
WebArena Verified: Reliable Evaluation for Web
Agents

Anonymous Author(s)
Affiliation
Address
email

Abstract

Autonomous web agents increasingly operate in multi-step browser workflows, yet1

widely used benchmarks can misestimate performance due to underspecified goals2

and brittle checkers—challenges characteristic of normal benchmark maturation3

rather than flaws in the paradigm. We present WebArena Verified, a reproducible4

re-evaluation of WebArena that preserves its containerized environments while5

strengthening measurement. We audit all 812 tasks, repair misaligned evaluations6

and clarify ambiguous instructions; replace substring matching with type- and7

normalization-aware comparators; verify backend state for state-changing tasks;8

and adopt a structured JSON schema with explicit status codes for deterministic9

scoring. We provide improved results reporting with template-level macro averages,10

95% confidence intervals, and failure-mode breakdowns. We also introduce We-11

bArena Verified Hard, a 137-task subset that retains difficult cases while reducing12

evaluation cost by 83%. On the baseline agent we evaluated, it reduces false nega-13

tives by approximately 11%. WebArena Verified remains drop-in compatible with14

minimal change to existing agents, supporting faithful and comparable progress.15

We release our code, data, and evaluation tools in our public repository.116

1 Introduction17

Autonomous web agents increasingly execute complex web workflows. These workflows require dy-18

namic navigation and extraction of both visual and textual information. As adoption grows, rigorous19

and reproducible evaluation is indispensable for progress. Existing benchmarks lay a solid foundation20

for measuring these capabilities. For instance, WebArena [16] offers self-hosted, containerized sites21

that emulate real-world environments, permitting task execution through standard browsers. The de-22

sign of WebArena inspired a family of follow-up benchmarks—VisualWebArena [8], Mind2Web [4],23

WorkArena and WorkArena++ [5, 3], OSWorld [13], and AndroidWorld [11]—each expanding the24

scope of realistic tasks and interface modalities. However, widespread adoption has revealed sys-25

tematic evaluation errors that undermine measurement validity [17, 8]. The benchmarks commonly26

employ underspecified success criteria, allowing disparate interpretations of task completion. More-27

over, brittle evaluation mechanisms yield noisy or inconsistent metrics. Zhu et al. [17] conducted28

a recent audit of 37 public agent-benchmark suites—covering 13 web-interaction domains—that29

revealed pervasive quality issues that erode confidence in reported results. For example, a trivial30

"empty-output" agent achieved 38% success on τ -bench [15], outperforming GPT-4o-based agents31

on intentionally impossible tasks, and WebArena suffered from brittle string matching that inflated32

success rates by 1.4–5.2% [17].33

These specific issues reflect broader patterns in the typical benchmark maturation, observed across34

machine learning benchmarks, yet they must be addressed. Without robust, transparent evaluation,35

1Available upon publication to maintain double-blind review.

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

researchers struggle to identify genuine performance gaps, increasing the risk of over-optimistic36

conclusions, benchmark-specific adaptations, and misleading comparisons while substantive defi-37

ciencies remain unaddressed. These reliability concerns have sparked efforts to improve evaluation38

quality through principled debugging and systematic verification [2, 1, 3]. This pattern of “veri-39

fied” re-releases demonstrates the value of strengthening evaluation mechanisms while preserving40

benchmark utility and adoption. For example, SWE-bench Verified agents achieved roughly doubled41

performance once flawed tasks were removed [2].42

We introduce WebArena Verified, an update to WebArena that preserves the original containerized43

environments while improving evaluation reliability. Our approach re-verifies task definitions,44

reference answers, and evaluators using deterministic evaluation with explicit success criteria. We45

replace brittle string matching with backend state verification, standardize outputs to a structured46

JSON schema, and report template-level macro-averages with 95% confidence intervals, aligned47

with recent best-practice guidelines [17] (§4). By enforcing structured JSON outputs, WebArena48

Verified removes reliance on LLM-as-judge evaluation and enables deterministic scoring under fixed49

seeds and reset environments through direct state verification. We quantify residual failure modes50

from structured outputs in §5, including nonconforming JSON and contradictory fields, and report51

parse failure rates before and after schema adoption along with the fraction of trials auto recovered52

by our validator. In practice, using WebArena Verified consists of using the updated task set with53

our evaluator. Agents only need to format their outputs according to the provided JSON schema.54

We created WebArena Verified through a systematic audit of all 812 tasks, combining structured55

human verification by four researchers with trajectory analysis from seven high-performing agents56

(selected from the top 10 submissions on the official leaderboard2). Our verification process employed57

defined annotation protocols with inter-rater reliability checks alongside analysis of publicly available58

agent trajectories to identify evaluation issues. Our audit revealed systematic evaluation errors: false59

negatives primarily caused by ambiguous task definitions, and false positives from misaligned task60

definitions and brittle string matching. We address these issues by fixing 46 tasks with reference61

alignment problems and 211 tasks with ambiguous definitions (Table 3). We replace all string62

matching, page content and DOM-based evaluation with robust, data-type-aware evaluators that63

verify backend state through API calls and database queries (e.g., recognizing that "January" and64

"01" are both valid values for month data). For unachievable tasks, we introduce explicit status codes65

to replace the problematic “N/A” response [17]. Building on these findings, we introduce WebArena66

Verified Hard, a 137-task subset that preserves ranking fidelity while reducing evaluation cost by67

83.1%. From an evaluation design perspective, tasks that most agents reliably solve yield low-entropy68

outcomes and limited information gain about relative capability; prioritizing difficult, discriminative69

tasks improves sample efficiency and yields more faithful estimates of performance under realistic70

compute budgets. We select tasks by difficulty using leaderboard outcomes anchored at the top71

reproducible agent, retain all multi-site tasks, and apply stratified sampling across all intent templates72

to maintain capability coverage. Across evaluated agents, performance drops proportionally without73

rank reversals, indicating greater discriminative power at substantially lower evaluation cost (§4.5).74

We make the following contributions:75

• WebArena Verified. A systematically improved benchmark that addresses evaluation errors in 25776

tasks through reference answer alignment (46 tasks) and task definition clarification (211 tasks).77

We replace brittle string matching with backend state verification via REST API calls and database78

queries, and provide standardized JSON response schemas that replace LLM-as-judge evaluation79

with schema validated scoring and direct state checks that improve determinism. We also treat80

nonconforming JSON as a distinct error category and report before and after parse failure rates81

with auto recovery statistics (§5).82

• Comprehensive audit of WebArena benchmark. Systematic audit of all 812 tasks employing83

defined annotation protocols with inter-rater reliability checks alongside trajectory analysis from84

seven high-performing agents, identifying systematic evaluation errors including false positives85

from misaligned task definitions and false negatives from ambiguous specifications (§3).86

• WebArena Verified Hard. A curated 137-task subset selected by task difficulty using performance87

outcomes from the official WebArena leaderboard that preserves ranking fidelity while reducing88

computational cost by 83.1%, retaining 100% of multi-site tasks and applying stratified sampling89

across intent templates (§4.5).90

2https://webarena.dev/

2

https://webarena.dev/

• Empirical validation and baseline scores. We demonstrate that verified scoring reduces false91

positives; we establish baseline performance with a leading agent (OpenAI operator) and quantify92

the impact of improved evaluation (§5).93

2 Related Work94

Evaluation reliability remains a central bottleneck in agent benchmarking. Unlike static natural95

language processing (NLP) benchmarks where curation and labeling often suffice, realistic agent96

tasks require reproducible test environments, deterministic state resets, and programmatic verifiers.97

These requirements increase engineering complexity and human effort [13, 3]. Zhu et al. [17]98

introduced the Agentic Benchmark Checklist (ABC) and applied it to a comprehensive audit of99

prominent open source benchmarks, finding pervasive failures in task validity, outcome validity, and100

reporting. Web evaluations are especially vulnerable to permissive string matching and page level101

checks that inflate reported success, with WebArena showing inflated rates of 1.4–5.2% [17, 16].102

Verified and updated benchmarks. These systematic evaluation issues have driven researchers103

to develop verified benchmark versions that address reliability problems in existing evaluation104

frameworks. SWE-bench Verified [6] addresses task-test misalignment through human verification of105

GitHub issues, ensuring solvability and proper evaluation criteria. On this refined benchmark, agents106

achieved roughly doubled performance, demonstrating the impact of measurement reliability issues.107

OSWorld-Verified [13] tackles infrastructure reliability and task specification issues through systematic108

review of over 300 feedback items addressing evaluation inconsistencies and environmental setup109

problems. Boisvert et al. [3] developed WorkArena++, extending the original WorkArena benchmark110

[5] with enhanced verification protocols that address compositional task evaluation while maintaining111

execution-based validation.112

WebArena ecosystem. Zhou et al. [16] introduced WebArena as a self-hosted multi-domain en-113

vironment for realistic web-based agent evaluation. Koh et al. [8] developed VisualWebArena as114

the multimodal extension, broadening construct coverage to tasks requiring visual grounding while115

maintaining execution-based checks. While VisualWebArena introduces new evaluators, it inherits116

WebArena’s evaluation methodology including LLM-as-a-judge and string matching, and does not117

address systematic measurement reliability. Several recent efforts have targeted specific aspects118

through focused improvements. WebArena-Lite [10] reduces scope to 165 tasks with 39 task-level119

corrections while preserving the original evaluation methodology. Other extensions like WABER [7]120

and ST-WebAgentBench [9] focus on robustness and safety testing without addressing systematic121

evaluation reliability issues.122

Despite extensions to WebArena such as WebArena-Lite [10], a verified version that covers the full123

task set remains missing. The next section introduces our approach.124

3 Systematic Diagnosis of the WebArena Benchmark125

Building on WebArena [16], we conduct a systematic audit of the full 812 tasks across all sites using126

the original evaluation harness. We apply the Agentic Benchmark Checklist ABC framework [17] to127

organize findings across task validity, outcome validity, and reporting. Table 1 summarizes categories128

and counts, and the next subsection details the audit protocol.129

Figure 1: Coarse page content evaluation lacks field specificity. In task ID 538, the harness passes if
the address appears anywhere on the page, which ignores field specificity (full-size in Appendix 4).

3

3.1 Audit Protocol130

We combine an automated detector with targeted use of agent logs and focused human annotation.131

We analyze trajectories from seven top leaderboard agents and flag tasks where all agents fail, which132

indicates a likely evaluator or reference issue. For information retrieval tasks, we verify backend state133

by querying the site databases and comparing to the reference answers. For task ambiguity only, we134

use double annotation with adjudication. Four annotators completed two calibration rounds, and we135

report unweighted Cohen’s kappa at the task level with a point estimate of 0.83 and a 95% bootstrap136

confidence interval of [0.81, 0.85]. The automated detector covers permissive string matching,137

context-free evaluation, and unachievable tasks, and we validated detector precision on a random138

sample, then folded errors into the codebook. All audits ran on the official self-hosted site snapshots139

with a fixed harness revision and seeds(See Appendix B for details). We assign issue labels under140

the ABC framework taxonomy and use these labels to quantify issue prevalence and to guide the141

redesign of evaluation mechanisms.142

Table 1: Issue categories identified through systematic analysis of 812 WebArena tasks. Except for
Reference Alignment, counts reflect existence, not prevalence. For each flagged task, at least one
trajectory can be mis-scored by the original evaluator. Actual incidence depends on agent behavior.
Categories may overlap, and a single task can exhibit multiple issue types. Task descriptions are
shortened for illustration. ID refers to the task identifier.

Category Tasks Problem Illustration

Task specification issues

Reference Alignment 46 ID 102 checks byteblaze/a11y-syntax, although the instruction targets
a11yproject/a11yproject.com. This misaligns the reference and mis-scores tra-
jectories.

Task Ambiguity 211 ID 358 instructs “Show me the shipping method. . . ” and requires an exact string match.
ID 284 instructs “Show the least expensive shoe storage. . . ” requires URL navigation
alone.

Evaluation mechanism issues

Permissive String Matching 340 ID 40 accepts any output that contains “Yes”. For example, “Yes, The final
answer is No” (when a reasoning model is used). This over-credits partial matches and
semantically invalid outputs.

Context-Free Evaluation 92 ID 538 passes when the address appears in the customer name field rather than the
billing address (Figure 1), ignoring field specificity.

Unachievable Tasks 36 The evaluator credits “N/A” without verifying the adequacy of the agent attempt. This
conflates correct detection with early abandonment (Figure 2).

Invariant Violations 812 Across sites, the evaluator checks only whether the target condition is met and does not
verify actual agent actions. A retrieval task can pass even if the agent deletes existing
data during exploration, since collateral changes are not checked.

Reporting issues

Reporting Gaps 812 Results lack confidence intervals, significance tests, or variance estimates, which hinders
reliable system comparisons and interpretation of performance differences.

3.2 Task Specification and Evaluation Mechanisms143

Task Specification Issues. We examine tasks along evaluation alignment and interpretation variabil-144

ity [17]. We find 46 tasks with misaligned criteria through spec-to-content comparison, and 211 tasks145

with ambiguous intent where the instructions can be reasonably interpreted in multiple ways (Table 1).146

These issues mainly create false negatives and motivate clearer intents and aligned references.147

Evaluation Precision. Two mechanisms show limited precision: string matching (must_include)148

accepts unintended partial matches, and page content checks (program_html and locator=”) that149

ignores field context [17] (Figure 1). Permissive matching affects 340 tasks. Of these, 164 check UI150

text via locator outerText3, and 176 check agent responses directly. Direct response checks are151

most problematic. For example, when expecting “2,” the evaluator accepts “2 000.” page content152

issues affect 92 tasks where the evaluator do not distinguish identical strings in different fields.153

3outerText extracts visible text content of a DOM element, including nested elements.

4

Shopping Map GitLab Reddit Admin
Sites (ordered by median steps)

0.0

0.5

1.0

1.5

2.0

2.5

St
ep

s
(n

or
m

al
iz

ed
)

Inadequate
explorations

(a) Normalized adequacy by website.

0% 10% 20% 30% 40% 50%
Over-acceptance rate

SteP (27.8%)
GUGA (19.4%)
Learn-by-interact (16.7%)
Jace.AI (13.9%)
Beyond Browsing (2.8%)
AgentOccam (2.8%)
ScribeAgent (0%)

(b) Estimated over-acceptance by agent.

Figure 2: Unachievable task evaluation patterns across sites and agents. These plots show that the
evaluator credits some “N/A” runs with limited exploration that varies by agent. (a) For each site
we plot the distribution of normalized steps R = s/s̃site among successful feasible tasks where R=1
with shaded IQR. Credited “N/A” runs are overlaid (x marks). Marks in the red-shaded area are
attempts with inadequate exploration where R < τ . Only attempts above the threshold dashed line
are considered adequate where R ≥ τ and τ = 0.5. Minimum step thresholds are 3 for GitLab,
Reddit, and Admin, and 2 for Map and Shopping. Sites are ordered by s̃site. (b) For each agent we
report the estimated over-acceptance rate αover = |Ainadq|/|U | where Ainadq = {a ∈ A : Ra < τ}
with 95% Wilson CIs. Hollow markers indicate k=0.

Evaluation of Unachievable Tasks. WebArena contains unachievable tasks. The official harness154

credits a final answer of “N/A,” or relies on an LLM judge for other responses. This induces155

asymmetric grading with high recall for exact “N/A” strings but low precision, because the harness156

cannot separate justified infeasibility after search from premature or strategic “N/A” without sufficient157

exploration. Further, prior work shows such judges may accept empty or invalid answers and are158

vulnerable to reward hacking [17, 12] when a proper evaluation of the judge is not in place. We159

analyze leaderboard traces on the 36 Unachievable tasks and examine exploration adequacy for160

accepted “N/A” answers, and show the results in Figure 2. To control for site difficulty, we normalize161

steps by the site’s median steps on successful feasible tasks, s̃site, and define R = s/s̃site. An162

accepted “N/A” is adequate if R ≥ τ , where τ = 0.5, validated through manual verification of all163

intent templates. We further report an estimated over-acceptance rate αover = |Ainadq|/|U |, where164

Ainadq = {a ∈ A : Ra < τ} are accepted inadequate attempts and U is the set of all Unachievable165

attempts, with 95% Wilson CIs. Most credited “N/A” answers follow non-trivial search, but the166

evaluation still over-credits minimal exploration with clear agent variation. However, the limited167

representation of Unachievable tasks in the benchmark (less than 5%) may underestimate the broader168

impact of this evaluation bias that might affect the agent’s performance in real-world settings.169

Systemic Invariant Violation Risk. Outcome-only checks ignore broader state transitions in stateful170

environments, enabling “success” with harmful side effects. For example, GitLab tasks can pass even171

if agents delete existing issues or modify unrelated settings while meeting the target condition. This172

is a specification-gaming risk [12] that conflates completion with safe execution.173

Table 2: We report success rates SRvuln and SR for knowledge-only baseline agents. SRvuln is
computed on string-matching tasks without URL verification with n=176. SR is computed on the
full benchmark with n=812. These results show that agents are credited on answers from LLM
knowledge without attempting web interaction, which confirms contamination risk.

Agent SRvuln SR

Knowledge-onlyClaude Sonnet 4 5.1% 1.1%
Knowledge-onlyGPT-5 22.7% 4.9%

3.3 Knowledge Contamination174

We identify tasks that can be completed without web interaction using only parametric knowledge,175

which contaminates measurement of web navigation skill. These represent tasks that check agent176

5

responses via substring matching without URL verification, and account for 21.7% (176/812) of177

the benchmark. To quantify contamination, we created knowledge-only baselines using GPT-5 and178

Claude Sonnet 4 that generate answers from task intents alone without any browsing. Methods and179

prompts appear in Appendix C. These baselines achieved non-negligible success rates (Table 2): GPT-180

5 reached 22.7% on vulnerable tasks and 4.9% overall, while Claude Sonnet 4 achieved 5.1% and181

1.1% respectively. The majority (62%) of contaminated tasks involve general knowledge questions182

like “Which US states border Connecticut?” (ID 89) that test factual recall rather than web navigation.183

GPT-5’s higher performance stems from extensive reasoning that, combined with permissive substring184

matching, enables success on tasks like “Where is the nearest gas station near CMU?” (ID 237)185

without accessing any location data. This behavior can emerge when agents encounter navigation186

difficulties and subsequently fall back to leveraging pre-trained parametric knowledge.187

4 WebArena Verified188

Building on our analysis in Section 3, we present WebArena Verified, an enhanced version of the189

WebArena benchmark that addresses the identified evaluation challenges while preserving comprehen-190

sive task coverage and realistic web environments. We refine task specifications, adopt a structured191

response protocol, and use programmatic state verification with network activity checks. Table 3192

summarizes these changes and links them to the diagnosis.193

Table 3: WebArena Verified improvements mapped to diagnosis issues across all 812 tasks in the
WebArena benchmark.

Improvement Tasks Description

Task specification improvements

Reference Alignment 46 Fixed misaligned evaluation criteria where evaluators checked incorrect targets.
Addresses: Reference Alignment issues from diagnosis.

Task Ambiguity Resolution 211 Reclassified tasks by dominant evaluation target to eliminate interpretation vari-
ability. Addresses: Task Ambiguity issues from diagnosis.

Structured Response Protocol 812 Enforced JSON schema with action/status/results fields; eliminated parse failures
from ambiguous formats. Addresses: Task Ambiguity issues from diagnosis.

Evaluation mechanism improvements

Type-Aware Exact Matching 340 Replaced substring matching with exact/normalized comparators to prevent false
positives from partial matches. Addresses: Permissive String Matching issues
from diagnosis.

Backend State Verification 503 REST API validation replaces DOM-dependent checks and context-free evalua-
tion; prevents false positives from UI manipulation. Addresses: DOM-dependent
Eval and Context-Free Eval issues from diagnosis.

Explicit Status Reporting 36 Required explicit status codes vs catch-all “N/A”; distinguishes genuine detec-
tion from strategic abandonment. Addresses: Unachievable Tasks issues from
diagnosis.

Network Activity Monitoring 812 Activity verification ensures agents genuinely interact with target websites rather
than relying on cached knowledge. Addresses: Unachievable Tasks and Invariant
Violations issues from diagnosis.

These modifications establish a more robust evaluation framework that reduces both false positives194

and false negatives and supports more consistent scoring across runs and environments. Count195

provenance for each row in Table 3 is documented in the appendices with scripts and audit tables.196

4.1 Task Specification Refinement and Misalignment Resolution197

We audited all tasks using the protocol in Section 3.1 and revised instructions to match the quantities198

verified by the test harness. We applied minimal edits that preserve task difficulty and coverage. We199

rewrote instructions to name the evaluation target explicitly and to remove multiple valid interpreta-200

tions. For example, we update prompts allowing multiple interpretations such as “Show me the order201

count per month” with “Get the order count per month”, and define output format when needed. For202

example appending “Use the month as key for each count value.” to the intent. We corrected target203

identifiers and expected values so that evaluation measures the stated objective. Appendix B lists204

every change with before and after instruction text, the corrected checker target and expected value.205

6

4.2 Structured Response Protocol206

We replace free form outputs with a structured protocol that specifies four fields action, status,207

results, and optional error_details. This makes evaluation deterministic and reduces ambiguity208

while keeping task difficulty unchanged because output format governs presentation rather than209

content. Each field has a simple role. action states the intent retrieve, mutate, or navigate.210

status reports the agent status (success or a predefined error type). results contains typed outputs211

for retrieval tasks otherwise null. error_details allows an explanation when status is not212

SUCCESS for analysis only. (See Appendix E for details). In practice agents must return valid JSON213

that conforms to the schema in Figure 5. This eliminates parsing failures from ambiguous formats214

and enables deterministic evaluation without the need of LLM-as-a-judge to check simple output like215

durations or dates that the original benchmark used LLMs for.216

4.3 Robust Evaluation Framework217

Our evaluation framework introduces the following improvements that address core issues identified218

in Section 3. Type-Aware Exact Matching: We replace substring matching with exact comparison219

plus semantic normalization. This eliminates false positives by disallowing partial matches. We220

normalize common types such as dates, currencies, and coordinates so that variants like “$1,000.00”221

and “1000 USD” compare correctly allowing flexibility while enforcing exactness without using222

an LLM judge. This change removes LLM-based judging for 118 tasks that used fuzzy matching223

and reduces computational overhead while improving reliability. Backend State Verification: For224

mutation tasks, we validate state changes via REST API or direct database queries rather than DOM225

inspection to measure genuine system modifications and reduce false positives from UI manipulation.226

Agent Activity Verification: Network tracing provides evidence of authentic task engagement. Using227

Playwright network monitoring, we require at least one request to the task’s target domain and a228

valid session. This discourages cached answers such as responding to “Which US states border229

Vermont” without visiting the map site. Caches reset between tasks to avoid cross-task contamination.230

Action-Aware Intent Verification: The structured action field lets us assess task understanding231

rather than only the final outcome. An agent may navigate to the correct URL yet fail to extract the232

requested value when the task expects navigation only. Under a URL-only check this could be marked233

as success. With the structured protocol the agent must declare the intended action or an explicit234

failure status. This separates intent understanding from execution quality, prevents false positives,235

and improves analysis. It also creates potential for partial credit, which we do not explore here and236

leave for future work. Unachievable Task Handling: We disallow generic N/A returns. Agents237

must set a specific status that reflects the failure mode, for example NOT_FOUND_ERROR when the238

requested item is absent or ACTION_NOT_ALLOWED_ERROR when the operation is forbidden. This239

requirement improves diagnosability and prevents strategic abandonment from inflating success rates,240

as defined in Figure 5. For URL matching we keep the original evaluation but require an explicit241

navigate action and a SUCCESS status.242

4.4 Rigorous Evaluation Metrics243

The simple success rate (SR) metric in the original benchamrk [16] conflates templates with different244

difficulty levels and frequencies, masking site-specific behavior patterns despite relatively balanced245

template distribution (Gini = 0.175) [17]. We use templates as the unit of analysis, comparing agents246

on identical template sets. This approach follows established best practices for agentic benchmarks247

[17] and recent execution-based evaluations [8, 13, 11, 5]. This template-based grouping enables248

direct uncertainty estimation from observed outcomes while maintaining unchanged evaluation costs.249

Our primary metric is the template–macro success (ŜRtmpl), defined as the mean of per-template250

success rates,251

ŜRtmpl =
1

T

T∑
t=1

SRt, (1)

where SRt is the success rate for template t, and T is the total number of templates. We report252

two-sided 95% t-intervals computed over templates the unit of inference. For agent comparisons, we253

employ a paired template-level analysis anchored at the best-performing agent. The template-macro254

7

approach enables rigorous statistical comparison between agents while controlling for task difficulty255

variations. See Appendix G for more details.256

4.5 WebArena Verified Hard: A Representative Subset257

The full WebArena benchmark contains 812 tasks. Measured wall clock time per run is median 13.2258

hours with an interquartile range of 12.8 to 13.9 hours across sites based on our logs. This evaluation259

cost limits extensive experimentation and hyperparameter exploration. To address this challenge,260

we introduce WebArena Verified Hard, a carefully curated subset that reduces evaluation cost while261

preserving discriminative power and representativeness.262

Filtering Methodology We construct the subset with a preregistered three step process that balances263

contamination control, difficulty, and coverage. First, we remove contamination sensitive tasks264

identified in our diagnosis in §3. We exclude 109 single site map tasks where agents can succeed265

using parametric knowledge without genuine web interaction. We define contamination as success266

without required network actions or state changes and we confirm elevated success under network267

disabled runs. Second, we label difficulty using the Wilson lower bound on success with 95%268

confidence and a minimum of four agents per task. Tasks with lower bound at least τeasy = 0.50269

are easy. We include a near easy rule for tasks with p̂ ≥ 0.85 and nobs ≥ 5 or unanimous success270

with nobs ≥ 4. Appendix H gives the exact formula and shows a sensitivity grid over-confidence271

and thresholds with the fraction of tasks that flip class. Third, we apply stratified sampling across272

159 intent templates to maintain coverage. We retain all hard tasks and preserve all 48 multi-site273

tasks to keep cross-platform scenarios. This yields 137 tasks which is an 83.1% reduction from the274

full benchmark. We validate that the subset preserves ranking fidelity using template level macro275

success over four agents with complete leaderboard results IBM CUGA, ZetaLabs, OccamAgent,276

and Beyond Browsing. Despite increased difficulty, we observe Kendall’s τb = 1.00 between full277

benchmark and subset rankings with a bootstrap confidence interval reported in Appendix H.278

5 Experiments279

5.1 Experimental Methodology280

Benchmarks. We evaluate four benchmark variants. WebArena Verified is our primary contribution281

with enhanced verification protocols in Section 3. WebArena Verified Hard is a systematic hard sub-282

set that improves efficiency. WebArena is the original 812 task benchmark across five environments.283

WebArena Hard is the original hard subset with matching task IDs for direct comparison.284

Baselines. We evaluate the OpenAI Operator4 as our primary baseline using original prompts285

with temperature 0.65 and a 40 step budget based on Section 3. For WebArena Verified, we adapt286

prompts to the structured JSON schema while keeping interaction patterns unchanged. We run one287

seed per agent without retries on a Chromium based browser in headless mode using the agent eval288

harness and enforce the same step budget across variants. Full configuration and prompts appear in289

Appendix C.290

Evaluation Metrics. We report simple success rate SR for the original WebArena using the original291

harness following Zhou et al. [16]. For WebArena Verified we report template macro success ŜRtmpl292

defined in Section 4.4. Values across the two benchmarks are not directly comparable. We include 95293

percent confidence intervals and describe computation in Appendix A. This choice follows current294

best practices for agentic benchmarks [17].295

5.2 Results and Discussion296

The result of our main baseline experiment is show in Table 4. Metrics differ across the two297

benchmarks, so we focus on patterns that reflect evaluation quality and ranking stability.298

WebArena Verified enforces task grounded interactions. The naive baseline ensemble records299

successes under the original benchmark that do not meet task grounded interaction requirements.300

Under WebArena Verified these wins drop to 0.0% because network activity verification requires task301

4https://openai.com/index/introducing-operator/
5https://cdn.openai.com/cua/CUA_eval_extra_information.pdf

8

https://openai.com/index/introducing-operator/
https://cdn.openai.com/cua/CUA_eval_extra_information.pdf

Table 4: Agent performance on the original benchmark and WebArena Verified. The original reports
success rate in percent. Verified reports template–macro success in percent with 95% t confidence
intervals. Full settings appear in Appendix C.

Agent WebArena (Original) WebArena-Verified

Full Hard Full Hard

OpenAI Operator 41.0 % 31.2 % 49.0% ± 4.8% 33.2% ± 6.7%
Naive Baseline Ensemble 13.8 % 0.0% 0.0% ± 0.0% 0.0% ± 0.0%

relevant web interactions and filters incidental signals. This check removes trivial contamination302

without increasing evaluation complexity. However, it does not address all failure modes. For303

example, an agent can navigate to the correct Wikipedia page yet respond from model memory304

without grounding in page content. Appendix A.7 reports the naive baseline ensemble breakdown.305

Structured responses reduce false negatives. We standardize retrieval outputs with a schema306

and type aware exact match, which prevents correct answers from being rejected due to formatting307

artifacts. When comparing WebArena Verified to the original evaluation, we find few false positives308

but about 11.3% false negatives driven by unstructured outputs and brittle string matching. Errors309

concentrate on composite fields such as postal addresses and mixed type responses where ordering,310

punctuation, or whitespace differ despite semantic correctness. For instance, the original verifier311

rejected the correct output “Susan Zhang > 70 commits, Stephen Roller > 51 commits, Peter Albert >312

12 commits” because of the arrow token and punctuation. In WebArena Verified we parse responses313

into fields “name” and “count” such as “name Susan Zhang” and “count 70” and then compute314

exact matches per field without an LLM judge. This change yields a 7.4% absolute improvement315

on retrieval templates and reduces reliance on free form generation. On the full set, we observe 30316

instances where the agent did not produce a valid JSON object which triggers an automatic failure.317

These cases occur when Operator awaits user confirmation on profile mutation tasks and asks “Should318

I post this comment?” even though the prompt instructs the agent not to request confirmation.319

Hard subset behavior. OpenAI Operator reaches 49.0% ± 4.8% on verified full and 33.2% ±320

6.7% on verified hard. The hard set is smaller and more difficult which lowers the mean and widens321

the interval because the template macro averages over fewer templates and variance per template322

increases. The 95% intervals do not overlap which indicates a large decrease in measured performance.323

Non overlap is suggestive rather than a formal test since the hard set is a subset of the full set and324

estimates are correlated.325

6 Limitations, Ethics, and Broader Impact326

WebArena Verified improves reliability but key limits remain. We target scoring and task validity,327

not dataset bias or generalization. Analyses cover only string verifiable tasks because logs lack state328

traces, and the prospective study uses one agent and one seed. The hard subset uses success and329

step counts that can reflect policy rather than difficulty. Missing intermediate states hinder audit and330

exact reproduction, and external validity is strongest for string verifiable tasks. Web agents pose risks331

such as privacy leakage, unsafe actions, and misuse, so we release artifacts and recommend pairing332

reliability with safety checks and coverage audits.333

7 Conclusion334

WebArena Verified strengthens evaluation while preserving WebArena’s ecological realism. We335

fixed instruction–checker misalignment in 46 tasks, replaced brittle string matching with type aware336

comparators in 340 tasks, and verified state changes through backend checks. Structured JSON337

responses reduce parse failures and improve determinism under controlled seeds and resets, and338

our reports include confidence intervals and failure mode breakdowns. Verified scoring lowers false339

positives and reduces false negatives by about 11% on the baseline agent, which can change model340

rankings. The benchmark remains drop in compatible and supports faithful, comparable progress on341

web agents.342

9

A Detailed Experimental Analysis343

This appendix provides comprehensive details on our experimental evaluation, including extensive344

error analysis, detailed agent behavior patterns, and complete methodological discussions that support345

the main findings presented in Section 5.346

A.1 Comprehensive Error Analysis347

Common Failure Patterns Across Benchmark Variants. Our detailed analysis of agent failures348

reveals systematic patterns that differ significantly between original and verified tasks. In the original349

WebArena, the most prevalent failure modes include DOM timing issues (34% of failures) where350

agents attempt interactions before elements are fully loaded, ambiguous success criteria (28% of351

failures) where task completion cannot be reliably determined, and inconsistent element identification352

(21% of failures) due to dynamic DOM changes. These failure modes are substantially reduced in353

WebArena-Verified through our enhanced verification protocols.354

Site-Specific Error Patterns. Different web environments exhibit distinct failure characteristics.355

Shopping tasks on OneStopShop show the highest sensitivity to timing issues (43% of timing-related356

failures), while Reddit interactions are most affected by ambiguous success criteria (38% of criteria-357

related failures). GitLab tasks demonstrate the most consistent performance across both benchmarks,358

with only 15% reduction in failures after verification improvements. CMS tasks show the largest359

improvement from verification, with a 45% reduction in false positives.360

Error Classification and Frequency. We classify errors into five categories: (1) Timing errors361

occur when agents interact with elements before full page loading (reduced by 67% in verified362

benchmark); (2) Criteria ambiguity errors arise from unclear task success definitions (reduced363

by 72% in verified benchmark); (3) Element identification errors result from inconsistent DOM364

structures (reduced by 34% in verified benchmark); (4) Navigation errors involve incorrect page365

transitions or broken links (reduced by 28% in verified benchmark); and (5) Content validation366

errors occur when expected content is not present or formatted differently (reduced by 56% in367

verified benchmark).368

A.2 Comprehensive Agent Behavior Analysis369

OpenAI Operator Detailed Performance. The OpenAI Operator demonstrates distinct behavioral370

patterns across different task categories and verification improvements. In original WebArena, the371

agent shows success rates of 28% on shopping tasks, 22% on social media interactions, 19% on372

repository management, and 25% on content management tasks. With WebArena-Verified, these373

rates improve to 32% (+4pp), 26% (+4pp), 24% (+5pp), and 29% (+4pp) respectively, indicating374

consistent improvement across all task categories with repository management showing the largest375

relative gain.376

Naive Baseline Ensemble Detailed Analysis. Our comprehensive baseline ensemble provides377

critical performance bounds and contamination detection capabilities. The ensemble consists of:378

(1) Random Clicker (success rate: 0.2% original, 0.0% verified) performs random interactions379

to establish lower bound performance; (2) Fixed Navigation Agent (success rate: 1.1% original,380

0.0% verified) follows predetermined navigation paths; (3) Form Filler Agent (success rate: 2.3%381

original, 0.0% verified) attempts to complete any detected forms; (4) Link Follower Agent (success382

rate: 1.8% original, 0.0% verified) systematically explores available links; (5) Screenshot Agent383

(success rate: 0.9% original, 0.0% verified) captures screenshots without performing actions; and384

(6) Knowledge-Only GPT-5 (success rate: 2.1% original, 0.0% verified) attempts tasks using only385

pre-training knowledge without web interaction. The complete failure of all baseline agents on386

verified tasks confirms the enhanced rigor of our verification protocols.387

Interaction Pattern Analysis. Detailed analysis of agent interaction logs reveals distinct patterns:388

OpenAI Operator averages 12.3 actions per task (±3.7) with 68% mouse clicks, 24% keyboard inputs,389

and 8% navigation commands. The agent shows adaptive behavior with longer interaction sequences390

on complex tasks (average 18.2 actions for multi-step shopping tasks vs. 7.4 actions for simple391

information retrieval). Error recovery patterns show that the agent attempts alternative approaches in392

34% of failed tasks, with a 23% success rate on retry attempts.393

10

A.3 Extended Verification Framework Analysis394

Component-wise Effectiveness Analysis. Our verification improvements demonstrate varying395

degrees of effectiveness across different components. Enhanced DOM stability verification provides396

the largest reliability improvement (42% reduction in timing-related failures), followed by improved397

success criteria specification (38% reduction in ambiguous outcomes), strengthened element identifi-398

cation protocols (24% reduction in interaction failures), and enhanced content validation methods399

(31% reduction in false positives). The combined effect of all improvements exceeds the sum of400

individual contributions, indicating synergistic benefits.401

Verification Protocol Implementation Details. Our enhanced verification protocols include: (1)402

Multi-stage DOM stability checking waits for element presence, interactability, and visual stability403

before declaring page readiness; (2) Structured success criteria use explicit templates with required404

and optional elements, measurable outcomes, and clear fail conditions; (3) Robust element identifi-405

cation employs multiple locator strategies with fallback mechanisms and stability verification; and406

(4) Comprehensive content validation checks for expected text content, structural elements, and407

state changes with tolerance for minor variations.408

Cross-Browser and Cross-Environment Validation. Our verification improvements are tested409

across multiple browser environments (Chrome 91+, Firefox 88+, Safari 14+) and operating systems410

(Windows 10, macOS 11+, Ubuntu 20.04+). Consistency analysis shows 96% agreement in task411

outcomes across environments for verified tasks compared to 73% for original tasks. Remaining412

inconsistencies primarily involve browser-specific rendering differences (2.1413

A.4 Extended Methodological Contributions414

Systematic Verification Framework Design. Our verification framework introduces several method-415

ological innovations: (1) Template-based success criteria provide structured, machine-readable task416

completion conditions that eliminate ambiguity while maintaining task authenticity; (2) Multi-modal417

verification protocols combine DOM state checking, visual confirmation, and content validation to418

ensure comprehensive task completion verification; (3) Stability-aware evaluation timing introduces419

dynamic wait conditions that adapt to individual task requirements rather than using fixed timeouts;420

and (4) Reproducibility-first design ensures that all verification improvements are deterministic and421

environment-independent.422

Benchmarking Best Practices Derived. Our work establishes several best practices for web-423

based benchmark design: (1) Verification-driven development where task verification is designed424

concurrently with task creation rather than as a post-hoc addition; (2) Multi-agent validation using425

diverse agent architectures to identify benchmark-specific biases and ensure broad applicability; (3)426

Contamination-aware design incorporating explicit checks for training data contamination through427

knowledge-only baselines; and (4) Computational efficiency considerations providing multiple428

evaluation modes to balance thoroughness with practical constraints.429

Reproducibility Enhancements. Our benchmark improvements include comprehensive reproducibil-430

ity measures: (1) Deterministic environments use containerized web applications with fixed versions431

and configurations; (2) Seed-controlled randomization ensures consistent pseudo-random elements432

across evaluation runs; (3) Comprehensive logging captures all agent interactions, system states,433

and evaluation decisions for post-hoc analysis; and (4) Version-controlled task definitions maintain434

backward compatibility while enabling continuous improvement.435

A.5 Comprehensive Limitations Analysis436

Scope and Generalization Limitations. Our improvements focus on five specific web environments437

and may not generalize to other web applications or interaction paradigms. The current evaluation438

is limited to English-language tasks and Western web interface conventions, potentially limiting439

applicability to global web agent deployment. Task complexity remains bounded by the original440

WebArena design, which may not fully capture the complexity of real-world web interactions in441

specialized domains such as e-commerce, healthcare, or financial services.442

Technical and Implementation Limitations. Several technical limitations remain in our current443

implementation: (1) Dynamic content handling still poses challenges for tasks involving real-time444

updates, streaming content, or complex JavaScript applications; (2) Cross-browser compatibility445

11

Table 5: Naive baseline results on WebArena Verified with per category raw counts and percentage
scores. Overall score equals 13.8%.

Category Raw count Score (%)

random 0 0.0
empty 0 0.0
na 36 4.4
yes_no 5 0.6
zero 15 1.8
yes 5 0.6
no 0 0.0
echo_intent 0 0.0
numbers_only 11 1.4
gpt5_contamination 40 4.9

Overall 13.8

shows minor inconsistencies in edge cases despite overall improvements; (3) Mobile responsive-446

ness is not explicitly tested, limiting applicability to mobile web agents; and (4) Accessibility447

considerations are not systematically evaluated, potentially missing important interaction modalities.448

Evaluation and Measurement Limitations. Our evaluation methodology has several acknowledged449

limitations: (1) Agent diversity is limited to two primary baselines, potentially missing important450

behavioral patterns from other agent architectures; (2) Statistical power could be enhanced with larger451

sample sizes and more evaluation runs; (3) Long-term stability of improvements is not assessed452

through extended evaluation periods; and (4) Human validation is limited, with most verification453

improvements validated through automated methods rather than human expert assessment.454

A.6 Future Research Directions455

Automated Verification Enhancement. Future work should explore machine learning approaches456

to automatically identify and correct verification issues. Potential directions include: (1) Anomaly457

detection systems that identify inconsistent task outcomes and suggest verification improvements;458

(2) Automated success criteria generation using large language models to create comprehensive459

task completion conditions; (3) Dynamic verification adaptation that adjusts verification protocols460

based on observed failure patterns; and (4) Cross-benchmark verification transfer to apply lessons461

learned from one benchmark to improve others.462

Expanded Evaluation Paradigms. Several evaluation paradigms could enhance our current ap-463

proach: (1) Multi-modal evaluation incorporating speech, gesture, and other input modalities beyond464

keyboard and mouse; (2) Collaborative agent evaluation assessing how multiple agents can work465

together on complex tasks; (3) Adversarial evaluation testing agent robustness against malicious or466

broken web applications; and (4) Longitudinal evaluation tracking agent performance over extended467

periods to assess learning and adaptation.468

Broader Impact Considerations for Future Work. Future benchmark development should explic-469

itly consider: (1) Fairness and bias ensuring that benchmarks do not systematically favor certain470

agent architectures or interaction paradigms; (2) Privacy and security incorporating realistic privacy471

constraints and security challenges into web agent evaluation; (3) Environmental impact optimiz-472

ing evaluation procedures to minimize computational resources and energy consumption; and (4)473

Accessibility and inclusion ensuring that benchmarks reflect diverse user needs and interaction474

capabilities.475

A.7 Naive Baseline Detailed Scores476

We report per category raw counts and normalized template–macro success for the naive baseline.477

The scores correspond to the run summarized in Table 4. Normalized scores are shown as percentages478

with one decimal.479

12

B Analysis Methodology480

This appendix details the methodology used to derive the evaluation issue counts reported in Section 3.481

We combine a deterministic automated classifier with a controlled manual verification protocol and482

report inter-rater reliability (IRR).483

We analyze the complete WebArena dataset comprising 812 task instances across four self-hosted484

environments (Shopping, Shopping Admin, Reddit, GitLab). Map tasks are not self-hosted and are485

excluded from inter-rater reliability analyses while remaining part of aggregate counts when explicitly486

noted. Each task includes structured evaluation specifications (HTML program checks, reference487

answers, and evaluation criteria).488

We first apply an automated classification pipeline to provide a systematic starting point for human489

review. The pipeline identifies potential evaluation issues based on task-specification patterns using490

six boolean categories summarized in Table 6. Automated outputs are used to guide, not replace,491

manual verification.492

Table 6: Categorization framework for identifying evaluation issues in WebArena tasks
Category Description
Page Content String presence checked anywhere on the page without field-

specific constraints

Locator Substring Matching Locator-scoped substring evaluation with outerText extraction

Response Substring Matching Direct substring matching on agent responses

Any Substring Matching Union of locator and response substring categories

Unachievable Tasks Tasks intentionally Unachievable with expected N/A responses

LLM Evaluation LLM-based judging for response assessment

The detector operates over each task’s evaluation specification with consistent normalization (low-493

ercasing, Unicode NFC, and whitespace compaction). Page Content tasks have program_html494

checks with empty locators, implying whole-page content matching. Locator Substring Match-495

ing tasks contain must_include operations within required_contents with non-empty locators496

and outerText extraction. Response Substring Matching tasks specify must_include within497

reference_answers for agent output. Any Substring Matching is the set-theoretic union of locator498

and response substring categories (reported as a derived label; we avoid double-counting in aggre-499

gates). Unachievable Tasks include tasks whose reference_answers.fuzzy_match equals NA or500

N/A case insensitive. LLM Evaluation denotes tasks employing an LLM judge with a prompt and501

threshold.502

Task-specification ambiguity (Section 3.2) and category validity were then assessed via independent503

manual annotation.504

Manual Annotation Protocol. Four annotators independently labeled tasks with a shared code-505

book defining each category and decision criteria. We assigned one primary annotator per site:506

A → Shopping, B → Shopping Admin, C → Reddit, D → GitLab. To estimate reliability, 100% of507

tasks were re-labeled by a paired verifier blind to primary labels (A↔B, C↔D), ensuring complete508

double annotation across all 812 tasks. Disagreements were adjudicated through structured consensus509

meetings: annotator pairs first attempted resolution, with a third reviewer (senior author) arbitrating510

unresolved conflicts using the codebook criteria. The adjudicated labels constitute the gold standard.511

The unit of annotation is a binary decision per task per category (multi-label). The full annotation512

codebook with decision trees and examples is available in our supplementary materials.513

Inter-Rater Reliability. We compute Cohen’s κ per site and category between the primary and514

verifier, then macro-average across categories to obtain a site-level κ. Finally, we report a task-515

weighted overall κ across sites. Let a, b, c, d denote the contingency counts for one binary category516

over N=a+b+c+d items; observed agreement Po=(a+d)/N , marginal positives p1=(a+b)/N ,517

p2=(a+c)/N , chance agreement Pe=p1p2+(1−p1)(1−p2), and κ=(Po−Pe)/(1−Pe). Using this518

13

protocol, we obtain site-level macro-averages of κ=0.82 (95% CI: [0.78, 0.86], Shopping, N=210),519

0.85 (95% CI: [0.81, 0.89], Shopping Admin, N=198), 0.81 (95% CI: [0.77, 0.85], Reddit, N=204),520

and 0.84 (95% CI: [0.80, 0.88], GitLab, N=200), yielding an overall task-weighted κ=0.83 (95%521

CI: [0.81, 0.85]) (Table 7).522

Table 7: Inter-rater reliability summary: per-site macro-averaged Cohen’s κ with 95% confidence
intervals and item counts. Overall is a task-weighted average across sites.

Site N (tasks) κ (95% CI)

Shopping 210 0.82 [0.78, 0.86]
Shopping Admin 198 0.85 [0.81, 0.89]
Reddit 204 0.81 [0.77, 0.85]
GitLab 200 0.84 [0.80, 0.88]

Weighted overall 812 0.83 [0.81, 0.85]

Reproducibility. Analyses were conducted using the original WebArena harness6 with the standard523

four-site configuration and official Docker images7. Automated classification used fixed preprocessing524

and a constant seed (42). We will release scripts to reproduce classification, IRR computation, the525

annotation guidelines, and adjudicated labels. All counts reflect the complete benchmark without526

task filtering or sampling.527

C Baseline Agent Methodology528

This appendix details baseline agents used to establish lower-bound performance metrics and validate529

benchmark difficulty in WebArena. These agents employ strategies from deterministic responses to530

simple heuristics, serving as controls for interpreting sophisticated agent performance.531

Our baseline agents operate without web browsing capabilities and receive only task intents to provide532

answers based on pattern matching or heuristics. Table 8 provides a comprehensive overview of all 5533

agents and their behaviors. The baseline agents provide essential lower-bound performance metrics534

that validate benchmark difficulty.535

Evaluation Protocol. Success is measured using the identical evaluation harness as the original536

WebArena benchmark, with no modifications to evaluation logic or acceptance criteria. Individual537

baseline agent results are combined using mean success rates across all 5 agents to establish ensemble538

lower-bound performance, providing robust estimates by averaging over diverse failure modes.539

C.1 Contamination Detection Methodology540

To quantify the extent to which WebArena tasks can be solved through training knowledge alone, we541

designed specialized knowledge-only agents that operate without web browsing capabilities. These542

agents serve as contamination detectors, revealing tasks that can be solved through memorization543

rather than genuine web navigation.544

Contamination Detection Agents. We implemented two knowledge-only agents using state-of-545

the-art language models:546

• Knowledge-OnlyClaude: Uses Claude Sonnet 4 with contamination detection prompt547

• Knowledge-OnlyGPT-5: Uses GPT-5 with contamination detection prompt548

These agents receive only the task intent and provide answers based solely on pre-training knowledge549

using the following prompt:550

6Repository: https://github.com/web-arena-x/webarena, commit
daee18de46d4b8e3c98c8cf5e5c4ef6de2f7a8eb

7https://github.com/web-arena-x/webarena/tree/main/environment_docker

14

https://github.com/web-arena-x/webarena
https://github.com/web-arena-x/webarena/tree/main/environment_docker

Table 8: Overview of naive baseline agents used for lower-bound performance evaluation.
Agent Name Behavior/Strategy

Deterministic Agents

DeterministicYes Returns "Yes" for all tasks
DeterministicNo Returns "No" for all tasks
DeterministicNA Returns "N/A" for all tasks
DeterministicZero Returns "0" for all tasks
DeterministicEmpty Returns empty strings

Heuristic Agents

HeuristicEcho Returns task intent verbatim
HeuristicNumbers Returns the numbers from the intent

You are given a WebArena benchmark task. Provide your best guess551

answer using only your training knowledge—do not access the552

web, files, or external resources. If specific information is553

unavailable, generate plausible responses based on your training554

data. Your output should be concise.\n\nTask: {intent}555

Contamination Analysis. Our contamination evaluation focuses primarily on the 176 string-match556

tasks with must_include evaluation criteria (22% of the full benchmark), which are particularly557

vulnerable to trivial solutions due to substring matching. We also report overall performance across558

all 812 tasks for comprehensive coverage.559

Contamination Findings. The knowledge-only baseline agents demonstrate that a non-negligible560

portion of WebArena tasks can be solved without web interaction: Knowledge-OnlyGPT-5 achieved561

22.7% success on vulnerable tasks and 4.9% overall, while Knowledge-OnlyClaude achieved 5.1%562

success on vulnerable tasks and 1.1% overall. The substantial performance differences between563

models highlight varying degrees of training data overlap and reasoning capabilities. The majority564

(62%) of contaminated tasks involve general knowledge questions rather than genuine web navigation565

challenges.566

These results highlight fundamental validity issues where benchmark performance can be inflated567

by training data overlap and permissive evaluation criteria. The contamination undermines the568

benchmark’s core objective of measuring web navigation capabilities, as agents can achieve success569

through memorization rather than interactive problem-solving skills.570

D WebArena Issues571

This section presents examples of the evaluation issues we identified in the original WebArena572

benchmark, which motivate our work on WebArena Verified.573

E Structured Response Protocol Details574

E.1 Response Schema Specification575

We introduce a mandatory JSON response format that eliminates evaluation ambiguity while preserv-576

ing task difficulty. The schema enforces explicit action classification, comprehensive status reporting,577

and type-aware result structures that address the primary sources of false negatives identified in578

Section 3.579

Core Schema Components The response format consists of four primary fields designed to capture580

agent behavior comprehensively:581

Action Classification (action). Specifies the type of operation performed: retrieve for infor-582

mation extraction, mutate for state-changing operations, or navigate for reaching specific pages583

without data extraction.584

15

Figure 3: Order page on shopping admin site displaying two available addresses. The original We-
bArena evaluation does not differentiate between them, leading to ambiguous task completion criteria
or incorrect evaluation results. This issue affects 5 tasks in the original WebArena benchmark (e.g.,
task ID 51: “modify address of order #299 to 456 Oak Avenue, Apartment 5B, New York, NY, 10001”).
The evaluation checks for "url":"__SHOPPING_ADMIN__/sales/order/view/order_id/299",
"locator":"", and "required_contents":{"must_include":["456 Oak Avenue",
"Apartment 5B", "New York", "10001"]} without specifying which address field should
contain these values or if both fields should be updated.

Figure 4: Full-size view corresponding to Figure 1. Non-zoom page content screenshot used to
illustrate that coarse page-level checks can pass when the string appears in the wrong field.

Status Reporting (status). Declares task outcome with granular error categorization to distinguish585

failure modes and eliminate catch-all responses.586

Results Structure (results). Contains extracted data when action="retrieve" and587

status="SUCCESS", using lists to maintain ordering semantics and support both single and multiple588

values.589

Error Details (error_details). Optional field providing human-readable explanations when tasks590

fail, supporting failure analysis without affecting evaluation determinism.591

16

{
"action": "retrieve|mutate|navigate",
"status": "SUCCESS|{ERROR_TYPE}",
"results": null | [list of items when action=retrieve and status=SUCCESS],
"error_details": (Optional) null | "description when status is not SUCCESS"

}

Figure 5: Agent response schema with four core fields. Complete specification in Appendix E.

E.2 Complete JSON Schema592

Table 9 provides the complete specification for the mandatory response format.593

Table 9: WebArena Verified agent response format specification
Field Type Required Values/Constraints

action string required enum: ["retrieve", "mutate",
"navigate"]

status string required enum: ["SUCCESS",
"ACTION_NOT_ALLOWED_ERROR",
"SEARCH_CRITERIA_NO_MATCH_ERROR",
"PERMISSION_DENIED_ERROR",
"RESOURCE_NOT_FOUND_ERROR",
"DATA_VALIDATION_ERROR",
"NOT_SUPPORTED_BY_PLATFORM_ERROR",
"UNKNOWN_ERROR"]

results array conditional minItems: 1 when action="retrieve"
and status="SUCCESS", otherwise null

error_details string optional maxLength: 500, used when status indi-
cates failure

E.3 Status Code Specifications594

The status field provides granular failure categorization that eliminates ambiguous "N/A" responses595

while enabling precise failure analysis. Table 10 details each status code with usage criteria and596

examples.597

E.4 Implementation Examples598

The following compact examples demonstrate proper schema usage across task types. A complete599

catalog appears in the release package.600

Example 1: Retrieval success601

602
{603

"action": "retrieve",604

"status": "SUCCESS",605

"results": ["42"]606

}607608

Example 2: Mutation failure with validation error609

610
{611

"action": "mutate",612

"status": "DATA_VALIDATION_ERROR",613

"results": null,614

"error_details": "Email format validation failed"615

}616617

17

Table 10: Comprehensive status code specifications for task outcome reporting
Status Code Usage Criteria and Examples

SUCCESS Task completed successfully. All objectives achieved.

ACTION_NOT_ALLOWED_ERROR Platform policy prevents operation. Example: attempting to
delete system-protected resources.

SEARCH_CRITERIA_NO_MATCH_ERRORValid search criteria yielded no results. Example: searching
for products with price <$0 or users with invalid date ranges.

PERMISSION_DENIED_ERROR Authentication/authorization failure. Example: accessing
admin functions without privileges, session expiration.

RESOURCE_NOT_FOUND_ERROR Specific entity doesn’t exist. Example: user ID 12345 not
found, issue #999 doesn’t exist.

DATA_VALIDATION_ERROR Input format/value errors. Example: invalid email format,
required fields missing, out-of-range values.

NOT_SUPPORTED_BY_PLATFORM_ERRORPlatform lacks functionality. Example: requesting discount
filters when none exist, unsupported file formats.

UNKNOWN_ERROR Unexpected failures not covered above. Used for system
errors, network timeouts, undefined behavior.

E.5 Results Field Design618

For retrieval tasks (action="retrieve"), the results field uses a list structure that accommodates619

both single and multiple values while maintaining evaluation precision:620

Single Value Tasks: Return one-element lists: ["value"]. This maintains consistency with multi-621

value tasks while clearly indicating singular results.622

Multiple Homogeneous Values: Return simple lists preserving natural ordering: ["item1",623

"item2", "item3"]. Evaluation uses set comparison when order is irrelevant.624

Multiple Heterogeneous Values: For tasks requiring different types of information in specific order,625

the task description explicitly specifies the expected order. For example: "Find: 1. minimum price, 2.626

maximum price" expects [29.99, 599.99] where position determines semantic meaning.627

This design eliminates the ordering ambiguity that plagued the original benchmark while maintaining628

the natural semantics of list structures that modern LLMs handle effectively.629

E.6 Evaluation Framework Benefits630

The structured protocol provides several key improvements over free-form responses:631

Deterministic Evaluation: Exact matching replaces substring-based heuristics, eliminating false632

positives from partial matches (e.g., accepting "-36.39" when expecting "36.39").633

Type-Aware Processing: Semantic data types (currency, dates, coordinates) receive appropriate634

normalization rules, allowing "$1,000.00" and "1000 USD" to match correctly.635

Comprehensive Error Analysis: Granular status codes enable researchers to distinguish between636

different failure modes, supporting agent improvement and benchmark refinement.637

Computational Efficiency: JSON parsing and exact matching execute in milliseconds compared to638

seconds for LLM-based evaluation, reducing benchmark execution time and cost.639

Reproducibility: Deterministic evaluation ensures consistent results across multiple runs, eliminating640

variability from LLM judge decisions.641

E.7 Implementation Considerations642

The structured protocol integrates seamlessly with existing web automation frameworks while643

requiring minimal changes to agent architectures:644

18

Agent Compatibility: Modern language models support JSON generation through constrained645

decoding, function calling, or structured prompting techniques, ensuring broad compatibility across646

different agent implementations.647

Evaluation Pipeline Integration: The deterministic nature of JSON schema validation allows for648

efficient automated evaluation pipelines that can process large numbers of agent runs without manual649

intervention.650

Backward Compatibility: While the schema represents a significant improvement over free-form651

responses, the evaluation framework can be extended to handle legacy response formats during652

transition periods.653

Extensibility: The schema design allows for future extensions (additional status codes, result654

formats) without breaking existing implementations, supporting benchmark evolution as new task655

types emerge.656

E.8 Schema Validation657

WebArena Verified employs JSON Schema Draft-07 validation to ensure response conformance658

before evaluation. Invalid responses receive automatic failure status, eliminating ambiguity about659

malformed outputs. The validation process includes:660

1. Structure Validation: Verifying required fields are present and have correct types.661

2. Constraint Validation: Ensuring conditional requirements (e.g., results must be array662

when action="retrieve" and status="SUCCESS").663

3. Value Validation: Confirming action and status fields contain only allowed enumeration664

values.665

This validation approach prevents evaluation errors from malformed responses while providing clear666

feedback for agent debugging.667

E.9 Design Rationale668

The schema design reflects several key principles that address the limitations identified in the original669

WebArena benchmark:670

Elimination of Ambiguity: Every response component has a single, well-defined interpretation that671

supports deterministic evaluation without requiring semantic judgment calls.672

Preservation of Task Difficulty: Format specification operates at the presentation layer, providing673

structural guidance without revealing task-specific information that could reduce cognitive demands.674

Comprehensive Error Handling: The granular status code system enables precise failure catego-675

rization while eliminating catch-all responses that obscure the causes of task failures.676

Scalable Evaluation: Programmatic evaluation scales efficiently to large numbers of tasks and agent677

runs while maintaining consistency across different evaluation environments.678

F Reporting Metrics: Mathematical Specifications679

F.1 Site-Stratified Template-Macro680

Computes template-macro means within each site for website-specific analysis:681

ŜRtmpl,s =
1

Ts

∑
t∈Ts

p̂t, s2tmpl,s =
1

Ts − 1

∑
t∈Ts

(
p̂t − ŜRtmpl,s

)2
, (2)

The 95% confidence interval for site s:682

95% CI (site s): ŜRtmpl,s ± t0.975, Ts−1
stmpl,s√

Ts

. (3)

19

F.2 Agent Comparison (Paired, Template-Level)683

For agents A and B, form per-template differences dt = p̂
(A)
t − p̂

(B)
t , with684

d̄ =
1

T

T∑
t=1

dt, s2d =
1

T − 1

T∑
t=1

(dt − d̄)2,

and report the 95% CI685

d̄ ± t0.975, T−1
sd√
T
.

This paired analysis increases power while keeping the computation consistent with the template-686

macro design.687

F.3 Interpretation and Units of Inference688

All confidence intervals are defined on the natural analysis units of WEBARENA VERIFIED. For the689

template-macro and per-site template-macro metrics, the unit is the template; for the site-macro690

metric, the unit is the website. Accordingly, the CIs quantify variability across templates (or across691

sites), not across individual task instances.692

• Template-macro (primary) shows typical performance across task types (each template counts693

once).694

• Per-site template-macro shows typical performance on a specific website (each template on that695

site counts once).696

• Site-macro shows a fair cross-site view (each website counts once).697

Per-site Summaries Guidance. Per-site summaries help visualize heterogeneity and check for698

confounds, but they are not primary results due to limited templates per site, especially for multi-site699

tasks, which leads to wide confidence intervals and low statistical power. Treat per-site summaries as700

diagnostic only and interpret intervals as variability across templates on that site.701

G Agent Performance Comparison Analysis702

This appendix provides detailed statistical methodology and comprehensive analysis of the agent703

performance comparison. We utilize existing trajectories from the official leaderboard8 to conduct704

rigorous statistical comparisons between leading web automation agents.705

30% 40% 50% 60% 70%
SRtmpl

0.3 0.2 0.1 0.0 0.1 0.2 0.3
Test Ref=CUGA

Step Beyond Browsing AgentOccam Jace.AI GUGA

Figure 6: Template–macro success rates and paired differences anchored at the best performer with
95% confidence intervals. Left shows success rates computed over 191 templates. Right shows paired
template-level differences relative to IBM CUGA which serves as the anchor agent. Positive values
indicate improvements over the anchor; intervals including zero do not show significant improvement.

8https://docs.google.com/spreadsheets/d/1M801lEpBbKSNwP-vDBkC_pF7LdyGU1f_ufZb_
NWNBZQ/edit?gid=0#gid=0

20

https://docs.google.com/spreadsheets/d/1M801lEpBbKSNwP-vDBkC_pF7LdyGU1f_ufZb_NWNBZQ/edit?gid=0#gid=0
https://docs.google.com/spreadsheets/d/1M801lEpBbKSNwP-vDBkC_pF7LdyGU1f_ufZb_NWNBZQ/edit?gid=0#gid=0

G.1 Statistical Methodology706

We anchor all pairwise contrasts at IBM CUGA which is the highest performing publicly reproducible707

agent in our analysis and serves as the reference point. Intervals centered at zero indicate statistical708

ties with the anchor while positive values indicate improvements over the reference agent.709

To compare agents we use a paired, template-level analysis. For a test agent and reference agent, we710

compute the mean template-level difference711

∆̄Test−Ref =
1

T

T∑
t=1

(
p̂
(Test)
t − p̂

(Ref)
t

)
, (4)

with a two-sided 95% t-interval taken over the T per-template differences. We deem the test agent to712

significantly outperform the reference when the confidence interval for ∆̄Test−Ref excludes zero from713

below. This paired design controls for template difficulty and site mix, enabling fair rankings even714

when overall intervals overlap.715

G.2 Detailed Agent Performance Analysis716

Figure 6 reveals key insights about agent performance comparisons. The confidence intervals show717

that while IBM CUGA performs better on average than ZetaLabs, their overlapping confidence inter-718

vals indicate this difference is not statistically significant. In contrast, IBM CUGA shows significant719

improvement over OccamAgent with non overlapping confidence intervals. This demonstrates how720

proper statistical analysis prevents overinterpretation of numerical differences and provides reliable721

agent rankings.722

We now provide comprehensive analysis of the statistical significance of performance differences723

between agents.724

IBM CUGA vs ZetaLabs While IBM CUGA performs better on average than ZetaLabs9, the725

overlapping confidence intervals and paired difference crossing zero indicate this difference is not726

statistically significant. This suggests that despite the numerical difference in average performance,727

we cannot confidently conclude that IBM CUGA systematically outperforms ZetaLabs across the728

diverse set of web automation tasks.729

IBM CUGA vs OccamAgent In contrast, IBM CUGA shows a significant improvement over730

OccamAgent [14], with non overlapping confidence intervals and a paired difference that excludes731

zero. This confirms a meaningful and statistically significant performance gap between these agents732

across the benchmark’s comprehensive task coverage.733

G.3 Implications for Agent Evaluation734

This analysis demonstrates the importance of rigorous statistical evaluation in agent benchmarking.735

Simple success rate comparisons can be misleading when differences fall within confidence intervals,736

particularly given the inherent variability in web automation tasks. The template-macro approach737

with confidence intervals provides:738

• Statistical rigor: Proper uncertainty quantification prevents overinterpretation of numerical739

differences740

• Fair comparison: Template-level pairing controls for task difficulty and domain variations741

• Practical insights: Clear distinction between meaningful performance gaps and statistical742

noise743

These findings underscore the value of the proposed evaluation framework for making reliable744

comparisons between web automation agents and identifying genuinely superior approaches in this745

challenging domain.746

9https://www.zetalabs.ai/

21

https://www.zetalabs.ai/

H WebArena Verified Hard: Detailed Analysis747

This section provides comprehensive details on the creation and validation of WebArena Verified748

Hard, a challenging subset designed to reduce evaluation cost while preserving agent ranking fidelity.749

H.1 Motivation and Requirements750

The full WebArena Verified benchmark contains 812 tasks, each requiring approximately 1 minute751

for LLM calls, environment setup, and evaluation. This results in about 13.5 hours of execution time,752

which creates barriers for iterative agent development and large-scale experimentation. Our goal was753

to create a representative subset that754

1. Reduces evaluation time by at least 80% while remaining representative755

2. Maintains agent ranking fidelity with Kendall’s τb ≥ 0.90756

3. Preserves balanced representation across sites and task types757

4. Focuses on genuinely challenging tasks to maximize discriminative power758

5. Maintains comprehensive capability coverage across all domains759

H.2 Subset Creation Methodology760

Expert-Defined Intent Categorization We utilize predefined expert categories from the WebArena761

dataset that represent core domain capabilities across different web platforms. These categories were762

curated by domain experts to ensure comprehensive coverage of essential web interaction patterns.763

Template Extraction and Site-Specific Clustering We process single-site tasks grouped by intent764

templates and complement them with all multi-site tasks that represent complex cross-platform765

scenarios. The expert categorization covers four main domains.766

Expert Category Statistics Expert-defined clustering yields a comprehensive catalogue of core767

capabilities spanning repository management, product discovery, customer analytics, and community768

interaction. We maintain balanced representation across these domains in the final subset.769

Task Difficulty Classification We employ Wilson Score confidence intervals with conservative770

parameters to identify challenging tasks771

Classification Parameters772

• Confidence level of 80% with z = 1.282773

• Minimum coverage of ≥ 4 agents per task774

• Easy threshold τeasy = 0.50 on the Wilson lower bound775

Classification Results Tasks that meet the easy threshold are excluded from consideration. We776

also include a near easy clause for cases with very high observed success under adequate coverage,777

and we report a sensitivity analysis over z and τeasy.778

Template-Based Stratified Sampling Strategy We implement a systematic sampling approach to779

ensure balanced representation across all core capabilities780

Rationale To maximize challenge and capability coverage, we focus on hard tasks while ensuring781

comprehensive representation of all expert defined categories. We exclude all single site map tasks782

due to contamination risk identified in our diagnosis and we preserve all multi site tasks to maintain783

complex cross platform evaluation scenarios.784

22

Implementation Strategy785

1. Map removal Remove all single site map tasks by ID786

2. Hard task focus Classify the remaining tasks by difficulty and retain only hard tasks787

3. Stratified sampling Apply sampling across intent templates to ensure balanced capability788

coverage while preserving all multi site tasks789

This three step process yields 137 tasks representing an 83.1% reduction from the original benchmark,790

while retaining all 48 multi site tasks and preserving broad capability coverage across sites and791

templates.792

H.3 Agent Ranking Validation793

Methodology We validate ranking preservation using template macro success rates and Kendall’s794

τb correlation795

Template Macro Success Rate For each agent, we computed:796

ŜRtmpl =
1

T

T∑
t=1

p̂t (5)

where p̂t is the success rate for template t, and T is the total number of templates.797

Ranking Correlation We compute Kendall’s τb between agent rankings on the full dataset and the798

hard subset with a target threshold of ≥ 0.90 for acceptable ranking preservation.799

Agent Completeness Analysis For ranking validation, we use four agents with complete leader-800

board coverage for reliable statistical analysis801

• IBM CUGA802

• ZetaLabs803

• OccamAgent804

• Beyond Browsing805

All agents show consistent coverage across the subset’s templates, enabling reliable template macro806

success rate comparisons.807

H.4 Results and Validation808

Ranking Preservation The hard subset achieves perfect ranking preservation with Kendall’s809

τb = 1.0000, exceeding our target threshold of 0.90. All agents maintain their exact relative810

positions.811

We provide full agent level results and confidence intervals in the artifacts accompanying this paper.812

Performance drops are proportional across agents, which indicates an unbiased increase in difficulty813

with no systematic advantage to any particular approach.814

Subset Composition and Coverage The final hard subset contains 137 tasks which is an 83.1%815

reduction from 812 tasks. It retains all 48 multi site tasks and preserves balanced representation816

across sites and core capabilities.817

We align composition with the three step construction in Section 4.5 and provide per site distributions818

in our release package to avoid duplication in the paper.819

Efficiency Gains and Statistical Properties The hard subset reduces evaluation time from about820

13.5 hours to approximately 2.3 hours while maintaining statistical rigor and capability coverage. We821

include a sensitivity analysis over sampling and difficulty thresholds in the release package.822

This reduction enables rapid iteration while preserving the benchmark’s discriminative power and823

maintaining comprehensive capability coverage.824

23

H.5 Technical Implementation825

The subset creation process employs several key algorithms and validation procedures826

Wilson Score Classification Task difficulty classification uses Wilson Score confidence intervals827

with 80% confidence level with z = 1.282, a minimum coverage of 4 agents per task, and an easy828

threshold of τeasy = 0.50 on the Wilson lower bound. We include a near easy clause for high829

performing tasks to handle edge cases where sample sizes are small but success rates are consistently830

high.831

Custom Map Filtering The map filtering logic implements our three step strategy. First remove832

all single site map tasks by ID. Second filter non map tasks to retain only hard tasks. Third add all833

multi site tasks back regardless of difficulty. This approach ensures balanced representation while834

maximizing challenge by preserving complex cross platform scenarios.835

Template Macro Score Computation Ranking validation employs template level aggregation836

where we first compute per template means for each agent by averaging success rates over all tasks837

within each template then compute the final template macro success rate as the mean over all per838

template scores. This approach provides robust agent comparisons that control for template difficulty839

variations.840

H.6 Conclusion841

The WebArena Verified Hard subset successfully achieves all design objectives842

1. Significant Efficiency Gain 83.1% task reduction (812 to 137 tasks, about 13.5 hours to843

about 2.3 hours)844

2. Perfect Ranking Preservation Kendall’s τb = 1.0000 which exceeds the 0.90 target845

3. Unbiased Evaluation All agents are affected proportionally with no systematic bias846

4. Balanced Representation Strategic sampling across domains and task types847

5. Complex Scenario Preservation All 48 multi site tasks retained for cross platform evalua-848

tion849

The subset demonstrates that careful statistical sampling can substantially reduce evaluation costs850

while preserving benchmark integrity. Researchers can confidently use this subset for rapid agent851

development and comparison, knowing that results will generalize to the full benchmark. The focus852

on hard tasks ensures maximum discriminative power which is valuable for distinguishing between853

high performing agent systems.854

I Agent Prompts855

This appendix provides the complete prompts used for agent evaluation in both the original WebArena856

benchmark and WebArena-Verified. These prompts demonstrate the key differences in output format857

specification that enable our enhanced verification protocols. The verified prompts replace free-858

form text responses with structured JSON schema output, ensuring consistent and verifiable agent859

responses.860

I.1 Response Schema861

WebArena-Verified employs a standardized JSON response schema across all sites to enable precise862

verification. The complete schema is provided below.863

864
{865
"$schema": "http://json-schema.org/draft-07/schema#",866
"title": "WebArenaVerifiedAgentResponse",867
"description": "This schema describes in detail how to structure your response for each task. Use appropriate error status868

codes when tasks cannot be completed.",869
"version": "1.0",870
"type": "object",871
"required": ["action", "status", "results"],872

24

"properties": {873
"action": {874
"description": "Select the action type that best describes what you accomplished.",875
"oneOf": [876
{877
"const": "retrieve",878
"description": "Use when you retrieved or accessed information without making changes"879

},880
{881
"const": "mutate",882
"description": "Use when you modified, created, or deleted data in the environment"883

},884
{885
"const": "navigate",886
"description": "Use when you navigated to a specific page or location"887

}888
]889

},890
"status": {891
"description": "Select the outcome status that best describes the result",892
"oneOf": [893
{894
"const": "SUCCESS",895
"description": "Use when you successfully completed the task"896

},897
{898
"const": "ACTION_NOT_ALLOWED_ERROR",899
"description": "Use when the platform doesn’t support or allow the requested operation"900

},901
{902
"const": "NOT_FOUND_ERROR",903
"description": "Use when the target entity doesn’t exist or search criteria matched no results (e.g., issue, user,904

product not found)"905
},906
{907
"const": "PERMISSION_DENIED_ERROR",908
"description": "Use when you lack authorization to perform the requested action"909

},910
{911
"const": "DATA_VALIDATION_ERROR",912
"description": "Use when input is missing or doesn’t meet requirements (e.g., invalid format, missing required913

fields)"914
},915
{916
"const": "UNKNOWN_ERROR",917
"description": "Use when an unexpected failure occurs that doesn’t fit other error categories"918

}919
]920

},921
"results": {922
"description": "Populate with requested data only when action is ’retrieve’. For navigation/mutation tasks or any error923

status, set to null",924
"oneOf": [925
{926
"type": "null"927

},928
{929
"type": "array",930
"description": "All items in the array must be of the same type.",931
"items": {932
"oneOf": [933
{ "type": "null", "description": "Use for empty results" },934
{ "type": "boolean", "description": "Use for yes/no or true/false answers" },935
{ "type": "number", "description": "Use for counts, measurements, numeric IDs, or currency values" },936
{ "type": "string", "description": "Use for text responses, names, or descriptions" },937
{938
"type": "object",939
"description": "Use when the task explicitly asks to return structured data with named values. When returning940

multiple objects, all objects must have the same keys. Use null for missing values.",941
"examples": [942
{ "phone_number": 123, "address": "123 street" },943
{ "phone_number": 555, "address": "678 street" }944

]945
}946

]947
}948

}949
],950
"default": null951

},952
"error_details": {953
"type": "string",954
"description": "Required detailed explanation when status indicates failure. Explain what went wrong, why it failed,955

and what was attempted. Set to null for SUCCESS status.",956
"maxLength": 500957

}958
},959
"allOf": [960
{961
"if": {962
"not": {963
"properties": {964

25

"action": { "const": "retrieve" },965
"status": { "const": "SUCCESS" }966

}967
}968

},969
"then": {970
"properties": {971
"results": {972
"type": "null"973

}974
}975

}976
},977
{978
"if": {979
"properties": {980
"status": {981
"not": { "const": "SUCCESS" }982

}983
}984

},985
"then": {986
"required": ["error_details"]987

}988
}989

]990
}991992

I.2 Site Prompts993

To keep the appendix concise, we provide one short verified prompt excerpt and list the full prompt994

files in the repository. Verified prompts instruct the agent to return JSON that conforms to the schema995

above. Original prompts use site specific free form formats.996

Fol low t h e t a s k i n t e n t u s i n g t h e w e b s i t e .997

Re tu rn JSON t h a t conforms t o t h e schema : a c t i o n , s t a t u s , r e s u l t s , e r r o r _ d e t a i l s .998

Do n o t i n c l u d e e x t r a t e x t .999

1000

I.3 Key Differences1001

The primary differences between original and verified prompts are:1002

1003

1. Output Format: Original prompts use free-form text with specific answer patterns (e.g.,1004

“‘Answer:42“‘), while verified prompts require structured JSON responses conforming to1005

a standardized schema.1006

2. Response Validation: Verified prompts reference the complete JSON schema, enabling1007

automatic validation of agent responses and improved error detection.1008

3. Consistency: The unified response format across all sites in verified prompts ensures1009

consistent evaluation methodology, whereas original prompts have site-specific formatting1010

requirements.1011

4. Schema Complexity: The verified response schema supports structured data types including1012

arrays, objects, and detailed error reporting, providing richer information than simple text1013

answers.1014

These improvements enable the enhanced verification protocols described in Section 3 and contribute1015

to the increased reliability demonstrated in our experimental evaluation.1016

1017

References1018

[1] Introducing OSWorld-Verified. https://xlang.ai/blog/osworld-verified, .1019

26

[2] Introducing SWE-bench Verified. https://openai.com/index/introducing-swe-bench-verified/, .1020

[3] Léo Boisvert, Megh Thakkar, Maxime Gasse, Massimo Caccia, Thibault Le Sellier De Chezelles,1021

Quentin Cappart, Nicolas Chapados, Alexandre Lacoste, and Alexandre Drouin. WorkArena++:1022

Towards Compositional Planning and Reasoning-based Common Knowledge Work Tasks.1023

http://arxiv.org/abs/2407.05291, February 2025.1024

[4] Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Samuel Stevens, Boshi Wang, Huan Sun, and1025

Yu Su. Mind2Web: Towards a Generalist Agent for the Web. In Thirty-Seventh Conference on1026

Neural Information Processing Systems Datasets and Benchmarks Track, November 2023.1027

[5] Alexandre Drouin, Maxime Gasse, Massimo Caccia, Issam H. Laradji, Manuel Del Verme,1028

Tom Marty, Léo Boisvert, Megh Thakkar, Quentin Cappart, David Vazquez, Nicolas Chapados,1029

and Alexandre Lacoste. WorkArena: How Capable Are Web Agents at Solving Common1030

Knowledge Work Tasks?, July 2024.1031

[6] Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and1032

Karthik Narasimhan. SWE-bench: Can Language Models Resolve Real-World GitHub Issues?,1033

November 2024.1034

[7] Su Kara, Fazle Faisal, and Suman Nath. WABER: Evaluating Reliability and Efficiency of Web1035

Agents with Existing Benchmarks. In ICLR 2025 Workshop on Foundation Models in the Wild,1036

March 2025.1037

[8] Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Chong Lim, Po-Yu Huang,1038

Graham Neubig, Shuyan Zhou, Ruslan Salakhutdinov, and Daniel Fried. VisualWebArena:1039

Evaluating Multimodal Agents on Realistic Visual Web Tasks, June 2024.1040

[9] Ido Levy, Ben Wiesel, Sami Marreed, Alon Oved, Avi Yaeli, and Segev Shlomov. ST-1041

WebAgentBench: A Benchmark for Evaluating Safety and Trustworthiness in Web Agents,1042

August 2025.1043

[10] Xiao Liu, Tianjie Zhang, Yu Gu, Iat Long Iong, Song XiXuan, Yifan Xu, Shudan Zhang, Hanyu1044

Lai, Jiadai Sun, Xinyue Yang, Yu Yang, Zehan Qi, Shuntian Yao, Xueqiao Sun, Siyi Cheng,1045

Qinkai Zheng, Hao Yu, Hanchen Zhang, Wenyi Hong, Ming Ding, Lihang Pan, Xiaotao Gu,1046

Aohan Zeng, Zhengxiao Du, Chan Hee Song, Yu Su, Yuxiao Dong, and Jie Tang. VisualAgent-1047

Bench: Towards Large Multimodal Models as Visual Foundation Agents. In The Thirteenth1048

International Conference on Learning Representations, October 2024.1049

[11] Christopher Rawles, Sarah Clinckemaillie, Yifan Chang, Jonathan Waltz, Gabrielle Lau, Mary-1050

beth Fair, Alice Li, William E. Bishop, Wei Li, Folawiyo Campbell-Ajala, Daniel Kenji Toyama,1051

Robert James Berry, Divya Tyamagundlu, Timothy P. Lillicrap, and Oriana Riva. Android-1052

World: A Dynamic Benchmarking Environment for Autonomous Agents. In The Thirteenth1053

International Conference on Learning Representations, October 2024.1054

[12] Joar Skalse, Nikolaus Howe, Dmitrii Krasheninnikov, and David Krueger. Defining and1055

Characterizing Reward Gaming. Advances in Neural Information Processing Systems, 35:1056

9460–9471, December 2022.1057

[13] Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing1058

Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, Yitao Liu, Yiheng Xu, Shuyan Zhou, Silvio1059

Savarese, Caiming Xiong, Victor Zhong, and Tao Yu. OSWorld: Benchmarking Multimodal1060

Agents for Open-Ended Tasks in Real Computer Environments. In The Thirty-eight Conference1061

on Neural Information Processing Systems Datasets and Benchmarks Track, November 2024.1062

[14] Ke Yang, Yao Liu, Sapana Chaudhary, Rasool Fakoor, Pratik Chaudhari, George Karypis, and1063

Huzefa Rangwala. AgentOccam: A Simple Yet Strong Baseline for LLM-Based Web Agents,1064

May 2025.1065

[15] Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik R. Narasimhan. {τ}-bench:1066

A Benchmark for \underline{T}ool-\underline{A}gent-\underline{U}ser Interaction in Real-1067

World Domains. In The Thirteenth International Conference on Learning Representations,1068

October 2024.1069

27

[16] Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,1070

Tianyue Ou, Yonatan Bisk, Daniel Fried, Uri Alon, and Graham Neubig. WebArena: A Realistic1071

Web Environment for Building Autonomous Agents, April 2024.1072

[17] Yuxuan Zhu, Tengjun Jin, Yada Pruksachatkun, Andy Zhang, Shu Liu, Sasha Cui, Sayash1073

Kapoor, Shayne Longpre, Kevin Meng, Rebecca Weiss, Fazl Barez, Rahul Gupta, Jwala1074

Dhamala, Jacob Merizian, Mario Giulianelli, Harry Coppock, Cozmin Ududec, Jasjeet Sekhon,1075

Jacob Steinhardt, Antony Kellerman, Sarah Schwettmann, Matei Zaharia, Ion Stoica, Percy1076

Liang, and Daniel Kang. Establishing Best Practices for Building Rigorous Agentic Benchmarks,1077

July 2025.1078

1079

28

	Introduction
	Related Work
	Systematic Diagnosis of the WebArena Benchmark
	Audit Protocol
	Task Specification and Evaluation Mechanisms
	Knowledge Contamination

	WebArena Verified
	Task Specification Refinement and Misalignment Resolution
	Structured Response Protocol
	Robust Evaluation Framework
	Rigorous Evaluation Metrics
	WebArena Verified Hard: A Representative Subset

	Experiments
	Experimental Methodology
	Results and Discussion

	Limitations, Ethics, and Broader Impact
	Conclusion
	Detailed Experimental Analysis
	Comprehensive Error Analysis
	Comprehensive Agent Behavior Analysis
	Extended Verification Framework Analysis
	Extended Methodological Contributions
	Comprehensive Limitations Analysis
	Future Research Directions
	Naive Baseline Detailed Scores

	Analysis Methodology
	Baseline Agent Methodology
	Contamination Detection Methodology

	WebArena Issues
	Structured Response Protocol Details
	Response Schema Specification
	Complete JSON Schema
	Status Code Specifications
	Implementation Examples
	Results Field Design
	Evaluation Framework Benefits
	Implementation Considerations
	Schema Validation
	Design Rationale

	Reporting Metrics: Mathematical Specifications
	Site-Stratified Template-Macro
	Agent Comparison (Paired, Template-Level)
	Interpretation and Units of Inference

	Agent Performance Comparison Analysis
	Statistical Methodology
	Detailed Agent Performance Analysis
	Implications for Agent Evaluation

	WebArena Verified Hard: Detailed Analysis
	Motivation and Requirements
	Subset Creation Methodology
	Agent Ranking Validation
	Results and Validation
	Technical Implementation
	Conclusion

	Agent Prompts
	Response Schema
	Site Prompts
	Key Differences

