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Abstract

Autonomous web agents increasingly operate in multi-step browser workflows, yet
widely used benchmarks can misestimate performance due to underspecified goals
and brittle checkers—challenges characteristic of normal benchmark maturation
rather than flaws in the paradigm. We present WebArena Verified, a reproducible
re-evaluation of WebArena that preserves its containerized environments while
strengthening measurement. We audit all 812 tasks, repair misaligned evaluations
and clarify ambiguous instructions; replace substring matching with type- and
normalization-aware comparators; verify backend state for state-changing tasks;
and adopt a structured JSON schema with explicit status codes for deterministic
scoring. We provide improved results reporting with template-level macro averages,
95% confidence intervals, and failure-mode breakdowns. We also introduce We-
bArena Verified Hard, a 137-task subset that retains difficult cases while reducing
evaluation cost by 83%. On the baseline agent we evaluated, it reduces false nega-
tives by approximately 11%. WebArena Verified remains drop-in compatible with
minimal change to existing agents, supporting faithful and comparable progress.
We release our code, data, and evaluation tools in our public repository.

1 Introduction

Autonomous web agents increasingly execute complex web workflows. These workflows require dy-
namic navigation and extraction of both visual and textual information. As adoption grows, rigorous
and reproducible evaluation is indispensable for progress. Existing benchmarks lay a solid foundation
for measuring these capabilities. For instance, WebArena [[16] offers self-hosted, containerized sites
that emulate real-world environments, permitting task execution through standard browsers. The de-
sign of WebArena inspired a family of follow-up benchmarks—VisualWebArena [8]], Mind2Web [4]],
WorkArena and WorkArena++ [5 3], OSWorld [13], and AndroidWorld [[11]—each expanding the
scope of realistic tasks and interface modalities. However, widespread adoption has revealed sys-
tematic evaluation errors that undermine measurement validity [17, |8]. The benchmarks commonly
employ underspecified success criteria, allowing disparate interpretations of task completion. More-
over, brittle evaluation mechanisms yield noisy or inconsistent metrics. Zhu et al. [[17] conducted
a recent audit of 37 public agent-benchmark suites—covering 13 web-interaction domains—that
revealed pervasive quality issues that erode confidence in reported results. For example, a trivial
"empty-output” agent achieved 38% success on 7-bench [[15], outperforming GPT-40-based agents
on intentionally impossible tasks, and WebArena suffered from brittle string matching that inflated
success rates by 1.4-5.2% [17].

These specific issues reflect broader patterns in the typical benchmark maturation, observed across
machine learning benchmarks, yet they must be addressed. Without robust, transparent evaluation,
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researchers struggle to identify genuine performance gaps, increasing the risk of over-optimistic
conclusions, benchmark-specific adaptations, and misleading comparisons while substantive defi-
ciencies remain unaddressed. These reliability concerns have sparked efforts to improve evaluation
quality through principled debugging and systematic verification [2, |1, 3]. This pattern of “veri-
fied” re-releases demonstrates the value of strengthening evaluation mechanisms while preserving
benchmark utility and adoption. For example, SWE-bench Verified agents achieved roughly doubled
performance once flawed tasks were removed [2].

We introduce WebArena Verified, an update to WebArena that preserves the original containerized
environments while improving evaluation reliability. Our approach re-verifies task definitions,
reference answers, and evaluators using deterministic evaluation with explicit success criteria. We
replace brittle string matching with backend state verification, standardize outputs to a structured
JSON schema, and report template-level macro-averages with 95% confidence intervals, aligned
with recent best-practice guidelines [17] (§4). By enforcing structured JSON outputs, WebArena
Verified removes reliance on LLM-as-judge evaluation and enables deterministic scoring under fixed
seeds and reset environments through direct state verification. We quantify residual failure modes
from structured outputs in §3] including nonconforming JSON and contradictory fields, and report
parse failure rates before and after schema adoption along with the fraction of trials auto recovered
by our validator. In practice, using WebArena Verified consists of using the updated task set with
our evaluator. Agents only need to format their outputs according to the provided JSON schema.
We created WebArena Verified through a systematic audit of all 812 tasks, combining structured
human verification by four researchers with trajectory analysis from seven high-performing agents
(selected from the top 10 submissions on the official leaderboar(ﬂ). Our verification process employed
defined annotation protocols with inter-rater reliability checks alongside analysis of publicly available
agent trajectories to identify evaluation issues. Our audit revealed systematic evaluation errors: false
negatives primarily caused by ambiguous task definitions, and false positives from misaligned task
definitions and brittle string matching. We address these issues by fixing 46 tasks with reference
alignment problems and 211 tasks with ambiguous definitions (Table [3). We replace all string
matching, page content and DOM-based evaluation with robust, data-type-aware evaluators that
verify backend state through API calls and database queries (e.g., recognizing that "January" and
"01" are both valid values for month data). For unachievable tasks, we introduce explicit status codes
to replace the problematic “N/A” response [17]. Building on these findings, we introduce WebArena
Verified Hard, a 137-task subset that preserves ranking fidelity while reducing evaluation cost by
83.1%. From an evaluation design perspective, tasks that most agents reliably solve yield low-entropy
outcomes and limited information gain about relative capability; prioritizing difficult, discriminative
tasks improves sample efficiency and yields more faithful estimates of performance under realistic
compute budgets. We select tasks by difficulty using leaderboard outcomes anchored at the top
reproducible agent, retain all multi-site tasks, and apply stratified sampling across all intent templates
to maintain capability coverage. Across evaluated agents, performance drops proportionally without
rank reversals, indicating greater discriminative power at substantially lower evaluation cost (§4.5).
We make the following contributions:

* WebArena Verified. A systematically improved benchmark that addresses evaluation errors in 257
tasks through reference answer alignment (46 tasks) and task definition clarification (211 tasks).
We replace brittle string matching with backend state verification via REST API calls and database
queries, and provide standardized JSON response schemas that replace LLM-as-judge evaluation
with schema validated scoring and direct state checks that improve determinism. We also treat
nonconforming JSON as a distinct error category and report before and after parse failure rates
with auto recovery statistics (§9).

* Comprehensive audit of WebArena benchmark. Systematic audit of all 812 tasks employing
defined annotation protocols with inter-rater reliability checks alongside trajectory analysis from
seven high-performing agents, identifying systematic evaluation errors including false positives
from misaligned task definitions and false negatives from ambiguous specifications (§3).

* WebArena Verified Hard. A curated 137-task subset selected by task difficulty using performance
outcomes from the official WebArena leaderboard that preserves ranking fidelity while reducing
computational cost by 83.1%, retaining 100% of multi-site tasks and applying stratified sampling
across intent templates (§4.5).

*https://webarena.dev/
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* Empirical validation and baseline scores. We demonstrate that verified scoring reduces false
positives; we establish baseline performance with a leading agent (OpenAl operator) and quantify
the impact of improved evaluation (§5).

2 Related Work

Evaluation reliability remains a central bottleneck in agent benchmarking. Unlike static natural
language processing (NLP) benchmarks where curation and labeling often suffice, realistic agent
tasks require reproducible test environments, deterministic state resets, and programmatic verifiers.
These requirements increase engineering complexity and human effort [13| 3]]. Zhu et al. [17]]
introduced the Agentic Benchmark Checklist (ABC) and applied it to a comprehensive audit of
prominent open source benchmarks, finding pervasive failures in task validity, outcome validity, and
reporting. Web evaluations are especially vulnerable to permissive string matching and page level
checks that inflate reported success, with WebArena showing inflated rates of 1.4-5.2% [17, [16].

Verified and updated benchmarks. These systematic evaluation issues have driven researchers
to develop verified benchmark versions that address reliability problems in existing evaluation
frameworks. SWE-bench Verified 6] addresses task-test misalignment through human verification of
GitHub issues, ensuring solvability and proper evaluation criteria. On this refined benchmark, agents
achieved roughly doubled performance, demonstrating the impact of measurement reliability issues.
OSWorld-Verified [13] tackles infrastructure reliability and task specification issues through systematic
review of over 300 feedback items addressing evaluation inconsistencies and environmental setup
problems. Boisvert et al. [3] developed WorkArena++, extending the original WorkArena benchmark
[S]] with enhanced verification protocols that address compositional task evaluation while maintaining
execution-based validation.

WebArena ecosystem. Zhou et al. [16]] introduced WebArena as a self-hosted multi-domain en-
vironment for realistic web-based agent evaluation. Koh et al. [8] developed VisualWebArena as
the multimodal extension, broadening construct coverage to tasks requiring visual grounding while
maintaining execution-based checks. While VisualWebArena introduces new evaluators, it inherits
WebArena’s evaluation methodology including LLM-as-a-judge and string matching, and does not
address systematic measurement reliability. Several recent efforts have targeted specific aspects
through focused improvements. WebArena-Lite [10] reduces scope to 165 tasks with 39 task-level
corrections while preserving the original evaluation methodology. Other extensions like WABER [7]]
and ST-WebAgentBench [9] focus on robustness and safety testing without addressing systematic
evaluation reliability issues.

Despite extensions to WebArena such as WebArena-Lite [[10], a verified version that covers the full
task set remains missing. The next section introduces our approach.

3 Systematic Diagnosis of the WebArena Benchmark

Building on WebArena [[16], we conduct a systematic audit of the full 812 tasks across all sites using
the original evaluation harness. We apply the Agentic Benchmark Checklist ABC framework [[17] to
organize findings across task validity, outcome validity, and reporting. Table[I|summarizes categories
and counts, and the next subsection details the audit protocol.

Address Information

Billing Address Edit Shipping Address Edit
|456 Oak Avenue Apartment 5B New York 100 Miller Sarah Miller

327 Maple Avenue 321 Maple Avenue
Oakland, California, 94602 Oakland, California, 94602
United States United States
T:5107819902 T:5107819902

Figure 1: Coarse page content evaluation lacks field specificity. In task ID 538, the harness passes if
the address appears anywhere on the page, which ignores field specificity (full-size in Appendix .
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3.1 Audit Protocol

We combine an automated detector with targeted use of agent logs and focused human annotation.
We analyze trajectories from seven top leaderboard agents and flag tasks where all agents fail, which
indicates a likely evaluator or reference issue. For information retrieval tasks, we verify backend state
by querying the site databases and comparing to the reference answers. For task ambiguity only, we
use double annotation with adjudication. Four annotators completed two calibration rounds, and we
report unweighted Cohen’s kappa at the task level with a point estimate of 0.83 and a 95 % bootstrap
confidence interval of [0.81, 0.85]. The automated detector covers permissive string matching,
context-free evaluation, and unachievable tasks, and we validated detector precision on a random
sample, then folded errors into the codebook. All audits ran on the official self-hosted site snapshots
with a fixed harness revision and seeds(See Appendix [B]for details). We assign issue labels under
the ABC framework taxonomy and use these labels to quantify issue prevalence and to guide the
redesign of evaluation mechanisms.

Table 1: Issue categories identified through systematic analysis of 812 WebArena tasks. Except for
Reference Alignment, counts reflect existence, not prevalence. For each flagged task, at least one
trajectory can be mis-scored by the original evaluator. Actual incidence depends on agent behavior.
Categories may overlap, and a single task can exhibit multiple issue types. Task descriptions are
shortened for illustration. ID refers to the task identifier.

Category Tasks  Problem Illustration

Task specification issues

Reference Alignment 46 ID 102 checks byteblaze/ally-syntax, although the instruction targets
allyproject/allyproject.com. This misaligns the reference and mis-scores tra-
jectories.

Task Ambiguity 211 ID 358 instructs “Show me the shipping method...” and requires an exact string match.
ID 284 instructs “Show the least expensive shoe storage. ..” requires URL navigation
alone.

Evaluation mechanism issues

Permissive String Matching 340 ID 40 accepts any output that contains “Yes”. For example, “Yes, .... The final
answer is No” (when a reasoning model is used). This over-credits partial matches and
semantically invalid outputs.

Context-Free Evaluation 92 ID 538 passes when the address appears in the customer name field rather than the
billing address (Figurem), ignoring field specificity.
Unachievable Tasks 36 The evaluator credits “N/A” without verifying the adequacy of the agent attempt. This

conflates correct detection with early abandonment (FigureE}.

Invariant Violations 812 Across sites, the evaluator checks only whether the target condition is met and does not
verify actual agent actions. A retrieval task can pass even if the agent deletes existing
data during exploration, since collateral changes are not checked.

Reporting issues

Reporting Gaps 812 Results lack confidence intervals, significance tests, or variance estimates, which hinders
reliable system comparisons and interpretation of performance differences.

3.2 Task Specification and Evaluation Mechanisms

Task Specification Issues. We examine tasks along evaluation alignment and interpretation variabil-
ity [17]. We find 46 tasks with misaligned criteria through spec-to-content comparison, and 211 tasks
with ambiguous intent where the instructions can be reasonably interpreted in multiple ways (Table [I).
These issues mainly create false negatives and motivate clearer intents and aligned references.

Evaluation Precision. Two mechanisms show limited precision: string matching (must_include)
accepts unintended partial matches, and page content checks (program_html and locator=") that
ignores field context [17] (Figure[I). Permissive matching affects 340 tasks. Of these, 164 check UI
text via locator outerTextﬁ and 176 check agent responses directly. Direct response checks are
most problematic. For example, when expecting “2,” the evaluator accepts “2 000.” page content
issues affect 92 tasks where the evaluator do not distinguish identical strings in different fields.

JouterText extracts visible text content of a DOM element, including nested elements.
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Figure 2: Unachievable task evaluation patterns across sites and agents. These plots show that the
evaluator credits some “N/A” runs with limited exploration that varies by agent. (a) For each site
we plot the distribution of normalized steps R = s/3 among successful feasible tasks where R=1
with shaded IQR. Credited “N/A” runs are overlaid (x marks). Marks in the red-shaded area are
attempts with inadequate exploration where R < 7. Only attempts above the threshold dashed line
are considered adequate where R > 7 and 7 = 0.5. Minimum step thresholds are 3 for GitLab,
Reddit, and Admin, and 2 for Map and Shopping. Sites are ordered by 5. (b) For each agent we
report the estimated over-acceptance rate cvgver = |Ainaaq|/|U| where Ajpagq = {a € A: Ry < 7}
with 95 % Wilson CIs. Hollow markers indicate £=0.

Evaluation of Unachievable Tasks. WebArena contains unachievable tasks. The official harness
credits a final answer of “N/A,” or relies on an LLM judge for other responses. This induces
asymmetric grading with high recall for exact “N/A” strings but low precision, because the harness
cannot separate justified infeasibility after search from premature or strategic “N/A” without sufficient
exploration. Further, prior work shows such judges may accept empty or invalid answers and are
vulnerable to reward hacking [[17, [12]] when a proper evaluation of the judge is not in place. We
analyze leaderboard traces on the 36 Unachievable tasks and examine exploration adequacy for
accepted “N/A” answers, and show the results in Figure[2] To control for site difficulty, we normalize
steps by the site’s median steps on successful feasible tasks, g, and define R = s/3ge. An
accepted “N/A” is adequate if R > 7, where 7 = 0.5, validated through manual verification of all
intent templates. We further report an estimated over-acceptance rate owver = |Ainadq|/|U |, Where
Ainagq = {a € A: R, < 7} are accepted inadequate attempts and U is the set of all Unachievable
attempts, with 95 % Wilson CIs. Most credited “N/A” answers follow non-trivial search, but the
evaluation still over-credits minimal exploration with clear agent variation. However, the limited
representation of Unachievable tasks in the benchmark (less than 5%) may underestimate the broader
impact of this evaluation bias that might affect the agent’s performance in real-world settings.

Systemic Invariant Violation Risk. Outcome-only checks ignore broader state transitions in stateful
environments, enabling “success” with harmful side effects. For example, GitLab tasks can pass even
if agents delete existing issues or modify unrelated settings while meeting the target condition. This
is a specification-gaming risk [12]] that conflates completion with safe execution.

Table 2: We report success rates SRy, and SR for knowledge-only baseline agents. SRy, is
computed on string-matching tasks without URL verification with n=176. SR is computed on the
full benchmark with n=812. These results show that agents are credited on answers from LLM
knowledge without attempting web interaction, which confirms contamination risk.

Agent SRyuin SR
Knowledge-onlyciade somet4 5.1 %  1.1%
Knowledge-onlycpr.s 227%  4.9%

3.3 Knowledge Contamination

We identify tasks that can be completed without web interaction using only parametric knowledge,
which contaminates measurement of web navigation skill. These represent tasks that check agent
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responses via substring matching without URL verification, and account for 21.7% (176/812) of
the benchmark. To quantify contamination, we created knowledge-only baselines using GPT-5 and
Claude Sonnet 4 that generate answers from task intents alone without any browsing. Methods and
prompts appear in Appendix [C] These baselines achieved non-negligible success rates (Table[2): GPT-
5 reached 22.7% on vulnerable tasks and 4.9% overall, while Claude Sonnet 4 achieved 5.1% and
1.1% respectively. The majority (62%) of contaminated tasks involve general knowledge questions
like “Which US states border Connecticut?” (ID 89) that test factual recall rather than web navigation.
GPT-5’s higher performance stems from extensive reasoning that, combined with permissive substring
matching, enables success on tasks like “Where is the nearest gas station near CMU?” (ID 237)
without accessing any location data. This behavior can emerge when agents encounter navigation
difficulties and subsequently fall back to leveraging pre-trained parametric knowledge.

4 WebArena Verified

Building on our analysis in Section [3| we present WebArena Verified, an enhanced version of the
WebArena benchmark that addresses the identified evaluation challenges while preserving comprehen-
sive task coverage and realistic web environments. We refine task specifications, adopt a structured
response protocol, and use programmatic state verification with network activity checks. Table[3]
summarizes these changes and links them to the diagnosis.

Table 3: WebArena Verified improvements mapped to diagnosis issues across all 812 tasks in the
WebArena benchmark.

Improvement Tasks  Description

Task specification improvements

Reference Alignment 46 Fixed misaligned evaluation criteria where evaluators checked incorrect targets.
Addresses: Reference Alignment issues from diagnosis.

Task Ambiguity Resolution 211 Reclassified tasks by dominant evaluation target to eliminate interpretation vari-
ability. Addresses: Task Ambiguity issues from diagnosis.

Structured Response Protocol 812 Enforced JSON schema with action/status/results fields; eliminated parse failures
from ambiguous formats. Addresses: Task Ambiguity issues from diagnosis.

Evaluation mechanism improvements

Type-Aware Exact Matching 340 Replaced substring matching with exact/normalized comparators to prevent false
positives from partial matches. Addresses: Permissive String Matching issues
from diagnosis.

Backend State Verification 503 REST API validation replaces DOM-dependent checks and context-free evalua-
tion; prevents false positives from Ul manipulation. Addresses: DOM-dependent
Eval and Context-Free Eval issues from diagnosis.

Explicit Status Reporting 36 Required explicit status codes vs catch-all “N/A”; distinguishes genuine detec-
tion from strategic abandonment. Addresses: Unachievable Tasks issues from
diagnosis.

Network Activity Monitoring 812 Activity verification ensures agents genuinely interact with target websites rather

than relying on cached knowledge. Addresses: Unachievable Tasks and Invariant
Violations issues from diagnosis.

These modifications establish a more robust evaluation framework that reduces both false positives
and false negatives and supports more consistent scoring across runs and environments. Count
provenance for each row in Table [3]is documented in the appendices with scripts and audit tables.

4.1 Task Specification Refinement and Misalignment Resolution

We audited all tasks using the protocol in Section [3.1]and revised instructions to match the quantities
verified by the test harness. We applied minimal edits that preserve task difficulty and coverage. We
rewrote instructions to name the evaluation target explicitly and to remove multiple valid interpreta-
tions. For example, we update prompts allowing multiple interpretations such as “Show me the order
count per month” with “Get the order count per month”, and define output format when needed. For
example appending “Use the month as key for each count value.” to the intent. We corrected target
identifiers and expected values so that evaluation measures the stated objective. Appendix [B]lists
every change with before and after instruction text, the corrected checker target and expected value.
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4.2 Structured Response Protocol

We replace free form outputs with a structured protocol that specifies four fields action, status,
results, and optional error_details. This makes evaluation deterministic and reduces ambiguity
while keeping task difficulty unchanged because output format governs presentation rather than
content. Each field has a simple role. action states the intent retrieve, mutate, or navigate.
status reports the agent status (success or a predefined error type). results contains typed outputs
for retrieval tasks otherwise null. error_details allows an explanation when status is not
SUCCESS for analysis only. (See Appendix [E] for details). In practice agents must return valid JSON
that conforms to the schema in Figure[5] This eliminates parsing failures from ambiguous formats
and enables deterministic evaluation without the need of LLM-as-a-judge to check simple output like
durations or dates that the original benchmark used LLMs for.

4.3 Robust Evaluation Framework

Our evaluation framework introduces the following improvements that address core issues identified
in Section [3| Type-Aware Exact Matching: We replace substring matching with exact comparison
plus semantic normalization. This eliminates false positives by disallowing partial matches. We
normalize common types such as dates, currencies, and coordinates so that variants like “$1,000.00”
and “1000 USD” compare correctly allowing flexibility while enforcing exactness without using
an LLM judge. This change removes LLM-based judging for 118 tasks that used fuzzy matching
and reduces computational overhead while improving reliability. Backend State Verification: For
mutation tasks, we validate state changes via REST API or direct database queries rather than DOM
inspection to measure genuine system modifications and reduce false positives from UI manipulation.
Agent Activity Verification: Network tracing provides evidence of authentic task engagement. Using
Playwright network monitoring, we require at least one request to the task’s target domain and a
valid session. This discourages cached answers such as responding to “Which US states border
Vermont” without visiting the map site. Caches reset between tasks to avoid cross-task contamination.
Action-Aware Intent Verification: The structured action field lets us assess task understanding
rather than only the final outcome. An agent may navigate to the correct URL yet fail to extract the
requested value when the task expects navigation only. Under a URL-only check this could be marked
as success. With the structured protocol the agent must declare the intended action or an explicit
failure status. This separates intent understanding from execution quality, prevents false positives,
and improves analysis. It also creates potential for partial credit, which we do not explore here and
leave for future work. Unachievable Task Handling: We disallow generic N/A returns. Agents
must set a specific status that reflects the failure mode, for example NOT_FOUND_ERROR when the
requested item is absent or ACTION_NOT_ALLOWED_ERROR when the operation is forbidden. This
requirement improves diagnosability and prevents strategic abandonment from inflating success rates,
as defined in Figure[5] For URL matching we keep the original evaluation but require an explicit
navigate action and a SUCCESS status.

4.4 Rigorous Evaluation Metrics

The simple success rate (SR) metric in the original benchamrk [16] conflates templates with different
difficulty levels and frequencies, masking site-specific behavior patterns despite relatively balanced
template distribution (Gini = 0.175) [17]. We use templates as the unit of analysis, comparing agents
on identical template sets. This approach follows established best practices for agentic benchmarks
[[17] and recent execution-based evaluations [8} [13} 11} |5]. This template-based grouping enables
direct uncertainty estimation from observed outcomes while maintaining unchanged evaluation costs.

Our primary metric is the template—macro success (SRymp1), defined as the mean of per-template
success rates,

T

—~ 1

SRtmpl = T E SRt7 (1)
t=1

where SR; is the success rate for template ¢, and 7" is the total number of templates. We report
two-sided 95% t-intervals computed over templates the unit of inference. For agent comparisons, we
employ a paired template-level analysis anchored at the best-performing agent. The template-macro
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approach enables rigorous statistical comparison between agents while controlling for task difficulty
variations. See Appendix [G]for more details.

4.5 WebArena Verified Hard: A Representative Subset

The full WebArena benchmark contains 812 tasks. Measured wall clock time per run is median 13.2
hours with an interquartile range of 12.8 to 13.9 hours across sites based on our logs. This evaluation
cost limits extensive experimentation and hyperparameter exploration. To address this challenge,
we introduce WebArena Verified Hard, a carefully curated subset that reduces evaluation cost while
preserving discriminative power and representativeness.

Filtering Methodology We construct the subset with a preregistered three step process that balances
contamination control, difficulty, and coverage. First, we remove contamination sensitive tasks
identified in our diagnosis in §3] We exclude 109 single site map tasks where agents can succeed
using parametric knowledge without genuine web interaction. We define contamination as success
without required network actions or state changes and we confirm elevated success under network
disabled runs. Second, we label difficulty using the Wilson lower bound on success with 95%
confidence and a minimum of four agents per task. Tasks with lower bound at least 7¢sy = 0.50
are easy. We include a near easy rule for tasks with p > 0.85 and ng,s > 5 or unanimous success
with ngps > 4. Appendix [H| gives the exact formula and shows a sensitivity grid over-confidence
and thresholds with the fraction of tasks that flip class. Third, we apply stratified sampling across
159 intent templates to maintain coverage. We retain all hard tasks and preserve all 48 multi-site
tasks to keep cross-platform scenarios. This yields 137 tasks which is an 83.1% reduction from the
full benchmark. We validate that the subset preserves ranking fidelity using template level macro
success over four agents with complete leaderboard results IBM CUGA, ZetalLabs, OccamAgent,
and Beyond Browsing. Despite increased difficulty, we observe Kendall’s 7, = 1.00 between full
benchmark and subset rankings with a bootstrap confidence interval reported in Appendix [H]

5 Experiments

5.1 Experimental Methodology

Benchmarks. We evaluate four benchmark variants. WebArena Verified is our primary contribution
with enhanced verification protocols in Section[3] WebArena Verified Hard is a systematic hard sub-
set that improves efficiency. WebArena is the original 812 task benchmark across five environments.
WebArena Hard is the original hard subset with matching task IDs for direct comparison.

Baselines. We evaluate the OpenAl Operatmﬂ as our primary baseline using original prompts
with temperature O.(f] and a 40 step budget based on Section [3| For WebArena Verified, we adapt
prompts to the structured JSON schema while keeping interaction patterns unchanged. We run one
seed per agent without retries on a Chromium based browser in headless mode using the agent eval
harness and enforce the same step budget across variants. Full configuration and prompts appear in

Appendix [C]

Evaluation Metrics. We report simple success rate SR for the original WebArena using the original
harness following Zhou et al. [16]. For WebArena Verified we report template macro success SRmpl
defined in Sectiond.4] Values across the two benchmarks are not directly comparable. We include 95

percent confidence intervals and describe computation in Appendix [A] This choice follows current
best practices for agentic benchmarks [17]].

5.2 Results and Discussion

The result of our main baseline experiment is show in Table f] Metrics differ across the two
benchmarks, so we focus on patterns that reflect evaluation quality and ranking stability.

WebArena Verified enforces task grounded interactions. The naive baseline ensemble records
successes under the original benchmark that do not meet task grounded interaction requirements.
Under WebArena Verified these wins drop to 0.0% because network activity verification requires task

*https://openai.com/index/introducing- operator/
5https ://cdn.openai.com/cua/CUA_eval_extra_information.pdf
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Table 4: Agent performance on the original benchmark and WebArena Verified. The original reports
success rate in percent. Verified reports template—macro success in percent with 95% t confidence
intervals. Full settings appear in Appendix [C]

Agent WebArena (Original) WebArena-Verified

Full Hard Full Hard
OpenAl Operator 41.0 % 312 % 49.0% + 4.8% 33.2% + 6.7%
Naive Baseline Ensemble  13.8 % 0.0% 0.0% =+ 0.0% 0.0% =+ 0.0%

relevant web interactions and filters incidental signals. This check removes trivial contamination
without increasing evaluation complexity. However, it does not address all failure modes. For
example, an agent can navigate to the correct Wikipedia page yet respond from model memory
without grounding in page content. Appendix reports the naive baseline ensemble breakdown.

Structured responses reduce false negatives. We standardize retrieval outputs with a schema
and type aware exact match, which prevents correct answers from being rejected due to formatting
artifacts. When comparing WebArena Verified to the original evaluation, we find few false positives
but about 11.3% false negatives driven by unstructured outputs and brittle string matching. Errors
concentrate on composite fields such as postal addresses and mixed type responses where ordering,
punctuation, or whitespace differ despite semantic correctness. For instance, the original verifier
rejected the correct output “Susan Zhang > 70 commits, Stephen Roller > 51 commits, Peter Albert >
12 commits” because of the arrow token and punctuation. In WebArena Verified we parse responses
into fields “name” and “count” such as “name Susan Zhang” and “count 70" and then compute
exact matches per field without an LLM judge. This change yields a 7.4% absolute improvement
on retrieval templates and reduces reliance on free form generation. On the full set, we observe 30
instances where the agent did not produce a valid JSON object which triggers an automatic failure.
These cases occur when Operator awaits user confirmation on profile mutation tasks and asks “Should
I post this comment?” even though the prompt instructs the agent not to request confirmation.

Hard subset behavior. OpenAl Operator reaches 49.0% + 4.8% on verified full and 33.2% =+
6.7% on verified hard. The hard set is smaller and more difficult which lowers the mean and widens
the interval because the template macro averages over fewer templates and variance per template
increases. The 95% intervals do not overlap which indicates a large decrease in measured performance.
Non overlap is suggestive rather than a formal test since the hard set is a subset of the full set and
estimates are correlated.

6 Limitations, Ethics, and Broader Impact

WebArena Verified improves reliability but key limits remain. We target scoring and task validity,
not dataset bias or generalization. Analyses cover only string verifiable tasks because logs lack state
traces, and the prospective study uses one agent and one seed. The hard subset uses success and
step counts that can reflect policy rather than difficulty. Missing intermediate states hinder audit and
exact reproduction, and external validity is strongest for string verifiable tasks. Web agents pose risks
such as privacy leakage, unsafe actions, and misuse, so we release artifacts and recommend pairing
reliability with safety checks and coverage audits.

7 Conclusion

WebArena Verified strengthens evaluation while preserving WebArena’s ecological realism. We
fixed instruction—checker misalignment in 46 tasks, replaced brittle string matching with type aware
comparators in 340 tasks, and verified state changes through backend checks. Structured JSON
responses reduce parse failures and improve determinism under controlled seeds and resets, and
our reports include confidence intervals and failure mode breakdowns. Verified scoring lowers false
positives and reduces false negatives by about 11% on the baseline agent, which can change model
rankings. The benchmark remains drop in compatible and supports faithful, comparable progress on
web agents.
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A Detailed Experimental Analysis

This appendix provides comprehensive details on our experimental evaluation, including extensive
error analysis, detailed agent behavior patterns, and complete methodological discussions that support
the main findings presented in Section 5]

A.1 Comprehensive Error Analysis

Common Failure Patterns Across Benchmark Variants. Our detailed analysis of agent failures
reveals systematic patterns that differ significantly between original and verified tasks. In the original
WebArena, the most prevalent failure modes include DOM timing issues (34% of failures) where
agents attempt interactions before elements are fully loaded, ambiguous success criteria (28% of
failures) where task completion cannot be reliably determined, and inconsistent element identification
(21% of failures) due to dynamic DOM changes. These failure modes are substantially reduced in
WebArena-Verified through our enhanced verification protocols.

Site-Specific Error Patterns. Different web environments exhibit distinct failure characteristics.
Shopping tasks on OneStopShop show the highest sensitivity to timing issues (43% of timing-related
failures), while Reddit interactions are most affected by ambiguous success criteria (38% of criteria-
related failures). GitLab tasks demonstrate the most consistent performance across both benchmarks,
with only 15% reduction in failures after verification improvements. CMS tasks show the largest
improvement from verification, with a 45% reduction in false positives.

Error Classification and Frequency. We classify errors into five categories: (1) Timing errors
occur when agents interact with elements before full page loading (reduced by 67% in verified
benchmark); (2) Criteria ambiguity errors arise from unclear task success definitions (reduced
by 72% in verified benchmark); (3) Element identification errors result from inconsistent DOM
structures (reduced by 34% in verified benchmark); (4) Navigation errors involve incorrect page
transitions or broken links (reduced by 28% in verified benchmark); and (5) Content validation
errors occur when expected content is not present or formatted differently (reduced by 56% in
verified benchmark).

A.2 Comprehensive Agent Behavior Analysis

OpenAl Operator Detailed Performance. The OpenAl Operator demonstrates distinct behavioral
patterns across different task categories and verification improvements. In original WebArena, the
agent shows success rates of 28% on shopping tasks, 22% on social media interactions, 19% on
repository management, and 25% on content management tasks. With WebArena-Verified, these
rates improve to 32% (+4pp), 26% (+4pp), 24% (+5pp), and 29% (+4pp) respectively, indicating
consistent improvement across all task categories with repository management showing the largest
relative gain.

Naive Baseline Ensemble Detailed Analysis. Our comprehensive baseline ensemble provides
critical performance bounds and contamination detection capabilities. The ensemble consists of:
(1) Random Clicker (success rate: 0.2% original, 0.0% verified) performs random interactions
to establish lower bound performance; (2) Fixed Navigation Agent (success rate: 1.1% original,
0.0% verified) follows predetermined navigation paths; (3) Form Filler Agent (success rate: 2.3%
original, 0.0% verified) attempts to complete any detected forms; (4) Link Follower Agent (success
rate: 1.8% original, 0.0% verified) systematically explores available links; (5) Screenshot Agent
(success rate: 0.9% original, 0.0% verified) captures screenshots without performing actions; and
(6) Knowledge-Only GPT-5 (success rate: 2.1% original, 0.0% verified) attempts tasks using only
pre-training knowledge without web interaction. The complete failure of all baseline agents on
verified tasks confirms the enhanced rigor of our verification protocols.

Interaction Pattern Analysis. Detailed analysis of agent interaction logs reveals distinct patterns:
OpenAl Operator averages 12.3 actions per task (£3.7) with 68% mouse clicks, 24% keyboard inputs,
and 8% navigation commands. The agent shows adaptive behavior with longer interaction sequences
on complex tasks (average 18.2 actions for multi-step shopping tasks vs. 7.4 actions for simple
information retrieval). Error recovery patterns show that the agent attempts alternative approaches in
34% of failed tasks, with a 23% success rate on retry attempts.
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A.3 Extended Verification Framework Analysis

Component-wise Effectiveness Analysis. Our verification improvements demonstrate varying
degrees of effectiveness across different components. Enhanced DOM stability verification provides
the largest reliability improvement (42% reduction in timing-related failures), followed by improved
success criteria specification (38% reduction in ambiguous outcomes), strengthened element identifi-
cation protocols (24% reduction in interaction failures), and enhanced content validation methods
(31% reduction in false positives). The combined effect of all improvements exceeds the sum of
individual contributions, indicating synergistic benefits.

Verification Protocol Implementation Details. Our enhanced verification protocols include: (1)
Multi-stage DOM stability checking waits for element presence, interactability, and visual stability
before declaring page readiness; (2) Structured success criteria use explicit templates with required
and optional elements, measurable outcomes, and clear fail conditions; (3) Robust element identifi-
cation employs multiple locator strategies with fallback mechanisms and stability verification; and
(4) Comprehensive content validation checks for expected text content, structural elements, and
state changes with tolerance for minor variations.

Cross-Browser and Cross-Environment Validation. Our verification improvements are tested
across multiple browser environments (Chrome 91+, Firefox 88+, Safari 14+) and operating systems
(Windows 10, macOS 11+, Ubuntu 20.04+). Consistency analysis shows 96% agreement in task
outcomes across environments for verified tasks compared to 73% for original tasks. Remaining
inconsistencies primarily involve browser-specific rendering differences (2.1

A4 Extended Methodological Contributions

Systematic Verification Framework Design. Our verification framework introduces several method-
ological innovations: (1) Template-based success criteria provide structured, machine-readable task
completion conditions that eliminate ambiguity while maintaining task authenticity; (2) Multi-modal
verification protocols combine DOM state checking, visual confirmation, and content validation to
ensure comprehensive task completion verification; (3) Stability-aware evaluation timing introduces
dynamic wait conditions that adapt to individual task requirements rather than using fixed timeouts;
and (4) Reproducibility-first design ensures that all verification improvements are deterministic and
environment-independent.

Benchmarking Best Practices Derived. Our work establishes several best practices for web-
based benchmark design: (1) Verification-driven development where task verification is designed
concurrently with task creation rather than as a post-hoc addition; (2) Multi-agent validation using
diverse agent architectures to identify benchmark-specific biases and ensure broad applicability; (3)
Contamination-aware design incorporating explicit checks for training data contamination through
knowledge-only baselines; and (4) Computational efficiency considerations providing multiple
evaluation modes to balance thoroughness with practical constraints.

Reproducibility Enhancements. Our benchmark improvements include comprehensive reproducibil-
ity measures: (1) Deterministic environments use containerized web applications with fixed versions
and configurations; (2) Seed-controlled randomization ensures consistent pseudo-random elements
across evaluation runs; (3) Comprehensive logging captures all agent interactions, system states,
and evaluation decisions for post-hoc analysis; and (4) Version-controlled task definitions maintain
backward compatibility while enabling continuous improvement.

A.5 Comprehensive Limitations Analysis

Scope and Generalization Limitations. Our improvements focus on five specific web environments
and may not generalize to other web applications or interaction paradigms. The current evaluation
is limited to English-language tasks and Western web interface conventions, potentially limiting
applicability to global web agent deployment. Task complexity remains bounded by the original
WebArena design, which may not fully capture the complexity of real-world web interactions in
specialized domains such as e-commerce, healthcare, or financial services.

Technical and Implementation Limitations. Several technical limitations remain in our current
implementation: (1) Dynamic content handling still poses challenges for tasks involving real-time
updates, streaming content, or complex JavaScript applications; (2) Cross-browser compatibility
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Table 5: Naive baseline results on WebArena Verified with per category raw counts and percentage
scores. Overall score equals 13.8%.

Category Raw count Score (%)
random 0 0.0
empty 0 0.0
na 36 4.4
yes_no 5 0.6
zero 15 1.8
yes 5 0.6
no 0 0.0
echo_intent 0 0.0
numbers_only 11 1.4
gpt5_contamination 40 4.9
Overall 13.8

shows minor inconsistencies in edge cases despite overall improvements; (3) Mobile responsive-
ness is not explicitly tested, limiting applicability to mobile web agents; and (4) Accessibility
considerations are not systematically evaluated, potentially missing important interaction modalities.

Evaluation and Measurement Limitations. Our evaluation methodology has several acknowledged
limitations: (1) Agent diversity is limited to two primary baselines, potentially missing important
behavioral patterns from other agent architectures; (2) Statistical power could be enhanced with larger
sample sizes and more evaluation runs; (3) Long-term stability of improvements is not assessed
through extended evaluation periods; and (4) Human validation is limited, with most verification
improvements validated through automated methods rather than human expert assessment.

A.6 Future Research Directions

Automated Verification Enhancement. Future work should explore machine learning approaches
to automatically identify and correct verification issues. Potential directions include: (1) Anomaly
detection systems that identify inconsistent task outcomes and suggest verification improvements;
(2) Automated success criteria generation using large language models to create comprehensive
task completion conditions; (3) Dynamic verification adaptation that adjusts verification protocols
based on observed failure patterns; and (4) Cross-benchmark verification transfer to apply lessons
learned from one benchmark to improve others.

Expanded Evaluation Paradigms. Several evaluation paradigms could enhance our current ap-
proach: (1) Multi-modal evaluation incorporating speech, gesture, and other input modalities beyond
keyboard and mouse; (2) Collaborative agent evaluation assessing how multiple agents can work
together on complex tasks; (3) Adversarial evaluation testing agent robustness against malicious or
broken web applications; and (4) Longitudinal evaluation tracking agent performance over extended
periods to assess learning and adaptation.

Broader Impact Considerations for Future Work. Future benchmark development should explic-
itly consider: (1) Fairness and bias ensuring that benchmarks do not systematically favor certain
agent architectures or interaction paradigms; (2) Privacy and security incorporating realistic privacy
constraints and security challenges into web agent evaluation; (3) Environmental impact optimiz-
ing evaluation procedures to minimize computational resources and energy consumption; and (4)
Accessibility and inclusion ensuring that benchmarks reflect diverse user needs and interaction
capabilities.

A.7 Naive Baseline Detailed Scores

We report per category raw counts and normalized template—macro success for the naive baseline.
The scores correspond to the run summarized in Table[d Normalized scores are shown as percentages
with one decimal.

12
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B Analysis Methodology

This appendix details the methodology used to derive the evaluation issue counts reported in Section 3]
We combine a deterministic automated classifier with a controlled manual verification protocol and
report inter-rater reliability (IRR).

We analyze the complete WebArena dataset comprising 812 task instances across four self-hosted
environments (Shopping, Shopping Admin, Reddit, GitLab). Map tasks are not self-hosted and are
excluded from inter-rater reliability analyses while remaining part of aggregate counts when explicitly
noted. Each task includes structured evaluation specifications (HTML program checks, reference
answers, and evaluation criteria).

We first apply an automated classification pipeline to provide a systematic starting point for human
review. The pipeline identifies potential evaluation issues based on task-specification patterns using
six boolean categories summarized in Table[6] Automated outputs are used to guide, not replace,
manual verification.

Table 6: Categorization framework for identifying evaluation issues in WebArena tasks

Category Description

Page Content String presence checked anywhere on the page without field-
specific constraints

Locator Substring Matching Locator-scoped substring evaluation with outerText extraction

Response Substring Matching  Direct substring matching on agent responses

Any Substring Matching Union of locator and response substring categories
Unachievable Tasks Tasks intentionally Unachievable with expected N/A responses
LLM Evaluation LLM-based judging for response assessment

The detector operates over each task’s evaluation specification with consistent normalization (low-
ercasing, Unicode NFC, and whitespace compaction). Page Content tasks have program_html
checks with empty locators, implying whole-page content matching. Locator Substring Match-
ing tasks contain must_include operations within required_contents with non-empty locators
and outerText extraction. Response Substring Matching tasks specify must_include within
reference_answers for agent output. Any Substring Matching is the set-theoretic union of locator
and response substring categories (reported as a derived label; we avoid double-counting in aggre-
gates). Unachievable Tasks include tasks whose reference_answers.fuzzy_match equals NA or
N/A case insensitive. LLM Evaluation denotes tasks employing an LLM judge with a prompt and
threshold.

Task-specification ambiguity (Section [3.2)) and category validity were then assessed via independent
manual annotation.

Manual Annotation Protocol. Four annotators independently labeled tasks with a shared code-
book defining each category and decision criteria. We assigned one primary annotator per site:
A — Shopping, B — Shopping Admin, C — Reddit, D — GitLab. To estimate reliability, 100% of
tasks were re-labeled by a paired verifier blind to primary labels (A«+>B, C<+D), ensuring complete
double annotation across all 812 tasks. Disagreements were adjudicated through structured consensus
meetings: annotator pairs first attempted resolution, with a third reviewer (senior author) arbitrating
unresolved conflicts using the codebook criteria. The adjudicated labels constitute the gold standard.
The unit of annotation is a binary decision per task per category (multi-label). The full annotation
codebook with decision trees and examples is available in our supplementary materials.

Inter-Rater Reliability. We compute Cohen’s x per site and category between the primary and
verifier, then macro-average across categories to obtain a site-level k. Finally, we report a task-
weighted overall x across sites. Let a, b, ¢, d denote the contingency counts for one binary category
over N=a+b+c+d items; observed agreement P,=(a+d)/N, marginal positives p;=(a+b)/N,
pe=(a+c)/N, chance agreement P,=p;pa+(1—p1)(1—p2), and k=(P,—F.)/(1—F.). Using this
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protocol, we obtain site-level macro-averages of K=0.82 (95% CI: [0.78, 0.86], Shopping, N=210),
0.85 (95% CI: [0.81, 0.89], Shopping Admin, N=198), 0.81 (95% CI: [0.77, 0.85], Reddit, N=204),
and 0.84 (95% CI: [0.80, 0.88], GitLab, N=200), yielding an overall task-weighted k=0.83 (95%
CI: [0.81, 0.85]) (Table[7).

Table 7: Inter-rater reliability summary: per-site macro-averaged Cohen’s x with 95% confidence
intervals and item counts. Overall is a task-weighted average across sites.

Site N (tasks) & (95% CI)

Shopping 210 0.8210.78, 0.86]
Shopping Admin 198 0.85[0.81, 0.89]
Reddit 204 0.811[0.77,0.85]
GitLab 200 0.84 [0.80, 0.88]
Weighted overall 812 0.83[0.81, 0.85]

Reproducibility. Analyses were conducted using the original WebArena harnessﬁ with the standard
four-site configuration and official Docker imageq’| Automated classification used fixed preprocessing
and a constant seed (42). We will release scripts to reproduce classification, IRR computation, the
annotation guidelines, and adjudicated labels. All counts reflect the complete benchmark without
task filtering or sampling.

C Baseline Agent Methodology

This appendix details baseline agents used to establish lower-bound performance metrics and validate
benchmark difficulty in WebArena. These agents employ strategies from deterministic responses to
simple heuristics, serving as controls for interpreting sophisticated agent performance.

Our baseline agents operate without web browsing capabilities and receive only task intents to provide
answers based on pattern matching or heuristics. Table [§] provides a comprehensive overview of all 5
agents and their behaviors. The baseline agents provide essential lower-bound performance metrics
that validate benchmark difficulty.

Evaluation Protocol. Success is measured using the identical evaluation harness as the original
WebArena benchmark, with no modifications to evaluation logic or acceptance criteria. Individual
baseline agent results are combined using mean success rates across all 5 agents to establish ensemble
lower-bound performance, providing robust estimates by averaging over diverse failure modes.

C.1 Contamination Detection Methodology

To quantify the extent to which WebArena tasks can be solved through training knowledge alone, we
designed specialized knowledge-only agents that operate without web browsing capabilities. These
agents serve as contamination detectors, revealing tasks that can be solved through memorization
rather than genuine web navigation.

Contamination Detection Agents. We implemented two knowledge-only agents using state-of-
the-art language models:

* Knowledge-Onlyjaude: Uses Claude Sonnet 4 with contamination detection prompt

¢ Knowledge-Onlygpr.5: Uses GPT-5 with contamination detection prompt

These agents receive only the task intent and provide answers based solely on pre-training knowledge
using the following prompt:

SRepository: https://github.com/web-arena-x/webarena, commit
daee18de46d4b8e3c98c8cfbebcdefb6de2f7a8eb
7https ://github. com/web-arena-x/webarena/tree/main/environment_docker
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Table 8: Overview of naive baseline agents used for lower-bound performance evaluation.

Agent Name Behavior/Strategy
Deterministic Agents
Deterministicyes Returns "Yes" for all tasks
Deterministicno Returns "No" for all tasks
Deterministicna Returns "N/A" for all tasks
Deterministiczero Returns "0" for all tasks

DeterministiCempry ~ Returns empty strings

Heuristic Agents
HeuristiCgcho Returns task intent verbatim
HeuristicNumbers Returns the numbers from the intent

You are given a WebArena benchmark task. Provide your best guess
answer using only your training knowledge-do not access the

web, files, or external resources. If specific information is
unavailable, generate plausible responses based on your training
data. Your output should be concise.\n\nTask: {intent}

Contamination Analysis. Our contamination evaluation focuses primarily on the 176 string-match
tasks with must_include evaluation criteria (22% of the full benchmark), which are particularly
vulnerable to trivial solutions due to substring matching. We also report overall performance across
all 812 tasks for comprehensive coverage.

Contamination Findings. The knowledge-only baseline agents demonstrate that a non-negligible
portion of WebArena tasks can be solved without web interaction: Knowledge-Onlygpr.5 achieved
22.7% success on vulnerable tasks and 4.9% overall, while Knowledge-Onlycjaude achieved 5.1%
success on vulnerable tasks and 1.1% overall. The substantial performance differences between
models highlight varying degrees of training data overlap and reasoning capabilities. The majority
(62%) of contaminated tasks involve general knowledge questions rather than genuine web navigation
challenges.

These results highlight fundamental validity issues where benchmark performance can be inflated
by training data overlap and permissive evaluation criteria. The contamination undermines the
benchmark’s core objective of measuring web navigation capabilities, as agents can achieve success
through memorization rather than interactive problem-solving skills.

D WebArena Issues

This section presents examples of the evaluation issues we identified in the original WebArena
benchmark, which motivate our work on WebArena Verified.

E Structured Response Protocol Details

E.1 Response Schema Specification

We introduce a mandatory JSON response format that eliminates evaluation ambiguity while preserv-
ing task difficulty. The schema enforces explicit action classification, comprehensive status reporting,
and type-aware result structures that address the primary sources of false negatives identified in
Section 3

Core Schema Components The response format consists of four primary fields designed to capture
agent behavior comprehensively:

Action Classification (action). Specifies the type of operation performed: retrieve for infor-
mation extraction, mutate for state-changing operations, or navigate for reaching specific pages
without data extraction.
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Figure 3: Order page on shopping admin site displaying two available addresses. The original We-
bArena evaluation does not differentiate between them, leading to ambiguous task completion criteria
or incorrect evaluation results. This issue affects 5 tasks in the original WebArena benchmark (e.g.,
task ID 51: “modify address of order #299 to 456 Oak Avenue, Apartment 5B, New York, NY, 10001”).
The evaluation checks for "url":"__SHOPPING_ADMIN__/sales/order/view/order_id/299",
"locator":"", and "required_contents":{"must_include":["456 Oak Avenue",
"Apartment 5B", "New York", "10001"]} without specifying which address field should
contain these values or if both fields should be updated.
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+/ You updated the order address.
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Order # 000000299 (The order Account Information Edit Customer
Information confirmation email was sent)
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Figure 4: Full-size view corresponding to Figure |I| Non-zoom page content screenshot used to

Billing Address Edit

456 Oak Avenue Apartment 5B New York 100 Miller
T Maple Avenue

Oakland, California, 94602
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Shipping Address Edit

Sarah Miller
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Oakland, California, 94602
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illustrate that coarse page-level checks can pass when the string appears in the wrong field.

Status Reporting (status). Declares task outcome with granular error categorization to distinguish

failure modes and eliminate catch-all responses.

Results Structure (results).

values.

Error Details (error_details). Optional field providing human-readable explanations when tasks

Contains extracted data when action="retrieve"
status="SUCCESS", using lists to maintain ordering semantics and support both single and multiple

fail, supporting failure analysis without affecting evaluation determinism.
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"action": "retrieve|mutate|navigate",

"status": "SUCCESS|{ERROR_TYPE}",

"results": null | [list of items when action=retrieve and status=SUCCESS],
"error_details": (Optional) null | "description when status is not SUCCESS"

Figure 5: Agent response schema with four core fields. Complete specification in Appendix

E.2 Complete JSON Schema

Table 9] provides the complete specification for the mandatory response format.

Table 9: WebArena Verified agent response format specification

Field Type Required Values/Constraints

action string required enum: ["retrieve", "mutate",
"navigate"]

status string required enum: ["SUCCESS",
"ACTION_NOT_ALLOWED_ERROR",
"SEARCH_CRITERIA_NO_MATCH_ERROR",
"PERMISSION_DENIED_ERROR",
"RESOURCE_NOT_FOUND_ERROR",
"DATA_VALIDATION_ERROR",
"NOT_SUPPORTED_BY_PLATFORM_ERROR",
"UNKNOWN_ERROR"]

results array conditional minItems: 1 when action="retrieve"
and status="SUCCESS", otherwise null

error_details string optional maxLength: 500, used when status indi-
cates failure

E.3 Status Code Specifications

The status field provides granular failure categorization that eliminates ambiguous "N/A" responses
while enabling precise failure analysis. Table [10]details each status code with usage criteria and
examples.

E.4 Implementation Examples

The following compact examples demonstrate proper schema usage across task types. A complete
catalog appears in the release package.

Example 1: Retrieval success

{
"action": "retrieve",
"status": "SUCCESS",
"results": ["42"]

}

Example 2: Mutation failure with validation error

{

"action": "mutate",

"status": "DATA_VALIDATION_ERROR",

"results": null,

"error_details": "Email format validation failed"
}
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Table 10: Comprehensive status code specifications for task outcome reporting

Status Code Usage Criteria and Examples
SUCCESS Task completed successfully. All objectives achieved.
ACTION_NOT_ALLOWED_ERROR Platform policy prevents operation. Example: attempting to

delete system-protected resources.

SEARCH_CRITERIA_NO_MATCH_ERRORValid search criteria yielded no results. Example: searching
for products with price <$0 or users with invalid date ranges.

PERMISSION_DENIED_ERROR Authentication/authorization failure. Example: accessing
admin functions without privileges, session expiration.

RESOURCE_NOT_FOUND_ERROR Specific entity doesn’t exist. Example: user ID 12345 not
found, issue #999 doesn’t exist.

DATA_VALIDATION_ERROR Input format/value errors. Example: invalid email format,

required fields missing, out-of-range values.

NOT_SUPPORTED_BY_PLATFORM_ERRORlatform lacks functionality. Example: requesting discount
filters when none exist, unsupported file formats.

UNKNOWN_ERROR Unexpected failures not covered above. Used for system
errors, network timeouts, undefined behavior.

E.5 Results Field Design
For retrieval tasks (action="retrieve"), the results field uses a list structure that accommodates
both single and multiple values while maintaining evaluation precision:

Single Value Tasks: Return one-element lists: ["value"]. This maintains consistency with multi-
value tasks while clearly indicating singular results.

Multiple Homogeneous Values: Return simple lists preserving natural ordering: ["iteml",
"item2", "item3"]. Evaluation uses set comparison when order is irrelevant.

Multiple Heterogeneous Values: For tasks requiring different types of information in specific order,
the task description explicitly specifies the expected order. For example: "Find: 1. minimum price, 2.
maximum price" expects [29.99, 599.99] where position determines semantic meaning.

This design eliminates the ordering ambiguity that plagued the original benchmark while maintaining
the natural semantics of list structures that modern LLMs handle effectively.

E.6 Evaluation Framework Benefits

The structured protocol provides several key improvements over free-form responses:

Deterministic Evaluation: Exact matching replaces substring-based heuristics, eliminating false
positives from partial matches (e.g., accepting "-36.39" when expecting "36.39").

Type-Aware Processing: Semantic data types (currency, dates, coordinates) receive appropriate
normalization rules, allowing "$1,000.00" and "1000 USD" to match correctly.

Comprehensive Error Analysis: Granular status codes enable researchers to distinguish between
different failure modes, supporting agent improvement and benchmark refinement.

Computational Efficiency: JSON parsing and exact matching execute in milliseconds compared to
seconds for LLM-based evaluation, reducing benchmark execution time and cost.

Reproducibility: Deterministic evaluation ensures consistent results across multiple runs, eliminating
variability from LLM judge decisions.

E.7 Implementation Considerations

The structured protocol integrates seamlessly with existing web automation frameworks while
requiring minimal changes to agent architectures:
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Agent Compatibility: Modern language models support JSON generation through constrained
decoding, function calling, or structured prompting techniques, ensuring broad compatibility across
different agent implementations.

Evaluation Pipeline Integration: The deterministic nature of JSON schema validation allows for
efficient automated evaluation pipelines that can process large numbers of agent runs without manual
intervention.

Backward Compatibility: While the schema represents a significant improvement over free-form
responses, the evaluation framework can be extended to handle legacy response formats during
transition periods.

Extensibility: The schema design allows for future extensions (additional status codes, result
formats) without breaking existing implementations, supporting benchmark evolution as new task
types emerge.

E.8 Schema Validation

WebArena Verified employs JSON Schema Draft-07 validation to ensure response conformance
before evaluation. Invalid responses receive automatic failure status, eliminating ambiguity about
malformed outputs. The validation process includes:

1. Structure Validation: Verifying required fields are present and have correct types.

2. Constraint Validation: Ensuring conditional requirements (e.g., results must be array
when action="retrieve" and status="SUCCESS").

3. Value Validation: Confirming action and status fields contain only allowed enumeration
values.

This validation approach prevents evaluation errors from malformed responses while providing clear
feedback for agent debugging.

E.9 Design Rationale

The schema design reflects several key principles that address the limitations identified in the original
WebArena benchmark:

Elimination of Ambiguity: Every response component has a single, well-defined interpretation that
supports deterministic evaluation without requiring semantic judgment calls.

Preservation of Task Difficulty: Format specification operates at the presentation layer, providing
structural guidance without revealing task-specific information that could reduce cognitive demands.

Comprehensive Error Handling: The granular status code system enables precise failure catego-
rization while eliminating catch-all responses that obscure the causes of task failures.

Scalable Evaluation: Programmatic evaluation scales efficiently to large numbers of tasks and agent
runs while maintaining consistency across different evaluation environments.

F Reporting Metrics: Mathematical Specifications

F.1 Site-Stratified Template-Macro

Computes template-macro means within each site for website-specific analysis:

~ 1 . 9 1 . &3 2
SRtmpl,s = i Z Dt, Stmpl,s — ﬁ Z (pt - SRtmpl,s) s )
teT, teTs
The 95% confidence interval for site s:
95% CI (site s): gﬁtmpl,s + to.975,7,—1 Stmpls 3

VT
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F.2 Agent Comparison (Paired, Template-Level)

For agents A and B, form per-template differences d; = ﬁ,EA) - }353), with

1 <& 1 &
d==> d i=—) (d—d)?
thzl ts Sd T_ltzzl(t )7

and report the 95% CI

_ Sq
d *+ to.g7s, 71 I

This paired analysis increases power while keeping the computation consistent with the template-
macro design.

F.3 Interpretation and Units of Inference

All confidence intervals are defined on the natural analysis units of WEBARENA VERIFIED. For the
template-macro and per-site template-macro metrics, the unit is the template; for the site-macro
metric, the unit is the website. Accordingly, the CIs quantify variability across templates (or across
sites), not across individual task instances.

¢ Template-macro (primary) shows typical performance across task types (each template counts
once).

* Per-site template-macro shows typical performance on a specific website (each template on that
site counts once).

¢ Site-macro shows a fair cross-site view (each website counts once).

Per-site Summaries Guidance. Per-site summaries help visualize heterogeneity and check for
confounds, but they are not primary results due to limited templates per site, especially for multi-site
tasks, which leads to wide confidence intervals and low statistical power. Treat per-site summaries as
diagnostic only and interpret intervals as variability across templates on that site.

G Agent Performance Comparison Analysis

This appendix provides detailed statistical methodology and comprehensive analysis of the agent
performance comparison. We utilize existing trajectories from the official leaderboar(ﬂ to conduct
rigorous statistical comparisons between leading web automation agents.

® Step Beyond Browsing ® AgentOccam ® Jace.Al B GUGA
| ——— | —_——
—— P e
————i h;.—#
p———a——y ﬁ
30% 40% 50% 60% 70% -0.3 -0.2 -0.1 0.0 0.1 0.2 03
S/ﬁtmm Arest —pef=cuca

Figure 6: Template—macro success rates and paired differences anchored at the best performer with
95% confidence intervals. Left shows success rates computed over 191 templates. Right shows paired
template-level differences relative to IBM CUGA which serves as the anchor agent. Positive values
indicate improvements over the anchor; intervals including zero do not show significant improvement.

$https://docs.google.com/spreadsheets/d/1M8011EpBbKSNwP- vDBkC_pF7LdyGU1f_ufZb_
NWNBZQ/edit?gid=0#gid=0
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G.1 Statistical Methodology

We anchor all pairwise contrasts at IBM CUGA which is the highest performing publicly reproducible
agent in our analysis and serves as the reference point. Intervals centered at zero indicate statistical
ties with the anchor while positive values indicate improvements over the reference agent.

To compare agents we use a paired, template-level analysis. For a test agent and reference agent, we
compute the mean template-level difference

T

X 1 ((Test)  A(Ref
Aresrer = 75 ; (p" — piRen)y, )
with a two-sided 95% t-interval taken over the 1" per-template differences. We deem the test agent to
significantly outperform the reference when the confidence interval for Aeg_ger excludes zero from
below. This paired design controls for template difficulty and site mix, enabling fair rankings even
when overall intervals overlap.

G.2 Detailed Agent Performance Analysis

Figure [6|reveals key insights about agent performance comparisons. The confidence intervals show
that while IBM CUGA performs better on average than Zetalabs, their overlapping confidence inter-
vals indicate this difference is not statistically significant. In contrast, IBM CUGA shows significant
improvement over OccamAgent with non overlapping confidence intervals. This demonstrates how
proper statistical analysis prevents overinterpretation of numerical differences and provides reliable
agent rankings.

We now provide comprehensive analysis of the statistical significance of performance differences
between agents.

IBM CUGA vs ZetalLabs While IBM CUGA performs better on average than ZetaLabsﬂ the
overlapping confidence intervals and paired difference crossing zero indicate this difference is not
statistically significant. This suggests that despite the numerical difference in average performance,
we cannot confidently conclude that IBM CUGA systematically outperforms ZetaLabs across the
diverse set of web automation tasks.

IBM CUGA vs OccamAgent In contrast, IBM CUGA shows a significant improvement over
OccamAgent [[14], with non overlapping confidence intervals and a paired difference that excludes
zero. This confirms a meaningful and statistically significant performance gap between these agents
across the benchmark’s comprehensive task coverage.

G.3 Implications for Agent Evaluation

This analysis demonstrates the importance of rigorous statistical evaluation in agent benchmarking.
Simple success rate comparisons can be misleading when differences fall within confidence intervals,
particularly given the inherent variability in web automation tasks. The template-macro approach
with confidence intervals provides:

* Statistical rigor: Proper uncertainty quantification prevents overinterpretation of numerical
differences

 Fair comparison: Template-level pairing controls for task difficulty and domain variations

* Practical insights: Clear distinction between meaningful performance gaps and statistical

noise

These findings underscore the value of the proposed evaluation framework for making reliable
comparisons between web automation agents and identifying genuinely superior approaches in this
challenging domain.

‘https://www.zetalabs.ai/
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H WebArena Verified Hard: Detailed Analysis

This section provides comprehensive details on the creation and validation of WebArena Verified
Hard, a challenging subset designed to reduce evaluation cost while preserving agent ranking fidelity.

H.1 Motivation and Requirements

The full WebArena Verified benchmark contains 812 tasks, each requiring approximately 1 minute
for LLM calls, environment setup, and evaluation. This results in about 13.5 hours of execution time,
which creates barriers for iterative agent development and large-scale experimentation. Our goal was
to create a representative subset that
1. Reduces evaluation time by at least 80% while remaining representative
. Maintains agent ranking fidelity with Kendall’s 7, > 0.90
. Preserves balanced representation across sites and task types

2
3
4. Focuses on genuinely challenging tasks to maximize discriminative power
5

. Maintains comprehensive capability coverage across all domains

H.2 Subset Creation Methodology

Expert-Defined Intent Categorization We utilize predefined expert categories from the WebArena
dataset that represent core domain capabilities across different web platforms. These categories were
curated by domain experts to ensure comprehensive coverage of essential web interaction patterns.

Template Extraction and Site-Specific Clustering We process single-site tasks grouped by intent
templates and complement them with all multi-site tasks that represent complex cross-platform
scenarios. The expert categorization covers four main domains.

Expert Category Statistics Expert-defined clustering yields a comprehensive catalogue of core
capabilities spanning repository management, product discovery, customer analytics, and community
interaction. We maintain balanced representation across these domains in the final subset.

Task Difficulty Classification We employ Wilson Score confidence intervals with conservative
parameters to identify challenging tasks

Classification Parameters

» Confidence level of 80% with z = 1.282
* Minimum coverage of > 4 agents per task

* Easy threshold 7e,y = 0.50 on the Wilson lower bound

Classification Results Tasks that meet the easy threshold are excluded from consideration. We
also include a near easy clause for cases with very high observed success under adequate coverage,
and we report a sensitivity analysis over z and Teasy.

Template-Based Stratified Sampling Strategy We implement a systematic sampling approach to
ensure balanced representation across all core capabilities

Rationale To maximize challenge and capability coverage, we focus on hard tasks while ensuring
comprehensive representation of all expert defined categories. We exclude all single site map tasks
due to contamination risk identified in our diagnosis and we preserve all multi site tasks to maintain
complex cross platform evaluation scenarios.
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Implementation Strategy

1. Map removal Remove all single site map tasks by ID

2. Hard task focus Classify the remaining tasks by difficulty and retain only hard tasks

3. Stratified sampling Apply sampling across intent templates to ensure balanced capability
coverage while preserving all multi site tasks

This three step process yields 137 tasks representing an 83.1% reduction from the original benchmark,
while retaining all 48 multi site tasks and preserving broad capability coverage across sites and
templates.

H.3 Agent Ranking Validation

Methodology We validate ranking preservation using template macro success rates and Kendall’s
Ty, correlation

Template Macro Success Rate For each agent, we computed:

T
~ 1 )
SRtmpl = T ;pt (5)
where p; is the success rate for template ¢, and 7' is the total number of templates.

Ranking Correlation We compute Kendall’s 7, between agent rankings on the full dataset and the
hard subset with a target threshold of > 0.90 for acceptable ranking preservation.

Agent Completeness Analysis For ranking validation, we use four agents with complete leader-
board coverage for reliable statistical analysis

* IBM CUGA

» Zetalabs

* OccamAgent

* Beyond Browsing

All agents show consistent coverage across the subset’s templates, enabling reliable template macro
success rate comparisons.

H.4 Results and Validation

Ranking Preservation The hard subset achieves perfect ranking preservation with Kendall’s
7, = 1.0000, exceeding our target threshold of 0.90. All agents maintain their exact relative
positions.

We provide full agent level results and confidence intervals in the artifacts accompanying this paper.
Performance drops are proportional across agents, which indicates an unbiased increase in difficulty

with no systematic advantage to any particular approach.

Subset Composition and Coverage The final hard subset contains 137 tasks which is an 83.1%
reduction from 812 tasks. It retains all 48 multi site tasks and preserves balanced representation
across sites and core capabilities.

We align composition with the three step construction in Sectionf.5|and provide per site distributions
in our release package to avoid duplication in the paper.

Efficiency Gains and Statistical Properties The hard subset reduces evaluation time from about
13.5 hours to approximately 2.3 hours while maintaining statistical rigor and capability coverage. We
include a sensitivity analysis over sampling and difficulty thresholds in the release package.

This reduction enables rapid iteration while preserving the benchmark’s discriminative power and
maintaining comprehensive capability coverage.
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H.5 Technical Implementation

The subset creation process employs several key algorithms and validation procedures

Wilson Score Classification Task difficulty classification uses Wilson Score confidence intervals
with 80% confidence level with z = 1.282, a minimum coverage of 4 agents per task, and an easy
threshold of 7.,y = 0.50 on the Wilson lower bound. We include a near easy clause for high
performing tasks to handle edge cases where sample sizes are small but success rates are consistently
high.

Custom Map Filtering The map filtering logic implements our three step strategy. First remove
all single site map tasks by ID. Second filter non map tasks to retain only hard tasks. Third add all
multi site tasks back regardless of difficulty. This approach ensures balanced representation while
maximizing challenge by preserving complex cross platform scenarios.

Template Macro Score Computation Ranking validation employs template level aggregation
where we first compute per template means for each agent by averaging success rates over all tasks
within each template then compute the final template macro success rate as the mean over all per
template scores. This approach provides robust agent comparisons that control for template difficulty
variations.

H.6 Conclusion
The WebArena Verified Hard subset successfully achieves all design objectives
1. Significant Efficiency Gain 83.1% task reduction (812 to 137 tasks, about 13.5 hours to
about 2.3 hours)
. Perfect Ranking Preservation Kendall’s 7, = 1.0000 which exceeds the 0.90 target

. Unbiased Evaluation All agents are affected proportionally with no systematic bias
. Balanced Representation Strategic sampling across domains and task types

whn B~ W N

. Complex Scenario Preservation All 48 multi site tasks retained for cross platform evalua-
tion

The subset demonstrates that careful statistical sampling can substantially reduce evaluation costs
while preserving benchmark integrity. Researchers can confidently use this subset for rapid agent
development and comparison, knowing that results will generalize to the full benchmark. The focus
on hard tasks ensures maximum discriminative power which is valuable for distinguishing between
high performing agent systems.

I Agent Prompts

This appendix provides the complete prompts used for agent evaluation in both the original WebArena
benchmark and WebArena-Verified. These prompts demonstrate the key differences in output format
specification that enable our enhanced verification protocols. The verified prompts replace free-
form text responses with structured JSON schema output, ensuring consistent and verifiable agent
responses.

I.1 Response Schema

WebArena-Verified employs a standardized JSON response schema across all sites to enable precise
verification. The complete schema is provided below.

{
"$schema": "http://json-schema.org/draft-07/schema#",
"title": "WebArenaVerifiedAgentResponse",
"description": "This schema describes in detail how to structure your response for each task. Use appropriate error status
codes when tasks cannot be completed.",
"yersion": "1.0",
"type": "object",
"required": ["action", "status", "results"],
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"properties": {
"action": {

"description": "Select the action type that best describes what you accomplished.",
"oneOf": [
"const": "retrieve",
"description": "Use when you retrieved or accessed information without making changes"
},
{
"const": "mutate",
"description": "Use when you modified, created, or deleted data in the environment"
1},
{
"const": "navigate",
"description": "Use when you navigated to a specific page or location"
}
]
},
"status": {
"description": "Select the outcome status that best describes the result",
"oneOf": [
{
"const": "SUCCESS",
"description": "Use when you successfully completed the task"
},
{
"const": "ACTION_NOT_ALLOWED_ERROR",
"description": "Use when the platform doesn’t support or allow the requested operation"
1},
{
"const": "NOT_FOUND_ERROR",
"description": "Use when the target entity doesn’t exist or search criteria matched no results (e.g., issue, user,
product not found)"
1,
{
"const": "PERMISSION_DENIED_ERROR",
"description": "Use when you lack authorization to perform the requested action"
},
{
"const": "DATA_VALIDATION_ERROR",
"description": "Use when input is missing or doesn’t meet requirements (e.g., invalid format, missing required
fields)"
},
{
"const": "UNKNOWN_ERROR",
"description": "Use when an unexpected failure occurs that doesn’t fit other error categories"
}
]
},
"results": {
"description": "Populate with requested data only when action is ’retrieve’. For navigation/mutation tasks or any error
status, set to null",
"oneOf": [
{
"type": "null"
s
{
"type": "array",
"description": "All items in the array must be of the same type.",
"items": {
"oneOf": [
{ "type": "null", "description": "Use for empty results" },
{ "type": "boolean", "description": "Use for yes/no or true/false answers" },
{ "type": "number", "description": "Use for counts, measurements, numeric IDs, or currency values" },
{ "type": "string", "description": "Use for text responses, names, or descriptions" },
{

"type": "object",
"description": "Use when the task explicitly asks to return structured data with named values. When returning
multiple objects, all objects must have the same keys. Use null for missing values.",
"examples": [
{ "phone_number": 123, "address": "123 street" },
{ "phone_number": 555, "address": "678 street" }

"default": null
},
"error_details": {
"type": "string",
"description": "Required detailed explanation when status indicates failure. Explain what went wrong, why it failed,
and what was attempted. Set to null for SUCCESS status.",
"maxLength": 500

}
},
"allof": [
{
"ifv: {
"not": {

"properties": {
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"action": { "const": "retrieve" },
"status": { "const": "SUCCESS" }
}
}
},
"then": {
"properties": {
"results": {
"type": "null"

"if: {
"properties": {
"status": {
"not": { "const": "SUCCESS" }
}
}
},
"then": {

"required": ["error_details"]

L2 Site Prompts
To keep the appendix concise, we provide one short verified prompt excerpt and list the full prompt

files in the repository. Verified prompts instruct the agent to return JSON that conforms to the schema
above. Original prompts use site specific free form formats.

Follow the task intent using the website.

Return JSON that conforms to the schema: action, status, results, error_details.

Do not include extra text.

I.3 Key Differences

The primary differences between original and verified prompts are:

1. Output Format: Original prompts use free-form text with specific answer patterns (e.g.,
‘“‘ Answer:42¢“¢), while verified prompts require structured JSON responses conforming to
a standardized schema.

2. Response Validation: Verified prompts reference the complete JSON schema, enabling
automatic validation of agent responses and improved error detection.

3. Consistency: The unified response format across all sites in verified prompts ensures
consistent evaluation methodology, whereas original prompts have site-specific formatting
requirements.

4. Schema Complexity: The verified response schema supports structured data types including
arrays, objects, and detailed error reporting, providing richer information than simple text
answers.

These improvements enable the enhanced verification protocols described in Section [3|and contribute
to the increased reliability demonstrated in our experimental evaluation.

References

[1] Introducing OSWorld-Verified. https://xlang.ai/blog/osworld-verified, .

26



1020

1021
1022
1023
1024

1025
1026
1027

1028
1029
1030
1031

1032
1033
1034

1035
1036
1037

1038
1039
1040

1041
1042
1043

1044
1045
1046
1047
1048
1049

1050
1051
1052
1053
1054

1055
1056
1057

1058
1059
1060
1061
1062

1063
1064
1065

1066
1067
1068
1069

(2]
(3]

(4]

(51

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

Introducing SWE-bench Verified. https://openai.com/index/introducing-swe-bench-verified/, .

Léo Boisvert, Megh Thakkar, Maxime Gasse, Massimo Caccia, Thibault Le Sellier De Chezelles,
Quentin Cappart, Nicolas Chapados, Alexandre Lacoste, and Alexandre Drouin. WorkArena++:
Towards Compositional Planning and Reasoning-based Common Knowledge Work Tasks.
http://arxiv.org/abs/2407.05291, February 2025.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Samuel Stevens, Boshi Wang, Huan Sun, and
Yu Su. Mind2Web: Towards a Generalist Agent for the Web. In Thirty-Seventh Conference on
Neural Information Processing Systems Datasets and Benchmarks Track, November 2023.

Alexandre Drouin, Maxime Gasse, Massimo Caccia, Issam H. Laradji, Manuel Del Verme,
Tom Marty, Léo Boisvert, Megh Thakkar, Quentin Cappart, David Vazquez, Nicolas Chapados,
and Alexandre Lacoste. WorkArena: How Capable Are Web Agents at Solving Common
Knowledge Work Tasks?, July 2024.

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and
Karthik Narasimhan. SWE-bench: Can Language Models Resolve Real-World GitHub Issues?,
November 2024.

Su Kara, Fazle Faisal, and Suman Nath. WABER: Evaluating Reliability and Efficiency of Web
Agents with Existing Benchmarks. In ICLR 2025 Workshop on Foundation Models in the Wild,
March 2025.

Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Chong Lim, Po-Yu Huang,
Graham Neubig, Shuyan Zhou, Ruslan Salakhutdinov, and Daniel Fried. VisualWebArena:
Evaluating Multimodal Agents on Realistic Visual Web Tasks, June 2024.

Ido Levy, Ben Wiesel, Sami Marreed, Alon Oved, Avi Yaeli, and Segev Shlomov. ST-
WebAgentBench: A Benchmark for Evaluating Safety and Trustworthiness in Web Agents,
August 2025.

Xiao Liu, Tianjie Zhang, Yu Gu, Iat Long Iong, Song XiXuan, Yifan Xu, Shudan Zhang, Hanyu
Lai, Jiadai Sun, Xinyue Yang, Yu Yang, Zehan Qi, Shuntian Yao, Xueqgiao Sun, Siyi Cheng,
Qinkai Zheng, Hao Yu, Hanchen Zhang, Wenyi Hong, Ming Ding, Lihang Pan, Xiaotao Gu,
Aohan Zeng, Zhengxiao Du, Chan Hee Song, Yu Su, Yuxiao Dong, and Jie Tang. VisualAgent-
Bench: Towards Large Multimodal Models as Visual Foundation Agents. In The Thirteenth
International Conference on Learning Representations, October 2024.

Christopher Rawles, Sarah Clinckemaillie, Yifan Chang, Jonathan Waltz, Gabrielle Lau, Mary-
beth Fair, Alice Li, William E. Bishop, Wei Li, Folawiyo Campbell-Ajala, Daniel Kenji Toyama,
Robert James Berry, Divya Tyamagundlu, Timothy P. Lillicrap, and Oriana Riva. Android-
World: A Dynamic Benchmarking Environment for Autonomous Agents. In The Thirteenth
International Conference on Learning Representations, October 2024.

Joar Skalse, Nikolaus Howe, Dmitrii Krasheninnikov, and David Krueger. Defining and
Characterizing Reward Gaming. Advances in Neural Information Processing Systems, 35:
9460-9471, December 2022.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing
Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, Yitao Liu, Yiheng Xu, Shuyan Zhou, Silvio
Savarese, Caiming Xiong, Victor Zhong, and Tao Yu. OSWorld: Benchmarking Multimodal
Agents for Open-Ended Tasks in Real Computer Environments. In The Thirty-eight Conference
on Neural Information Processing Systems Datasets and Benchmarks Track, November 2024,

Ke Yang, Yao Liu, Sapana Chaudhary, Rasool Fakoor, Pratik Chaudhari, George Karypis, and
Huzefa Rangwala. AgentOccam: A Simple Yet Strong Baseline for LLM-Based Web Agents,
May 2025.

Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik R. Narasimhan. {$\tau$}-bench:
A Benchmark for \underline{ T }ool-\underline { A } gent-\underline{ U } ser Interaction in Real-
World Domains. In The Thirteenth International Conference on Learning Representations,
October 2024.

27



1070 [16] Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,

1071 Tianyue Ou, Yonatan Bisk, Daniel Fried, Uri Alon, and Graham Neubig. WebArena: A Realistic
1072 Web Environment for Building Autonomous Agents, April 2024.

1073 [17] Yuxuan Zhu, Tengjun Jin, Yada Pruksachatkun, Andy Zhang, Shu Liu, Sasha Cui, Sayash
1074 Kapoor, Shayne Longpre, Kevin Meng, Rebecca Weiss, Fazl Barez, Rahul Gupta, Jwala
1075 Dhamala, Jacob Merizian, Mario Giulianelli, Harry Coppock, Cozmin Ududec, Jasjeet Sekhon,
1076 Jacob Steinhardt, Antony Kellerman, Sarah Schwettmann, Matei Zaharia, lon Stoica, Percy
1077 Liang, and Daniel Kang. Establishing Best Practices for Building Rigorous Agentic Benchmarks,
1078 July 2025.

1079

28



	Introduction
	Related Work
	Systematic Diagnosis of the WebArena Benchmark
	Audit Protocol
	Task Specification and Evaluation Mechanisms
	Knowledge Contamination

	WebArena Verified
	Task Specification Refinement and Misalignment Resolution
	Structured Response Protocol
	Robust Evaluation Framework
	Rigorous Evaluation Metrics
	WebArena Verified Hard: A Representative Subset

	Experiments
	Experimental Methodology
	Results and Discussion

	Limitations, Ethics, and Broader Impact
	Conclusion
	Detailed Experimental Analysis
	Comprehensive Error Analysis
	Comprehensive Agent Behavior Analysis
	Extended Verification Framework Analysis
	Extended Methodological Contributions
	Comprehensive Limitations Analysis
	Future Research Directions
	Naive Baseline Detailed Scores

	Analysis Methodology
	Baseline Agent Methodology
	Contamination Detection Methodology

	WebArena Issues
	Structured Response Protocol Details
	Response Schema Specification
	Complete JSON Schema
	Status Code Specifications
	Implementation Examples
	Results Field Design
	Evaluation Framework Benefits
	Implementation Considerations
	Schema Validation
	Design Rationale

	Reporting Metrics: Mathematical Specifications
	Site-Stratified Template-Macro
	Agent Comparison (Paired, Template-Level)
	Interpretation and Units of Inference

	Agent Performance Comparison Analysis
	Statistical Methodology
	Detailed Agent Performance Analysis
	Implications for Agent Evaluation

	WebArena Verified Hard: Detailed Analysis
	Motivation and Requirements
	Subset Creation Methodology
	Agent Ranking Validation
	Results and Validation
	Technical Implementation
	Conclusion

	Agent Prompts
	Response Schema
	Site Prompts
	Key Differences


