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ABSTRACT

Proteolysis targeting chimeras (PROTACs) are small molecules that trigger the
breakdown of traditionally “undruggable” proteins by binding simultaneously to
their targets and degradation-associated proteins. A key challenge in their rational
design is understanding their structural basis of activity. Due to the lack of crystal
structures (18 in the PDB), existing PROTAC docking methods have been forced
to simplify the problem into a distance-constrained protein-protein docking task.
To address the data issue, we develop a novel pseudo-data generation scheme
that requires only binary protein-protein complexes. This new dataset enables
PROFLOW, an iterative refinement model for PROTAC-induced structure predic-
tion that models the full PROTAC flexibility during constrained protein-protein
docking. PROFLOW outperforms the state-of-the-art across docking metrics and
runtime. Its inference speed enables the large-scale screening of PROTAC designs,
and computed properties of predicted structures achieve statistically significant
correlations with published degradation activities.

1 INTRODUCTION

Targeted protein degradation is an emerging paradigm in rational drug design that induces the
breakdown of “undruggable” proteins (Zhao et al., 2022). Proteolysis targeting chimeras (PROTACs)
are small molecules that achieve this by simultaneously binding a protein of interest (POI) and a
degradation-associated protein (e.g. E3 ligase) (Zou et al., 2019; Hu & Crews, 2022). In contrast to
small molecule drugs, which attach to predefined sites on their protein targets, PROTACs operate by
inducing a stable, ternary complex between themselves and two proteins which don’t typically interact.
This design task is highly structural, but modeling these structures has eluded both experimentalists
and computationalists. There are only 18 such structures in the PDB (Weng et al., 2023), and
PROTAC docking algorithms have yet to see widespread use (Troup et al., 2020), as existing search-
based methods either are too slow or oversimplify the task. Finally, while deep learning has shown
substantial promise in molecular docking (Corso et al., 2022), there are currently no end-to-end deep
learning methods for PROTAC docking, due to the lack of data.

Specifically, given unbound 3D structures of the POI and E3 ligase and the 2D PROTAC molecular
graph, our goal is to predict the bound poses of these three objects (“ternary complex,” Figure 1).
To this end, we propose PROFLOW, an iterative refinement model for PROTAC-induced structure
prediction. We frame the task as a conditional generation problem, where we learn the distribution
over rigid-body protein transformations that respect the existence of a connecting PROTAC linker.
To train this model in the absence of real ternary complexes, we create a pseudo-ternary dataset
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using a novel data generation scheme that pairs binary protein-protein data with appropriate PROTAC
linkers (Townshend et al., 2019; Weng et al., 2023).

Empirically, PROFLOW outperforms existing PROTAC docking methods in predicting PROTAC-
induced complexes (8.35 interface RMSD) and E3-POI interfaces (0.264 Fnat). In addition,
PROFLOW runs up to 60 times faster than the only alternative that considers full PROTAC structures,
enabling the virtual screening of hundreds of designs within 5 hours. As a direct result, we are able to
make predictions over the entire PROTAC-DB (Weng et al., 2021b) and show statistically-significant
correlations between Rosetta-computed properties of our structures (Leaver-Fay et al., 2011) and
published degradation activity. In summary, our main contributions are as follows.

1. To the best of our knowledge, PROFLOW is the first end-to-end deep learning approach for
PROTAC-induced structure prediction. In contrast to previous work, we consider the full
conformational landscape of the PROTAC linker during the entire sampling process.

2. We create and provide a new pseudo-ternary dataset from binary protein-protein complexes
and PROTAC linker graphs, to facilitate further development of models for this task.

3. We achieve state-of-the-art performance on PROTAC docking benchmarks with up to 60
times speedup. In addition, computed properties of our predicted complexes show statisti-
cally significant correlations with published degradation activity, highlighting PROFLOW’s
utility for future design tasks.

2 BACKGROUND AND RELATED WORK

Molecular docking Molecular docking plays a pivotal role in structure-based drug design (Morris
& Lim-Wilby, 2008; Hwang et al., 2010). Given two or more molecules (e.g. small molecules and/or
proteins), the goal is to predict their bound pose. Traditional docking algorithms break down the
problem into two steps: a sampling method enumerates candidate 3D poses, and a scoring function
ranks these poses (Trott & Olson, 2010; Yan et al., 2020). More recently, deep learning models
have also been developed for molecular docking. These methods formulate the problem as either a
regression (Stärk et al., 2022; Lu et al., 2022; Zhang et al., 2022) or a generative task (Corso et al.,
2022; Ketata et al., 2023).

Figure 1: PROTACs are small molecules com-
posed of two “warheads” and a connecting
linker. The warheads bind to the E3 ligase
and protein of interest (POI), while the flexi-
ble linker brings the two proteins into proxim-
ity. Top: ternary complex between POI (left),
E3 ligase (right), PROTAC (small molecule).
Bottom: PROTAC binding site, with respec-
tive warheads and anchor bonds. PDB 5T35.

PROTAC docking Current methods for PROTAC
docking incorporate PROTACs as constraints or fil-
ters for protein-protein docking. A common ap-
proach first samples PROTAC conformations and
E3-POI complexes separately; then (optionally) re-
inserts and relaxes the PROTAC linkers to minimize
collisions (Drummond & Williams, 2019; Drum-
mond et al., 2020). This workflow has been used
to query the structural bases of known PROTAC in-
teractions (Weng et al., 2021a; Bai et al., 2021). The
PROTAC can also be simplified into a set of distances
for constrained protein-protein docking (Schneidman-
Duhovny et al., 2005; Li et al., 2022). The primary
drawback to these approaches is that they largely ig-
nore the linker’s flexibility by reducing it to a set
of distances or fixed conformations during protein-
protein sampling.

Flow matching Flow matching (Lipman et al.,
2023; Albergo et al., 2023) is an iterative re-
finement, generative modeling framework that has
achieved the state-of-the-art across standard genera-
tion tasks (Tong et al., 2023) and biomolecular mod-
eling (Stärk et al., 2023; Yim et al., 2023; Song et al.,
2023). Flow matching has also been extended to Riemannian manifolds (Chen & Lipman, 2024).
In this work, we develop an iterative refinement model based on flow matching, with chemically-
informed modifications to ensure structural validity.
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Figure 2: Overview of PROFLOW, illustrated for PDB 7PI4. Iteratively refine E3 ligase poses by
1) predicting a rotation/translation update from the learned vector field, 2) applying these vectors to
approximate the next pose, and 3) projecting to the closest linker-compatible pose.

The goal of flow matching is to learn a vector field ut that transports a prior distribution x0 ∼ q
to the target data distribution x1 ∼ pdata. To efficiently learn ut, we first define a conditional
flow map ψt(x0 | x1), whose derivative with respect to time yields the conditional vector field
d
dtψt(x0 | x1) = ut(x | x1). The conditional vector field gives rise to a conditional probability
path pt(x | x1), t ∈ [0, 1] via the continuity equation, where p0(x | x1) = q(x) (prior) and
p1(x | x1) ≈ δ(x− x1) (approximate Dirac).

The conditional flow matching loss is LCFM(θ) = Et,q(x),pt(x|x1) ∥vθ(x, t)− ut (x | x1)∥
2 where

vθ is the output of a neural network θ. It has been shown that in expectation, regressing against
conditional vector field ut(x | x1) is equivalent to regressing against marginal vector field ut (Tong
et al., 2023). We can integrate Equation 2 over time to obtain pdata samples from noisy x0 ∼ q.

3 METHODS

We present PROFLOW, an iterative refinement framework based on flow matching for PROTAC-
induced structure prediction. As inputs, we are given unbound structures of an E3 ligase and protein of
interest (POI), the molecular graph of the PROTAC, and (optionally) the E3 and POI warhead binding
sites. Our goal is to sample the PROTAC-induced complex of the E3 ligase and POI (Figure 1).

Let xe ∈ R3×Ne ,xp ∈ R3×Np denote the coordinates of the E3 ligase and POI. Let G = (V, E)
denote the molecular graph of the PROTAC. G is associated with subgraphs GWe

, GWp
, Gℓ, corre-

sponding to the E3 warhead, POI warhead, and linker, where Gℓ shares one edge (“anchor bond”)
with each of the warheads. We assume that the relative coordinates between warheads xWe ,xWp

and the corresponding binding protein xe,xp are given, either from ground truth or as the output
of a protein-small molecule docking algorithm.1 Our goal is to learn a generative model over
P (xe,xℓ | xp, Gℓ), where we arbitrarily fix the POI and transform the E3.

In practice, we approximate P (xe,xℓ | xp, Gℓ) by sampling from P (xe | xℓ,xp, Gℓ) and optimizing
P (xℓ | xe,xp, Gℓ). We learn the former using an iterative refinement model, introduced in the next
section, and we compute the latter using a deterministic search algorithm over a large set of generated
linker conformations (Appendix C.1).

3.1 PROFLOW FRAMEWORK

On a high level, our iterative refinement framework is as follows. For more details, see Appendix A.

1. We define a linker-compatible spaceMℓ, which is the space of E3 ligase transformations
that can be “reached” by any conformation of the linker under consideration (Figure 2D).

1The former is a common assumption throughout the PROTAC docking literature (Zaidman et al., 2020),
while the latter is empirically an easy task (Appendix D.3), as warheads are generally known binders.
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Table 1: Left: re-docking, holo structures. Right: realistic docking, apo structures. Format: RMSD
(%< threshold, 20Å for cRMSD, 10Å for iRMSD). Methods marked ∗ did not model the PROTAC.
Runtimes marked † were performed exclusively on CPU (method does not support GPU). None of
the methods utilize re-ranking or clustering for prediction selection.

Holo structures
Model cRMSD (Å) iRMSD (Å) Fnat Time(s)

AF-Multimer∗ 14.83 (0.812) 10.49 (0.539) 0.221 735†
DiffDock-PP∗ 19.67 (0.510) 10.04 (0.509) 0.229 150
PROTACability 12.45 (0.926) 11.21 (0.496) 0.144 144†
PRossetaC 13.06 (0.954) 10.03 (0.487) 0.114 3015†
PROflow 12.85 (0.975) 8.20 (0.740) 0.264 44

Apo structures
cRMSD (Å) iRMSD (Å) Fnat

12.94 (0.865) 9.80 (0.563) 0.208
21.45 (0.380) 12.65 (0.446) 0.206
27.58 (0.641) 25.67 0.275 0.118
15.33 (0.856) 12.13 (0.367) 0.095

12.16 (0.995) 8.35 (0.643) 0.236

2. We sample from our prior over Mℓ by sampling valid linker conformations xℓ, anchor
bond torsion angles, and converting to equivalent protein transformations (Figure 2B). This
ensures that all our samples remain within the linker-compatible space.

3. We define our conditional flow map using the objects in SE(3) flow matching (Yim et al.,
2023), followed by a projection toMℓ (Figure 2C).

4. Finally, we optimize an objective that compares the predicted transformation, to that yielded
by the analytical conditional vector field in SE(3) flow matching.

Our learned vector field vθ takes as input Gℓ,xe,xp, and time t. The model predicts as output
x̂θ,t, R̂θ,t in the tangent space to SO(3)× R3. We parametrize vθ using E3NN, an equivariant graph
convolution network (Geiger & Smidt, 2022). We process our inputs into protein interface point
clouds, and include both geometric and chemical features. The final prediction aggregates all vertices
into a virtual node and applies an additional tensor product filter.

3.2 PSEUDO-DATA GENERATION

So far, we have assumed that our model has access to triplets (xe,xp,xℓ) for training. In reality,
there are fewer than twenty ternary PROTAC structures in the PDB, so it is infeasible to train on
existing data. Instead, we create a new pseudo-ternary dataset from binary protein-protein structures
(DIPS) (Townshend et al., 2019) and known linker graphs (PROTAC-DB) (Weng et al., 2023).

First, for each of the 1507 unique linkers Gℓ reported in Weng et al. (2023), we generate a set of
1024 conformations Xℓ using RDKit 2 (linker library). Next, for each binary protein-protein pair, we
identify putative pocket candidates based on surface patches with high curvature. During training, we
sample one pocket per protein, per pair, from the top 4 pockets with the highest curvature on each
protein. Finally, for each pair of pockets, we identify an appropriate linker that has low RMSD to
“anchor bonds,” placed in the center of each pocket. See Appendix A.2 for more details. It’s important
to note that the training dataset and the ternary structures in our test set do not overlap.

4 EXPERIMENTS

4.1 DOCKING EXPERIMENTS

Our test set consists of 13 solved PROTAC ternary structures from the PDB, downloaded from
PROTAC-DB (Weng et al., 2023). We compare PROFLOW with three classes of docking algorithms.

• Unconditional protein-protein docking methods dock the E3 and POI without considering
the PROTAC (Alphafold Multimer (Evans et al., 2021), DiffDock-PP (Ketata et al., 2023)).

• Warhead only: PROTACability (Pereira et al., 2023) assumes warhead binding sites are
known for constrained protein-protein docking, but does not consider the linker.

• Full PROTAC: PRosettaC (Zaidman et al., 2020) assumes warhead binding sites are known
and uses precomputed linker lengths as distance constraints for protein-protein docking.

2https://www.rdkit.org/
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Figure 3: Left: DC50 Solvent-accessible area buried at the interface(dSASA) of PROFLOW predic-
tions, over PROTAC-DB. Right: Dmax Rosetta energy of PROFLOW predictions, over PROTACs that
vary only in linker.

PROTACability and PRossetaC employ an additional clustering step tuned on part of our test set, so
for fair comparison, we omit this in the main results. See Table 5 for results after post-processing.

Since PROTAC ternary structure prediction focuses primarily on docking the E3 and POI, we evaluate
all methods based on common protein-protein docking metrics.

• Complex RMSD is determined by superimposing the predicted complex onto the ground
truth complex using the Kabsch algorithm (Kabsch, 1976) and computing the RMSD
between the α-carbons.

• Interface RMSD aligns only atoms in the ground truth binding interface (within 10Å of the
binding partner) and computes the RMSD between their α-carbons.

• Fnat is the fraction of native interface contacts (within 15Å of the binding partner) preserved
in the predicted complex’s interface.

These thresholds are slightly higher than those in previous work (Ganea et al., 2021) since the
distances between PROTAC complexes are longer than between natural protein binders (Figure 6).

Re-docking with holo structures We assess all models on their ability to recapitulate the E3-
POI complex when provided their individual bound structures, as extracted from ternary structures
(Table 1). PROFLOW outperforms all baselines in interface RMSD and Fnat, and achieves similar
performance to the best baseline in complex RMSD. Of the baselines, those that do not consider the
PROTAC at all (Alphafold-Multimer, DiffDock-PP) performed the worst in complex RMSD. We
provide visual examples of our predictions in Figure 5. All models were given access to 10 CPU
cores and 1 NVIDIA A6000 GPU for the runtime analysis. PROFLOW achieves the fastest runtime
of all models, with an average of 44 seconds per complex.

Docking with apo structures Table 1 evaluates whether models are able to produce the POI-E3
complex, given only their unbound structures (apo-equivalents from the PDB) collected by Pereira
et al. (2023). These sequences are nearly identical to their holo counterparts, with 95%+ sequence
similarity. For evaluation, we aligned apo-equivalents to the holo structures and placed the warheads
into the corresponding pockets. PROFLOW was able to maintain high performance, while all other
baselines (that take structural inputs) experienced a notable drop. This result indicates their high
reliance on holo conformations, whose availability is an unrealistic expectation, as very few E3s have
been co-crystallized with non-native protein targets. The performance of AF-Multimer is improved
mainly because of the alignment operation in apo structure docking procedure.

4.2 PROTAC DEGRADATION ACTIVITY EXPERIMENTS

A major goal of predicting PROTAC-induced ternary structures is to facilitate their rational design.
Given that our model is able to predict high-quality structures at a fraction of the computational cost
of all alternatives, while considering the entire PROTAC, we are able to predict and assess PROTAC
structures at scale.
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Large scale PROTAC-DB study We collected 483 examples with annotated DC50 values (the
concentration of PROTAC required to degrade 50% of the POI) (Weng et al., 2023), whose unbound
E3 and POI structures were available in the PDB. Nearly 70% of the PROTACs under consideration
(334) share the same POI and E3 ligase with 4+ other PROTACs, so it is essential to model the
linker in this analysis. Of our baselines, only PRosettaC (Zaidman et al., 2020) models the PROTAC
linker. However, it was computationally intractable to benchmark PRosettaC at scale (nearly one
hour per structure). We docked all warheads using Glide (Friesner et al., 2004). We sampled 20
PROFLOW structures per example and computed the solvent-accessible area buried at the interface
(dSASA) using Rosetta (Leaver-Fay et al., 2011). We observed a statistically significant correlation
between log dSASA and logDC50 (p-value< 0.001) with a Pearson correlation coefficient of -0.5231
(Figure 3, left). The direction of this correlation is biologically intuitive: PROTACs that induce larger
interfaces have lower DC50 and are more potent degraders.

VHL-SMARC2 case study In addition to DC50, we also evaluate the relationship between the
Rosetta energy of predicted PROTAC-induced E3-POI complexes and Dmax (maximum level of
observed degradation). Data for 13 Dmax values were sourced from the study by Kofink et al. (2022).
These PROTACs share identical warhead structures that target the same POI and E3 ligase and differ
only in their linkers. Figure 3 (right) illustrates a statistically significant correlation (p-value < 0.05),
Pearson coefficient -0.5992) between log Rosetta energy and Dmax. Lower protein-protein energies
signify a stronger POI and E3 ligase interaction, so PROFLOW predicted structures are able to filter
out PROTAC designs with high degradation capacity.

5 CONCLUSION

In this work, we introduced PROFLOW, an iterative refinement model for PROTAC ternary structure
docking. To train this model, we generated a new pseudo-ternary dataset from binary 3D protein-
protein data and 2D linker graphs. Empirically, PROFLOW significantly outperformed baselines
in interface RMSD and remained robust even when provided unbound structures. An order of
magnitude faster than the best alternatives, PROFLOW enabled the screening of large PROTAC
libraries, revealing correlations between computed properties and degradation activity. In future work,
we hope to explore deep learning models for other modalities of targeted degradation, including
molecular glues.
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A ITERATIVE REFINEMENT FRAMEWORK

PROTAC-linker compatible space It is non-trivial to include Gℓ explicitly in the model. However,
generating multiple conformations Xℓ based on Gℓ is an easy task (Jing et al., 2023b). In addition,
the linker primarily functions as a positional scaffold and is less involved in the physicochemical
interactions specific to the elements. Therefore, we approach Gℓ conditional modeling alternatively
by defining the space of SE(3) transformations of the E3 ligase in the following space that respect a
set of chemically plausible conformations Xℓ of the linker (Figure 2D).
Definition A.1 (Linker-compatible space). Let x[·]−ℓ denote the structure of a protein-warhead
complex connected to linker ℓ at its respective anchor bond, and let x[·][b] ∈ R3×2 denote the
coordinates that correspond to anchor bond b.

For a given xe,xp and Gℓ, a transformation (R, x) ∈ SE(3) belongs to linker-compatible spaceMℓ

if there exists a conformation xℓ that connects the POI and E3 under (R, x):

∃xℓ ∈ Xℓ, (R xe−ℓ + x) [bp] = xp[bp], (1)

where bp is the POI anchor bond.

It is non-trivial to define the standard conditional flow matching objects within Mℓ. Instead of
operating directly over this set, we leverage the objects of SE(3) flow matching Yim et al. (2023) and
project back intoMℓ at each step — a procedure we call pseudo-flow matching.

Similar to standard flow matching, we first define a prior distribution onMℓ. Then, we define the
pseudo-conditional flow map from the prior to the target data distribution by interpolating on SE(3)
and projecting the intermediate points from SE(3) toMℓ. Finally, we discuss our modified training
objective and touch upon symmetry considerations.

Prior distribution To design a flow matching framework, we require an easy-to-sample qℓ(z)
over Mℓ. However, it is not necessarily easy to sample from this space: selecting an arbitrary
(R, x) ∈ SE(3) does not ensure the existence of a compatible xℓ.

Therefore, we take an inverted approach: instead of directly operating over the protein, we first sample
a valid linker conformation, and then compute the equivalent protein transformation (Figure 2B). To
summarize, sampling from qℓ can be decomposed into three steps.

1. Sample linker conformation xℓ ∼ Uniform(Xℓ).
2. Sample torsion angles for each anchor bond τe, τp ∼ Uniform(0, 2π).
3. Map to equivalent E3 ligase transformation (R, x).

The closed-form solution for the mapping xℓ, τe, τp 7→ (R, x) can be obtained by absorbing the
anchor bond torsion angles (τe, τp) and angles within the linker’s local structure into rotation matrices.
A detailed derivation is presented in Section B.1.

Intuitively, this procedure can be interpreted as sampling from the linker conformation energy-
weighted distribution overMℓ. Transformations (R, x) that correspond to stable linker conformations
are sampled more frequently, and (R, x) that result from different torsion angle settings of the same
linker conformation are sampled equally often.

Pseudo-conditional flow map Interpolating along the geodesic paths in SO(3) and R3 gives rise to
the following conditional flow maps Yim et al. (2023):

R̃t = expR0
(t logR0

(R1)) (2)

x̃t = (1− t)x0 + t · x1. (3)

However, this interpolation does not guarantee that we remain withinMℓ. Instead, we introduce the
following projection to define a reasonable path withinMℓ.
Definition A.2 (Projection toMℓ). Given (R, x) ∈ SE(3), we define Φℓ,e : SE(3)→Mℓ

Φℓ,e(R, x) = argmin
(R∗,x∗)∈Ml

RMSD ((Rxe + x), (R∗xe + x∗)) (4)

where RMSD(x,x′) =
√

1/n ·
∑n
i ∥xi − x′

i∥2.
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This procedure allows us to compare different transformations based on their effects on xe, and to
implicitly update the xℓ and τe, τp under consideration at each step. We implement this mapping via
the conformer matching optimization procedure used in Jing et al. (2023b) (Appendix C.1).

We define the pseudo-conditional flow map overMℓ,

(Rt, xt) = Φℓ,e(R̃t, x̃t) (5)

where R̃t, x̃t are given by Equations (2, 3). At t = 0, our linker-centric sampling procedure ensures
(R0, x0) ∈Mℓ, and at t = 1, (R1, x1) are computed directly from data.

Training objective Due to the nature of the projection toMℓ, it is difficult to obtain an analytical
formula for the vector field ut. If we first ignore the projection, standard SE(3) flow matching yields
a closed form solution by differentiating Equations (2, 3) with respect to t Yim et al. (2023):

ẋt ≈
x1 − x̃t
1− t

, Ṙt ≈
logR̃t

(R1)

1− t
. (6)

The simplest solution is to apply the standard conditional flow matching loss (Equation 2) to these
terms. However, this approach leads to unstable performance, due to the irregularity ofMℓ (analysis
in Appendix D.4.3).

Therefore, we optimized an alternative, which compares the effect of predicted transformations on
the coordinates. Let z ∼ q and (Rt, xt) ∼ pt(x | z), then:

x̃e,t+∆t = Ṙt∆t(Rtxe,t) + (xt + ẋt∆t) (7)

x̂e,t+∆t = R̂θ,t∆t(Rtxe,t) + (xt + x̂θ,t∆t) (8)

where x̂θ,t, R̂θ,t are the outputs of the learned vector field vθ, and ∆t is set to a small constant. We
minimize

LMl
= Et,q(z),pt(x|z)RMSD(x̃e,t+dt, x̂e,t+dt). (9)

Sampling During inference, we integrate (2) from t ∈ [0, 1] using an Euler solver (Chen et al.,
2018). We apply Φℓ,e between each step to ensure that our transformations remain within Mℓ

(Figure 2C and Algorithm 1).

SE(3) equivariance To ensure that our likelihood is SE(3)-equivariant, we require a SE(3) invariant
prior and SE(3)-equivariant updates Xu et al. (2022). Our prior distribution is SE(3) invariant since
the torsion angles of anchor bonds τe, τp are SE(3) invariant, we express xℓ relative to the input
xp with local structures fixed. The learned vector field vθ is parametrized by a SE(3) equivariant
architecture based on Geiger & Smidt (2022).

A.1 MODEL IMPLEMENTATION

Input representations Given the two input protein structures, we first compute their surfaces using
MSMS and triangulate them into point clouds of vertices (same as in Section 3.2). We featurize each
vertex with geometric and chemical features (Gainza et al., 2020; Sverrisson et al., 2021), including
its coordinates, curvature, normal vector, 6 closest non-hydrogen atoms, and the vectors between
these atoms and the vertex itself.

Prior work has shown that when protein-protein interfaces are known, removing non-interface residues
from consideration increases both computational efficiency and docking performance (Pereira et al.,
2023). Since warhead poses are determined ahead of time, we follow the same approach and discard
any vertices more than 20Å from the surface of the binding partner, at initialization. Though this
definition of interface depends on the initial xℓ, this threshold preserves approximately one-third of
most proteins, which is usually a superset of the actual interface.

SE(3)-equivariant architecture We implement vθ using a 6-layered E3NN, a SE(3)-equivariant
graph convolutional network (Geiger & Smidt, 2022). Within each protein point cloud, we draw
edges between the 3 nearest neighbors of each vertex, and across the protein interface, we add edges

11



Published at the GEM workshop, ICLR 2024

Figure 4: Pseudo-data generation procedure. 1) Generate PROTAC linker conformation library. 2)
Identify high-curvature putative pockets and sample 1 per protein in binary protein-protein complex.
3) Match each protein pair to linker with lowest RMSD from anchor bonds.

between vertices within 15Å apart. To produce the SE(3)-equivariant outputs x̂θ,t, R̂θ,t from the final
layer, we aggregate information from all vertices into a virtual node, placed at the center of all E3
ligase α-carbon atoms (including those outside the interface), and apply an additional tensor product
filter. Additional information can be found in Appendix C.3.

Steric guidance Though our E3NN focuses exclusively on the protein interface surface, we would
like to avoid steric clashes from parts of the proteins outside of their interfaces. We add an additional
potential to the gradient to bias the model away from transformations that would otherwise cause
clashes. We modify our vector field as follows,

ut(x)← ut(x) + σt∇x
mp∑
i=1

me∑
j=1

[−max(0, dij − ρ)], (10)

where σt = σ1−t
min · σtmax is an exponential scheduler, dij is the Euclidean distance between α-carbons

of residues i, j, and ρ = 2Å is the contract threshold.

A.2 DATA GENERATION PROCEDURE

Linker conformation library For each of the 1507 unique linkers Gℓ reported in Weng et al.
(2023), we generate a set of 1024 conformations Xℓ using RDKit 3.

Pseudo-binding sites We identify putative warhead binding sites on each side of the binary
protein-protein interface. Since protein interfaces are too flat for standard pocket prediction meth-
ods Le Guilloux et al. (2009), we opt for a simpler geometric approach. We compute each protein’s
surface using MSMS Sanner et al. (1996) and triangulate with a vertex density of 0.5/Å2. Putative
pockets are obtained by clustering the top 200 vertices with highest curvature, based on pairwise
Euclidean distance. Pseudo-anchor bonds are inserted at each cluster’s center of mass, pointing
towards the average of the vertices’ normal vectors. For each protein, we extract the top 4 highest
curvature clusters as pockets. During training, we sample one pocket per protein uniformly at random,
from a total of 16 pairs.

Linker matching For each pair of protein pockets, we select the best-matched linker from our
conformation library {Xℓ} based on Kabsch alignment of the anchor bonds Kabsch (1976). While
this step only considers the two endpoints of each linker, most PROTAC linkers tend to be simple
chains, which rarely result in any clashes with the protein complexes.

In total, this process allowed us to create approximately 685k triplets (42.8k protein pairs in DIPS ×
16 pocket combinations per protein pair). Our model was trained on these pseudo-data from DIPS
and finetuned on a similarly created dataset of binary E3 ligase structures (Appendix C.2).

3https://www.rdkit.org/
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B MATHEMATICAL DERIVATIONS

B.1 SOLUTION FOR EQUIVALENT PRIOR DISTRIBUTION SAMPLING

In Section A, we decompose the sampling from prior distribution into sampling linker conformation
and torsion angles. Here, we introduced how to derive the equivalent transformation (R, x) from
linker conformation xℓ, τe and τp. At first, we reduce the unnecessary degrees of freedom in xℓ by
representing it as the m torsion angles within the linker rotatable bonds br as τℓ ∈ SO(2)m.

Because linkers usually adopt linear molecular graphs, the rotation matrices could be used for
updating the ternary structure in sequential order. We reorder the atoms in the linker according to the
distance to the POI side anchor bond to adopt the following permutation:

∀i, j : i < j ⇒ DGℓ
(i, 0) < DGℓ

(j, 0) (11)

DG(i, j) is defined as the shortest path length between node i and node j in graph G. The anchor
bond from the POI side is denoted as edge (0, 1) in the Gℓ. In addition, we also reordered the rotatable
bonds as:

bri = (i1, i2), (12)
brj = (j1, j2) (13)

∀i, j : i < j ⇒ (i1 < j1 and i2 < j2) (14)

Then, we transform all angles into rotation matrices:

R(n, α) =

 n2
x + (1− n2

x) cosα nxny(1− cosα)− nz sinα nxnz(1− cosα) + ny sinα
nxny(1− cosα) + nz sinα n2

y + (1− n2
y) cosα nynz(1− cosα)− nx sinα

nxnz(1− cosα)− ny sinα nynz(1− cosα) + nx sinα n2
z + (1− n2

z) cosα


(15)

Rℓi = R(
xℓ[bri ]

∥xℓ[bri ]∥
, τℓi), Rτe = R(

xWe [b]

∥xWe
[b]∥

, τe), Rτp = R(
−xWp

[b]

∥xWp
[b]∥

, τe) (16)

The transformation of rotating a substructure x[·] around the rotation axis x[i, j] with angle τ can be
written as:

Trans(τ,x[i, j])x[·] = R(
x[i, j]

∥x[i, j]∥
, τ)(x[·]− x[i]) +R(

x[i, j]

∥x[i, j]∥
, τ)x[i] (17)

We denote given initial structure as xeint
. As a result, mapping the sampled linker conformation xℓ

and torsion angles (τe, τp) into the E3 ligase relative position Xe formalizes a closed function as:

xe = [Trans(τe,xWe [b]) · Trans(τℓm ,xℓ[brm ]) · · ·Trans(τℓ0 ,xℓ[br0 ]) · Trans(τp,xWp [b])]xeint

(18)

C IMPLEMENTATION DETAILS

C.1 SEARCH ALGORITHM FOR LINKER MATCHING

In this section, we introduce the algorithm applied for P (xℓ | xe,xp, Gℓ) and Φℓ,e. Though these
2 processes are utilized in different steps of the generation, a conditional conformation generation
can be implemented to solve both. According to the definition of anchor bonds, their coordinates
xℓ[b] are determined when xW [b] is determined by xe and xp because we keep the warhead-protein
complex structure fixed.

Both P (xℓ | xe,xp, Gℓ) and Φℓ,e can be reduced to searching process for finding xℓ ∈ Xℓ to
minimize the RMSD objective in Equation 4. The optimum for this function is guaranteed to be
0 for P (xℓ | xe,xp, Gℓ), because xe lies in the constraint subspace,Mℓ. However, for Φℓ,e, the
optimum is not guaranteed to be 0. As a result, the position of E3 ligase is updated in Φℓ,e to ensure
RMSD(xℓ[b],xW [b]) = 0 by aligning xWe

[b] with xℓ[be].

Therefore, to minimize the objective, RMSD ((Rxe + x), (R∗xe + x∗)) , s.t. (R∗, x∗) ∈ Mℓ we
apply a scoring function with a optimization algorithm. To score a given linker structure x∗

ℓ , we first

13



Published at the GEM workshop, ICLR 2024

align the x∗
ℓ [b] with xW [b] derived from xe and xp. We add interpolation coordinates within x∗

ℓ [bp]
and xW [bp] to strengthen the weighting in the Kabsch alignment, as we want to achieve precise
alignment of x∗

ℓ [bp] and xW [bp]. This step is pivotal for evaluation on x∗
ℓ [be] and xW [be] from the

E3 ligase side, since our RMSD is defined for E3 ligase coordinates xe. We denote the function of
calculating the centroid coordinate as c, then R∗, x∗ is written as:

R∗ = R(

−−−→
x∗
ℓ [be]×

−−−−→
xW [be]

∥
−−−→
x∗
ℓ [be]∥ ∥

−−−−→
xW [be]∥

, arccos(

−−−→
x∗
ℓ [be] ·

−−−−→
xW [be]

∥
−−−→
x∗
ℓ [be]∥ ∥

−−−−→
xW [be]∥

)) (19)

x∗ = R∗(c(xe)− c(xW [be]))− (c(xe)− c(xW [be])) + (c(x∗
ℓ [be])− c(xW [be])) (20)

At each scoring step, we calculate the above (R∗, x∗) to the RMSD evaluation in Equation 4. We
represent xℓ as the torsion angles τℓ and optimize the angles using an optimization algorithm given
the above scoring function. To balance between accuracy and efficiency, the DIRECT algorithm
is applied for Φl when we solve the ODE for sampling, and the evolution algorithm is applied for
P (xℓ | xe,xp, Gℓ).

C.2 PROCEDURE FOR PROTEIN-PROTEIN TRAINING DATASET CURATION

In this section, we introduce the procedure for preparing the binary protein-protein data for the data
generation pipeline (Section 3.2). We mainly train our data on the Database of Interacting Protein
Structures (DIPS) (Townshend et al., 2019) dataset and finetune it on the E3 ligase dataset.

For the DIPS dataset, we simply run the script from the official repository 4. Unlike protein-protein
docking researches that assign the larger protein chain as receptor and the shorter as ligand, we
randomly assign (receptor, ligand) to the chains to increase the size of training data and because
of the fact that E3 ligase is not always smaller than the POI. Though there are already 42,826 data
points within the DIPS dataset, we still want to curate a dataset that only focuses on protein-protein
complexes of E3 ligase + X, where X could be any protein chain. Firstly, we retrieve all the protein
structures with multiple chains from PDB by using the E3 ligase Uniprot ID from PROTAC-DB (Weng
et al., 2021b). Then we screened these PDB files by extracting the E3 ligase chain and keeping the
surrounding protein chain if it possesses more than 40 residues and more than 5 residues are close
to the E3 ligase chain by the threshold of 8Å. By extracting the protein chain files, we curated a
protein-protein dataset of 883 E3-ligase+X data. In the training, the E3 ligase is treated as the ligand
and the binding chain is assigned as the pseudo-POI.

C.3 SE(3) MODEL ARCHITECTURE DETAILS

As outlined in Section A, our parametrized vector field is implemented using a SE(3) convolutional
network, following the architecture of the score model in Diffdock (Corso et al., 2022). In the
following sections, we denote ⊗W as the spherical tensor product with weights W and ⊕ as the
normal vector addition. The architecture is decomposed into three main layers: the embedding layer,
interaction layer, and output layer, as detailed below.

Embedding layer Though previous protein-protein docking works (Ganea et al., 2021; Ketata
et al., 2023) prefer to use residue-types and the coordinates of α-carbons to represent rigid protein
structures, PROTAC docking requires fine-grained representations as the protein-protein interface are
predetermined by the warhead positions. In our work, we represent protein as surface representations.
At first, we process the chemical features of the nearest atom into the atom embedding and vertex
representations (curvature, size, type, normal vector) calculated by MSMS into the vertex embeddings
with the same size of atom embedding. Both atom embedding and vertex embedding include
scalar representations and vector representations. Then we aggregate 6 atom embeddings into the
corresponding vertex embeddings by the following fully connected tensor product:

hv =
1

6 + 1

∑
hi∈(ha,hv)

∑
hj∈(ha,hv)

hi ⊗W hj (21)

In the embedding layer, W are trainable parameters. In order to make PROFLOW scalable to large
protein-protein interfaces, we then cluster the vertices into a fixed number(256 in our model) of

4https://github.com/drorlab/DIPS
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patches. The patch representations are calculated by averaging the vertex representations and place in
the centroid of the corresponding vertices.

Interaction layer We defined the mechanism for updating the patch representations following the
convolutional network in Diffdock (Corso et al., 2022). For a given patch with representation hp that
is connected to Np other patches, for each message passing procedure, the representation is updated
as:

hp ← hp⊕BN

(
1

|Na|
∑
n∈Na

Y (rnp)⊗ψnp hn

)
, ψnp = Ψ(hp,hn, ∥rnp∥2) (22)

Here, Y represents spherical harmonics, and BN stands for equivariant batch normalization. Ψ
denotes the trainable MLP responsible for computing the weights for the tensor product. In practice,
we construct a k-nearest-neighbor graph (k=3) for message passing within patches for the same
protein and a radius graph with a cutoff of 15Å for message passing between patches belonging to
the POI and E3 ligase, respectively. In each interaction layer, the representations are initially updated
by aggregating information from the same protein and subsequently exchanging information across
proteins.

Output layer It was crucial for us to aggregate the information back to the coordinate system of
the full protein from representations from protein surfaces because the training objective is defined
on full protein α-carbon coordinates. An additional virtual node is placed at the centroid of E3 ligase
α-carbons. For all the patches of E3 ligase Ve and the centroid virtual node vc, the message is passed
to vc as:

vc ←
1

|Ve|
∑
n∈Ve

Y (r̂cn)⊗ψcn hn, ψcn = Ψ(hn, ∥rcn∥2) (23)

To parametrize the vector field in the tangent space of SE(3), vc is a single odd and a single even
vector. We sum the odd representation with the even representation as the final prediction. For loss
computation in training, we update the E3 ligase coordinates with our prediction and the ground truth
score. The RMSD between the score updated coordinate and the predicted score updated coordinate
is our training objective.

Algorithm 1 Sampling algorithm of PROFLOW

Input: Initial xp and Gℓ
Output: Bound xe, xℓ

1: Sample from prior distribution p0: xℓ ∼ Uniform(Xℓ), τe, τp ∼ Uniform(0, 2π)
2: Map to equivalent x0 = (R0, X0)
3: for t in 0, ∆t, 2∆t, · · · 1 do
4: Compute R̂t, X̂t from learned vector field vθ
5: Update and refine toMℓ: Xt → Φℓ,e(R̂t∆txt + X̂t∆t)

6: Compute the gradient of rotation and translation of u(t)(Xt) in Eq.10: R̂st,X̂st

7: Update and refine toMℓ: Xt → Φℓ,e(R̂st∆txt + X̂st∆t)
8: end for
9: xe = x1 and search xℓ using the method described in Sec. C.1

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 VISUAL EXAMPLES

D.2 PROTEIN-PROTEIN INTERFACE DISTANCE DISTRIBUTION

D.3 WARHEAD DOCKING ANALYSIS

Experimental setup To demonstrate the capability of existing search-based software in accurately
predicting the relative structures of protein-warhead for PROTAC ternary structure docking, we
curated a dataset from PROTAC-DB (Weng et al., 2021b) and PDB for warhead docking experiments.
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PROflow
Complex RMSD : 7.97
Interface RMSD: 4.86

PROsettaC
Complex RMSD : 10.49
Interface RMSD: 6.24

PROTACability
Complex RMSD : 10.13
Interface RMSD: 9.16

AlphaFold Multimer
Complex RMSD : 13.31
Interface RMSD: 8.93

Figure 5: Visualized results of structures (PDB 6HAX) predicted by different methods. The ground
truth E3 ligase pose is represented as a semitransparent surfaces.

Figure 6: Distribution of the residue distances for the 1,000 closest pairs, drawn from the protein-
protein binary dataset (DIPS) and the PROTAC test set.

Initially, we retrieved E3 ligase and POI structures from PDB using the UniProt ID of existing
PROTACs from PROTAC-DB. Subsequently, we filtered out all monomer proteins lacking binding
small-molecule ligands. Among the remaining small molecules binding to POI or E3-ligase, we
retained data where the maximum common structure with PROTAC warheads accounted for more
than 80% of the ligands. Finally, we removed all solvent molecules from the structures, keeping only
the chains binding with the ligands. 2245 pairs of proteins and warheads-like small molecules are
collected after this procedure.

Because of this large amount of data retrieved from PDB, we could draw a conclusion that the
pocket pockets on existing POIs and E3 ligases are fully explored. Even if certain targets are
considered undruggable by traditional inhibitors, it is not inherently challenging to locate a binder
within the PDB to establish a preliminary understanding of the binding pocket’s approximate location.
Therefore, we mainly focused on pocket-specific docking instead of blind docking. We employed the
Schrodinger suite for evaluating docking on our curated dataset and 13 ternary PROTAC structures.
We initially prepared each protein structure by preprocessing them with the Protein Preparation
Wizard. This step involved refining the protein structure, adding hydrogen atoms, and assigning bond
orders. Subsequently, the ligand structures were processed through LigPrep to generate appropriate
ionization and tautomeric states. The receptor grid of size 20Å×20Å×20Å was generated around the
active site using the Receptor Grid Generation tool. For docking simulations, we employed Glide,
Schrödinger’s molecular docking program, applying standard precision (SP) and extra precision (XP)
protocols. The SP protocol was employed for initial virtual screening, followed by more accurate XP
docking to refine the binding poses and rank the ligands.

Result and discussion As presented in Table 2, the existing method demonstrates proficiency in
predicting over half of the warhead-like structures within 2Å, with a median RMSD of 1.59Å after
the molecular docking. This substantiates the accurate prediction of protein-warhead structures for
a broad spectrum of candidate warhead structures suitable for PROTAC design. Subsequently, we
evaluate the docking accuracy of the protein-warhead structures in our test set. The median RMSD
for docking warheads is 0.962Å. Additionally, since PROFLOW relies on the positions of anchor
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Table 2: The results of RMSD and centroid distance in warhead-pocket docking experiments. We
present the docking accuracy obtained from two datasets: the curated PROTAC-DB dataset and 13
PROTAC ternary structures sourced from PDB. The metrics are computed based on full warhead
structures or anchor bonds.

Dataset Test component Size of test set Mean(Å) ↓ Median(Å) ↓ <2Å ↑
PROTAC-DB full warhead (RMSD) 2245 2.86 1.59 0.565

ternary complexes
full warhead (RMSD) 26 2.51 0.962 0.714
anchor bond (RMSD) 26 1.94 0.774 0.750
anchor bond centroids 26 0.769 0.27 0.893

Table 3: Experimental results for PROTAC ternary structure docking using ground truth structures of
protein-warhead and Glide-docked structures of protein-warhead.

Complex RMSD(Å) Interface RMSD(Å) Fnat
Methods Mean ↓ Median ↓ <20 ↑ Mean ↓ Median ↓ <10 ↑ Mean ↓ Median ↓

Docked warheads 13.01 13.51 0.985 8.51 8.52 0.658 0.231 0.194
True warhead-protein 12.85 13.12 0.975 8.20 8.16 0.740 0.264 0.211

bonds to maintain linker structures, we assess the docking accuracy of anchor bonds. The median
centroid distances between the predicted anchor bonds and ground truth anchor bonds are 0.27Å,
indicating a precise prediction of anchor bond positions. Finally, we present the experimental results
of PROFLOW using docked warheads instead of ground truth in Table D.3. Despite a slight decline in
performance, the decrease in metrics is relatively small when compared to the variations observed
when employing different methods.

D.4 ABLATION STUDY

D.4.1 ABLATION ON TRAINING DATASET AND SAMPLING

Table 4: Ablation study results presenting the impact of removing part of training data and steric
guidance in sampling in the implementation of PROFLOW.

Complex RMSD(Å) Interface RMSD(Å) Fnat
Methods Mean ↓ Median ↓ <20 ↑ Mean ↓ Median ↓ <10 ↑ Mean ↓ Median ↓

DIPS only 13.10 13.24 0.981 7.90 7.82 0.690 0.301 0.262
E3 ligase dataset only 13.12 13.18 0.992 8.48 8.60 0.750 0.231 0.194

No steric guidance 14.33 14.67 0.911 8.81 9.12 0.688 0.241 0.189
Full PROFLOW 12.85 13.12 0.975 8.20 8.16 0.740 0.264 0.211

In this ablation study, we explored the impact of removing a portion of the training data and
incorporating the steric guidance for sampling. Notably, when we only train PROFLOW on DIPS
or E3 ligase dataset, the model’s performance in complex RMSD exhibited a reduction. Regarding
the interface RMSD and Fnat, the model achieved better results by only using the DIPS dataset.
Therefore, we can conclude that the general dataset, DIPS provides more information on protein-
protein interaction on the surface level. In order to balance the performance variation on complex
RMSD and interface RMSD, we choose to use both training data sets for our main experiment.
Additionally, the incorporation of the steric guidance technique demonstrated effectiveness in boosting
the performance from the full complex level. These findings underscore the importance of training
data and sampling strategies.
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D.4.2 BASELINE RESULTS WITH RANKING AND CLUSTERING

In our main experimental results, we mainly focused on the docking accuracy of the sampled structures
of PROFLOW and baseline methods, so we excluded the postprocessing procedure of PROsettac.
Here we downloaded the top-cluster structures and top-scored structures from the official PROsettac
repository 5 after the ranking and clustering. They experimented on 7 unique structures downloaded
from the PDB. We provided the results in Table 5.

Table 5: Ablation study on comparing PROFLOW with PRosettaC with clustering and ranking

Complex RMSD(Å) Interface RMSD(Å) Fnat
Methods Mean ↓ Med ↑ <20 ↑ Mean ↓ Med ↑ <10 ↑ Mean ↓

PRosettaC(top1 cluster) 10.38 10.39 1.000 8.19 8.21 0.543 0.284
PRosettaC(top20% Rosetta score) 10.23 10.30 0.996 7.79 7.60 0.610 0.283
PROFLOW(no ranking/clustering) 12.55 12.60 0.963 8.01 8.08 0.829 0.313

D.4.3 STABILITY OF USING DIFFERENT TRAINING OBJECTIVE

(a) The Translation tangent loss
curve when training the model with
loss objective defined on SE(3)
tangent space

(b) The SO(3) tangent loss curve
when training the model with loss
objective defined on SE(3) tangent
space

(c) The RMSD loss curve when
training the model with loss ob-
jective defined on SE(3) tangent
space

(d) The Translation tangent loss
curve when training the model
with RMSD objective on the Eu-
clidean space

(e) The SO(3) tangent loss curve
when training the model with
RMSD objective on the Eu-
clidean space

(f) The RMSD loss curve when
training the model with RMSD ob-
jective on the Euclidean space

Figure 7: The loss curve of PROFLOW by using different training objective

In this section, we analyze the loss landscape (Figure 7) corresponding to different training objectives.
Figures 7(a), (b), and (c) depict the training loss curves for employing the training objective within the
tangent space of SO(3)× R3, as previous work by Yim et al. (2023). The translation loss in R3 and
rotation loss in SO(3) exhibit noise, making it challenging to monitor their convergence. Figures 7(d),
(e), and (f) depict the training loss curves for employing our RMSD loss. Conversely, the loss curve
in Figure 7(f) demonstrates more stable convergence in comparison to the conventional equivariant
flow matching loss for rotation and translation. Simultaneously, when utilizing the RMSD loss, the
translation and rotation losses continue to converge within the noisy landscape.

5https://github.com/LondonLab/PRosettaC
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From a theoretical point of view, the training objective could be defined as the distance measure in
three different spaces including Euclidean space R3×N , the SE(3) manifold, and linker constraint
spaceMℓ. They are hierarchically related as subspaces, which means thatMℓ ⊂ SE(3) ⊂ R3×N .
The RMSD loss we use corresponds to the distance in Euclidean space, where optimizing it is
equivalent to optimizing a weighted sum of the distances in R3 and SO(3). The weight is automatically
adjusted by the inner distances of E3 ligase coordinates.

Traditional CFM loss treats SE(3) as the product space of R3 and SO(3) where the training objective
is separated. From the above loss analysis, dividing SE(3) into translation and rotation is hard for
the optimizer. Our training objective draws inspiration from prior work (Jing et al., 2023a), which
transitions the flow matching loss from the space R3×N to the quotient space R3×N/SE(3). In
PROFLOW, the loss is lifted into R3n to jointly optimize the loss objective on translation space and
rotation space that demonstrates practical efficacy.
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