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Abstract

Given an empirical distribution f(z) of sensitive data x, we consider the task of minimizing
F(y) = Dkr(f(x)|ly) over a probability simplex, while protecting the privacy of x. We
observe that, if we take the exponential mechanism and use the KL divergence as the loss
function, then the resulting algorithm is the Dirichlet mechanism that outputs a single
draw from a Dirichlet distribution. Motivated by this, we propose a Rényi differentially
private (RDP) algorithm that employs the Dirichlet mechanism to solve the KL divergence
minimization task. In addition, given f(z) as above and § an output of the Dirichlet
mechanism, we prove a probability tail bound on Dk, (f(x)||§), which is then used to derive
a lower bound for the sample complexity of our RDP algorithm. Experiments on real-world
datasets demonstrate advantages of our algorithm over Gaussian and Laplace mechanisms
in supervised classification and maximum likelihood estimation.

1 Introduction

KL divergence is the most commonly used divergence measure in probabilistic and Bayesian modeling. In a
probabilistic model, for example, we estimate the model’s parameters by maximizing the likelihood function
of the parameters, which in turn is equivalent to minimizing the KL divergence between the empirical
distribution and the model’s distribution. In supervised classification, a standard way to fit a classifier is by
minimizing the cross-entropy of the model’s predictive probabilities, which is equivalent to minimizing the
KL divergence between the class-conditional empirical distribution and the model’s predictive distribution.

Such models are widely used in medical fields, social sciences and businesses, where they are used to analyze
sensitive personal information. Without privacy considerations, releasing a model to public might put the
personal data at risk of being exposed to privacy attacks, such as membership inference attacks (Shokri
et al [2017; [Ye et all |2022). To address the model’s privacy issue, we should focus on its building blocks:
the KL divergences. How can we minimize the KL divergence over the model’s parameters, while keeping
the data private?

Differential Privacy (Dwork et al., [2006aib) provides a framework for quantitative privacy analysis of al-
gorithms that run on sensitive personal data. Under this framework, one aims to design a task-specific
algorithm that preserves the privacy of the inputs, while keeping the “distance” between the privatized out-
put and the true output sufficiently small. A simple and well-studied technique is to add a small random
noise sampled from a zero-centered probability distribution, such as the Laplace and Gaussian distributions.
Another technique is to sample an output from a distribution, with greater probabilities of obtaining points
that are closer to the true output, such as the exponential mechanism (McSherry & Talwar, |2007)). These
techniques have been deployed in many privacy-preserving tasks, from simple tasks such as private counting
and histogram queries (Dwork et al.l |2006ajb)) to complex tasks such as deep learning (Abadi et al., 2016).

In this work, we are interested in a setting where the output is a discrete probability distribution derived
from some sensitive data, and the distance between the private algorithm’s output and the true output
is measured by the KL divergence. We shall not focus on normalized histograms, as the distance between
two histograms is often measured in £* or £2. Instead, we shall focus on tasks in which the KL divergence
arises naturally; prominent examples are those in probabilistic modeling, where the outputs—the model’s
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estimated parameters—are obtained from likelihood maximization. Another examples are those in Bayesian
modeling, where models are evaluated with adjusted negative log-likelihood scores, such as the Akaike infor-
mation criterion (AIC) and Bayesian information criterion (BIC). It is also increasingly common in Bayesian
practice to evaluate the model with out-of-sample log-likelihood (Vehtari et al., 2016). Again, minimizing
these criteria can be formulated as minimizing the KL divergence.

A simple approach to privatize a discrete probability distribution is by adding some random noises from a
probability distribution. However, the KL divergence does not behave smoothly with the additive noises, as
the following example illustrates: consider count data of 10 people, interpreted as a normalized histogram:
p=(0.1,0.9). Suppose that we draw two sets of noises z; = (—0.090,0.045) and z5 = (—0.099, —0.038) from
Laplace(1/10). Here, the ¢!-distances between p and its noisy versions are 0.135 and 0.137, a very small
difference. On the other hand, the KL divergences between between p and its noisy versions are 0.186 and
0.499, a 2.68 times increase. This example illustrates that adding noises to a discrete probability vector, even
at a small scale, could result in a noisy vector that is too far away from the original vector in terms of KL
divergence.

We instead consider the exponential mechanism, a differentially private algorithm that approximately min-
imizes user-defined loss functions. It turns out that, by taking the loss function to be the KL divergence,
the exponential mechanism turns into one-time sampling from a Dirichlet distribution; we shall call this the
Dirichlet mechanism.

The Dirichlet mechanism, however, does not inherit the differential privacy guarantee of the exponential
mechanism: the guarantee in (McSherry & Talwarl 2007)) requires the loss function to be bounded above,
while the KL divergence can be arbitrarily large. In fact, using the original definition of differential pri-
vacy (Dwork et al., [2006b]), the Dirichlet mechanism is not differentially private (see Appendix . We
thus turn to a relaxation of differential privacy. Specifically, using the notion of the Rényi differential
privacy (Mironov, [2017)), we study the Dirichlet mechanism and its utility in terms of KL divergence mini-
mization.

1.1 Overview of Our results

Below are summaries of our results.

Privacy. We propose a version of the Dirichlet mechanism (Algorithm that satisfies the Rényi
differential privacy (RDP). In this algorithm, we need to evaluate a polygamma function and find the root
of a strictly increasing function. Our algorithm is easy to implement, as polygamma functions, root-finding
methods and Dirichlet distributions are readily available in many scientific programming languages.

Utility. We derive a probability tail bound for Dky,(p|lg) when ¢ is drawn from a Dirichlet distribution
(Theorem . From this, we derive a lower bound for the sample complexity of Algorithm [1| that attains a
target privacy guarantee, both in general case and on categorical data.

Experiments. We compare the Dirichlet mechanism against the Gaussian and Laplace mechanisms for
two learning tasks: naive Bayes classification and maximum likelihood estimation of Bayesian networks—
both tasks can be done with KL divergence minimization. Experiments on real-world datasets show that
the Dirichlet mechanism provides smaller cross-entropy loss in classification, and larger log-likelihood in
parameter estimation, than the other mechanisms at the same level of privacy guarantee.

1.2 Notations

In this paper, all vectors are d-dimensional, where d > 2. The number of observations is always N. Let
[d] = [1,...,d]. For any u € R% we let u; be the i-th coordinate of u, and for any vector-valued function
f: X — RY we let f; be that i-th component of f. Let RZ, be the set of d-tuples of non-negative real
numbers, and Rio be the set of d-tuples of positive real numbers. Denote the probability simplex by

ga—1 . {p € R‘éo : Zpi = 1}.
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For any u,u’ € R? and scalar r > 0, we write u + u’ == (ug +uf,...,uq + u}) and ru = (ruq,...,ruy). For
any positive-valued functions f, f/, the notation f(z) x f’(z) means f(x) = Cf'(z) for some constant C' > 0

and f(z) ~ f'(z) means cf’(z) < f(z) < Cf'(z) for some ¢,C > 0. Lastly, [|ul|2 == \/u} + ...+ u? is the (2

norm of u and ||[ul|s = max;|u;| is the £>° norm of w.

2 Background and related work

2.1 Privacy models

We say that two datasets are neighboring if they differ on a single entry. Here, an entry can be a row of the
datasets, or a single attribute of a row.

Definition 2.1 (Pure and Approximate differential privacy (Dwork et al., |2006ajb)). A randomized mech-
anism M : X" — )Y is (e, §)-differentially private ((g,d)-DP) if for any two neighboring datasets x and z’
and all events E£ C ),

Pr[M(z) € E] < e°Pr[M(2') € E] + 6. (1)

If M is (g,0)-DP, then we say that it is e-differential private (e-DP).

The term pure differential privacy (pure DP) refers to e-differential privacy, while approzimate differential
privacy (approximate DP) refers to (g,d)-DP when ¢ > 0.

In this paper, we shall concern ourselves with Rényi differential privacy, a relaxed notion of ditferential
privacy defined in terms of the Rényi divergence between M (x) and M (2'):

Definition 2.2 (Rényi Divergence (Rényi, [1961))). Let P and @ be probability distributions. For A € (1, 00)
the Rényi divergence of order A between P and (@) is defined as

P A—1
and for A = 1, we define D; (P||Q) = DxL(P||Q),

Definition 2.3 (Rényi differential privacy (Mironov, |2017))). A randomized mechanism M : X" — ) is
(A, e)-Rényi differentially private ((A,€)-RDP) if for any two neighboring datasets z and 2/,

Da(M(z)[|M(2")) < e.
P[M(z)=Y]

Intuitively, € controls the moments of the privacy loss random variable: Z = log PIM)=Y]" where Y is
distributed as M (z), up to order A\. A smaller € and larger A correspond to a stronger privacy guarantee.

The following composition property of RDP mechanisms allow us to track the privacy guarantees of using
multiple Dirichlet mechanisms. This can be helpful when Dirichlet mechanisms is employed in a more
complex algorithms, such as fitting a discrete probabilistic model.

Lemma 1 (Composition of RDP mechanisms (Mironov}, 2017)). Let M; : X™ — Y be a (A1,e1)-RDP
mechanism and My : X™ — Z be a (A2, e2)-RDP mechanism. Then a mechanism M : X™ — Y x Z defined
by M(z) = (M (z), Ma(z)) is (min(A1, A2),e1 4+ €2)-RDP.

2.2 Exponential mechanism with the KL divergence

The exponential mechanism (McSherry & Talwar, 2007 is a privacy mechanism that releases an element
from a range ) that approximately minimizes a given loss function ¢ : XN x Y — R. Given a base measure
pover ) and a dataset € XV, the mechanism outputs y € )V with probability density proportional to:

e @D u(y), (2)

where  is a function of ¢, the privacy parameter.
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For the first time, we point out the connection between the exponential mechanism and a well-known family
of probability distributions under a specific choice of £(x,y). Let f : XN — R%O be an arbitrary vector-

valued function on datasets. Let J = S9=1. Assuming that N; := ", f;(x) is known and nonzero, we denote
the normalized vector f(z) = N;lf(x) € 841 In equation let {(z,y) = Dxu(f(2)|ly), B8 = rNy, and

1(y) be the density of Dirichlet(a), that is, u(y) H?:I y2~ . Then, the probability density of the output
y of the corresponding exponential mechanism is proportional to:

GXP(*TN}DKL z)ly) )Ilya P=exp(r D0 fila)log(yi/ filx) Ily

i,2;7#0

< yrfl(x yqfl
T T

i,2; 70

= H y:fi(z)+a717
i

which is exactly the non-normalized density function of Dirichlet(r f(x) + «). This specific distribution will
play a major role in the main privacy mechanism introduced in the next section.

From this derivation, we can see that this particular instance of the exponential mechanism can be used to
output y that approximately minimizes the KL divergence Dk, ( f (a:)||y> while keeping x private.

To see how the choices of r and « affect the “distance” between y; and f;(z), we treat y; as an estimator of

e

fi(x) and look at the bias of y;:

sz )+a fz(x)
Nf+d04 Nf

_ a|Ny — dfi(z)|

- Ny(rNy+da)’ (3)

Ely:] — fi(z ‘ =

The bias is reduced when 7 increases and « decreases.
We can also look at the variance of y;:

(rfi(z) + a)(r(Ny — fi(z)) + (d — 1)e)
(rNy +da)?(rNy +da+1) ’

Varly] =

which is O(1/r) as r — oo and O(1/a) as o — co. This implies that draws from Dirichlet(r f(z) + «) are
more concentrated when r and « are large.

Applications. The derivation of the Dirichlet mechanism above suggests that the best use of the Dirichlet
mechanism is for privately minimizing KL divergence, which arises in the following scenarios:

1. Maximum likelihood estimation. Consider a problem of parameter estimation in a multinomial
model with d possible outcomes. Let = € [d]"¥ be N observations, fi(x),..., fa(x) be the frequencies
and y1, ..., yq be the model’s parameters. Then the log-likelihood of = is ), f;(x) log y;. Maximizing
the log-likelihood with respect to y is equivalent to minimizing the KL divergence:

arg maxz fi(z)logy; = arg min Dk, (f](\fx) Hy)

Thus, we can use the Dirichlet mechanism to release the parameters of the model while keeping x
private.

2. Cross-entropy minimization. Consider the same multinomial model as above. One might in-
stead aim to minimize the cross-entropy loss: —= >, fi(z)logy; over y. This is also equivalent to
minimizing the KL divergence, so we can use the Dirichlet mechanism to privately solve for y.

2.3 Polygamma functions
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100 o

In most of this study, we take advantage of several nice prop-

erties of the log-gamma function and its derivatives. The &
polygamma function of order m is the (m + 1)-th derivative of =
the logarithm of the gamma function. Specifically, when m = 0, 20
we have the digamma function 1(z) = S logT'(z), which is a
concave and increasing function. T T T T T T

Our function of interest is the polygamma function of order 1:
wf(m), which is a positive.7 convex, and fiecreasing function (see Figure 1: A plot of ¢/(z).
Figure . It has the series representation:

1
/
- B 4
V@) =Y (4)
k=0

which allows for fast approximations of ¢’ (z) at any precision. ¢’ can also be approximated by the reciprocals:

11 ) 11
Zr— 4= 5
o <v@) <+, (5)

which implies that ¢/(z) ~ % as  — 0 and ¢/'(z) = L as 2 — oco.
2.4 Related work

There are several studies on the differential privacy of obtaining a single draw from a probability distribution
whose probability density function is of the form y — Zp(z|y)u(y). Here, x is sensitive data, z — p(z[y) is a
probability density function for all y in the domain, y is any positive-valued function, and Z is the normal-
izing constant. Wang et al| (2015|) showed that, when [logp(x | y)| < B for some constant B, then a single
draw is 4B-differentially private. However, the densities that we study are not bounded away from zero;
they have the form [], yzf @)+ $hich becomes small when one of the y;’s is close to zero. [Dimitrakakis
et al.| (2017)) showed that, when p is the density of the binomial distribution and u is the density of the
beta distribution, then a single draw is (0,d)-DP, and the result cannot be improved unless the parameters
are assumed to be above a positive threshold. As a continuation of their work, we prove in the appendix
that, when the parameters are bounded below by « > 0, sampling from the Dirichlet distribution (which is
a generalization of the beta distribution) is (¢, )-DP with € > 0.

Let z be a sufficient statistic of an exponential family with finite £*-sensitivity. Foulds et al. (2016) showed
that sampling Y ~ p(y | &), where & = = + Laplace noise, is differentially private and as asymptotically
efficient as sampling from p(y | ). However, for a small sample size, the posterior over the noisy statistics
might be too far away from the actual posterior. Bernstein & Sheldon| (2018]) thus proposed to approximate
the joint distribution p(y,z, ) using Gibbs sampling, which is then integrated over x to obtain a more
accurate posterior over .

Geumlek et al.| (2017)) were the first to study sampling from exponential families with Rényi differential pri-
vacy (RDP;[Mironov|(2017))). Even though they provided a general framework to find (A, €)-RDP guarantees
for exponential families, explicit forms of A and the upper bound of A were not given.

The privacy of data synthesis via sampling from Multinomial(Y"), where Y is a discrete distribution drawn
from the Dirichlet posterior, was first studied by [Machanavajjhala et al|(2008]). They showed that the data
synthesis is (¢,0)-DP, where € grows by the number of draws from Multinomial(Y"). In contrast, we show that
a single draw from the Dirichlet posterior is approximate DP, which by the post-processing property allows
us to sample from Multinomial(Y") as many times as we want while retaining the same privacy guarantee.

Gohari et al| (2021) have recently showed that the Dirichlet mechanism is (e(r,~,n,7"),d(r,v,n,1"))-
DP, where ~,7,7' € (0,1) are additional parameters. Not only the guarantee has many pa-
rameters to optimize, it is also computational intensive. Specifically, for any W C [d], define
Q’IZ{,"/ = {p €Sl ip; >, Vie W, Yiewbi <1 — 77'}. Gohari et al. proposed the following choice of 9:

d=1- min {Pr[Y; > v;¥i € W] : Y ~ Dirichlet(rp)} . (6)
pel” Wcld]
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x10~1

To compute §, we have to approximate Pr[Y > 4] with a numerical =~ —2s1
integration scheme with high precision, otherwise the integral may — =21
be greater than one. Even then, the integral is highly dependent on 231
the scheme, and for some choices of the parameters r,n,7’, the value >
of § cannot go below a certain threshold. We illustrate this in Fig- o
ure I With » = 171.87,n7 = 0.028 and 7’ = 0.114, the value of § cannot go below 2.1 x 10 4 . In cont@st
our guarantee is much simpler to compute, as the function 1/’ can be easily approx1mated via its series
representation (equation [4] ' Moreover, we are the first to provide the utility of the Dirichlet mechanism in
terms of KL divergence minimization.

3 Main privacy mechanism

3.1 The Dirichlet mechanism

Let f: XN — RL; be an arbitrary vector-valued function with finite £~ and £>°-sensitivities: there exist
two constants As, A, > 0 such that

sup  [|f(2) = f(2')3 < A and sup  [|[f(z) = f(2')lloo < Ao

x,z’ neighboring x,z’ neighboring

Algorithm [1] below details the Dirichlet mechanism used to privatize z € X'V.

Algorithm 1 (), ¢)-RDP Dirichlet mechanism

Input: A dataset z € XN, A vector-valued function f : XV — R‘io with £2-sensitivity A, and £>°-sensitivity
Aso a

Parameters: A >1,¢ >0

1. Use a root-finding algorithm to find r > 0 such that ¢ = Ar?A%y/(1 + 3(A — 1)rAL).

2. Let a=1+4(A—1)rAs

3. Output y ~ Dirichlet(r f(z) + ).

The following lemma ensures that we can obtain an 7 > 0 in Line[I] for any ¢ > 0:

Lemma 2. Withe, Ay >0,As >0 and A > 1 held constant, the function r — 2Ar2A3¢/(1+3(A — 1)rAs)
defined on (0,00) is strictly increasing from 0 to co. Consequently, the equation

1
- 5/\r2A§w’(1 +3(\ = 1)rAL)

has a unique solution in r for any e, Ao, Ay >0 and A > 1.

The proof of Lemma [2] can be found in Appendix [D]

3.2 Privacy guarantee
Theorem 1. Algorithm[1] is (X,e)-RDP.

The proof of Theorem [I| can be found in Appendix|E] A few remarks are in order.

Remark 1. In general, we can replace ¢/ (14+3(A—1)rAs) in Line[l]by ¢/(1+¢(r)), and o = 1+4(A—1)rAs
in Line2[by o = 1+ ¢g(r) + (A — 1)rA for any function g : R5g — R>¢. In particular, choosing g = 0 yields

2¢/(AA3¢’(1)) which can be computed without a root-finding algorithm. However, this choice of r
makes ¢ grows as 72, which becomes too large when r > 1. Instead, we choose g(r) to be a constant factor of an

existing term (A—1)rA, in a, which allows us to offset the A2 factor in £ with ¢'(1+g(r)) = © (m)
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Figure 3: Top: Plots of the Rényi divergence (¢) between Dirichlet(r f(z) +«) and Dirichlet(r f(z') + «) using
the direct calculations and Algorithmas a function of r for A € {2,10,40}. Here, f(z) = (11,8,65,25,38,1),
f(z') = (11,7,65,25,38,0) and o = 1 + 4(A — 1)r. Bottom: Plots of Dk, (y|/f(x)) for multiple instances
of y drawn from Dirichlet(r f(x) + «), where f(z) = (119,74,618,272,13,187), o = 1 4+ 4(A — 1)r, and
A € {2,10,40}. For each &, the privacy parameter r is chosen to satisfy (£,1075)-DP, using (1) the results
of |Gohari et al.| (2021), and (2) the conversion from our RDP guarantee to approximate DP.

Remark 2. If one has prior knowledge that fi(x) > b for some b > 0 for all z € XV and all i € [d], then
the proof of Theorem can be modified so that (A, )-RDP can be obtained by setting r to be the solution
to the equation e = $Ar?A%1’ (14 rb+ 3(A — 1)rAs). Since ¢ is strictly decreasing, this leads to a larger
value of r compared to Algorithm

To demonstrate the tightness of the privacy guarantee of Algorithm [I] we simulate two neighboring his-
tograms: f(x) = (11,8,65,25,38,1) and f(z') = (11,7,65,25,38,0). As functions of r, we compare ¢ in
Line[T] with the analytic values of the Rényi divergence between Dirichlet(r f(x)+c) and Dirichlet(r f(z) +a),
where « is given in Line[2] The plots of € as functions of r in Figure[3|show that our proposed RDP-guarantees
are close to the actual Rényi divergences across different values of .

We also perform another simulation in order to compare our privacy guarantees with the ones from
in terms of their effects on the KL divergence. In this simulation, we apply the Dirichlet
mechanism with these privacy guarantees to the following count data: f(z) = (119,74,618,272,13,187).
For each A € {2,20,200}, we define a = 1+ 4(X — 1)r as in Algorithm [I} Since the results of Gohari et al.
are stated in terms of approximate DP, we have to convert our result from RDP to approximate DP (see
details about the conversion in Appendix. For each ¢ ranging from 0.001 to 100, we use Theorem (with
the conversion) and Gohari et al’s results to choose r > 0 so that a single draw from Dirichlet(r f(z) + «)

is (4,1075)-DP. We then draw multiple instances, say ¥, from the distribution and compute Dkr,(f(z)||y).
Finally, we plot the KL divergence as a function of &, as shown in Figure [3] As a baseline, we also plot the

KL divergence between f(x) and the discrete uniform distribution. We can see that our privacy guarantee
generally provides smaller KL divergences than that of Gohari et al’s. However, as A becomes very large,
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the algorithms output discrete probability distributions that are close to being uniform. The missing points
in the A = 2 and A = 20 plots are related to a precision issue with the Gohari et al’s method that we pointed
out in Section because of insufficient precision in numerical integration, we could not bring the value of
§ down to 1075.

4 Utility

Let us recap the setting with which we apply the Dirichlet mechanism: we have a sensitive dataset z € AN

and an arbitrary vector-valued function f : XN — R%,. Let Ny :== ", fi(z) and f(x) = N;lf(x) € i1,
We propose the Dirichlet mechanism (Algorithm which aims to output y that minimizes Dky, ( ]?(\;)Hy)
while keeping x private.

This motivates us to measure the utility of the Dirichlet mechanism in terms of the KL divergence between

f(z) and y. To this end, we can make use of the following bound:

Theorem 2. For any a > 0, p = (p1,...,pq) € S% ' and q ~ Dirichlet(8p + «), the following inequality
holds for any n > 0 and any > da/(e"/? —1):

Pr[Dky(pllg) > n] < e/ GErmE+an),
The proof can be found in Appendix Since the Dirichlet mechanism outputs y ~ Dirichlet(rf(x) +

a) = Dirichlet(rNy f(z) + «), we can apply Theorem [2[ with p = f(z), ¢ = y and 8 = rN;. As long as
Ny >da/(r(e"? — 1)), we have the bound

Pr [DKL ( f’(})”y) > ,7} < TN/ (24 (A+30)

We shall assume that 7 < 1 and A > 2. To obtain Dy, ( f/(;)Hy) > 7 with high probability, one needs

Ny = Q(# + ﬁ) Now, we would like to write » and « in terms of € and A using the following
identities from Algorithm

1

€= §Ar2A§¢’(1 +3(\ = 1)rAL) (7)

a=1+4\—-1)rA. (8)
We recall from Lemma [2 that the right-hand side of equation [7]is a strictly increasing function of r from
0 to oco. This implies that, as € — oo, we have r — oco. Under this limit, it follows from equation [5 that
P (143N =-1)rdAs) = @(ﬁ) Thus, equationandgive r = 0(e) and o = O((A — 1)e). On the other
hand, as if € = 0, we have 7 — 0 which implies ¢'(1 + 3(A — 1)rA) = ©(1). Consequently, r = O(y/c/N)
and o = O(1). Therefore, to attain the (A, &)-RDP guarantee, one needs

en/2—1

Ny = Q(\/:[lerD ife<1
e | n? en/2—1 .

The most common example is when the data is categorical, that is, = € [d]" and f;(x) is the number of i’s
in . Then Ny =), fi(x) = N, and the analysis above implies that the sample complexity for (X, e)-RDP

and sub-n KL divergence, with A and 7 fixed, is N = Q(% + 1) ife>1land N = Q(%) ife <1.

Q(#+d(’\’1)> ife>1

5 Experiments and discussions

5.1 Naive Bayes classification

We consider the Dirichlet mechanism for differentially private multinomial naive Bayes classification. Given
a dataset D = {(z,y)}N  we construct a model to classify labels y*) € [d] from discrete features
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Table 1: UCI datasets used in the experiment

Dataset #Instances #Attributes F#Classes %Positive Source
CreditCard 30000 23 2 22% Yeh & hui Lien! (2009)
Thyroid 7200 21 3 - Quinlan et al.| (1986)
Shopper 12330 17 2 15% Sakar et al.| (2018)
Digit 5620 64 10 — Garris et al.| (1997))
GermanCredit 1000 20 2 30% Gromping (2019))
Bank 41188 20 2 11% Moro et al| (2014)
Spam 4601 57 2 39% |Cranor & LaMacchial (1998])
Adult 48842 13 2 24% Kohavi| (1996)

z® = (xgi),...,x(f?) € Hle Xk, where X, ..., Xk are finite sets. For j € [d], k € [K] and ¢ € X}, we de-
note the class count by N; = Zil ]I(y(i) = j). For the k-th feature, we denote the feature-class count by

N, ]’90 =) Zivzl I(y® = j, x,(f) = ¢). We can use the count data to estimate the class probabilities and the class-

conditional feature probabilities:
Prly=j] =7, =N;/N and Prlz;=cly=j|:= éfc = N]kC/Nj. (9)

The naive Bayes model assumes that, conditioning on the label, the features are independent. As a result,
the probability of y = j conditioned on (z1,...,Zx) can be computed as follows:

K
Prly = jlas,....ax] o Prly = j] [] Prlax = cly = j]

To modify the model with the Dirichlet mechanism, we sample (71, ..., 74) ~ Dirichlet(r(Ny, ..., Ng) + @),
where r and « are chosen according to Algorithm (with A2 = 2 and A, = 1) to attain ()\,e/K +1)-RDP.
Similarly, for each k € K and ¢ € &}, we sample (8%,, .. .,0% ) ~ Dirichlet (rk(Nf.,...,NE) + aF), where r}
and of are chosen to attain (A, /(K + 1))-RDP as well. We then release #; instead of #; and éﬁ instead
of GA;“C for all j,k and ¢, which leads to (A,€)-RDP by the basic composition (Lemma (1) and the parallel
composition of RDP mechanisms

To benchmark the Dirichlet mechanism, we apply the Gaussian mechanism and the Laplace mechanism to
the naive Bayes model. Specifically, we replace N; and NJ’»“c in equation |§| by their noisy versions, namely
N; == N; + z; and NE = NE + 25 where z;, 25, ~ N(0,\(K + 1)/¢) for the Gaussian mechanism and
zj, 2k, ~ Laplace(0, b), where b is calculated using Mironov, (2017, Corollary 2) to attain (A,e/K)-RDP for
the Laplace mechanism.

In this experiment, the naive Bayes models with differentially private mechanisms are used to classify 8
UCT datasets (Dua & Graffl, 2017) with diverse number of instances/attributes/classes. The details of the
datasets are shown in Table [I}] For each dataset, we use a 70-30 train-test split. Before fitting the models,
numerical attributes are transformed into categorical ones using quantile binning, where the number of bins
is fixed at 10.

For all privacy mechanisms, we fix A = 5 and study their performances as ¢ increases from 1073 to 10.
We also add the random guessing model, which is a (A,0)-RDP model, as the baseline. The classification
performances, measured in cross-entropy (CE) loss and accuracy on the test sets, are shown in Figure
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of the original and four (5,¢)-RDP naive Bayes models on 8 UCI datasets.
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Figure 5: Test accuracies of the original and four (5,¢)-RDP naive Bayes models on 8 UCI datasets. Plots
of the random guessing on some datasets are not shown as its accuracies are well below the other models’.

and We can see that, on all datasets, the test CE losses of the Dirichlet mechanism are substantially
less than those of the Gaussian mechanism and Laplace mechanism; they are remarkably close to those
of the non-private model on the CreditCard, GermanCredit, Bank and Adult datasets. This result should
not be surprising, as the Dirichlet mechanism is the exponential mechanism that aims to minimize the KL
divergence, and thus the cross-entropy between the normalized counts and the parameters.

In terms of accuracy, there is no clear winner among the three mechanisms; the Dirichlet mechanism performs
as well as the other mechanisms in most cases. Specifically, it has higher accuracies than the Gaussian

10
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mechanism on the Digit dataset for € > 0.1, on the Adult dataset for € < 0.1, and on the Bank dataset for
all values of .

The ditference between the two metrics stem from the fact that the cross entropy loss is a continuous function
of the predicted probability, while the accuracy is a result of applying a hard threshold on the probability.
Thus the accuracy does not distinguish between, for example, two instances, z,z’ with Pr[y = 1|z] = 0.1
and Pr[y = 1]a’] = 0.4, but the CE loss will suffer almost three times as much when the true label of z is 1
compared to when the true label of 2’ is 1. Thus a model with high accuracy can have relatively low CE loss
when they are too confident in their incorrect predictions.

All in all, neither metric is an end-all for measuring classification performance, and we should look at more
than one metrics when fitting a model. If one wants to publish a naive Bayes model under privacy constraint
that performs well in both CE loss and accuracy, then the Dirichlet mechanism is an attractive option.

5.2 Parameter estimations of Bayesian networks

We use the Dirichlet mechanism for differentially private parameter estimations of discrete Bayesian networks.
Consider a dataset D = {z(W1 | where 2(!) = (acgi), ce mﬁ?) € Hszl Xy and Xy, ..., Xk are finite sets. We
name the K variables by their index: 1,..., K. Given a Bayesian network and k € [K], we denote the set of
parents of k, that is, the set of direct causes of k by Pa(k). Let x%( By = (a:,(f))ge Pa(k) be observed values of

Pa(k) and Xpg(;) = HéePa(j) Xy be the product space of Pa(k). Given j € X, and ¢ € Xpgy(), we denote
Nk = Zf\;l I[(asgzl(k) = ¢) and Nf, = Zf\;l ]I(xg) = j, xgl(k) = ¢). The log-likelihood of the parameters
0. = Prlxy = j | xpar) = ] is given by:

LL(O):= > Y NElogby,. (10)
keE[K] jEXK
cE€EXpa(k)

Using the first-derivative test, the maximum-likelihood estimators of the Bayesian network are as follow:

N NE

k. 1'je
% = X (11)
We can modify the model using the Dirichlet mechanism: assuming that &} = [d], we replace (élfc, ey ésc)
by (6f.,...,0% ) ~ Dirichlet(r(Nf,..., Nk )+ a). Here, r and a are chosen according to Algorithm [1| to

attain (A, e/K)-RDP. By the basic composition (Lemma |1)) and the parallel composition, releasing éfc for
all k € [K], j € &y and ¢ € Xpy) is (A, €)-RDP.

We will compare the Dirichlet mechanism with the Gaussian and Laplace mechanisms. In equation we
replace N ]’-“C by its noisy version: N Jl-“c =N ch + z;-“c, where zfc ~ N(0,\K /e) for the Gaussian mechanism and

zF, ~ Laplace(0,b), where b is calculated using Mironov| (2017, Corollary 2) to attain (\,e/K)-RDP for the
Laplace mechanism. In addition, we replace N* by N* := Zj N Jkp

In this experiment, we have prepared Bayesian networks on the Adult, Bank and GermanCredit datasets,
which are parts of full networks provided by [Le Quy et al.| (2022). The Bayesian networks are shown in
Figure [6] As in the previous experiment, we use a 70-30 train-test split on each dataset, and continuous
attributes are transformed into categorical attributes via quantile binning, with the number of bins fixed at
10.

For all privacy mechanisms, we fix A = 5 and study their performances, in terms of the log-likelihoods of
the privatized parameters on the test sets, as € increases from 1073 to 10. The plot of the log-likelihoods as
functions of € are shown in Figure[7] We can see that, on all datasets, the test log-likelihoods of the Dirichlet
mechanism are substantially less than those of the Gaussian mechanism and Laplace mechanism. The results
agree with our suggestion to use the Dirichlet mechanism for privacy-aware KL divergence minimization for
discrete parameters, as it is equivalent to likelihood maximization.

11
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Figure 7: Test log-likelihoods of the parameters obtained from the maximum-likelihood estimation (non-

private) and three (5, e)-RDP mechanisms.

6 Conclusion

The Dirichlet mechanism is an instance of the exponential mechanism whose loss function is the discrete
KL divergence. This motivates us to use the mechanism for privacy-aware KL divergence minimization.
Consequently, we can use the Dirichlet mechanism for private likelihood maximization and cross—entropy
minimization as well. To this end, we propose a choice of the privacy factor r and the prior a that achieve a
desired (A, e)-RDP guarantee. To demonstrate its efficiency, we compare our mechanism with the Gaussian
and Laplace mechanisms for differentially private naive Bayes classification, and as expected, the Dirichlet
mechanism provides significantly lower cross-entropy losses on various datasets compared to the other two
mechanisms. We also make a comparison between the mechanisms for maximum likelihood estimations
for Bayesian networks. Our experiment on three datasets shows that the Dirichlet mechanism provides
significantly higher log-likelihoods than the Gaussian and Laplace mechanisms.

As the KL divergence is a fundamental measure in information theory, we envision that the Dirichlet mech-
anism would become essential for many privacy-focused information-theoretic models with discrete parame-
ters.

Broader Impact Statement

The Dirichlet mechanism does not provide privacy protection for free, but with a cost of some accuracy
loss: the higher the privacy guarantee, the lower the accuracy of the privatized model compared to the
original model. Any losses incurred from the inaccuracy must be taken into consideration before deploying
the privatized model.
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A Dirichlet posterior sampling is not c-differentially private

We show that the Dirichlet posterior sampling does not satisfy the original notion of differential privacy—the
pure differential privacy.

Proposition 3. For any € > 0, the mechanism that outputs y ~ Dirichlet(r f(x) 4+ «) is not e-differentially
private.

Proof. Without loss of generality, let « = (0,0,...,0) and 2’ = (1,0,...,0). Let @ > 0 be any positive
number. Let y ~ Dirichlet(rf(z) + «) and 3y’ ~ Dirichlet(rf(z') + «). For any yo = (y1,¥2,--.,yq) with
> yi =1, we have

For any € > 0, we can choose a sufficiently small y; > 0 so that the right-hand side is larger than e®. O

B Approximate differential privacy

We can convert from RDP to approximate DP with the following conversion formula:

Lemma 3 (From RDP to Approximate DP (Canonne et al. [2020)). Let ¢ > 0. If M is a (\,€)-RDP
mechanism, then it also satisfies (¢,0)-DP with

5_ (A= —¢) (1 - 1)5

A—1 A (12)

Taking the logarithm of equation
logd=(A—1)(e —&)+ (A —1)log(A —1) — Alog(A),

which is equivalent to
log d + Alog(A
f—ctlog(A—1)— %ﬁg()
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Figure 8: (£,0)-DP guarantees of the Dirichlet mechanism following equation |13| with A € {2,10, 50,200}
and § = 107°.

Plugging in the RDP guarantee in Algorithm [I} we obtain

log & + Alog(\)
A—1 ’

which gives a formula for £ in terms of 7, A and d. Figure [§]shows £ as a function of r at four different values

of \. We can see that, at a fixed ¢, € is increased when we increase r and decrease A.

£ = %)\TZA%W(I +3(A = 1)rAy) +log(A —1) — (13)

C Experiments with approximate DP

We perform the same experiments as those in Section[5] But this time, we focus on approximate DP instead
of RDP, and we also include the Dirichlet mechanism with |Gohari et al.| (2021))’s privacy guarantee in the
experiments. Our (A, &)-RDP guarantee of the Dirichlet mechanism is converted to (¢,4)-DP guarantee,
with § = 1075, using the material in Section sec:adp. The results of the naive Bayes and Bayesian network
experiments are shown in Figure[0]and Figure [I0] and those of the Bayesian networks are shown in Figure[T1]

Aside from similar results as those in Section ] We highlight that our Dirichlet mechanism performs better
than Gohari et al’s in all experiments, and Gohari et al’s mechanism performs significantly worse for smaller
values of £. We also notice that, in contrast to the results in Section [5| the Laplace mechanism performs
better than the Gaussian mechanism; this is because the composition property for multiple uses of an £ DP
mechanism is better than that of an (£,0)-DP for any § > 0 (see Dwork & Roth| (2014, Theorem 3.20)).

D Proof of Lemma 2

Denote z = 3(A — 1)rA. With e, A\, Ay and A, fixed as constants, we can write the equation as ¢ =
Cz%)'(1 + z) for some constant C' > 0. From equation we have ¢/'(1 + z) = @(ﬁ) as ¢ — 0 and
Y'(x) = @(H%) as x — o0o. Consequently,
lim 2%¢'(14+2) =0 and lim 2%¢)'(1 + ) = co. (14)
z—0 r—00

The conclusion will follow if we can show that the function ¢(z) = z2¢’(1 + x) is strictly increasing. For

this, first we use ¢'(1+ ) < 14%9: + 7 to obtain

§E=E
, o Y(+x) YA+ _ 2(1+z) 2¢'(1+1)
W+ < 1+ (14 x)? = 1+=x < x ’

In other words, 2¢'(1 + ) > z[¢/'(1 + 2)]2. Combining this with [2/'(x)]? + " (z) > 0 (see e.g. Batir| (2004,
Lemmal.1)), we have

¢'(x) =22’ (1 + ) + 2*P" (1 + z) > 2® [/ (1 + 2)]* + 229" (1 + 2) = 2*([¢/(z)]* + ¢ (2)) > 0.
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of the original and five (¢,107°)-RDP naive Bayes models

on 8 UCI datasets.
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Figure 10: Test accuracies of the original and five (¢,107°)-DP naive Bayes models on 8 UCI datasets. Plots
datasets are not shown as its accuracies are well below the other models’.
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private) and four (¢,107°)-DP mechanisms.

Therefore, ¢(z) is strictly increasing, which, combined with equation implies that the equation ¢(z) =&
has a unique solution z. for any € > 0. We then obtain a solution in r by letting r = z./(3(A — 1)A).

E Proof of Theorem 1

Case 1: )\ > 1.

Let z and 2’ be neighboring datasets. For notational convenience, let u = rf(x) + a and v’ = rf(2') + a.
As usual, we write u = (u1,...,uq), v = (u],...,uy), ug =Y, u; and ug =Y, u;. Let P(y) be the density
of Dirichlet(u) and P’(y) be the density of Dirichlet(u). To compute the Rényi divergence between P(y)
and P’(y), we start with:

P A—1 B(u' A—1 D!
Ey~p) [P’((Z)’\_l] - B((u))A—l Ey~r(y) [3/(/\ . )}
~_ BW)*' Bu+(A—1)(u—u))
~ B(u)*! B(u) ’ (15)

where B(u) = I'(ug) ' [, ['(w;) is the multivariate beta function. Thus the ratio can be expressed in terms
of gamma functions:

By _ TLT(/N(5 ) _ ) py 1)
Bu)  TLT(w)/T(Cw)  Tlug) 41 Tu)’
where ug =), u; and ug ==Y, u;. Similarly,

Blu+ (A=1)(u—1u"))
B(u)

_ INOFE) H T(u; + (A= 1)(u; —u}))
PO uwi+ (A= 1) 32, (us — ug)) I(u;)

Taking the logarithm on both side of equation we need to find an upper bound of:

A1

108 Byt | s | = S (Gl )+ H ) = Gl ) — o ), (16)

where
G(ui,uf) = (A — 1)(log I'(u;) — log T'(u;))
H(ug,uy) =logT(u; + (A — 1) (u; — u)) — log T'(u;),

18



Under review as submission to TMLR

and similarly for G(ug,up) and H(ug,up). Using the second-order Taylor expansion, there exists £ between
u; + (A = 1)(u; — uf) and u;, and & between u; and u) such that

= O D) — F)rb() + 5 (= Do) — )P0 (€)
(g ) = (= 1) s — eb(ae) + 5 (0 = 1) (s — )20 (€)

= (A= D(fi(x) = fila))r(u;) + %(/\ = D2(fi(z) = fila"))r*¢'(€).

We try to find an upper bound of both ¢’(§) and ¢’ (&'). If f;(x) > fi(z'), then u; < u; < u;+(A—1)(u; —u}).
Thus both & and ¢ are bounded below by u; > . On the other hand, if f;(z) < f;(z'), then u; + (A —
1)(u; — u)) < u; <wl. In this case, £ and ¢ are bounded below by:

ui + (A= D(u; —ug) = fi(z) + o= (A= 1)(rfi(a) = rfi(x))
>a—(A-1)rAs

Since v’ is decreasing, both 1'(£) and ¢’(¢’) are bounded above by ¢'(a — (A — 1)rA). Consequently,

G(us, ug) + H(ug, up) < 5 (A =1) + (A= 1)?)(fiz) = fi(2")*r*¢' (0 = (A = 1)rAs)

X =D(filz) = fi(@")*r*Y' (@ = (A = 1)rAs).

DN = DN =

The same argument can be used to show that, there exist § and & such that:

1 1
o) + H (o, ug) = 51— 1)(uo — ) (€h) + £ (A — )20 — )0/ (&) > 0
Therefore, continuing from equation [16]

DAPW)IP W) = 5 (Z(c:(ui,u;) + (i) — Glug,up) H(uo,ua>>
< 57 (G ad) + H )

S )\Z f1 xz z )2 2¢ ( - (>‘ - ]—)er0)
< %)\A2r2d/(a - (A =1rAy). (17)
Case 2: A\ =1.

We use the following formula for the KL divergence between two Dirichlet distributions:
Dxw(P(y)|P'(y)) =logT'(uo) Zlogl“ (u;) — log T'(up)

+Zlogl“ Z i) — ¥(uo)),
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From this, we split the right-hand side into two parts and apply the Taylor approximation as before:
fZlogF U +Zlogr Z ) < fz ' (min{u;, u)})
<t
:7Zf11'2 z ))2 2¢()
S §A§T2W(1),

and

log (o) — log T (up) — 3 (o — )b (uo) < —5 3 (us — ) (maxc{ o, )

<0.

Adding these two inequalities yields the same inequality as equation [17 with A = 1.

Thus, given any A > 1, € > 0 and any g : Rog — R, if we let 7 be the solution of 2A\r2A3y/ (14 g(r)) =¢
and a =14 g(r) + (A — 1)rA,, then the inequality above implies Dy (P(y)||P'(y)) < €. We conclude that
Algorithm [1| by setting g(r) = 3(A — 1)rAx

F Proof of the Utility bound
We first note a pair of inequalities for the digamma function, which hold for all x > %:

log (:1: - 1) < P(x) < logz. (18)
We start with the Chernoff bound: for any ¢ < 3,

Pr[Dir(pllg) > 1) < e ""E [efDKL@Hq)}

="K [H(pi/qi)t’”]
— et [[o7E Hqi—tm}

et tpi Bpi—tpi+a—1 d
Hp 5p o / Hq q

_ —tp; + a)

tn 7517»
H Bp + a)

_ —t7l B + da tp1 ﬁpz tpz + Oé) 19
€ —t+ da H Bpi + @) (19)

Using the first-order Taylor approximation, we have the following estimates for log-gamma functions:

logT(B + da) < logT'(B — t + da) + t(8 + da)
logT'(Bp; — tpi + a) < logI'(Bp; + dov) — tpsp(Bpi — tpi + ).
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Inserting these inequalities and equation (18| into equation we obtain

Pr{Dicu(plla) > ] < e™et I T piremtmvPritncee)
— T
i
< e~ tnetlog(B+da) Hpt_me—tpi log(Bpi—tpi+a—1/2)
1
i

(B + da)* Hp’;pi (Bpi —tpi +a — 1/2)77

i

M6 4 da) TT(8 — t +p; (- 1/2) ™

i

R B+ da i

- nH< —t+p;1(a—1/2)>
th<ﬂ+da>

i Btda

¢ "(ﬁt)

d
= exp (—tn + tlog Bﬂ—’—_ ta)

(20)
1any —1
The function f(¢) is minimized at t* := ( %i;; ), where W is the Lambert W function. Note
that W satisfies the identity log(W (z)/z) = —W (x) for all z > —e~!. Therefore,
+ d
£t = ~tn+ e log 8
ﬂ + da Belttn
t*1
tn+ ¢ log B+ da
147
= n+t*log { <§j—d >}+t*logel+’7

—t'n —t*W ( Hn) t"(1+n)
(1_ <ﬂﬁ+da>>
(- () ) () )

The assumption 8 > da/(e"/? — 1) implies §/(8 4+ da) > e~/2. We use the inequality W(z) > loga —
loglogz + loglogz/(2log x) for x > e (Hoorfar & Hassanil, 2008, Theorem 2.7) to obtain

w(Fa) =)
(6

n ny , log(1+n/2)
>1+ 2 —1lo (1+—)+7
2 U T ) T o1 /2)
1
—1 77( ] > (1+ 7
2 2+n
Sigon L
2 2 2409
n
2(2+1)
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Continuing from equation we have

s a(1- (e ) ) (- 1) = o)

Inserting this inequality back into equation 20} we obtain
Pr[Dxu(plla) > 0] < exp(f (1)) < exp(f(t)) < e~/ GED ),

as desired.
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