmentation (AFT) to matched-capacity multi-head attention
 323 (MHA; 4 and 10 heads) on Duffing, Repressilator, and IRMA using both MSE and long-horizon

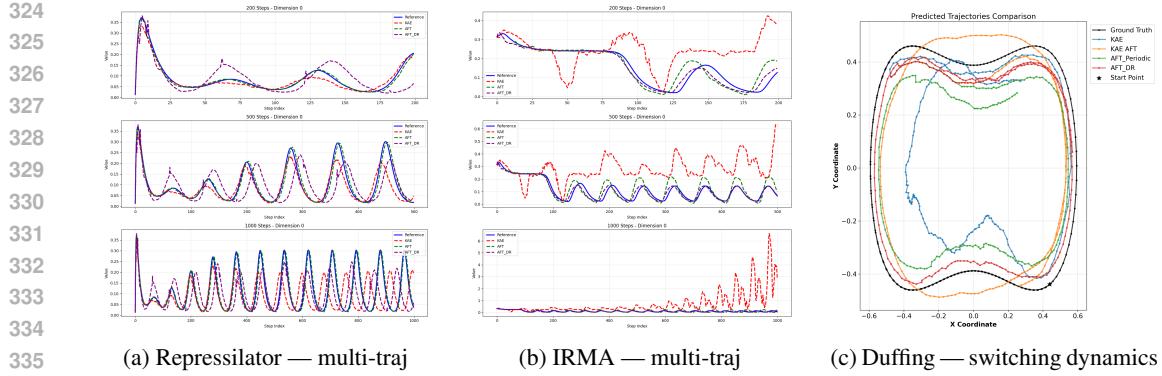


Figure 2: **Multi-trajectory rollouts on dynamical systems.** AFT reduces phase drift across initial conditions and enables accurate detection of switching dynamics in bistable systems.

MCAE. Figure 3 shows representative trajectories (top) and MCAE curves (bottom); summary metrics appear in Table 2.

Duffing Oscillator. AFT achieves the lowest error by a wide margin (MSE 0.0124 vs. 0.0957 / 0.1137 for 10/4-head MHA; $\sim 8\text{--}9\times$ lower), and flattens error growth (MCAE 10.95 vs. 49.09 / 52.98; $\sim 4.5\text{--}4.8\times$ lower). This matches the intuition that short, causal context suppresses phase/amplitude drift induced by the mixed/continuous spectrum and switching dynamics better than quadratic-cost attention.

Repressilator. On the clean limit cycle, AFT again dominates (MSE 3×10^{-4} vs. 1.6×10^{-3} / 1.8×10^{-3} ; $\sim 5\text{--}6\times$ lower). MCAE is likewise reduced (1.80 vs. 5.26 / 5.66; $\sim 3\times$). The small, causal window corrects local misalignments before they accumulate into phase slips, yielding smoother, phase-consistent rollouts than MHA.

IRMA. AFT yields the best single-model accuracy (MSE 1×10^{-4} vs. 1.2×10^{-3} / 1.5×10^{-3} ; $\sim 12\text{--}15\times$). MCAE also favors AFT (0.98 vs. 4.54 / 4.90; $\sim 4.6\text{--}5.0\times$), but the remaining long-horizon drift motivates using *AFT + re-encoding* (Sec. 4.3) on this higher-dimensional, feedback-rich system.

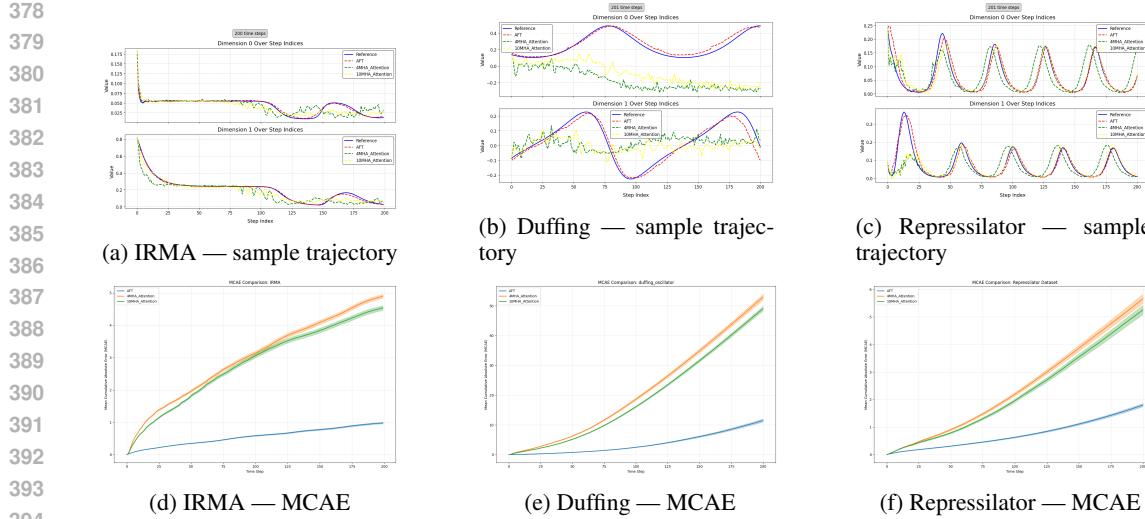
Overall, AFT consistently outperforms matched-capacity MHA across systems and metrics while retaining *linear* cost in the context length (cf. Sec. G.1), making it both more accurate and more scalable for long-horizon prediction.

Table 2: Performance comparison of attention mechanisms across different dynamical systems. Lower MSE and CMAE values indicate better performance. Best results are highlighted in bold.

Model	MSE (\downarrow)			MCAE (\downarrow)		
	4MHA	10MHA	AFT	4MHA	10MHA	AFT
Duffing Oscillator	0.1137	0.0957	0.0124	52.9835	49.0874	10.9522
Repressilator	0.0018	0.0016	0.0003	5.6606	5.2564	1.7998
IRMA	0.0012	0.0015	0.0001	4.9036	4.5401	0.9786

4.3 EFFECT OF DYNAMIC RE-ENCODING (STREAMING TRIGGERS)

We study the dynamic re-encoding with streaming triggers on the Duffing oscillator (§2.3). Table 3 shows that the sequential two-sample detector attains the lowest error (0.0113), followed by EWMA and CUSUM, and Fig. 4 shows the sensitivity and accuracy of the methods. The two-sample method relies on statistical distribution changes, which account for better detection, whereas EWMA/CUSUM uses aggregated statistics that can smooth over subtle but meaningful shifts. Threshold-based methods are prone to false positives/negatives, as they do not fully account for prediction memory, and drift proxies incorporate not only manifold distance but also recon-



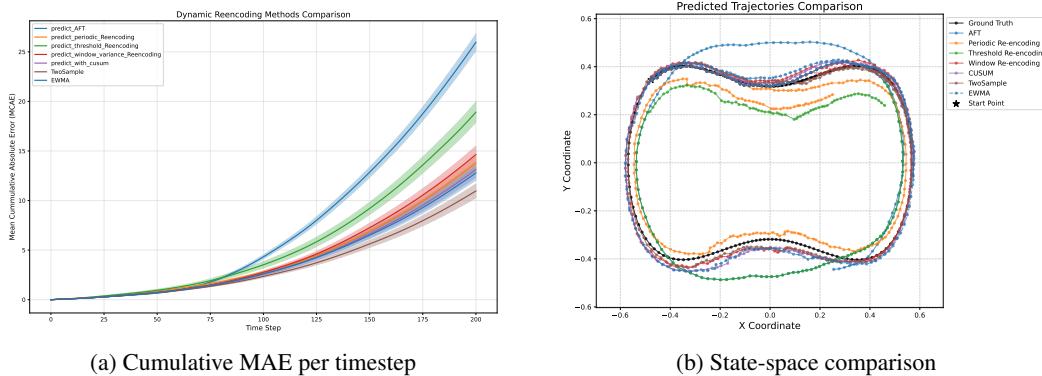
395 **Figure 3: AFT vs. MHA (4 and 10 heads) on the three primary systems.** The top row shows
396 sampled trajectories, and the bottom row shows the MCAE curves. AFT reduces error growth and
397 outperforms matched-capacity MHA.

398
399
400
401
strunction error. While periodic re-encoding can achieve good performance, it primarily targets drift
400 frequency and does not consider when or where the change occurs, limiting its responsiveness.

402 Table 3: Overall MSE per trajectory for different re-encoding methods.
403

404
405
406

Method	AFT	Threshold	Window	Periodic	CUSUM	EWMA	TwoSample
MSE	0.0427	0.0290	0.0186	0.0156	0.0151	0.0144	0.0113



419 Figure 4: Comparison of re-encoding methods. (a) Cumulative MAE per timestep comparison
420 across methods. (b) Comparison in latent state space for a sampled trajectory.

424 5 DISCUSSION

426 **What the latent memory buys.** Across Duffing, Repressilator, and IRMA, the attention-free latent
427 memory (§2.2) consistently reduces phase slippage and amplitude drift over long horizons relative
428 to the plain KAE and to a matched-capacity multi-head attention (MHA) baseline, lowering both
429 MCAE and MSE (see §4.2, Table 2, Fig. 3; and §4.1, Table 1). Empirically, a short, causal context
430 ($T=10$; §G.5) is sufficient to capture the local temporal correlations that most affect error accumu-
431 lation, and doing so in $\mathcal{O}(Td)$ time/memory per step yields stable rollouts without the quadratic
attention overhead (complexity details in App. G.1; context ablation in Fig. 8, right). This is a

432 pragmatic complement to spectral-accuracy pursuits in Koopman learning (Korda & Mezić, 2018;
 433 Mezić, 2022; Giannakis & Valva, 2024; Colbrook & Townsend, 2024): even when the learned K
 434 is an imperfect global surrogate, local residual correction can substantially improve long-horizon
 435 behavior. Conceptually, the AFT residual acts like a short learned delay-embedding/HAVOK-style
 436 forcing term (Arbabi & Mezic, 2017; Brunton et al., 2017), while re-encoding is a latent-space
 437 analogue of windowed/recursive DMD projections (Noack et al., 2015; Guan et al., 2024).

438 **When and why re-encoding helps.** The dynamic re-encoding mechanism (§2.3) improves robust-
 439 ness primarily on systems with switching or stiff transients (e.g., Duffing at higher energies) or
 440 higher-dimensional, intertwined feedback (IRMA), where drifting off the autoencoder manifold can
 441 be abrupt and compounding. Quantitatively, triggers based on sequential two-sample tests attain the
 442 lowest MSE on Duffing, followed by EWMA and CUSUM (Table 3; Fig. 4; see also §4.3 and Alg. 2
 443 in App. F). On clean, phase-sensitive oscillators (e.g., Repressilator), re-encoding can occasionally
 444 *hurt* when a trigger fires near a delicate phase region: the E–D–E projection introduces a small phase
 445 shift that the Koopman update then propagates (Table 1). Practical guidance: AFT-only for smooth
 446 limit cycles; AFT+EWMA/CUSUM for intermittent regime changes; and two-sample tests when
 447 residual distributions clearly separate nominal vs. drifted behavior.

448 **Sensitivity and hyperparameters.** Performance is most sensitive to (i) the quality of the autoen-
 449 coder manifold, (ii) the AFT context T , and (iii) trigger thresholds. Too large a T brings diminishing
 450 returns and mild over-smoothing (Fig. 8, right). Thresholds selected on validation data transfer well
 451 across test horizons in our runs, but overly aggressive settings can over-trigger and degrade smooth
 452 oscillations. A dense K offered the strongest accuracy (consistent with prior observations), whereas
 453 structured variants (diagonal, banded, Jordan) trade accuracy for interpretability; we include these
 454 ablations for completeness (Fig. 8, left).

455 **Applications and impact.** Where long-horizon forecasting is needed under tight computational
 456 budgets (embedded monitoring, rapid what-if simulation), the $\mathcal{O}(Td)$ latent memory and occasional
 457 E–D–E snaps provide a practical path that keeps the standard KAE backbone intact and reproducible.
 458 Compared to GRU and Transformer autoencoders (architectures in App. E), Koopman-based predic-
 459 tors deliver both stronger long-horizon fidelity (Table 1) and substantially lower latency (Table 5).
 460 Breadth checks across additional dynamical systems indicate out-of-the-box gains where appropri-
 461 ate (App. G.4; Table 7, Fig. 7).

464 6 LIMITATIONS AND FUTURE WORK

465 Our stability claims are empirical: we do not provide convergence or spectral-error guarantees for
 466 the learned K despite relevant theory (Korda & Mezić, 2018; Mezić, 2022; Giannakis & Valva,
 467 2024; Colbrook & Townsend, 2024). Effectiveness depends on the autoencoder manifold; if φ^{-1} is
 468 lossy, the E–D–E projection can bias latents. Trigger policies introduce hyperparameters (thresholds,
 469 windows) and can degrade performance on clean limit cycles (Table 1, Repressilator) even while
 470 helping on systems with switching or stiff transients (Duffing, IRMA; Tables 1, 3, Fig. 4). Dynamic
 471 re-encoding is used only at inference, so the model is not co-trained with snaps. Some configurations
 472 still degrade at very long horizons (e.g., AFT on IRMA at 1000 steps in Table 1), and vanilla KAE
 473 can collapse. Our experiments focus on autonomous systems; inputs/control are out of scope here.
 474 Additional benchmarks suggest “out-of-the-box” generality, but we did not target per-system SOTA.

475 Future directions include bridging empirical robustness with guarantees (resolvent/residual-
 476 minimization objectives and stability-biased constraints for K ; EDMD diagnostics during training
 477 (Giannakis & Valva, 2024; Colbrook & Townsend, 2024; Mezić, 2022; Korda & Mezić, 2018)),
 478 training curricula that transition from one-step to free rollouts, uncertainty-aware or learned trig-
 479 gers that retain the two-sample sensitivity benefits on Duffing (Table 3) while avoiding false snaps
 480 on smooth cycles, and adaptive memory that learns/gates the AFT context T (cf. Fig. 8). Extending
 481 AFT and re-encoding to controlled settings (DMDc/EDMDc/KIC) and evaluating in receding-
 482 horizon MPC is natural, as is studying partial/noisy/hybrid systems. Finally, exploring structured K
 483 for interpretability with minimal loss, and fusing AFT with decoders for hardware-efficient deploy-
 484 ment, are promising for resource-constrained use (Table 5).

486 7 REPRODUCIBILITY STATEMENT
487

488 We have made every effort to ensure the reproducibility of our results. The paper provides de-
489 tailed descriptions of the model architecture, training setup, and evaluation protocols. Hyperparam-
490 eters, dataset generation, and experimental settings are included in the Appendix. We have also
491 provided a detailed reproducibility checklist in the Appendix C, which outlines the entire experi-
492 mental process step by step. To further support replication, we have made the code available at
493 <https://anonymous.4open.science/r/Attended-Koopman-3E85> for review. We
494 will release the final version publicly upon publication.

495
496 REFERENCES
497

498 Daniel J Alford-Lago, Christopher W Curtis, Alexander T Ihler, and Opal Issan. Deep learning en-
499 hanced dynamic mode decomposition. *Chaos: An Interdisciplinary Journal of Nonlinear Science*,
500 32(3), 2022.

501 Hassan Arbabi and Igor Mezic. Ergodic theory, dynamic mode decomposition, and computation of
502 spectral properties of the koopman operator. *SIAM Journal on Applied Dynamical Systems*, 16
503 (4):2096–2126, 2017.

504 Shara Balakrishnan, Aqib Hasnain, Robert Egbert, and Enoch Yeung. Data-driven observability
505 decomposition with koopman operators for optimization of output functions of nonlinear systems.
506 *arXiv preprint arXiv:2210.09343*, 2022.

507 Nibodh Boddupalli, Aqib Hasnain, Sai Pushpak Nandanoori, and Enoch Yeung. Koopman operators
508 for generalized persistence of excitation conditions for nonlinear systems. In *2019 IEEE 58th*
509 *Conference on Decision and Control (CDC)*, pp. 8106–8111. IEEE, 2019.

510 Steven L Brunton, Bingni W Brunton, Joshua L Proctor, Eurika Kaiser, and J Nathan Kutz. Chaos
511 as an intermittently forced linear system. *Nature communications*, 8(1):19, 2017.

512 Irene Cantone, Lucia Marucci, Francesco Iorio, Maria Aurelia Ricci, Vincenzo Belcastro, Mukesh
513 Bansal, Stefania Santini, Mario Di Bernardo, Diego Di Bernardo, and Maria Pia Cosma. A yeast
514 synthetic network for in vivo assessment of reverse-engineering and modeling approaches. *Cell*,
515 137(1):172–181, 2009.

516 Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
517 ger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder
518 for statistical machine translation. *arXiv preprint arXiv:1406.1078*, 2014.

519 Matthew J. Colbrook and Alex Townsend. Rigorous data-driven computation of spectral proper-
520 ties of koopman operators for dynamical systems. *Communications on Pure and Applied Math-
521 ematics*, 77:221–283, Jul 2024. ISSN 0010-3640. doi: 10.1002/cpa.22125. URL <https://doi.org/10.1002/cpa.22125>.

522 Diego di Bernardo, Lucia Marucci, Filippo Menolascina, and Velia Siciliano. Predicting synthetic
523 gene networks. In *Synthetic Gene Networks: Methods and Protocols*, pp. 57–81. Springer, 2011.

524 Daniel Dylewsky, Molei Tao, and J Nathan Kutz. Dynamic mode decomposition for multiscale
525 nonlinear physics. *Physical Review E*, 99(6):063311, 2019.

526 Jeffrey L Elman. Finding structure in time. *Cognitive science*, 14(2):179–211, 1990.

527 Michael B Elowitz and Stanislas Leibler. A synthetic oscillatory network of transcriptional regula-
528 tors. *Nature*, 403(6767):335–338, 2000.

529 Dustin Enyeart and Guang Lin. Loss terms and operator forms of koopman autoencoders. *arXiv*
530 *preprint arXiv:2412.04578*, 2024.

531 Mahan Fathi, Clement Gehring, Jonathan Pilault, David Kanaa, Pierre-Luc Bacon, and Ross
532 Goroshin. Course correcting koopman representations. *arXiv preprint arXiv:2310.15386*, 2023.

540 Anthony Frion, Lucas Drumetz, Mauro Dalla Mura, Guillaume Tochon, and Abdeldjalil Aïssa-El-
 541 Bey. Augmented invertible koopman autoencoder for long-term time series forecasting. *arXiv*
 542 *preprint arXiv:2503.12930*, 2025.

543

544 Dimitrios Giannakis and Claire Valva. Consistent spectral approximation of koopman operators
 545 using resolvent compactification. *Nonlinearity*, 37:075021, Jun 2024. ISSN 0951-7715. doi:
 546 10.1088/1361-6544/ad4ade. URL <https://doi.org/10.1088/1361-6544/ad4ade>.

547

548 Brian C Goodwin. Oscillatory behavior in enzymatic control processes. *Advances in enzyme regu-*
 549 *lation*, 3:425–437, 1965.

550

551 Wei Guan, Longlei Dong, Ao Zhang, and Yinshan Cai. Output-only modal identification with
 552 recursive dynamic mode decomposition for time-varying systems. *Measurement*, 224:113852,
 553 2024.

554

555 Aqib Hasnain, Subhrajit Sinha, Yuval Dorfan, Amin Espah Borujeni, Yongjin Park, Paul Maschhoff,
 556 Uma Saxena, Joshua Urrutia, Niall Gaffney, Diveena Becker, et al. A data-driven method for
 557 quantifying the impact of a genetic circuit on its host. In *2019 IEEE Biomedical Circuits and*
 558 *Systems Conference (BioCAS)*, pp. 1–4. IEEE, 2019.

559

560 Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. *Neural computation*, 9(8):
 561 1735–1780, 1997.

562

563 Eurika Kaiser, J. Nathan Kutz, and Steven L. Brunton. Data-driven approximations of dynamical
 564 systems operators for control. *Lecture Notes in Control and Information Sciences*, pp. 197–234,
 565 Jan 2020. ISSN 0170-8643. doi: 10.1007/978-3-030-35713-9\8. URL https://doi.org/10.1007/978-3-030-35713-9_8.

566

567 Mason Kamb, Eurika Kaiser, Steven L. Brunton, and J. Nathan Kutz. Time-delay observables
 568 for koopman: Theory and applications. *SIAM Journal on Applied Dynamical Systems*, 19:886–
 569 917, Jan 2020. ISSN 1536-0040. doi: 10.1137/18m1216572. URL <https://doi.org/10.1137/18m1216572>.

570

571 Frederik Köhne, Friedrich M Philipp, Manuel Schaller, Anton Schiela, and Karl Worthmann. -
 572 error bounds for approximations of the koopman operator by kernel extended dynamic mode
 573 decomposition. *SIAM journal on applied dynamical systems*, 24(1):501–529, 2025.

574

575 Bernard O. Koopman. Hamiltonian systems and transformation in hilbert space. *Proceedings of*
 576 *the National Academy of Sciences*, 17(5):315–318, 1931. doi: 10.1073/pnas.17.5.315. URL
 577 <https://doi.org/10.1073/pnas.17.5.315>.

578

579 Milan Korda and Igor Mezić. On convergence of extended dynamic mode decomposition
 580 to the koopman operator. *Journal of Nonlinear Science*, 28:687–710, Nov 2018. ISSN
 0938-8974. doi: 10.1007/s00332-017-9423-0. URL <https://doi.org/10.1007/s00332-017-9423-0>.

581

582 Milan Korda and Igor Mezić. Koopman model predictive control of nonlinear dynamical systems.
 583 *Unknown journal*, pp. 235–255, Feb 2020. doi: 10.1007/978-3-030-35713-9\9. URL https://doi.org/10.1007/978-3-030-35713-9_9.

584

585 Qianxiao Li, Felix Dietrich, Erik M Bollt, and Ioannis G Kevrekidis. Extended dynamic mode
 586 decomposition with dictionary learning: A data-driven adaptive spectral decomposition of the
 587 koopman operator. *Chaos: An Interdisciplinary Journal of Nonlinear Science*, 27(10), 2017.

588

589 Fan Lu, Ksenia Zlobina, Sebastian Osorio, Hsin-ya Yang, Alexandra Nava, Michelle D Bagood,
 590 Marco Rolandi, Roslyn Rivkah Isseroff, and Marcella Gomez. Deepmapper: attention-based
 591 autoencoder for system identification in wound healing and stage prediction. *bioRxiv*, pp. 2024–
 592 12, 2024.

593

Bethany Lusch, J Nathan Kutz, and Steven L Brunton. Deep learning for universal linear embeddings
 594 of nonlinear dynamics. *Nature communications*, 9(1):4950, 2018.

594 Lucia Marucci, David AW Barton, Irene Cantone, Maria Aurelia Ricci, Maria Pia Cosma, Stefania
 595 Santini, Diego di Bernardo, and Mario di Bernardo. How to turn a genetic circuit into a synthetic
 596 tunable oscillator, or a bistable switch. *PLoS one*, 4(12):e8083, 2009.

597

598 Filippo Menolascina, Gianfranco Fiore, Emanuele Orabona, Luca De Stefano, Mike Ferry, Jeff
 599 Hasty, Mario Di Bernardo, and Diego Di Bernardo. In-vivo real-time control of protein expression
 600 from endogenous and synthetic gene networks. *PLoS computational biology*, 10(5):e1003625,
 601 2014.

602 Igor Mezić. On numerical approximations of the koopman operator. *Mathematics*, 10:1180, Apr
 603 2022. ISSN 2227-7390. doi: 10.3390/math10071180. URL <https://doi.org/10.3390/math10071180>.

605 George V Moustakides. Optimal stopping times for detecting changes in distributions. *the Annals
 606 of Statistics*, 14(4):1379–1387, 1986.

607

608 Indranil Nayak, Ananda Chakrabarti, Mrinal Kumar, Fernando L Teixeira, and Debdipta Goswami.
 609 Temporally-consistent koopman autoencoders for forecasting dynamical systems. *Scientific Re-
 610 ports*, 15(1):22127, 2025.

611 Evangelos-Marios Nikolados, Andrea Y Weiße, Francesca Ceroni, and Diego A Oyarzún. Growth
 612 defects and loss-of-function in synthetic gene circuits. *ACS synthetic biology*, 8(6):1231–1240,
 613 2019.

614

615 Bernd R Noack, Konstantin Afanasiev, Marek Morzyński, Gilead Tadmor, and Frank Thiele. A
 616 hierarchy of low-dimensional models for the transient and post-transient cylinder wake. *Journal
 617 of Fluid Mechanics*, 497:335–363, 2003.

618 Bernd R Noack, Witold Stankiewicz, Marek Morzynski, and Peter J Schmid. Recursive dynamic
 619 mode decomposition of a transient cylinder wake. *arXiv preprint arXiv:1511.06876*, 2015.

620

621 Samuel E Otto and Clarence W Rowley. Linearly recurrent autoencoder networks for learning
 622 dynamics. *SIAM Journal on Applied Dynamical Systems*, 18(1):558–593, 2019.

623

624 Shaowu Pan and Karthik Duraisamy. Physics-informed probabilistic learning of linear embeddings
 625 of nonlinear dynamics with guaranteed stability. *SIAM Journal on Applied Dynamical Systems*,
 626 19(1):480–509, 2020.

627

628 Ruben Perez-Carrasco, Chris P Barnes, Yolanda Schaerli, Mark Isalan, James Briscoe, and Karen M
 629 Page. Combining a toggle switch and a repressilator within the ac-dc circuit generates distinct
 630 dynamical behaviors. *Cell systems*, 6(4):521–530, 2018.

631

632 Joshua L. Proctor, Steven L. Brunton, and J. Nathan Kutz. Generalizing koopman theory to al-
 633 low for inputs and control. *SIAM Journal on Applied Dynamical Systems*, 17:909–930, Jan
 634 2018. ISSN 1536-0040. doi: 10.1137/16m1062296. URL <https://doi.org/10.1137/16m1062296>.

635

636 Stuart W Roberts. Control chart tests based on geometric moving averages. *Technometrics*, 42(1):
 637 97–101, 2000.

638

639 Gordon J Ross and Niall M Adams. Two nonparametric control charts for detecting arbitrary distri-
 640 bution changes. *Journal of Quality Technology*, 44(2):102–116, 2012.

641

642 Otto E Rössler. An equation for continuous chaos. *Physics Letters A*, 57(5):397–398, 1976.

643

644 Anastasiya Salova, Jeffrey Emenheiser, Adam Rupe, James P. Crutchfield, and Raissa M. D’Souza.
 645 Koopman operator and its approximations for systems with symmetries. *Chaos: An Inter-
 646 disciplinary Journal of Nonlinear Science*, 29:093128, Sep 2019. ISSN 1054-1500. doi:
 647 10.1063/1.5099091. URL <https://doi.org/10.1063/1.5099091>.

648

649 Lu Shi, Masih Haseli, Giorgos Mamakoukas, Daniel Bruder, Ian Abraham, Todd Murphrey, Jorge
 650 Cortes, and Konstantinos Karydis. Koopman operators in robot learning. *ArXiv*, abs/2408.04200,
 651 Aug 2024. doi: 10.48550/arxiv.2408.04200. URL <https://doi.org/10.48550/arxiv.2408.04200>.

648 Aivar Sootla, Alexandre Mauroy, and Damien Ernst. Optimal control formulation of pulse-based
649 control using koopman operator. *Automatica*, 91:217–224, 2018.
650

651 Rui Wang, Yihe Dong, Sercan Ö Arik, and Rose Yu. Koopman neural forecaster for time series with
652 temporal distribution shifts. *arXiv preprint arXiv:2210.03675*, 2022.
653

654 Andrea Y Weiße, Diego A Oyarzún, Vincent Danos, and Peter S Swain. Mechanistic links be-
655 tween cellular trade-offs, gene expression, and growth. *Proceedings of the National Academy of*
656 *Sciences*, 112(9):E1038–E1047, 2015.
657

658 Shuangfei Zhai, Walter Talbott, Nitish Srivastava, Chen Huang, Hanlin Goh, Ruixiang Zhang, and
659 Josh Susskind. An attention free transformer. *arXiv preprint arXiv:2105.14103*, 2021.
660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 A SYSTEMS AND DATA GENERATION
703704 A.1 DYNAMICAL SYSTEMS
705706 A.1.1 DUFFING OSCILLATOR
707708 The Duffing oscillator represents a paradigmatic example of nonlinear dynamics described by the
709 second-order differential equation

710
$$\ddot{x} + \delta\dot{x} + \alpha x + \beta x^3 = \gamma \cos(\omega t).$$

711

712 This system has been studied in the context of data-driven modelling and Koopman operator theory
713 due to its rich dynamical behaviour and analytical tractability (Otto & Rowley, 2019; Li et al., 2017;
714 Alford-Lago et al., 2022; Pan & Duraisamy, 2020; Köhne et al., 2025).715 In this work, we focus on the unforced and undamped case governed by
716

717
$$\ddot{x} = x - x^3, \quad (9)$$

718

719 which captures essential features such as switching dynamics between stable states and
720 (mixed/continuous spectrum characteristics, making it ideal for showcasing our proposed method-
721 ology. The state-space representation is

722
$$\begin{aligned} \dot{x}_1 &= x_2, \\ \dot{x}_2 &= x_1 - x_1^3. \end{aligned} \quad (10)$$

723
724

725 Here x_1 denotes position and x_2 velocity. Initial conditions are sampled uniformly from $(x_1, x_2) \in$
726 $[-2, 2]$ with fixed step size as in Table 9. This configuration admits two stable centers at $(x_1, x_2) =$
727 $(\pm 1, 0)$ and an unstable fixed point at the origin $(0, 0)$. The system is Hamiltonian and trajectories
728 form closed orbits in phase space: low-energy orbits are confined to individual potential wells, while
729 high-energy orbits encircle both wells, exhibiting switching behavior as trajectories periodically
730 transition between states.731 The continuous-spectrum nature of this system poses significant challenges for traditional Koopman
732 operator approximation methods, as there is no straightforward finite-dimensional approximation in
733 terms of a small number of eigenfunctions. Additionally, the switching dynamics between potential
734 wells create computational difficulties even for short-term prediction.736 A.1.2 REPRESSILATOR
737738 The Repressilator, a popular synthetic gene circuit (Elowitz & Leibler, 2000), has become a canon-
739 ical model for studying oscillatory dynamics that emerge from negative feedback regulation. The
740 circuit is composed of three transcriptional repressor genes arranged in a cyclic negative feedback
741 loop, where each gene encodes a protein that inhibits the transcription of the next gene in the cycle,
742 creating a ring-like structure. Many studies extensively analysed data-driven modelling and control
743 of such systems in (Bodduupalli et al., 2019; Sootla et al., 2018; Balakrishnan et al., 2022; Perez-
744 Carrasco et al., 2018). Here, we focus on the case where the genetic circuit is isolated from bacterial
745 host (Weiße et al., 2015; Nikolados et al., 2019) and admits a limit cycle in the phase portrait with a
746 single basin of attraction centered at the origin. We define the system as:

747
$$\begin{aligned} \frac{dm_{(i)}}{dt} &= -\delta_m m_{(i)} + \frac{\alpha}{1 + (p_{(j)}/K)^n} + \alpha_0, \\ \frac{dp_{(i)}}{dt} &= -\delta_p p_{(i)} + \beta m_{(i)}, \end{aligned} \quad (11)$$

748
749
750
751

752 where m_i and p_i denotes the concentration of mRNA and protein of gene i , respectively. The
753 indices (i, j) cycles through the repressor pairs $\{(lacI, cI), (tetR, lacI), (cI, tetR)\}$. The model
754 parameters represent basal and maximal transcription rates (α_0, α), Hill repression characteristics
755 (K, n), degradation rates (δ_m, δ_p), and the translation rate (β). We used the parameter values $\alpha_0 =$
0.03, $\alpha = 10$, $K = 40$, $n = 2$, $\delta_m = 0.3466$, $\delta_p = 0.0693$, and $\beta = 10$ in dimensionless units.

756 A.1.3 IRMA
757

758 The IRMA (In vivo Reverse-engineering and Modelling Assessment) network is a well-
759 characterised synthetic gene circuit in *Saccharomyces cerevisiae*, constructed explicitly as a bench-
760 mark for modelling and control. IRMA consists of five yeast transcription-factor genes (CBF1,
761 GAL4, SWI5, ASH1, GAL80) with a topology containing both positive and negative feedback loops
762 (Marucci et al., 2009; di Bernardo et al., 2011). It was designed to be insulated from native regu-
763 lation and to respond specifically when cells are cultured in galactose. This network has been used
764 to test system-identification and control methods. For example, Menolascina et al. (2014) applied
765 closed-loop control to regulate IRMA’s reporter output, and Cantone et al. (2009) used IRMA time-
766 series data to validate reverse-engineering algorithms. These studies demonstrate IRMA’s predictive
767 modelling value.

768 The mathematical model of IRMA is characterised by the following system of equations:

$$\begin{aligned}
 770 \quad & \dot{x}_1 = \alpha_1 + v_1 \cdot \frac{k_1^{h_1}}{k_1^{h_1} + x_5^{h_1}} - d_1 x_1, \\
 771 \quad & \dot{x}_2 = \alpha_2 + v_2 \cdot \frac{x_1^{h_2}}{k_2^{h_2} + x_1^{h_2}} - d_2 x_2, \\
 772 \quad & \dot{x}_3 = \alpha_3 + v_3 \cdot \frac{x_2^{h_3}}{k_3^{h_3} + x_2^{h_3} \left(1 + \frac{x_4^{h_6}}{\gamma^{h_6}}\right)} - d_3 x_3, \\
 773 \quad & \dot{x}_4 = \alpha_4 + v_4 \cdot \frac{x_3^{h_4}}{k_4^{h_4} + x_3^{h_4}} - d_4 x_4, \\
 774 \quad & \dot{x}_5 = \alpha_5 + v_5 \cdot \frac{x_3^{h_5}}{k_5^{h_5} + x_3^{h_5}} - d_5 x_5.
 \end{aligned} \tag{12}$$

787 where x_1, x_2, x_3, x_4, x_5 represent CBF1, GAL4, SWI5, GAL80, and ASH1 respectively, param-
788 eters follow the implementation in Marucci et al. (2009) and states are sampled from a uniform
789 distribution over the interval $[0, 1]$.

790 The parameters of the model include the basal expression rates α_i , the maximum expression rates
791 v_i , the half-saturation constants k_i , the Hill coefficients h_i , the degradation rates d_i , and the inhi-
792 bition constant γ . Together, these parameters govern the nonlinear gene regulatory interactions and
793 degradation dynamics of the IRMA circuit.

794 A.2 ADDITIONAL DYNAMICAL SYSTEMS
795

797 In addition to the three main benchmark systems (A.1, we also consider a collection of classical
798 dynamical systems as benchmarks. These systems are commonly used in the literature for system
799 identification tasks, as they display diverse and rich dynamical behaviors. We briefly describe each
800 of them below.

801 **Nonlinear Pendulum.** The pendulum represents a freely swinging pole. Unlike the linear small-
802 angle approximation, the full nonlinear pendulum exhibits richer dynamics. As the system energy
803 increases, oscillations become strongly anharmonic, leading to a continuous Koopman spectrum.
804 The dynamics are given by:

$$\dot{x}_1 = x_2, \tag{13}$$

$$\dot{x}_2 = -\sin(x_1). \tag{14}$$

809 Initial conditions with angular positions θ_0 from a uniform distribution over $[-\pi, \pi]$ radians, with
angular velocities fixed at $\omega_0 = 0.0$.

810 **Parabolic Attractor.** Adopted from Lusch et al. (2018), this simple dynamical system has a single
 811 fixed point and a discrete eigenvalue spectrum:

$$\dot{x}_1 = \mu x_1, \quad (15)$$

$$\dot{x}_2 = \lambda(x_2 - x_1^2). \quad (16)$$

815 The system exhibits a slow manifold for stable eigenvalues $\lambda < \mu < 0$, asymptotically attracted to
 816 the parabola $x_2 = x_1^2$. We set $\lambda = -1.0$ and $\mu = -0.1$, with initial conditions sampled uniformly
 817 from $x_1, x_2 \in [-1, 1]$.

819 **Goodwin Oscillator.** The three-state Goodwin oscillator (Goodwin, 1965) is a prototypical bio-
 820 chemical feedback model demonstrating how delayed negative feedback generates self-sustained
 821 oscillations. It consists of three variables (commonly interpreted as mRNA, protein, and inhibitor),
 822 where the inhibitor suppresses mRNA production. The system is governed by:

$$\dot{x}_1 = \frac{\alpha}{\kappa + kx_3^n} - \beta x_1, \quad (17)$$

$$\dot{x}_2 = \gamma x_1 - \delta x_2, \quad (18)$$

$$\dot{x}_3 = \eta x_2 - \theta x_3, \quad (19)$$

823 where (x_1, x_2, x_3) denote the concentrations of the three states and are sampled from uniform distri-
 824 butions over $[-2, 2]$ for each state variable and used the following parameters to generate oscillation:
 825 $a_1 = 360$, $\kappa_1 = 43$, $k_1 = 1.0$, $n = 12$, $b_1 = 0.6$, $\alpha_1 = 1.0$, $\beta_1 = 1.0$, $\gamma_1 = 1.0$, and $\delta_1 = 0.8$.

831 **Lotka–Volterra System.** The Lotka–Volterra equations describe a classical predator-prey model
 832 whose populations can undergo sustained oscillations:

$$\dot{x}_1 = \alpha x_1 - \beta x_1 x_2, \quad (20)$$

$$\dot{x}_2 = \delta x_1 x_2 - \gamma x_2. \quad (21)$$

836 The system admits two fixed points: extinction at $(0, 0)$ and coexistence at $(\frac{\gamma}{\delta}, \frac{\alpha}{\beta})$. We follow the
 837 setup of Fathi et al. (2023) and set $\alpha = \beta = \gamma = \delta = 0.2$, with initial conditions sampled uniformly
 838 from $x_1, x_2 \in [0.02, 3.0]$.

840 **Rössler System.** The Rössler system (Rössler, 1976) is a three-dimensional chaotic system de-
 841 fined by:

$$\dot{x}_1 = -x_2 - x_3, \quad (22)$$

$$\dot{x}_2 = x_1 + ax_2, \quad (23)$$

$$\dot{x}_3 = b + x_3(x_1 - c). \quad (24)$$

846 With the canonical parameter set $(a, b, c) = (0.2, 0.2, 5.7)$, the system yields the well-known strange
 847 attractor characterized by oscillations in the (x_1, x_2) -plane and intermittent growth/decay along x_3 .

848 **Fluid Flow Model.** A reduced-order model of fluid flow past a circular cylinder at Reynolds num-
 849 ber 100 (Noack et al., 2003) is given by:

$$\dot{x}_1 = \mu x_1 - \omega x_2 + Ax_1 x_3, \quad (25)$$

$$\dot{x}_2 = \omega x_1 + \mu x_2 + Ax_2 x_3, \quad (26)$$

$$\dot{x}_3 = -\lambda(x_3 - x_1^2 - x_2^2). \quad (27)$$

855 With parameters $\mu = 0.1$, $\omega = 1.0$, $A = -0.1$, and $\lambda = 10$, this system serves as a benchmark
 856 for fluid dynamics, exhibiting self-sustained von Kármán vortex shedding. We consider trajectories
 857 starting both on and off the slow manifold.

B EXTENDED RELATED WORK

B.1 KOOPMAN OPERATOR LEARNING

863 Data-driven approximations of the Koopman operator (Koopman, 1931) have matured from
 864 dictionary-based linear models to learned latent embeddings. Extended DMD (EDMD) introduces

a finite dictionary of observables and performs linear regression in the lifted space (Li et al., 2017). Rigorous analyses quantify when EDMD converges and how spectra are approximated (Korda & Mezić, 2018; Mezić, 2022; Giannakis & Valva, 2024; Colbrook & Townsend, 2024). Neural formulations replace hand-crafted dictionaries with encoders/decoders that learn Koopman-invariant coordinates end-to-end, often with a linearly recurrent bottleneck (Otto & Rowley, 2019; Lusch et al., 2018). These approaches have been used on canonical nonlinear systems—including Duffing-type oscillators—to demonstrate improved single-step prediction and limited-horizon rollout accuracy (Otto & Rowley, 2019; Li et al., 2017; Alford-Lago et al., 2022; Pan & Duraisamy, 2020; Köhne et al., 2025). Unlike black-box recurrent-based neural network models such as LSTM and GRU (Elman, 1990; Hochreiter & Schmidhuber, 1997; Cho et al., 2014), Koopman-based methods yield interpretable latent coordinates and preserve better system dynamics in extrapolation. Regularizers that bias the learned propagator toward (near-)unitary dynamics have been explored to stabilize long-horizon rollouts (Enyeart & Lin, 2024). Symmetry-aware variants study how equivariances shape Koopman spectra and model structure (Salova et al., 2019).

879 B.2 DELAY EMBEDDINGS AND MEMORY

A parallel line of work augments Markov predictors with short-term memory via time-delay embeddings. Hankel DMD constructs a block-Hankel snapshot matrix to expose linear evolution in delay coordinates (Arbabi & Mezic, 2017); related theory develops universal, system-independent time-delay observables (Kamb et al., 2020). HAVOK (Hankel Alternative View of Koopman) further separates a low-dimensional linear model from a data-driven forcing term that captures intermittent or chaotic dynamics (Brunton et al., 2017). These methods show that short windows of history can substantially reduce phase slippage and amplitude drift, motivating lightweight latent-memory mechanisms in neural Koopman models.

890 B.3 ATTENTION AND HYBRID KOOPMAN MODELS

Recent models couple Koopman structure with attention to aggregate recent context or to adapt locally. Lu et al. (2024) employ temporal attention inside an autoencoder to attenuate noise and improve forecasting; Wang et al. (2022) pair a global (stationary) Koopman map with a local transformer-based operator to handle nonstationarity and transients. We follow the same spirit—leveraging short temporal context for robust prediction—while replacing quadratic-cost multi-head attention with a linear-cost, attention-free aggregation in latent space.

900 B.4 INPUTS, CONTROL, AND MPC

Complementary work integrates inputs and control: KIC extends Koopman predictors to systems with inputs (Proctor et al., 2018); LNCIS surveys detail operator-learning pipelines for control (Kaiser et al., 2020); Koopman MPC demonstrates closed-loop planning in lifted coordinates (Korda & Mezić, 2020); and recent surveys emphasize applications in robot learning (Shi et al., 2024). These applications motivate robustness over long horizons, as models that remain near the learned manifold are easier to certify and use in downstream control.

909 B.5 PROJECTION, CONSISTENCY, AND RECURSIVE/LOCAL MODELING

To limit compounding errors, several practices periodically project or reconcile predictions with the learned manifold. Temporal consistency regularization encourages smooth, self-consistent multi-step predictions (Nayak et al., 2025); delayed-input concatenation provides a simple memory buffer for low-dimensional series (Frion et al., 2025). In the classical setting, windowed/recursive DMD maintains local linear surrogates from sliding subsets of recent data (Noack et al., 2015; Dylewsky et al., 2019), and recent variants use windowed outputs to update local linear models online (Guan et al., 2024). We operationalize a complementary idea in latent space: a cheap encode–decode–encode projection that snaps predictions back to the autoencoder manifold when drift is detected.

918 B.6 STREAMING DRIFT DETECTION
919

920 Change-point detection from statistical process control offers streaming triggers that are inexpensive
921 and interpretable. CUSUM tests cumulative deviations against a nominal mean (Moustakides,
922 1986); EWMA emphasizes recent residuals through exponential smoothing (Roberts, 2000); and
923 sequential two-sample procedures compare reference and current windows to detect broader distri-
924 butional shifts (Ross & Adams, 2012). We instantiate all three as latent-drift monitors to decide
925 when to re-encode.

926 B.7 BIOLOGICAL CIRCUITS AND BROADER BENCHMARKS
927

928 Synthetic gene networks furnish controlled, nonlinear testbeds with oscillations and feedback. The
929 Repressilator (Elowitz & Leibler, 2000) and the IRMA network (*In vivo Reverse-engineering and*
930 *Modelling Assessment*) (Marucci et al., 2009; di Bernardo et al., 2011) have been repeatedly used
931 for modeling and closed-loop control (Menolascina et al., 2014; Cantone et al., 2009). Koopman-
932 based predictors and controllers have also been explored for genetic circuits (Hasnain et al., 2019).
933 Beyond biology, standard dynamical-systems benchmarks probe complementary difficulties: the
934 Goodwin oscillator (Goodwin, 1965), Rössler attractor (Rössler, 1976), and reduced-order cylinder
935 flow (Noack et al., 2003), as well as pedagogical systems such as the parabolic attractor (Lusch
936 et al., 2018) and Lotka–Volterra (Fathi et al., 2023). In our experiments, we focus our most rigorous
937 evaluation on three representative systems (Duffing, Repressilator, IRMA) and use the remaining
938 benchmarks to sanity-check generalization of the finalized architecture.

939 C REPRODUCIBILITY CHECKLIST
940

941 **Code and data.** We release code, configuration files, and scripts to (i) generate datasets for all
942 systems, (ii) train/evaluate each model variant (KAE, KAE+AFT, KAE+MHA, KAE+AFT+Re-
943 enc), and (iii) reproduce all tables/figures. Re-encoding triggers (EWMA, CUSUM, windowed
944 Z-score, two-sample) are provided as modular components.

945 **Training and evaluation protocol.** We fix optimizer, learning-rate schedule, batch size, rollout
946 horizons, and early-stopping criteria as in §H. Models are evaluated by free rollouts from held-
947 out initial conditions; we report MSE and MCAE as defined in §3.2. All reported means are over
948 multiple random initial-condition with 95% CIs for MCAE curves.

949 **Hyperparameters.** Architecture and training hyperparameters are summarized in Tables 8 and
950 9. Unless otherwise noted, the bottleneck is $d=100$, AFT context $T=10$, and K is dense. Any
951 deviations are stated near the corresponding results.

952 **Determinism and versions.** We provide exact library versions (PyTorch, CUDA, numpy, scipy)
953 and OS details. Where relevant, we disable non-deterministic CuDNN kernels.

954 Table 4: Checklist of key reproducibility items and where they are specified.
955

956 Item	957 Status	958 Where
959 Datasets & generation scripts	960 Provided	App. H, App. A
961 Train/eval protocols	962 Specified	§H
962 Architectures & losses	963 Specified	§2.1, §2.2, equation 2
963 Re-encoding triggers	964 Specified	§2.3, Alg. 2
964 Hyperparameters (per system)	965 Tabulated	Tables 8, 9
965 Baselines & ablations	966 Enumerated	§3.3
966 Metrics (MSE, MCAE)	967 Defined	§3.2
967 Code	968 Provided	§ 7

968 **Data generation.** All ODE systems were integrated with `scipy.integrate.odeint`, a
969 wrapper of ODEPACK’s LSODA solver that automatically detects stiffness and switches between
970 a variable-order Adams method (non-stiff) and a BDF/Gear method (stiff), with adaptive internal
971 step sizes and default error control (relative and absolute tolerances left at SciPy/LSODA defaults)
following common practice in prior Koopman and system-identification studies (see §B). Solutions

were returned at user-specified sample times t_0, \dots, t_T (uniform linspace per dataset), so the reported Δt in tables refers to output sampling, not the solver’s internal step. We did not supply Jacobians or event functions; LSODA formed finite-difference Jacobians as needed. Initial conditions were sampled from the ranges stated in Appendix A and, for each system, we generate separate train/validation/test sets by sampling initial conditions.

D DYNAMIC RE-ENCODING METHODS

To implement dynamic re-encoding, we considered a set of online change-point detection methods that can identify shifts in the drift error and decide when re-encoding is beneficial. These approaches vary in complexity, from simple threshold-based rules to more sophisticated statistical tests, but they all share the goal of adapting the model to evolving data. Below, we provide a brief description of each method:

1. **Cumulative Sum (CUSUM):** Originating from the work of Moustakides (1986), CUSUM is a sequential analysis technique that monitors cumulative deviations of observations from a target mean. We employ a probabilistic variant that standardizes the observed MSE difference between predictions with and without re-encoding, computes the cumulative sum, and converts it into a standard normal statistic. We then derive a p-value

$$p_T = 2 [1 - \Phi(|\tilde{s}_T|)],$$

where Φ denotes the standard normal CDF. This p-value quantifies the improbability of the observed cumulative deviation under the no-change hypothesis.

2. **Threshold Re-encoding:** We quantify the discrepancy between the original latent prediction Y_{pred} and the re-encoded prediction $Y_{\text{pred-after}}$ using a normalized mean squared difference:

$$\Delta = \frac{\|Y_{\text{pred}} - Y_{\text{pred-after}}\|^2}{\|Y_{\text{pred}}\|^2 + \epsilon}.$$

A re-encode is triggered when Δ exceeds a predefined threshold.

3. **Window Re-encoding:** We track the MSE difference between the standard and re-encoded predictions in a fixed-size sliding window. Re-encoding is activated if the most recent MSE exceeds the window’s mean plus a configurable multiple of its standard deviation, enabling adaptive response to abnormal fluctuations while balancing stability and efficiency.
4. **Exponentially Weighted Moving Average (EWMA):** Introduced in Roberts (2000), the EWMA method computes a smoothed statistic that emphasizes recent observations. The update rule is

$$Z_t = (1 - \lambda) Z_{t-1} + \lambda \delta_t, \quad \lambda \in (0, 1),$$

Where a new observation is δ_t , the smoothing parameter is λ . The method maintains running estimates of the mean μ_t and the standard deviation σ_Z of the EWMA statistic. A change point is declared if

$$\frac{|Z_t - \mu_t|}{L} > \sigma_Z,$$

with L being a sensitivity scaling factor.

5. **Sequential Two-Sample Test:** Extending the methods of Ross & Adams (2012), this approach partitions the data stream into a “reference” and a “current” window buffer and applies nonparametric tests (e.g., Kolmogorov–Smirnov, Lepage, Mann–Whitney) to detect distributional shifts beyond mean changes—such as variance or skewness deviations.

E GRU AND TRANSFORMER ARCHITECTURES

We use GRUs and transformers in an autoencoder architecture as a baseline to compare with the Koopman autoencoders. We chose these as baselines due to their ability to model the temporal and spatial dependence from the training data. We use simple model architectures to allow the model to be as expressive as possible to learn from the provided data. A description of each autoencoder is provided below.

1026 E.1 GRU AUTOENCODER
1027

1028 **Model.** Let $X_t = (x_t, x_t + 1, \dots, x_{t+T-1}) \in \mathbb{R}^{p \times T}$ denote the observed window of length T
1029 of states at time t and let $E_{gru} : \mathbb{R}^p \rightarrow \mathbb{R}^d$ be an n -layer GRU encoder and $D_{mlp} : \mathbb{R}^d \rightarrow \mathbb{R}^p$ be
1030 a one-layer MLP decoder. Together, E_{gru} maps the input window of length T to a d -dimensional
1031 latent space and D_{mlp} decodes back to a next-step prediction in \mathbb{R}^p :
1032

$$1033 \quad 1034 \quad \hat{x}_{t+T} = D_{mlp}(E_{gru}(X_t)) \quad (28)$$

1035
1036
1037 so that an i -step rollout from an initial observed window X_0 is i autoregressive applications of the
1038 autoencoder, shown in algorithm 3.
1039

1040
1041 **Training losses.** Given an input window X_0 of length T , we minimize the autoregressive predic-
1042 tion error over a rollout of T_{pred} steps. Let $f_{gru_ar} : X_0 \rightarrow \hat{X}_T$ denote the algorithm described in 3
1043 for a T_{pred} -step model rollout with context length T .
1044

$$1045 \quad 1046 \quad \mathcal{L} = \frac{1}{T_{pred}} \|X_T - f_{gru_ar}(X_0)\|_2^2, \quad (29a)$$

1047
1048 We train by using this loss function over the training data.
1049

1052 E.2 TRANSFORMER AUTOENCODER
1053

1054 The transformer autoencoder is almost identical to the GRU autoencoder described in E.1 except that
1055 the encoder is now an n -layer GRU followed by an m -layer transformer encoder. The GRU head is
1056 used to embed the input data to a higher dimension before being passed through the transformer.
1057

1058 **Model.** Let $X_t = (x_t, x_t + 1, \dots, x_{t+T-1}) \in \mathbb{R}^{p \times T}$ denote the observed window of length T
1059 of states at time t and let $E_{tr} : \mathbb{R}^p \rightarrow \mathbb{R}^d$ be an $(n+m)$ -layer transformer encoder with and
1060 $D_{mlp} : \mathbb{R}^d \rightarrow \mathbb{R}^p$ be a one-layer MLP decoder. Together, E_{tr} maps the input window of length T to
1061 a d -dimensional latent space and D_{mlp} decodes back to a next-step prediction in \mathbb{R}^p :
1062

$$1063 \quad 1064 \quad \hat{x}_{t+T} = D_{mlp}(E_{tr}(X_t)) \quad (30)$$

1065
1066
1067 so that an i -step rollout from an initial observed window X_0 is i autoregressive applications of the
1068 autoencoder, shown in algorithm 3.
1069

1070
1071 **Training losses.** Given an input window X_0 of length T , we minimize the autoregressive predic-
1072 tion error over a rollout of T_{pred} steps. Let $f_{tr_ar} : X_0 \rightarrow \hat{X}_T$ denote the algorithm described in 3
1073 for a T_{pred} -step model rollout with context length T .
1074

$$1075 \quad 1076 \quad \mathcal{L} = \frac{1}{T_{pred}} \|X_T - f_{tr_ar}(X_0)\|_2^2, \quad (31a)$$

1077
1078 We train by using this loss function over the training data.
1079

1080 F ALGORITHMS
10811082 **Algorithm 1:** AFT–Koopman rollout (no re-encoding)
1083

1084 **Input:** initial state x_0 , horizon T_{pred} , context length T
 1085 **Output:** predicted states $\{\hat{x}_t\}_{t=0}^{T_{\text{pred}}}$
 1086 **Data:** encoder φ , decoder φ^{-1} , Koopman map K , AFT params W_Q, W_K, W_V , position bias
 1087 B , causal mask M

1088 1 $z_0 \leftarrow \varphi(x_0)$; $\hat{x}_0 \leftarrow x_0$;
 1089 2 **for** $t \leftarrow 1$ **to** T_{pred} **do**
 // Assemble latent history (causal, chronological, length T)
 1090 3 build $H_{t-1} = [z_{t-T}, \dots, z_{t-1}]$ (truncate if $t < T$);
 // AFT projections
 1091 4 $q \leftarrow z_{t-1}W_Q$; $K_t \leftarrow H_{t-1}W_K$; $V_t \leftarrow H_{t-1}W_V$;
 // Residual aggregation in latent space
 1092 5 $\alpha_{i,j} \leftarrow \exp(k_j + W_{i,j}) \cdot M_{i,j}$ for all i, j ;
 1093 6 $\Delta z_i \leftarrow q_i \odot \frac{\sum_j \alpha_{i,j} \odot v_j}{\sum_j \alpha_{i,j}}$ for all i ;
 // Koopman propagation + decode
 1094 7 $z_t \leftarrow K(z_t - 1 + \Delta z_{t-1})$; $\hat{x}_t \leftarrow \varphi^{-1}(z_t)$;
 1095 8 **end**
 1096 9 **return** $\{\hat{x}_t\}_{t=0}^{T_{\text{pred}}}$

1102 **Algorithm 2:** AFT–Koopman rollout with dynamic re-encoding (inference only)
1103

1104 **Input:** initial state x_0 , horizon T_{pred} , context length T , trigger config Θ
 1105 **Output:** predicted states $\{\hat{x}_t\}_{t=0}^{T_{\text{pred}}}$, re-encode steps \mathcal{R}
 1106 **Data:** encoder φ , decoder φ^{-1} , Koopman map K , AFT params W_Q, W_K, W_V , position bias
 1107 B , causal mask M

1108 1 $z_0 \leftarrow \varphi(x_0)$; $\hat{x}_0 \leftarrow x_0$; $\mathcal{R} \leftarrow \emptyset$;
 1109 2 **for** $t \leftarrow 1$ **to** T_{pred} **do**
 // Get original and re-encoded versions of z_{t-1}
 1110 3 $z_{t-1}^{\text{orig}} \leftarrow z_{t-1}$; $z_{t-1}^{\text{re-enc}} \leftarrow \varphi(\varphi^{-1}(z_{t-1}))$;
 // Apply AFT function to both versions
 1111 4 build $H_{t-1} = [z_{t-T}, \dots, z_{t-1}]$ (truncate if $t < T$);
 1112 5 $\Delta z^{\text{orig}} \leftarrow \text{AFT}(z_{t-1}^{\text{orig}}, H_{t-1})$;
 1113 6 $\Delta z^{\text{re-enc}} \leftarrow \text{AFT}(z_{t-1}^{\text{re-enc}}, H_{t-1})$;
 // Update both versions with their residuals
 1114 7 $z_{t-1}^{\text{orig}} \leftarrow z_{t-1}^{\text{orig}} + \Delta z^{\text{orig}}$;
 1115 8 $z_{t-1}^{\text{re-enc}} \leftarrow z_{t-1}^{\text{re-enc}} + \Delta z^{\text{re-enc}}$;
 // Apply Koopman operator to both updated versions
 1116 9 $z_t^{\text{orig}} \leftarrow K z_{t-1}^{\text{orig}}$;
 1117 10 $z_t^{\text{re-enc}} \leftarrow K z_{t-1}^{\text{re-enc}}$;
 // Calculate difference after Koopman propagation
 1118 11 $\delta_t \leftarrow \|z_t^{\text{re-enc}} - z_t^{\text{orig}}\|_2^2$;
 // Streaming triggers (EWMA / CUSUM / window / two-sample)
 1119 12 **if** $\text{TriggerFires}(\delta_t; \Theta)$ **then**
 1120 13 $z_t \leftarrow z_t^{\text{re-enc}}$; $\mathcal{R} \leftarrow \mathcal{R} \cup \{t\}$;
 1121 14 **end**
 1122 15 **else**
 1123 16 $z_t \leftarrow z_t^{\text{orig}}$;
 1124 17 **end**
 1125 18 $\hat{x}_t \leftarrow \varphi^{-1}(z_t)$;
 1126 19 **end**
 1127 20 **return** $\{\hat{x}_t\}_{t=0}^{T_{\text{pred}}}, \mathcal{R}$

1134 **Algorithm 3:** GRU and Transformer rollout

1135 **Input:** initial window $X_0 = (x_0, x_1, \dots, x_{T-1})$, horizon T_{pred} , context length T

1136 **Output:** predicted states $\hat{X}_T = \{\hat{x}_t\}_{t=T}^{T+T_{\text{pred}}}$

1137 **Data:** encoder E (either E_{gru} or E_{tr}), decoder D_{mlp}

1138 1 $X_{\text{tmp}} \leftarrow X_0$;

1139 2 **for** $t \leftarrow 1$ **to** T_{pred} **do**

1140 **//Encode the input sequence**

1141 3 $Z_t \leftarrow E(X_{\text{tmp}})$;

1142 **//Decode the latent space**

1143 4 $\hat{x}_{t+T-1} = D_{\text{mlp}}(Z_t)$;

1144 **//Autoregressively prepare the next input**

1145 5 $X_{\text{tmp}} = (x_t, x_{t+1}, \dots, x_{t+T-1})$;

1146 6 **end**

1147 7 **return** $\hat{X}_T = \{\hat{x}_t\}_{t=T}^{T+T_{\text{pred}}}$

1148

1149

G ADDITIONAL RESULTS AND ANALYSES

1150

1151

G.1 COMPLEXITY AND PARAMETER FOOTPRINT

1152

1153 **Attention-free latent memory vs. MHA.** Let d be the latent (bottleneck) dimension and T the AFT history length. The AFT block adds three linear maps $W_Q, W_K, W_V \in \mathbb{R}^{d \times d}$ and a learned position-only bias $B \in \mathbb{R}^{T \times T}$, for a total of $3d^2 + T^2$ parameters. With the settings used in most experiments ($d=100, T=10$), this is $\approx 30,100$ parameters. The aggregation cost per step is linear in window length, $\mathcal{O}(Td)$, since we compute a weighted sum over the last T key/value pairs with a fixed (causal) position bias (Zhai et al., 2021). By contrast, dot-product multi-head attention over a window of size T requires forming attention scores over all pairs, yielding $\mathcal{O}(T^2d)$ time and $\mathcal{O}(T^2)$ memory for the attention map, in addition to comparable linear projections.

1154 **Total inference cost.** Per time step, the KAE backbone incurs one $d \times d$ Koopman multiply and one

1155 decode; AFT adds one extra $d \times d$ projection and a windowed $\mathcal{O}(Td)$ aggregation. The dynamic

1156 re-encoding step introduces an additional encode-decode-encode (φ^{-1} then φ) per time step, so we

1157 incur additional ($\text{cost}[\varphi] + \text{cost}[\varphi^{-1}]$). All triggers operate in $\mathcal{O}(1)$ time per step with respect to

1158 rollout length (the two-sample test maintains fixed-size buffers, i.e., $\mathcal{O}(w)$ per update for constant

1159 w).

1160

1161 **Memory footprint.** We store the last T latents ($\mathcal{O}(Td)$) and no dense $T \times T$ attention maps at

1162 inference time. This linear memory scaling enables long rollouts with a small fixed context.

1163

1164

G.2 INFERENCE TIME EVALUATION

1165

1166 When deploying machine learning models from offline forecasting to real-time control of dynamical

1167 systems, computational efficiency becomes as critical as prediction accuracy, since control systems

1168 operate under strict timing constraints where inference delays can destabilize the entire system. We

1169 evaluated our models and inference methods on the IRMA dynamical system, predicting 100 time

1170 steps from 10 initial conditions and 5 trials per method to ensure statistical reliability of timing

1171 measurements. We report four metrics: (i) Time [s], the average wall-clock time per trial; (ii)

1172 Throughput [traj/s], the number of trajectories predicted per second; (iii) Latency [ms], the average

1173 inference time per trajectory; and (iv) Efficiency [MFLOPS], the floating-point operations executed

1174 per second, as measured using PyTorch profiler on M3 CPU hardware. These metrics reflect real

1175 executed operations rather than theoretical complexity estimates.

1176

1177 Table 5 presents the inference time evaluation results for all methods on the IRMA dynamical sys-

1178 tem. The Koopman-based approaches demonstrate superior computational efficiency, with Koop-

1179 man AE achieving the lowest average inference time of 0.11s per trial and the highest throughput

1180 of 94.4 trajectories per second. The AFT variants, while slightly slower than the AE formulation,

1181 still offer good performance with throughput rates of 74.8-76.5 trajectories per second and notably

1182 higher computational efficiency, achieving 6774-6915 MFLOPS compared to 694 MFLOPS for the

1183 AE method. This indicates that AFT methods perform more intensive computations while maintain-

1184

1188
1189
1190 Table 5: Table of runtime performance for different models and inference methods.
1191
1192
1193
1194
1195
1196

Method	Time [s]	Throughput [traj/s]	Latency [ms]	MFLOPS
Koopman AE	0.11 ± 0.16	94.4	10.6	694
Koopman AFT	0.13 ± 0.04	76.5	13.1	6915
Periodic AFT	0.13 ± 0.03	74.8	13.4	6774
Dyn. Reenc. AFT (Window Var)	0.21 ± 0.05	47.6	21.0	4864
Dyn. Reenc. AFT (Two Sample)	0.38 ± 0.08	26.4	37.9	4881
Transformer	4.91 ± 1.15	2.04	491	518
GRU	6.08 ± 2.59	1.65	608	144

1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
ing fast inference times. In contrast, traditional sequence models exhibit significantly higher latency, with the Transformer and GRU requiring 491ms and 608ms per trajectory, respectively.

G.3 SEED ROBUSTNESS, PHASE-PLANE VIEWS, AND ERROR ACCUMULATION FOR THE CORE TRIO SYSTEMS

Table 6 reports mean \pm std MSE across random seeds (values scaled by $\times 100$) for the Koopman baselines and our re-encoding variants. On **Duffing**, dynamic re-encoding yields the lowest error at all horizons (e.g., 1.66 ± 0.60 at 200 steps), reducing both mean and variance relative to KAE and AFT, and maintaining a gap through 1000 steps (19.04 ± 0.95 vs. 25.63 ± 0.97 for KAE). This aligns with the switching-sensitive dynamics where timely snaps curb manifold drift (cf. Table 1, Fig. 2c). On the **Repressilator**, AFT without re-encoding is consistently best (0.01 ± 0.00 , 0.07 ± 0.05 , 0.19 ± 0.20 at 200/500/1000), while snap-backs degrade performance (~ 0.40 – 0.71), corroborating that triggers can inject phase resets on clean limit cycles (see §4.1). For **IRMA**, dynamic (and periodic) re-encoding dominate across horizons (e.g., 0.01 ± 0.01 at 200 and 0.04 ± 0.01 at 1000), with AFT close but consistently worse, reflecting the benefit of guarding against gradual manifold drift in higher-dimensional feedback systems.

Table 6: Mean Squared Error (MSE) over different time steps for Koopman methods running on different seed values, scaled by 100, with best values highlighted.

Steps	Koopman		AFT+Re-encoding	
	AE	AFT	Dynamic	Periodic
<i>MSE over different time steps</i>				
Duffing Oscillator				
200	11.24 ± 0.84	7.43 ± 2.24	1.66 ± 0.60	1.92 ± 0.54
500	23.01 ± 1.89	22.05 ± 3.89	11.35 ± 2.64	11.93 ± 1.47
1000	25.63 ± 0.97	27.54 ± 7.48	19.04 ± 0.95	21.82 ± 0.97
Repressilator				
200	0.01 ± 0.00	0.01 ± 0.00	0.40 ± 0.05	0.42 ± 0.05
500	0.23 ± 0.05	0.07 ± 0.05	0.45 ± 0.03	0.35 ± 0.01
1000	1.37 ± 0.83	0.19 ± 0.20	0.71 ± 0.04	0.71 ± 0.07
IRMA				
200	1.18 ± 0.20	0.03 ± 0.00	0.01 ± 0.01	0.01 ± 0.01
500	3.13 ± 1.31	0.08 ± 0.04	0.02 ± 0.02	0.02 ± 0.01
1000	3.22 ± 1.17	0.12 ± 0.03	0.04 ± 0.01	0.06 ± 0.01

Figure 5 complements these statistics: phase-plane/3D rollouts illustrate that re-encoding prevents rare-but-catastrophic divergence and preserves switching structure on Duffing, while remaining faithful to the attractors on Repressilator and IRMA. The MCAE curves in Fig. 6 further expose error-growth dynamics: on Duffing and IRMA, dynamic re-encoding flattens cumulative error relative to KAE and AFT, whereas on Repressilator the AFT-only curve remains lowest and most stable, consistent with Table 1 and our guidance in §5 (“When and why re-encoding helps”).

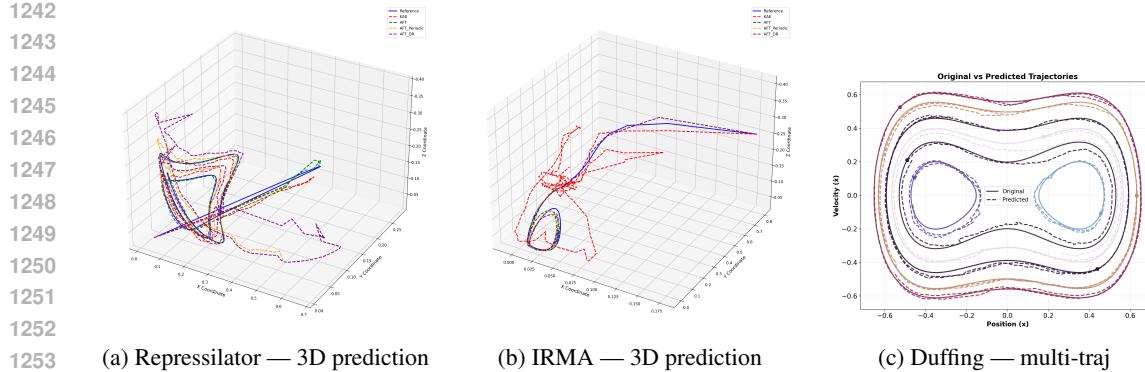


Figure 5: **Phase Plane Visualization of the systems.** Dynamic re-encoding prevents rare-but-catastrophic divergence on long rollouts and provides robust trajectory prediction across different initial conditions.

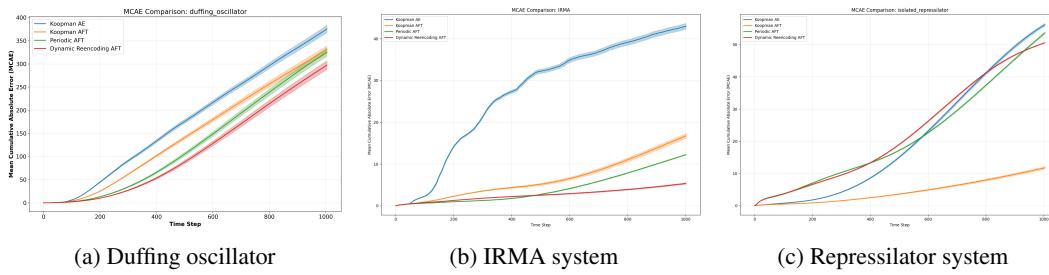


Figure 6: Mean cumulative absolute error (MCAE) results for our three dynamical systems, complementing the quantitative results presented in Table 1. The plots show prediction error accumulation over time for (a) the Duffing oscillator, (b) IRMA, and (c) the Repressilator.

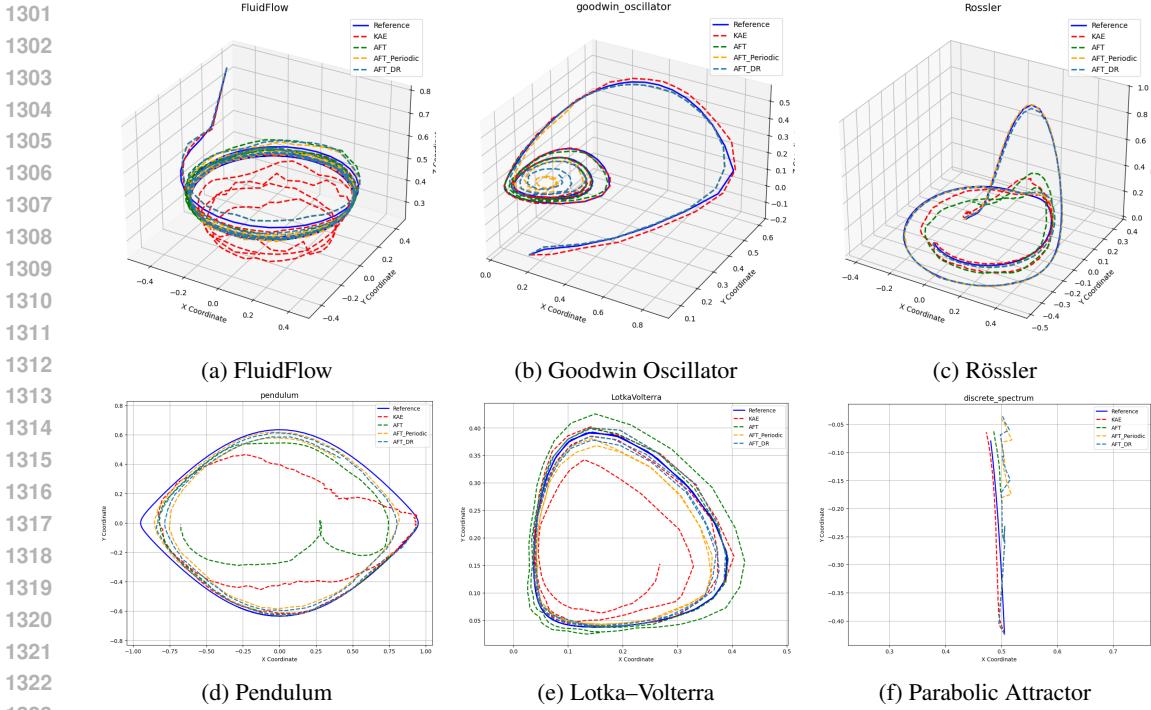
G.4 ADDITIONAL DYNAMICAL SYSTEMS

To assess out-of-the-box robustness, we hold architecture and training protocols fixed across tasks (varying only loss weights) and evaluate on a diverse suite spanning continuous spectra, limit cycles, and chaos. The suite includes: the nonlinear pendulum (anharmonic, continuous spectrum), the Goodwin oscillator (sustained biochemical oscillations; complementary 200/500-step horizons), the parabolic attractor (fully linearizable by standard Koopman coordinates), the Rössler system (canonical 3D chaos), Lotka–Volterra (predator–prey oscillations), and a reduced-order fluid-flow model capturing von Kármán vortex shedding. These systems cover regimes from simple discrete spectra to chaotic attractors, providing a stringent test of generalization. Quantitative 200-step MSE results (plus 500-step for Goodwin) appear in Table 7; representative rollouts are shown in Fig. 7.

Table 7: Prediction performance comparison (MSE \downarrow) over 200 prediction steps across different system configurations. Lower values indicate better performance. Best results for each system are highlighted in bold.

Model	Koopman AE	AFT	AFT with Re-encoding	
	–	–	Dynamic	Periodic
Pendulum	0.1016	0.0870	0.0687	0.0695
Parabolic Attractor	0.0009	0.0009	0.0011	0.0010
Goodwin Oscillator - 200 steps	0.0001	0.0002	0.0026	0.0033
Goodwin Oscillator - 500 steps	0.0091	0.0009	0.0032	0.0035
Lotka Volterra	0.0112	0.0095	0.0038	0.0031
FluidFlow	0.0026	0.0019	0.0013	0.0017
Rossler	0.0085	0.0055	0.0012	0.0014

1296 Broadly, AFT improves or matches the Koopman AE baseline, and AFT+re-encoding helps where
 1297 drift accumulates (pendulum, Lotka–Volterra, fluid flow, Rössler), while offering no benefit on triv-
 1298 ially linearizable dynamics (parabolic) or very clean short-horizon oscillations (Goodwin at 200).
 1299 No per-system tuning beyond the loss weights was performed.
 1300



1324 **Figure 7: Additional Dynamical systems.** AFT (and AFT+Re-enc where helpful) improves or
 1325 matches the baseline across diverse regimes. We did not perform additional, extensive per-system
 1326 tuning.
 1327

1328 G.5 ABLATIONS: OPERATOR SIZE AND AFT CONTEXT

1330 During training, re-encoding is disabled and only activated during inference (Algorithm 1). Mod-
 1331 els with larger operator sizes consistently achieve better performance than their smaller counter-
 1332 parts, though this performance gap narrows with the introduction of AFT. This difference is most
 1333 pronounced in the Repressilator experiments (Fig 8; left). For context length, short windows
 1334 ($T \in [8, 16]$) perform best (Fig 8; right). This is likely because using very long attention spans
 1335 introduces memory into a system that is intended to be memoryless, and we use memory primarily
 1336 for detecting drift.
 1337

1338 H ADDITIONAL TRAINING DETAILS AND HYPERPARAMETERS

1340 **Rollout loss and supervision.** Given an input chunk (x_0, \dots, x_T) , we encode $z_0 = \varphi(x_0)$ and
 1341 roll forward with K (and AFT when enabled), decoding $\hat{x}_t = \varphi^{-1}(z_t)$ at each step. We minimize
 1342 the composite objective in equation 2: $\mathcal{L}_{\text{recon}}$ enforces autoencoder fidelity, \mathcal{L}_{lin} encourages linear
 1343 evolution $z_i \approx K^i z_0$ in latent space, $\mathcal{L}_{\text{pred}}$ supervises decoded trajectories, and $\mathcal{L}_{\text{unitary}}$ regularizes
 1344 K . We use the full-horizon weighting (no temporal discount) to emphasize long-range accuracy.
 1345

1346 **Optimization and schedules.** We train with AdamW (initial learning rate 10^{-3}), a step scheduler
 1347 (epochs 30/60/90, factor 0.8), batch size 128, and early stopping on validation MSE. For systems
 1348 with chaotic or stiff transients, we use shorter prediction horizons during training (Table 9) for sta-
 1349 bility; inference uses the full trajectory length, and loss weights follow Table 9 (α_1, α_2 per system)
 and we use full-horizon weighting in equation 2 without temporal discount. The AFT block uses a
 causal position-only bias with a learned $T \times T$ matrix; multi-head attention baselines use identical



Figure 8: **Ablation studies on Koopman and AFT parameters.** Left: AFT robustness vs. Koopman with different operator sizes on Repressilator. Dense K achieves the best accuracy; constrained forms need larger widths for parity. Right: AFT with different context lengths. Small context length enable learning temporal changes while longer context might lead to noise updates.

bottleneck d and comparable per-head key/value sizes. Unless otherwise stated, the AFT context is $T=10$ and K is dense. We report means over multiple random initial conditions; 95% CIs are shown on MCAE curves. Re-encoding is disabled during training and enabled only at inference (Alg. 2).

Network Architecture. We employ a symmetric autoencoder architecture with encoder and decoder networks each containing 2-4 hidden layers of equal width. We use Leaky ReLU activation functions after each hidden layer except the pre-bottleneck layer, which uses linear activation. The bottleneck dimension was initially determined from repressilator experiments and fixed at 100 dimensions across all subsequent models to ensure consistent comparison between the Koopman Autoencoder (KAE) and attention-augmented variants. This standardized architecture allows us to focus on comparing the prediction capabilities between the Koopman Autoencoder (KAE) and our attention-augmented variant.

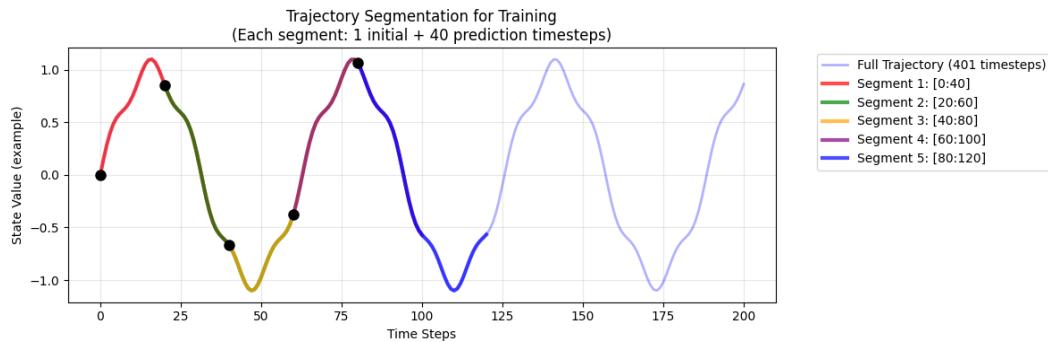
We employed a consistent architectural framework across all dynamical systems, as detailed in Table 8. Modifications to this baseline architecture were implemented only when performance proved inadequate, with adjustments confined to operator dimensionality (bottleneck width) or the depth of hidden layers. The selection of 2-4 hidden layers was informed by preliminary experiments demonstrating that increased network depth yielded marginal performance gains while substantially elevating training instability for the dynamical systems we tested. However, this architectural choice may not generalize to dynamical systems with more complex dynamics or higher-dimensional input spaces, where deeper networks could prove beneficial.

Table 8: Architectural parameters of the models. Values are fixed unless otherwise specified.

Parameter	Value
Bottleneck size	100 (120 for IRMA and 128 for Rössler)
Autoencoder hidden layer width	100 (128 for Rössler)
Autoencoder number of hidden layers	2 (4 for Rössler)
AFT context length	10
Scheduler epochs	30, 60, 90
Optimizer	AdamW

Koopman Operator Forms. We tested several variations of the Koopman operator, including dense, tridiagonal, diagonal, and Jordan forms. The dense form consistently outperformed the alternatives. This might be due to the additional constraints imposed by other forms, such as sparsity, block structure, or independence assumptions, which appear to limit representational capacity. Additionally, achieving complete feature disentanglement requires a larger operator size. The dense form provides maximum representational flexibility, which motivated its use throughout our experiments.

1404
 1405 **Data Pipeline.** We divided the data into 80% training, 10% validation, and 10% testing. Model
 1406 inputs for training consist of either complete trajectories or trajectory chunks, where the chunk
 1407 length equals the prediction horizon, as shown in Figure 9.
 1408

1419
 1420 Figure 9: Trajectory segmentation for training
 1421

1422 For complex dynamical systems exhibiting chaotic behavior, switching dynamics, or continuous
 1423 spectra, we employ shorter prediction lengths during training, as this approach yields better perfor-
 1424 mance and more stable training dynamics. The model unrolls predictions from the initial condition
 1425 x_0 across the specified prediction horizon, computing both latent space predictions and their corre-
 1426 sponding observation space reconstructions for loss evaluation. For GRU and Transformer training,
 1427 the models require contextual information to learn effectively; therefore, instead of using only the
 1428 initial condition X_0 to predict X_1, \dots, X_T , we use X_0, \dots, X_c to predict X_{c+1}, \dots, X_T . System-
 1429 specific dataset and training settings—including sampling interval Δt , number of trajectories, T_{pred} ,
 1430 and total trajectory length—are summarized in Table 9.

1431 Table 9: System-specific training and dataset parameters. Learning rate is fixed at 1×10^{-3} .
 1432

System	α_1	α_2	Δt	# Trajectories	Pred. length	Traj. length
Pendulum	0.1	10	0.2	6000	40	200
Isolated repress.	1	10	1.25	15000	200	200
Duffing oscillator	0.01	10	0.05	6000	50	200
Goodwin oscillator	0.1	10	0.2	6000	200	200
Lotka–Volterra	0.01	10	1	6000	50	200
IRMA	2.5	7.4	2	3000	40	400
Rössler	0.1	10	0.05	2000	30	1000
Fluid flow	0.01	10	0.2	6000	50	200