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Abstract

We study the performance of the Thompson Sampling algorithm for logistic bandit problems.
In this setting, an agent receives binary rewards with probabilities determined by a logistic
function, exppβxa, θyq{p1 ` exppβxa, θyqq, with parameter β ą 0, and both the action a P A
and the unknown parameter θ P O lie within the d-dimensional unit ball. Adopting the
information-theoretic framework introduced by Russo & Van Roy (2016), we derive regret
bounds via the analysis of the information ratio, a statistic that quantifies the trade-off
between the immediate regret incurred by the agent and the information it just gained
about the parameter θ. We improve upon previous results and establish that the information
ratio is bounded by dp4{αq2, where d is the dimension of the problem and α is a minimax
measure of the alignment between the action space A and the parameter space O. Notably,
our bound does not scale exponentially with the logistic slope and is independent of the
cardinality of the action and parameter spaces. Using this result, we derive a bound on
the Thompson Sampling expected regret of order Opdα´1

a

T logpβT {dqq, where T is the
number of time steps. To our knowledge, this is the first regret bound for any logistic bandit
algorithm that avoids any exponential scaling with β and is independent of the number of
actions. In particular, when the parameters are on the sphere and the action space contains
the parameter space, the expected regret bound is of order Opd

a

T logpβT {dqq.

1 Introduction

This paper studies the logistic bandit problem, where an agent sequentially interacts with an unknown
environment with parameter θ P O. At each time step, the agent selects an action a P A and receives a
binary reward whose probability of being one is given by the logistic function exppβxa, θyq{p1 ` exppβxa, θyqq

with slope parameter β ą 0. In this setting, both the action space and the parameter space are closed
bounded subsets of the d-dimensional real space Rd. The goal of the agent is to maximize its total reward,
or equivalently to minimize its regret, that is, the difference between the optimal cumulative reward and
the cumulative reward achieved by the agent. This setting is used to model various scenarios, such as click-
through rate prediction, spam email detection, and personalized advertisement (Chapelle & Li, 2011; Russo
& Van Roy, 2018).

The performance, or regret, of algorithms for logistic bandits has been extensively studied, with significant
contributions including analyses of Upper Confidence Bound (UCB) algorithms (Filippi et al., 2010; Li
et al., 2017; Faury et al., 2020) as well as the study of Thompson Sampling (TS) (Russo & Van Roy,
2014; Dong et al., 2019; Abeille & Lazaric, 2017). However, all existing regret bounds for logistic bandits
exhibit an exponential dependence on the parameter β (see Table 1) or scale poorly with the number of
actions. Those results are unsatisfactory because, in practice, the distinction between near-optimal and sub-
optimal actions gets more pronounced as β increases, which can make it easier to find near-optimal actions.
Similarly, algorithms like TS have demonstrated strong empirical performance even in problems with large
or continuous action spaces (Russo & Van Roy, 2014). This gap between theoretical bounds and empirical
behavior was already pointed out by McMahan & Streeter (2012), who called for improved regret analyses
in the logistic bandit setting, a challenge that has long remained open.
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In this work, we focus on the Thompson Sampling algorithm (Thompson, 1933), which, despite its simplicity,
has proven to be effective for a wide range of problems (Russo et al., 2018; Chapelle & Li, 2011). Analyzing the
TS expected regret, Russo & Van Roy (2016) introduced the concept of the information ratio, defined as the
ratio between the squared expected instantaneous regret and the information gained about the optimal action
from the current observation. Building on this framework, Dong & Van Roy (2018) derived a near-optimal
regret rate of Opd

?
T log T q for d-dimensional linear bandit problems. However, applying this analysis to the

logistic setting yields regret bounds that grow exponentially with the parameter β (see Appendix E). Using
numerical simulations, they conjectured that the TS information ratio for logistic bandits scales linearly with
the problem’s dimension d and is independent of the slope parameter β and the cardinality of the action and
parameter spaces (Dong & Van Roy, 2018, Conjecture 1).

Table 1: Comparison of various regret guarantees for the logistic bandit problem.

Algorithm Regret Upper Bound Note
Thompson Sampling

(Russo & Van Roy, 2014) O
`

eβ ¨ d ¨ T 1{2 ¨ logpT q3{2˘

Bayesian bound

GLM-TSL
(Abeille & Lazaric, 2017) O

`

eβ ¨ d3{2 ¨ logpdq1{2 ¨ T 1{2 logpT q3{2˘

Frequentist bound

GLM-TSL
(Kveton et al., 2020) O

`

eβ ¨ d ¨ T 1{2 ¨ logpT |A|dq ` eβd2 logpT q2˘

Frequentist bound

Logistic-UCB-2
(Faury et al., 2020) O

`

d ¨ T 1{2 ¨ logpT q ` eβ ¨ d2 ¨ logpT q2˘

Frequentist bound

Thompson Sampling
(Neu et al., 2022) Opd1{2T 1{2|A| logpβT q1{2q Bayesian bound

Thompson Sampling
(this paper) O

`

d ¨ α´1 ¨ T 1{2 ¨ logpTβ{dq1{2˘ Bayesian bound,
α is independent of β

Studying specifically the TS regret for logistic bandits, Dong et al. (2019) introduced two statistics to
characterize the sets A and O, the minimax alignment constant1 α “ minθPO maxaPAxa, θy and the fragility
dimension2 η, which is the cardinality of the largest subset of parameters such that their corresponding
optimal action is “misaligned” (i.e. the inner product is negative) with any other parameter from the subset.
Using those statistics, they state the TS information ratio is bounded by 100 maxpd, ηqα´2. This result is
unsatisfying as in general, the fragility dimension can grow exponentially with the dimension d, but more
problematic, their regret analysis is incorrect as it relies on the rate-distortion bound from Dong & Van Roy
(2018), which is incompatible with a bound on the TS information ratio. Additionally, their analysis of the
information ratio bound is only rigorous for β ď 2 as it relies on an unproven inequality for larger values of
β. We elaborate in more detail on these gaps in Appendix F.

In this paper, we address the above limitations and obtain a regret bound for logistic bandits that scales
linearly in the problem dimension d while not scaling exponentially with β or depending on the cardinality
of the action and parameter spaces. Importantly, our bound does not require introducing the fragility
dimension. Our main contributions are as follows:

• We prove an information-theoretic regret bound of order Op
a

TΓpHpΘεq ` β2ε2T qq that holds for
infinite and continuous action and parameter spaces. The bound relies on HpΘεq, the entropy of the
parameter quantized at scale ε, and on the average expected TS information ratio, Γ.

• We present a new analysis showing that, for all β ą 0, the TS information ratio for logistic bandits
is bounded by dp4{αq2 where α is a minimax alignment constant between A and O which is defined
as α “ minθPO maxaPAxa, θy. Notably, our bound does not depend on the fragility dimension.

• We prove a regret bound of order Opd{α
a

T logpβT {dqq for Thompson Sampling. To our knowledge,
this is the first regret bound for any logistic bandit algorithm that does not scale exponentially with
β and is independent of the number of actions |A|.

1This statistic is referred to as the worst-case optimal log-odds in the work of Dong et al. (2019).
2The definition can be found in Dong et al. (2019, Definition 2).
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• Additionally, we show that if the parameters are on the sphere and the action space encompasses
the parameter space, the expected regret of Thompson Sampling is bounded in Opd

a

T logpβT {dqq.

The rest of the paper is organized as follows. Section 2 introduces the logistic bandit problem, defines
the Bayesian expected regret, and the specific notation used. In Section 3, we introduce the Thompson
Sampling algorithm and the information ratio analysis. Section 4 states and discusses our main results,
providing improved regret bounds. Section 5 presents the key ideas for analyzing the information ratio.
Then Section 6 illustrates the improvement of our bounds compared to previous regret guarantees through
numerical experiments; and finally, Section 7 discusses our results and future extensions.

Throughout the paper, we write random variables with capital letters (e.g., X), their realization with low-
ercase letters (e.g. x), and their outcome space in calligraphic letters (e.g., X ).

2 Problem Setup

In the logistic bandit, an agent interacts sequentially with an environment that is characterized by an
unknown parameter θ P O Ď Rd. At each time step t P t1, . . . , T u, the agent selects an action a P A Ď Rd

and receives a random reward Rt P t0, 1u sampled from a Bernoulli distribution with probability given by a
logistic function applied to the inner product xa, θy,

Rt „ Bern
´ exppβxa, θyq

1 ` exppβxa, θyq

¯

,

where β ą 0 is a scale parameter known to the agent. For the rest of the paper, we denote the logistic
function as

φβpxq :“ exppβxq

1 ` exppβxq
.

In this setting, the action space A and the parameter space O are compact subsets of Rd and, without
loss of generality3, we assume that A and O lie within the d-dimensional Euclidean unit ball, Bdp0, 1q.
For a given action space A and parameter space O, we define their minimax alignment constant as α :“
minθPO maxaPAxa, θy. In the rest of the paper, we assume that the action and parameter spaces are such
that α ě 0. This assumption is mild. It is already satisfied if the set A contains two opposite actions a and
a1 (i.e., a “ ´a1), which ensures α ě 0 for any parameter set O.

Following the Bayesian framework, we assume the parameter vector Θ P O is sampled from a known prior
distribution PΘ. At time step t P t1, . . . , T u, the agent selects an action At based on the past observations
according to some possibly stochastic decision policy. As the reward distribution depends only on the selected
action and the parameter, the random reward Rt is also written as RpAt, Θq, where R : A ˆ O Ñ t0, 1u is a
stochastic process defined such that Rpa, θq „ Bern

`

φβpxa, θyq
˘

.

The goal of the agent is to sequentially select actions that maximize the total expected reward, or equivalently,
that minimize the total expected regret defined as:

ErRegretpT qs :“ E

«

T
ÿ

t“1
RpA‹, Θq ´ RpAt, Θq

ff

,

where A‹ is the optimal action corresponding to the parameter Θ, that is, we set A‹ “ arg maxaPA ErRpa, Θqs.
We define the mapping π‹pθq :“ arg maxaPA ErRpa, θqs so that we can write A‹ “ π‹pΘq4.

3This setting is equivalent to the one considered by Faury et al. (2020) using β ą 0 as the maximal norm for θ P O.
4If multiple actions are optimal for a given parameter, we arbitrarily fix the mapping for that parameter to one of the optimal

actions. The mapping π‹ is therefore a well-defined function.
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3 Thompson Sampling and the Information Ratio

Thompson Sampling is an elegant algorithm for solving bandit problems. It works by randomly selecting
actions according to the posterior probability of being optimal. More specifically, at each time step t P

t1, . . . , T u, the agent samples a parameter estimate Θ̂t from the posterior distribution of Θ, conditioned on
the history Ht and selects the action that is optimal for the sampled parameter estimate, At “ π‹pΘ̂tq. The
pseudocode for the algorithm is given in Algorithm 1. Since the σ-algebras generated by the history are
often used in conditioning, we introduce the notation Etr¨s :“ Er¨|Hts to denote the conditional expectation
given the history Ht.

Algorithm 1 Thompson Sampling algorithm
1: Input: parameter prior PΘ, mapping π‹.
2: for t “ 1 to T do
3: Sample a parameter estimate Θ̂t „ PΘ|Ht .
4: Take the corresponding optimal action At “ π‹pΘ̂tq.
5: Collect the reward Rt “ RpAt, Θq.
6: Update the history Ht`1 “ Ht Y tΘ̂t, Rtu.
7: end for

The information ratio, originally introduced by Russo & Van Roy (2016), quantifies the trade-off between
exploration and exploitation. In this paper, we define the information ratio at time t as the ratio between
the squared instantaneous expected regret and the information gained about the environment parameter,

Γt :“ EtrRpA‹, Θq ´ RpAt, Θqs2

ItpΘ; RpAt, Θq, Θ̂tq
,

where ItpΘ; RpAt, Θq, Θ̂tq :“ EtrDKLpPRt|Ht,Θ̂t,Θ}PRt|Ht,Θ̂t
qs is the mutual information between the param-

eter Θ and the observed pair Rt, Θ̂t, given the history5 Ht.

This ratio measures the trade-off between minimizing the current squared regret and gathering information
about the parameter Θ; a small ratio indicates that a substantial gain of information compensates for any
significant regret.

4 Main Results

This section presents our main results on the Thompson Sampling regret for logistic bandits. In Theorem 2,
we prove an information-theoretic regret bound for logistic bandits that holds for continuous and infinite
parameter spaces. Then, in Proposition 4, we present our key result, a bound on the TS information ratio
that depends only on the problem’s dimension d and on the minimax alignment constant α. By combining
this result with our regret bound, we derive our main contribution in Theorem 5, a bound on the expected
regret of TS for logistic bandits, which scales as Opd{α

a

T logpβT {dqq.

Our first theorem provides a regret bound that holds for large and continuous action spaces. It relies on the
entropy of the quantized parameter Θε, which is the closest approximation to Θ on an ε-net in the Euclidean
space pO, ‖¨‖2q. It builds on Gouverneur et al. (2023, Theorem 2) and Neu et al. (2022, Theorem 2) and
improves their results for the logistic bandit setting. The proof of Theorem 2 relies on approximating the
conditional mutual information IpΘ; Rt|Θ̂t, Htq with IpΘε; Rt|Θ̂t, Htq and bounding the remainder using
a Taylor expansion. Importantly, and in contrast to Dong & Van Roy (2018, Theorem 1), this result is
compatible with bounds on the “standard” TS information ratio, rather than the “one-step compressed TS”
information ratio that requires crafting an approximate algorithm at each step. This distinction is crucial
as it resolves the incompatibility that arises in the regret analysis of Dong et al. (2019) (c.f. Appendix F).

Definition 1 Let the set Oε be an ε-net for pO, ‖¨‖2q with projection mapping q : O Ñ Oε such that for all
θ P O we have ‖θ ´ qpθq‖2 ď ε. We define the quantized parameter as Θε :“ qpΘq.

5This quantity is sometimes referred to as the disintegrated mutual information, see for example Negrea et al. (2019).
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Theorem 2 For all β ą 0, under the logistic bandit setting with logistic function φβpxq, let the quantized
parameter Θε be defined as in Definition 1 for any ε P r0, 1s. If the average expected TS information ratio is
bounded, 1

T

řT
t“1 ErΓts ď Γ, for some Γ ą 0, then the TS regret is bounded as

ErRegretpT qs ď

b

ΓT
`

HpΘεq ` 1
2 ε2β2T

˘

.

Proof 3 We start by rewriting the TS expected regret using the information ratio:

ErRegretpT qs “

T
ÿ

t“1
ErRpA‹, Θq ´ RpAt, Θqs “

T
ÿ

t“1
E

„

b

ΓtItpΘ; RpAt, Θq, Θ̂tq



.

Applying Cauchy-Schwarz for expectations, Er
?

X
?

Y s ď
a

ErXsErY s, followed by Cauchy-Schwarz over
the sum, we obtain

ErRegretpT qs ď

T
ÿ

t“1

b

ErΓtsIpΘ; RpAt, Θq, Θ̂t|Htq ď

g

f

f

eΓT
T

ÿ

t“1
IpΘ; RpAt, Θq, Θ̂t|Htq, (1)

where in the last step, we used that by assumption
řT

t“1 EtrΓts ď ΓT . Then, by the chain rule for mutual
information (Polyanskiy & Wu, 2025, Theorem 3.7.b) we can write

IpΘ; RpAt, Θq, Θ̂t|H
tq “ IpΘ; Θ̂t|H

tq ` IpΘ; RpAt, Θq|Ht, Θ̂tq “ IpΘ; RpAt, Θq|Ht, Θ̂tq,

using that Θ and Θ̂t are independent given Ht, and that IpΘ; Θ̂t|H
tq “ 0.

Let PRt|Ht,Θ̂t,Θ and PRt|Ht,Θ̂t
denote the distribution of Rt conditioned respectively on Ht, Θ̂t, Θ and Ht, Θ̂t.

Then, we have that

IpΘ; Rt|H
t, Θ̂tq “ EHt,Θ,Θ̂t

„

ERt„PRt|Θ̂t,Θ

„

log
PRt|Θ̂t,ΘpRtq

PRt|Ht,Θ̂t
pRtq



, (2)

where we used that PRt|Ht,Θ̂t,Θ “ PRt|Θ̂t,Θ since Rt is independent of Ht conditioned on Θ and Θ̂.

Let Oε be an ε-net for pO, ‖¨‖2q with mapping q : O Ñ Oε, and define Θε :“ qpΘq the quantized parameter.
We introduce PRt|Ht,Θ̂t,Θε

to denote the reward distribution given Ht, Θ̂t, Θε, which is obtained by averaging

over all Θ1 such that qpΘ1q “ Θε, that is PRt|Ht,Θ̂t,Θε
p¨q :“ E

”

PRt|Θ̂t,Θ1 p¨q

ˇ

ˇ

ˇ
qpΘ1

q“Θε

ı

.

Then, starting from the definition of conditional mutual information, we add and subtract the log-probability
logPRt|Ht,Θ̂t,Θε

pRtq inside the inner expectation to obtain

p2q “ EHt,Θ,Θ̂t

«

ERt„PRt|Θ̂t,Θ

«

log
PRt|Ht,Θ̂t,Θε

pRtq

PRt|Ht,Θ̂t
pRtq

ff

` ERt„PRt|Θ̂t,Θ

«

log
PRt|Θ̂t,ΘpRtq

PRt|Ht,Θ̂t,Θε
pRtq

ffff

.

Using the law of total expectation, the outer expectation over Θ may be replaced by one over Θε, and the
first term is exactly the conditional mutual information IpΘε; Rt | Ht, Θ̂tq. We recognize the second term
as the expected KL divergence between the true reward distribution PRt|Θ̂t,Θ and the quantized posterior
PRt|Ht,Θ̂t,Θε

, which by convexity of the KL divergence is at most the average over the quantization:

EHt,Θ,Θ̂t

”

DKLpPRt|Θ̂t,Θ } PRt|Ht,Θ̂t,Θε
q

ı

ď EΘ,Θ̂t

”

E
”

DKLpPRt|Θ̂t,Θ } PRt|Θ̂t,Θ1 q

ˇ

ˇ

ˇ
qpΘ1

q“Θε

ıı

.

Conditioned on Θ “ θ, Θ1 “ θ1, and Θ̂t “ θ̂t, we let η “ xπ‹pθ̂tq, θy, we can write η1 “ xπ‹pθ̂tq, θ1y. We then
have that η1 “ η ` x for some x P r´2ε, 2εs. Indeed we have

|xπ‹pθ̂tq, θy ´ xπ‹pθ̂tq, θ1y| ď }π‹pθ̂tq} ¨ }θ ´ θ1} ď 1 ¨ p|θ ´ qpθq} ` ¨}qpθq ´ θ1}q ď 2ε,
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where we used the fact that A Ď Bdp0, 1q, the triangle inequality and the definition of qp¨q. We can then
write the inner KL divergence as

Dpxq “ φβpηq log
ˆ

φβpηq

φβpη ` xq

˙

` p1 ´ φβpηqq log
ˆ

1 ´ φβpηq

1 ´ φβpη ` xq

˙

.

Differentiating with respect to x, and using that φ1pxq “ βφβpxqp1 ´ φβpxqq, we have that the first derivative
is D1pxq “ βpφβpη ` xq ´ φβpηqq and the second derivative is D2pxq “ β2φβpη ` xqp1 ´ φβpη ` xqq ď

β2

4 .
Since Dp0q “ 0 and D1p0q “ 0, we can use Taylor’s remainder theorem and get that

DKLpPRt|Θ̂t“θ̂t,Θ“θ } PRt|Θ̂t“θ̂t,Θ1“θ1 q “ Dpxq “

ż x

0
px ´ tqD2ptqdt ď

1
2

β2

4 x2 ď
1
2β2ε2.

Summing over t and applying the chain rule for conditional mutual information, we obtain

T
ÿ

t“1
IpΘε; Rt | Ht, Θ̂tq “ IpΘε; HT q ď HpΘεq.

Collecting the 1
2 β2ε2 terms and inserting the above bound into eq. (1) yields

ErRegretpT qs ď

b

ΓT
`

HpΘεq ` 1
2 β2ε2T

˘

,

which is the desired result.

In the following, we present an important proposition; we prove an upper bound on the TS information ratio
that depends only on the problem dimension d and the minimax alignment constant α. Notably, this upper
bound is independent of the logistic slope β ą 0 as well as of the cardinality of the action and parameter
spaces, a property anticipated in Dong & Van Roy (2018, Conjecture 1).

Proposition 4 For all β ą 0, and for all A, O Ď Bdp0, 1q with minimax alignment constant α, under the
logistic bandit setting, with logistic function φβpxq, the TS information ratio is bounded as

Γt ď
16d

α2 .

Our proof techniques build upon and innovate over prior work in two key ways. Our first innovation is to
control the information ratio by relating both regret and information gain to the expected variance of the
regret, conditioned on the sampled parameter; lower bounding the information gain using the regret variance
instead of the regret expectation as in Russo & Van Roy (2016) or Dong & Van Roy (2018), which makes it
possible to avoid scaling with the smallest slope of the logistic function which decreases exponentially with
the parameter β. Our second innovation is to show that the limit case β Ñ 8 can serve as a uniform upper
bound, thereby simplifying the analysis. We present the main ideas of the proof techniques in Section 5 and
provide the detailed proof in Appendix B and Appendix C.

Combining Proposition 4 with Theorem 2, we obtain our main result: a bound on the expected TS regret
in Opd{α

a

T logpβT {dqq. To the best of our knowledge, this is the first regret bound for any logistic bandit
algorithm that does not scale exponentially with the logistic function’s parameter β or with the problem
dimension d and remains independent of the number of actions.

Theorem 5 For any β ą 0, and for all A, O Ď Bdp0, 1q with minimax alignment constant α ą 0, under the
logistic bandit setting with logistic function φβpxq, the TS regret is bounded as

ErRegretpT qs ď
4d

α

g

f

f

eT log
˜

3 ` 6
c

βT

2d

¸

.
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Proof 6 Combining Theorem 2 with Proposition 4, we upper bound the entropy HpΘεq by the cardinality
of the ε-net to get a regret bound of 4α´1

b

dT
`

logp|Θε|q ` 1
2 ε2β2T

˘

. To define Θε, we set Oε as the ε-net
of smallest cardinality. As the parameter space O is within the Euclidean unit ball, we use Lemma 23 to
control the covering number, logp|Θε|q ď d logp1 ` 2{εq, and upper bound the TS regret as

ErRegretpT qs ď 4{α

d

dT

ˆ

d log
ˆ

1 `
2
ε

˙

` 1
2 ε2β2T

˙

.

Finally, setting ε “
?

2d{
?

βT and rearranging terms inside the logarithm yields the desired result.

Remarkably, our result does not depend on the fragility dimension η. This is important as, except in the
case where α “ 1, the fragility dimension can grow exponentially with the problem dimension d (see Dong
et al. (2019, Remark 3)). Additionally, we can verify that our result, due to its logarithmic dependence on
β, is compatible with Dong et al. (2019, Proposition 11).

The next corollaries present cases where the dependence on the minimax alignment constant α can be
removed. We illustrate the improvement of Corollary 7 over previous works through numerical experiments
on a synthetic logistic bandit problem. The results are presented in Section 6.

Corollary 7 For any β, under the logistic bandit setting with logistic function φβpxq, let A Ď Bdp0, 1q and
O Ď Sdp0, 1q be such that O Ď A. Then the TS regret is bounded as

ErRegretpT qs ď 2d

g

f

f

eT log
˜

3 ` 6
c

βT

2d

¸

.

Proof 8 If O Ď Sdp0, 1q and if O Ď A, then for each θ P O, there exists an action a P A such that a “ θ
and xa, θy “ 1, implying α “ 1. In this setting, we can use a tighter bound on the information, Γt ď 4d{α2,
presented in Section 5. Using this result together with Theorem 2 as in Theorem 5 concludes the proof.

Corollary 9 For any β, under the logistic bandit setting with logistic function φβpxq, there exists an action
space A with |A| ď 2d ¨ 3d´1 such that for any O Ď Sdp0, 1q, the TS regret is bounded as

ErRegretpT qs ď 8d

g

f

f

eT log
˜

3 ` 6
c

βT

2d

¸

.

Proof 10 Starting from Theorem 5, we have to construct A such that its minimax alignment constant α is
greater than or equal to 1

2 for any O Ď Sdp0, 1q. This is satisfied if A is a 1
2 -net for Sdp0, 1q. Setting A as

the 1
2 -net of minimal cardinality, from Lemma 24, we have |A| ď 2d ¨ 3d´1.

5 Analysis

This section presents the key ideas underlying the proof of our main proposition, Proposition 4. For simplicity
and clarity of exposition, we focus first on the specific setting of Corollary 7, which corresponds to the case
where α “ 1. The generalization of these arguments to arbitrary parameter and action spaces follows the
same reasoning but requires additional notation and handling the misalignment between the parameter and
action spaces. This extension is deferred to Appendix C.

The proof is organized into three parts: Section 5.1 presents a lower bound on the mutual information via
the variance of reward probability; Section 5.2 proves an upper bound on the squared expected regret using
a surrogate logistic function; and finally Section 5.3 explains how we derive a general upper bound on the
ratio of expected variances and use the limit case β Ñ 8 to prove a uniform upper bound over β ą 0.

To lighten notation, we omit the subscript t for the remainder of the section. We recall that under the
logistic bandit setting with logistic function φβ , the reward RpÂ, Θq is sampled according to a Bernoulli

7
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distribution with probability φβpxÂ, Θyq. We introduce the notation BernpφβpxÂ, Θyqq to make the setting
more explicit. With this notation, the information ratio can be written as

Γ “
ErBernpφβpxA‹, Θyqq ´ BernpφβpxÂ, Θyqqs2

IpΘ; BernpφβpxÂ, Θyqq, Θ̂q
.

5.1 Lower bounding the mutual information via the variance of reward probability

We start by stating a general lemma that relates the variance of a r0, 1s random variable U to the mutual
information between U and a Bernoulli outcome with probability U . The proof is presented in Appendix A.

Lemma 11 Let U be a random variable taking values in r0, 1s and BernpUq be a Bernoulli random variable
with probability U . Then it holds that

IpU ; BernpUqq ě 2VpUq.

Using Lemma 11, we prove that IpΘ; BernpφβpxÂ, Θyqq, Θ̂q is at least twice the expected regret variance
conditioned on the sampled parameter ErVrφβpxÂ, Θyq|Θ̂ss. Intuitively, when the expected variance of reward
probability is low, it indicates that the agent has identified near-optimal actions and already has information
about Θ. Conversely, if the expected variance of reward probability is high, the agent is still exploring new
actions and gathering information about Θ.

Lemma 12 Let the logistic function be φβpxq, then, it holds that

IpΘ; BernpφβpxÂ, Θyqq, Θ̂q ě 2E
”

V
”

φβpxÂ, Θyq | Θ̂
ıı

.

Proof 13 We start by applying the chain rule. It follows that

IpΘ; BernpφβpxÂ, Θyqq, Θ̂q
piq
“ IpΘ; Θ̂q ` IpΘ; BernpφβpxÂ, Θyqq | Θ̂q

pjq
“ IpΘ; BernpφβpxÂ, Θyqq | Θ̂q

pkq

ě ErIpφβpxπ‹pΘ̂q, Θyq; Bernpφβpxπ‹pΘ̂q, Θyqqq | Θ̂s,

where (i) follows from the chain-rule; (j) follows as Θ and Θ̂ are independent conditioned on the history; and
(k) follows from conditioning on Θ̂ and applying the data processing inequality. Finally, applying Lemma 11
with φβpxπ‹pθ̂q, Θyq in place of the random variable U yields the desired result.

5.2 Upper bounding the squared expected regret using the expected regret surrogate function

This part builds on and improves upon the analysis techniques of Dong et al. (2019, Theorem 5) and similar
to them, the following two lemmata will be important to our proof. We restate their proofs in Appendix A.

Lemma 14 Let U, V be random vectors in Rd, and let Ũ , Ṽ be independent random variables with distribu-
tions equal respectively to the marginals of U, V , then it holds that

E
“

UJV
‰2

ď d ¨ E
”

`

ŨJṼ
˘2ı

.

Lemma 15 Let f : R` Ñ R` be such that fp0q ě 0 and fpζq{ζ is non-decreasing over ζ ě 0. Then, for
any non-negative random variable U , it holds that

ErfpUqs2

ErU s2 ď
VrfpUqs

VrU s
.

8
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Under the assumptions of Corollary 7, for each θ P O, there exists an action a P A such that xa, θy “ 1.
This implies that the expected regret can be written as φβpxA‹, Θyq ´ φβpxÂ, Θyq “ φβp1q ´ φβpxÂ, Θyq.
As this quantity will come up often in the analysis, we introduce the expected regret function ∆βpxq :“
φβp1q ´ φβp1 ´ xq. We can then write the expected regret as a function of the difference between the optimal
and achieved inner products, as ∆βpxA‹, Θy ´ xÂ, Θyq “ φβpxA‹, Θyq ´ φβpxÂ, Θyq.

Importantly, the expected regret function ∆βpxq applied to the difference of inner products xA‹, Θy ´ xÂ, Θy

maps the interval r0, 2s to r0, 1s, and respects ∆βp0q “ φβp1q ´ φβp1 ´ 0q “ 0, thus meeting the first two
conditions from Lemma 15. However, it does not satisfy the third condition, as ∆βpxq{x first increases, then
reaches a maximum between 1 and 2, and finally decreases (see Appendix D and Figure 5). To address this
issue, similarly to Dong et al. (2019, B.2. Proof of (18)), we introduce a modified function, referred to as the
expected regret surrogate, which serves as the tightest upper bound on ∆βpxq satisfying the last requirement
from Lemma 15. The functions ∆β and s∆β are illustrated in Figure 1.

Definition 16 (Expected regret surrogate) We construct the expected regret surrogate function s∆βpxq

as the tightest upper bound on ∆βpxq such that s∆βpxq{x is non-decreasing over x ě 0.

Namely, let δβ “ arg maxxPr0,2s
∆βpxq

x , we define s∆β as

s∆βpxq “

#

∆βpxq x P r0, δβs

∆βpδβq ` px ´ δβq ¨ ∆1
βpδβq x P sδβ , 2s

,

where we used that ∆1
βpδβq “ ∆βpδβq{δβ.

We are now equipped to state and prove an upper bound on the squared expected regret using the surrogate
function.

0 0.5 1 1.5 2

0

0.5

1

1.5

x

β “ 5
β “ 10
β “ 25
β Ñ 8

Figure 1: Illustration of the function ∆β (in solid
line) and the function s∆β (in dotted line) for dif-
ferent values of β.

0 0.5 1 1.5 2

0

0.5

1

1.5

x

β “ 5
β “ 10
β “ 25
β Ñ 8

Figure 2: Illustration of the function f ˝ ∆β (in
solid line) and the function Gβ (in dotted line) for
different values of β used in the proof of Lemma 19.

Lemma 17 Let the expected regret surrogate be defined as in Definition 16. Then, it holds that

ErBernpφβpxA‹, Θyqq ´ BernpφβpxÂ, Θyqqs2 ď 2d ¨ E
”

V
”

s∆β

´

1 ´ xÂ, Θy

¯

| Θ̂
ıı

.

Proof 18 Integrating over the Bernoulli outcome, the squared expected regret can be expressed as
ErpφβpxA‹, Θyq ´ φβpxÂ, Θyqqs2 “ Er∆βp1 ´ xÂ, Θyqs2. Since by definition s∆βpxq ě ∆βpxq ě 0, we have

9
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Er∆βp1 ´ xÂ, Θyqs2 ď ErEr s∆βp1 ´ xÂ, Θyq|Θ̂ss2. We now apply Lemma 15 and obtain

ErEr s∆βp1 ´ xÂ, Θyq|Θ̂ss2 ď E

«

g

f

f

f

e

V
”

s∆β

´

1 ´ xÂ, Θy

¯

| Θ̂
ı

V
”

1 ´ xÂ, Θy | Θ̂
ı

looooooooooooooooomooooooooooooooooon

:“UpΘ̂q

E
”

1 ´ xÂ, Θy | Θ̂
ı

ff2

“ E
”

UpΘ̂q
`

xÂ, Θ̂y ´ xA‹, Θ̂y
˘

ı2
“ E

”

xUpΘ̂qÂ, Θ ´ Θ̂y

ı2

.

We continue by applying Lemma 14 with U“UpΘ̂qÂ and V “Θ´Θ̂ and get

E
”

xUpΘ̂qÂ, Θ ´ Θ̂y

ı2
ď d ¨ E

”

xUpΘ̂qÂ, Θ ´ Θ̃y2
ı

“ d ¨ E
”

UpΘ̂q2E
”

xÂ, Θ ´ Θ̃y2ˇ

ˇΘ̂
ıı

piq
“ d ¨ E

»

–

V
”

s∆β

´

1 ´ xÂ, Θy

¯

| Θ̂
ı

V
”

1 ´ xÂ, Θy | Θ̂
ı 2V

”

xÂ, Θy | Θ̂
ı

fi

fl

“ 2d ¨ E
”

V
”

s∆β

´

1 ´ xÂ, Θy

¯

| Θ̂
ıı

,

where (i) follows as

E
”

xÂ, Θ ´ Θ̃y2ˇ

ˇΘ̂
ı

“ ErxÂ, Θy2|Θ̂s ´ 2ErxÂ, Θy|Θ̂sErxÂ, Θ̃y|Θ̂s ` ErxÂ, Θ̃y2|Θ̂s

“ 2ErxÂ, Θy2|Θ̂s ´ 2ErxÂ, Θy|Θ̂s2 “ 2VrxÂ, Θy | Θ̂s.

Finally rearranging the terms gives the claimed result.

Combining Lemma 12 and Lemma 17, we get that the information ratio Γ is bounded by

Γ ď d ¨
E

”

V
”

s∆β

´

1 ´ xÂ, Θy

¯

| Θ̂
ıı

E
”

V
”

∆β

´

1 ´ xÂ, Θy

¯

| Θ̂
ıı ,

where we use that V
”

φβpxÂ, Θyq | Θ̂
ı

“ V
”

∆βp1 ´ xÂ, Θyq | Θ̂
ı

by definition of ∆β . We are close to obtain-
ing a bound on the TS information ratio that is linear in d and independent of β and of the cardinality of
the action and parameter spaces. We still have to control the ratio of expected variances between s∆β and
∆β , as we could not apply Lemma 15 directly on ∆β and had to work instead with its surrogate s∆β .

5.3 Bounding the ratio of expected variances over the functions s∆β and ∆β

The last part of the proof takes care of controlling the ratio of expected variances between the regret
probability function ∆β and expected regret surrogate s∆β . The full proof is presented in Appendix B.

Lemma 19 Let ∆βpxq “ φβp1q ´ φβp1 ´ xq and its surrogate s∆β as in Definition 16. Then, for all β ą 0,
it holds that

E
”

V
”

s∆β

´

1 ´ xÂ, Θy

¯

| Θ̂
ıı

E
”

V
”

∆β

´

1 ´ xÂ, Θy

¯

| Θ̂
ıı ď 4.

Sketch of proof The proof starts by observing that the functions ∆β and s∆β are equal on the interval
r0, δβs, and then diverge at most at a rate ∆1

βpδβq. To control this divergence, we introduce the function
Gβpxq “ px ´ δβq∆1

βpδβq for x P rδβ , 2s, and is equal to zero over r0, δβs. We show that

E
”

V
”

s∆β

´

1 ´ xÂ, Θy

¯

| Θ̂
ıı

E
”

V
”

∆β

´

1 ´ xÂ, Θy

¯

| Θ̂
ıı ď

¨

˚

˝

1 `

g

f

f

f

e

E
”

V
”

Gβ

´

1 ´ xÂ, Θy

¯

| Θ̂
ıı

E
”

V
”

∆β

´

1 ´ xÂ, Θy

¯

| Θ̂
ıı

˛

‹

‚

2

.
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Next, we apply a cropping function fβpxq “ minp∆βpδβq, xq to the function ∆βpxq, contracting the squared
difference p∆βpxq ´ ∆βpyqq2 for every x, y P r0, 2s, and thus reducing the expected variance. The functions
fβ ˝ ∆β and Gβ are illustrated in Figure 2. After expressing the expected variances as the expected squared
difference over the variable 1´xπ‹pΘ̂q, Θy and 1´xπ‹pΘ̂q, Θ̃y where Θ̂, Θ, Θ̃ are i.i.d., we consider any triplet
θ0, θ1, θ2 P O and bound the worst-case ratio for Θ̂, Θ, Θ̃ P tθ0, θ1, θ2u. Maximizing the ratio can be reduced
as a convex optimization problem, and we get that the ratio of expected variances between Gβ and fβ ˝ ∆β is
less than or equal to p2 ´ δβq2{δ2

β. This ratio can be controlled by the asymptotic case β Ñ 8 and is smaller
than or equal to 4 (see Appendix D). Finally, plugging this result into the above inequality gives the claimed
result.

6 Numerical Experiments

To illustrate the improvement of our regret analysis compared to previous works, we perform numerical
experiments on a synthetic problem. We consider a logistic bandit problem in dimension d “ 10, with
time horizon T “ 200, and with slope parameter β ranging from 0.25 to 10. For both action space and
parameter space, we use the closed d-dimensional unit sphere, A “ O “ Sdp0, 1q and assume a uniform prior
distribution for the parameter Θ. We compute the expected regret of the Thompson Sampling algorithm
using an MCMC method and compare it to three Bayesian regret bounds that hold for continuous spaces:
our Corollary 7, Russo & Van Roy (2018, Proposition 4), and Dong et al. (2019, Proposition 17) adapted to
be compatible with Dong & Van Roy (2018, Theorem 1) (see Appendix E).

The results are presented in Figure 3. The left sub-figure shows the evolution of the expected regret and
the regret bounds for two different logistic function values, β P t2, 4u. For both values, our bound remains
tighter across the entire horizon and is less sensitive to increasing β. The right sub-figure compares the
different regret bounds at T “ 200 for β P r0.25, 10s. We observe that our bound is competitive across
the whole range and quickly becomes orders of magnitude tighter. Importantly, we observe that while our
bound increases only logarithmically, both Russo & Van Roy (2018, Proposition 4) and Dong et al. (2019,
Proposition 17) grow exponentially with β and quickly become vacuous.
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Figure 3: The left sub-figure compares the evolution of the bounds and the expected regret with the time
steps T for β P t2, 4u. The right sub-figure illustrates the behavior of the bounds and the expected regret at
time T “ 200 for values of β ranging in r0.25, 10s.
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7 Conclusion and Future Work

In this work, we analyze the performance of the Thompson Sampling algorithm for logistic bandit problems.
In this setting, the agent sequentially selects actions a P A Ă Rd and receives binary rewards with probability
given by a logistic function exppβxa, θyq{p1`exppβxa, θyqq, with slope parameter β and an unknown parameter
θ P O Ă Rd. Building on the information-theoretic framework from Russo & Van Roy (2016), we study the
information ratio, a key statistic that captures the trade-off between exploration and exploitation in bandit
problems. We show that the information ratio of Thompson Sampling for logistic bandits can be bounded
using only the dimension of the problem, d, and α, the minimax constant measuring the alignment between
the action and parameter spaces. Importantly, our bound is independent of the slope parameter β and of
the cardinality of the action and parameter spaces.

Using this result, we prove a regret bound of Opd{α
a

T logpβT {dqq, which scales only logarithmically with β,
representing a significant improvement over prior works, all of which scale either exponentially with β ą 0 or
depend on the cardinality of the action set. To the best of our knowledge, this is the first regret bound for any
logistic bandit algorithm that does not scale exponentially with β while remaining independent of the action
set’s cardinality. Finally, we present specific settings where the dependence on α can be controlled. For
instance, when the action space fully encompasses the parameter space, the regret of Thompson Sampling
scales as Õpd

?
T q.

An exciting direction for future work is to extend our analysis to the broader class of generalized linear
bandits. The properties of the logistic function that we leverage in our analysis could be shared by other
classes of link functions and could be used to derive regret bounds using a similar analysis of the information
ratio as we performed in Section 5.

Another interesting research direction is to use the result in this paper to derive regret bounds for logistic
bandits in the frequentist setting. A promising way is to apply our information-theoretic analysis to the
optimistic information directed sampling algorithm introduced by Neu et al. (2024). We believe that this
approach could lead to new and improved frequentist bounds for logistic bandits.

12
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Appendix

The appendix is organized as follows:

• Appendix A introduces four important lemmata for our main results;

• Appendix B formalizes the proof for controlling the ratio of expected variances between the functions
s∆β and ∆β ;

• Appendix C extends our information ratio analysis to general action and parameter spaces;

• Appendix D provides an analysis of the functions δβ and ∆βpδβq;

• Appendix E illustrates how translating directly linear bandits bounds to the logistic bandit setting
leads to regret bounds scaling exponentially with β;

• Appendix F elaborates on the gaps in the previous literature mentioned in Section 1.

A Useful lemmata

Lemma 11 Let U be a random variable taking values in r0, 1s and BernpUq be a Bernoulli random variable
with probability U . Then it holds that

IpU ; BernpUqq ě 2VpUq.

Proof 20 Using Polyanskiy & Wu (2025, Theorem 3.4.d), we decompose the mutual information between U
and BernpUq as

IpU ; BernpUqq “ hpBernpUqq ´ hpBernpUq|Uq.

Following Duchi (2019, Example 2.2) notation, we define h2ppq :“ ´p logppq ´ p1 ´ pq logp1 ´ pq for p P r0, 1s

and rewrite the mutual information as

IpU ; BernpUqq “ h2pErU sq ´ Erh2pUqs. (3)

From a Taylor expansion of h2pxq we have that h2pxq “ h2ppq`px´pqh1
2ppq` 1

2 px´pq2h2
2pξq, for some ξ P p0, 1q

as h2
2 is continuous on the interval r0, 1s. We compute the second derivative of h2 and get h2

2pξq “ ´ 1
ξp1´ξq

for ξ P p0, 1q. This function is concave and maximal at ξ “ 1{2, where it takes the value h2
2p1{2q “ ´4. We

then have that for all x P r0, 1s and all p P r0, 1s,

h2pxq ď h2ppq ` px ´ pqh1
2ppq ´ 2px ´ pq2.

Using this fact for x “ U and p “ ErU s, we have that

h2pUq ď h2pErU sq ` pU ´ ErU sqh1
2pErU sq ´ 2pU ´ ErU sq2.

Applying the last inequality to the second term in eq. (3), it comes that

IpU ; BernpUqq ě E
“

h2pErU sq´h2pErU sq´pU´ErU sqh1
2pErU sq`2pU´ErU sq2‰

.

Finally, simplifying terms and taking the expectation gives the desired result.

Lemma 14 Let U, V be random vectors in Rd, and let Ũ , Ṽ be independent random variables with distribu-
tions equal respectively to the marginals of U, V , then it holds that

E
“

UJV
‰2

ď d ¨ E
”

`

ŨJṼ
˘2ı

.
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Proof 21 This useful fact is presented in Dong et al. (2019, Lemma 16). We provide the full proof below.

Let Q “ ErV V Js, then

ErUJV s2 “ ErUJQ1{2Q´1{2V s “ ErpQ1{2UqJpQ´1{2V qs2

piq

ď E
„

b

pQ1{2UqJpQ1{2Uq

b

pQ´1{2V qJpQ´1{2V q

2

pjq

ď ErpQ1{2UqJpQ1{2UqsErpQ´1{2V qJpQ´1{2V qs “ ErUJQU sErV JQ´1V s

pkq
“ ErUJErV V JsU s

`

Tr
`

Q´1CovpV q
˘

` ErV sJQ´1ErV s
˘

“ ErŨJṼ Ṽ JŨ s

´

Tr
`

Q´1pErV V Js ´ ErV sErV sJq
˘

` pQ´1{2ErV sqJpQ´1{2ErV sq

¯

“ Er
`

ŨJṼ
˘2

s

´

Tr
`

Id

˘

´ Tr
`

Q´1ErV sErV sJ
˘

` Tr
`

pQ´1{2ErV sqpQ´1{2ErV sqJ
˘

¯

“ Er
`

ŨJṼ
˘2

s

´

d ´ Tr
`

Q´1{2ErV sErV sJQ´1{2˘

` Tr
`

Q´1{2ErV sErV sJQ´1{2˘

¯

“ d ¨ Er
`

ŨJṼ
˘2

s,

where (i) follows from the Cauchy-Schwarz inequality applied to the inner product; (j) follows from the
Cauchy-Schwarz inequality applied to the expectation; (k) follows from the identity that for any random
vector W and deterministic matrix M , we have ErW JMW s “ TrpM, CovpW qq ` ErW sJM,ErW s. The
remainder of the proof follows by expanding the covariance as CovpV q “ ErV V Js ´ ErV sErV sJ, rewriting
the inner product as the trace of an outer product, and using the fact that the trace of a product of symmetric
matrices is invariant under cyclic permutations.

Lemma 15 Let f : R` Ñ R` be such that fp0q ě 0 and fpζq{ζ is non-decreasing over ζ ě 0. Then, for
any non-negative random variable U , it holds that

ErfpUqs2

ErU s2 ď
VrfpUqs

VrU s
.

Proof 22 This result is presented in Dong et al. (2019, Lemma 18). We show that it can be obtained by
combining Cauchy-Schwarz inequality and Chebyshev’s association inequality.

Let gpζq “ fpζq{ζ for ζ ą 0, and set gp0q :“ limζÓ0 fpζq{ζ. By assumption, g is non-negative and non-
decreasing. We have that

ErfpUqs2

ErU s2 “
ErgpUqU2s

ErU s2

piq

ď
ErgpUq2U sErU s

ErU s2 “
ErgpUq2U s

ErU s

pjq

ď
ErgpUq2U2s

ErU2s
“

ErfpUq2s

ErU2s
,

where (i) follows Cauchy-Schwarz inequality |ErXY s|2 ď ErX2sErY 2s applied with X “ gpUq
?

U and Y “?
U ; and (j) follows from Chebyshev’s association inequality (Boucheron et al., 2013, Theorem 2.14). We

then have that ErfpUqs2ErU2s ď ErfpUq2sErU s2. Subtracting ErU s2ErfpUqs2 on both sides we get that

ErfpUqs2`

ErU2s ´ ErU s2˘

ď ErU s2`

ErfpUq2s ´ ErfpUqs2˘

“ ErfpUqs2VrU s ď ErU s2VrfpUqs.

Finally, rearranging the terms gives the desired result.

The following two lemmata are particularly useful to control the covering number in Euclidean balls and
spheres.

Lemma 23 (van Handel (2016, Lemma 5.13)) Let Bdp0, 1q denote the d-dimensional closed Euclidean
unit ball. We have |N pBdp0, 1q, || ¨ ||2, εq| “ 1 for ε ě 1 and for 0 ă ε ă 1, we have

ˆ

1
ε

˙d

ď |N pBdp0, 1q, || ¨ ||2, εq| ď

ˆ

1 `
2
ε

˙d

.
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Lemma 24 (Polyanskiy & Wu (2025, Corollary 27.4)) Let Sdp0, 1q denote the d-dimensional Eu-
clidean unit sphere. We have |N pSdp0, 1q, || ¨ ||2, εq “ 1 for ε ě 1 and for 0 ă ε ă 1, we have

ˆ

1
2ε

˙d´1
ď |N pSdp0, 1q, || ¨ ||2, εq| ď 2d

ˆ

1 `
1
ε

˙d´1
.

B Bounding the ratio of expected variances over the functions s∆β and ∆β

Lemma 19 Let ∆βpxq “ φβp1q ´ φβp1 ´ xq and its surrogate s∆β as in Definition 16. Then, for all β ą 0,
it holds that

E
”

V
”

s∆β

´

1 ´ xÂ, Θy

¯

| Θ̂
ıı

E
”

V
”

∆β

´

1 ´ xÂ, Θy

¯

| Θ̂
ıı ď 4.

We begin the proof by noting that the ratio of expected variances can be written as a ratio of expected
squared differences,

ErVr s∆βp1 ´ xÂ, Θyq|Θ̂ss

ErVr∆βp1 ´ xÂ, Θyq|Θ̂ss
“

Er
`

s∆βp1 ´ xÂ, Θyq ´ s∆βp1 ´ xÂ, Θ̃yq
˘2

s

Er
`

∆βp1 ´ xÂ, Θyq ´ ∆βp1 ´ xÂ, Θ̃yq
˘2

s
“

Er
`

s∆βpXq ´ s∆βpX̃q
˘2

s

Er
`

∆βpXq ´ ∆βpX̃q
˘2

s
.

where Θ̃ is a random variable independent and identically distributed as Θ. We can write it in a more
compact form using X “ 1 ´ xÂ, Θy and X̃ “ 1 ´ xÂ, Θ̃y.

We continue by observing that for x P r0, δβr, we have s∆βpxq ´ ∆βpxq “ 0 and for x P rδβ , 2s, we have
that s∆βpxq ´ ∆βpxq ď ∆βpδβq{δβpx ´ δβq as ∆βpδβq ď ∆βpxq. Thus we can upper bound the difference
s∆βpxq ´ ∆βpxq by a function Gβpxq such that

Gβpxq “

#

0 x P r0, δβr

px ´ δβq∆βpδβq{δβ x P rδβ , 2s.

We note that for all x, y P r0, 2s, we have that

|∆βpxq ` Gβpxq ´ ∆βpyq ´ Gβpyq| ě |p s∆βpxq ´ p s∆βpyq|.

Indeed, for x, y P r0, δβs, we have |∆βpxq`Gβpxq´∆βpyq´Gβpyq| “ 0 “ |p s∆βpxq´ s∆βpyqq|; for x, y Psδβs, 2,
we have |∆βpxq ` Gβpxq ´ ∆βpyq ´ Gβpyq| “ |∆βpxq ´ ∆βpyq ` ∆βpδβq{δβpx ´ yq| ě |∆βpδβq ´ ∆βpδβq `

∆βpδβq{δβpx´yq| “ |p s∆βpxq´ s∆βpyq|; and for x Psδβs, 2, y P r0, δβs, we have again |∆βpxq`Gβpxq´∆βpyq´

Gβpyq| “ |∆βpxq ´ ∆βpyq ` ∆βpδβq{δβpx ´ δβq| ě |∆βpδβq ´ ∆βpyq ` ∆βpδβq{δβpx ´ δβq| “ | s∆βpxq ´ s∆βpyq|.
As the inequality p∆βpxq ` Gβpxq ´ ∆βpyq ´ Gβpyqq2 ě p s∆βpxq ´ s∆βpyqq2 holds everywhere, it holds also in
expectation and we have that

Er
`

s∆βpXq ´ s∆βpX̃q
˘2

s

Er
`

∆βpXq ´ ∆βpX̃q
˘2

s
ď

Er
`

∆βpXq ´ ∆βpX̃q ` GβpXq ´ GβpX̃q
˘2

s

Er
`

∆βpXq ´ ∆βpX̃q
˘2

s

“ 1 ` 2
Er

`

∆βpXq ´ ∆βpX̃q
˘`

GβpXq ´ GβpX̃q
˘

s

Er
`

∆βpXq ´ ∆βpX̃q
˘2

s
`

Er
`

GβpXq ´ GβpX̃q
˘2

s

Er
`

∆βpXq ´ ∆βpX̃q
˘2

s

ď 1 ` 2

g

f

f

e

Er
`

GβpXq ´ GβpX̃q
˘2

s

Er
`

∆βpXq ´ ∆βpX̃q
˘2

s
`

Er
`

GβpXq ´ GβpX̃q
˘2

s

Er
`

∆βpXq ´ ∆βpX̃q
˘2

s

“

¨

˝1 `

g

f

f

e

Er
`

GβpXq ´ GβpX̃q
˘2

s

Er
`

∆βpXq ´ ∆βpX̃q
˘2

s

˛

‚

2

, (4)
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where in the second inequality, we used Cauchy-Schwarz inequality. We can then focus on studying the
ratio of expected squared differences between Gβ and ∆β . We will first apply a transformation fβpxq “

minp∆βpδβq, maxp∆βp1q, xqq to crop the values of ∆β that are above ∆βpδβq. We can write the resulting
function fβ ˝ ∆β as

fβ ˝ ∆βpxq “

$

’

&

’

%

∆βp1q x P r0, 1s

∆βpxq x Ps1, δβr

∆βpδβq x P rδβ , 2r.

We observe that the transformation fβ contracts the function ∆β as, for all x, y P r0, 2s, we have |fβ ˝∆βpxq´

fβ ˝ ∆βpyq| ď |∆βpxq ´ ∆βpyq|. As the inequality holds everywhere, it holds also in expectation and we have
that Er

`

fβ ˝ ∆βpXq´fβ ˝ ∆βpX̃q
˘2

s ď Er
`

∆βpXq´∆βpX̃q
˘2

s and it follows that

Er
`

GβpXq ´ GβpX̃q
˘2

s

Er
`

∆βpXq ´ ∆βpX̃q
˘2

s
ď

Er
`

GβpXq ´ GβpX̃q
˘2

s

Er
`

fβ ˝ ∆βpXq ´ fβ ˝ ∆βpX̃q
˘2

s
.

Switching back to the notation 1´xÂ, Θy and 1´xÂ, Θ̃y instead of X and X̃ and letting ppθq denote the
probability density of Θ, we note that the above ratio can be equivalently written as:

ş ş ş

O3 E
“`

Gβp1 ´ xÂ, Θyq ´ Gβp1 ´ xÂ, Θ̃yq
˘2

| Θ̂, Θ, Θ̃ P tθ0, θ1, θ2u
‰

Π3
i“1ppθiq dθ0 dθ1 dθ2

ş ş ş

O3 E
“`

fβ ˝ ∆βp1 ´ xÂ, Θyq ´ fβ ˝ ∆βp1 ´ xÂ, Θ̃yq
˘2

| Θ̂, Θ, Θ̃ P tθ0, θ1, θ2u
‰

Π3
i“1ppθiq dθ0 dθ1 dθ2

.

In the next part, we will bound the ratio between ErpGβp1´xÂ, Θyq´Gβp1´xÂ, Θ̃yqq2s and Er
`

fβ ˝

∆βp1´xÂ, Θyq´fβ ˝ ∆βp1´xÂ, Θ̃yq
˘2

s, conditioned on Θ̂, Θ, Θ̃ P tθ0, θ1, θ2u, for any triplet θ0, θ1, θ2 P O,
providing an upper bound on the above ratio. We denote this ratio Rpβq. Without loss of generality, we
consider θ0, θ1, θ2 P O with associated conditional probability p0, p1, p2 Ps0, 1s, where p0 ` p1 ` p2 “ 1, and
we let a “ 1 ´ xθ0, θ1y, b “ 1 ´ xθ0, θ2y, c “ 1 ´ xθ1, θ2y. We introduce the notation A “ 2p0p1pp0 ` p1q,
B “ 2p0p2pp0 ` p2q, C “ 2p1p2pp1 ` p2q, and D “ 2p0p1p2. To upper bound the ratio of expectation
conditioned on Θ̂, Θ, Θ̃ P tθ0, θ1, θ2u, we have four cases to consider:

(i) 1 ´ xθ0, θ1y ď δβ , 1 ´ xθ0, θ2y ď δβ , 1 ´ xθ1, θ2y ď δβ ,

(ii) 1 ´ xθ0, θ1y ě δβ , 1 ´ xθ0, θ2y ď δβ , 1 ´ xθ1, θ2y ď δβ ,

(iii) 1 ´ xθ0, θ1y ě δβ , 1 ´ xθ0, θ2y ě δβ , 1 ´ xθ1, θ2y ď δβ ,

(iv) 1 ´ xθ0, θ1y ě δβ , 1 ´ xθ0, θ2y ě δβ , 1 ´ xθ1, θ2y ě δβ .

In the case (i), we have Gβp1 ´ xθm, θnyq “ fβ ˝ ∆βp1 ´ xθm, θnyq for m, n P t1, 2, 3u and the expectation
over Gβ and fβ ˝ ∆β are equal. In the case (ii), we can write the ratio of conditional expectations as

pA ` 2Dqp∆βpδβq{δβq2pa ´ δβq2

A∆βpδβq2 ` B∆βpbq2 ` C∆βpcq2 ` Dp∆βpδβq ´ ∆βpbqq2 ` Dp∆βpδβq ´ ∆βpcqq2 ` Dp∆βpbq ´ ∆βpcqq2 .

We note that the numerator Npaq is maximized for a “ 2, where it takes the value Np2q “
∆βpδβq

2

δ2
β

pA `

2Dqp2 ´ δq2 and that the denominator Dpb, cq is minimized either by b “ c “ 0 if D ď B or D ď C, with
Dp0, 0q “ ∆βpδβq2pA`2Dq. For b “ c “ δβ to be a minimizer of Dpb, cq we would need to have simultaneously
B ă D and C ă D, implying that p1 ą 1{2 and p0 ą 1{2, which is not possible as p0 ` p1 ă 1. So the
maximal ratio is Np2q{Dp0, 0q which is equal to p2´δβq

2

δ2
β

.

In the case (iii), we can write the ratio of conditional expectations as:

p∆βpδβq{δβq2`

pA ` Dqpa ´ δβq2 ` pB ` Dqpb ´ δβq2 ` Dpa ´ bq2˘

A∆βpδβq2 ` B∆βpδβq2 ` C∆βpcq2 ` 2Dp∆βpδβq ´ ∆βpcqq2 .
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We can verify that the numerator Npa, bq is strictly convex and quadratic in a, b as its Hessian is positive-
definite. We can compute the Hessian by taking second partial derivatives:

B2Npa, bq

Ba2 “ 2A ` 2D,
B2Npa, bq

Bb2 “ 2B ` 2D,
B2Npa, bq

Ba Bb
“

B2Npa, bq

Bb Ba
“ ´2D.

We then obtain the Hessian as HN “

ˆ

2A ` 2D ´2D
´2D 2B ` 2D

˙

which is symmetric, and strictly diagonally
dominant since both diagonal entries are strictly greater than the sum of the absolute values of the off-
diagonal terms:

2A ` 2D ą 2D, 2B ` 2D ą 2D,

which holds as A, B ą 0. Therefore, by Horn & Johnson (2012, Theorem 6.1.10), the Hessian is positive-
definite, and thus Npa, bq is strictly convex. Since Npa, bq is strictly convex on the compact convex set
rδβ , 2s ˆ rδβ , 2s, it attains its maximum at one of the extreme points of the domain. These extreme points
are

pa, bq P t p2, 2q, p2, δβq, pδβ , 2q, pδβ , δβqu.

We have that Npδβ , δβq “ 0 and for the other corners, we evaluate

Np2, δβq “ pA ` 2Dq
∆βpδβq2

δ2
β

p2 ´ δβq2, Npδβ , 2q “ pB ` 2Dq
∆βpδβq2

δ2
β

p2 ´ δβq2,

Np2, 2q “ pA ` B ` 2Dq
∆βpδβq2

δ2
β

p2 ´ δβq2,

thus the numerator Npa, bq is smaller than Np2, 2q “
∆βpδβq

2

δ2
β

p2 ´ δβq2pA ` B ` 2Dq. Looking at the
denominator Dpcq “ pA`Bq∆βpδβq2`C∆βpcq2`2Dp∆βpδβq´∆βpcqq2, we note that it is minimized by c “ 0
if C ě 2D and takes the value Dp0q “ pA`B`2Dq∆βpδβq2 and the ratio Np2, 2q{Dp0q “

p2´δβq
2

δ2
β

.

Lastly, we need to consider the case (iv), where the ratio of conditional expectations can be written as

Apa ´ δβq2 ` Bpb ´ δβq2 ` Cpc ´ δβq2Dpa ´ bq2 ` Dpa ´ cq2 ` Dpb ´ cq2

δ2
β

`

A ` B ` C
˘ .

We define Npa, b, cq as the numerator, and compute the Hessian by taking second partial derivatives:

B2N

Ba2 “ 2A ` 4D,
B2N

Bb2 “ 2B ` 4D,
B2N

Bc2 “ 2C ` 4D,
B2N

BaBb
“

B2N

BaBc
“

B2N

BbBc
“ ´2D.

The resulting Hessian is:

HN “

¨

˝

2A ` 4D ´2D ´2D
´2D 2B ` 4D ´2D
´2D ´2D 2C ` 4D

˛

‚ .

This matrix is symmetric and strictly diagonally dominant since all diagonal entries are strictly greater than
the sum of the absolute values of the off-diagonal entries:

2A ` 4D ą 4D, 2B ` 4D ą 4D, 2C ` 4D ą 4D,

which holds since A, B, C ą 0. Therefore the Hessian is positive-definite, and thus Npa, b, cq is strictly
convex. The domain a, b, c P rδβ , 2s is restricted as the sum of the angles between the vectors θ0, θ1, θ2
is at most 2π (the maximum is achieved when θ0, θ1, θ2 are coplanar). We can express this condition as
arccosp1´aq`arccosp1´bq`arccosp1´cq ď 2π with 1´a, 1´b, 1´c P rδβ ´1, 1s. The function arccospxq is
concave for x P r0, 1s, and the sum of concave functions is concave, so arccosp1´aq`arccosp1´bq`arccosp1´cq
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is concave. Then the superlevel set arccosp1 ´ aq ` arccosp1 ´ bq ` arccosp1 ´ cq ď 2π is convex, see Boyd &
Vandenberghe (2004, Section 3.1.6).

As the function Npa, b, cq is convex and the domain a, b, c P rδβ , 2s subject to arccosp1 ´ aq ` arccosp1 ´ bq `

arccosp1 ´ cq ď 2π is a convex set, it is maximized at points on the border of the domain. At the point
a “ b “ c “ δβ , we have Npδβ , δβ , δβq “ 0. As a, b, c ě δβ ą 1 (see Appendix D), it implies that arccosp1 ´

aq, arccosp1 ´ bq, arccosp1 ´ cq Psπ{2, πs, thus the condition arccosp1 ´ aq ` arccosp1 ´ bq ` arccosp1 ´ cq ď 2π
implies that no point a, b, c can reach 2. The remaining extreme point is therefore when two points are equal
to δβ and the last one is such that arccosp1 ´ aq ` arccosp1 ´ bq ` arccosp1 ´ cq “ 2π. We can assume without
loss of generality that A ě B and A ě C and to simplify the exposition, we let θβ “ arccosp1 ´ δβq. The
maximum of Npa, b, cq is given by Npt, δβ , δβq where t is such that arccosp1 ´ tq “ 2π ´ 2θβ . We have that
t “ 1 ´ cosp2π ´ 2θβq “ 1 ´ cosp2θβq “ 1 ´ p2 cospθβq2 ´ 1q “ 2 ´ 2p1 ´ δβq2 “ 2δβp2 ´ δβq. Thus we have that
Npt, δβ , δβq “ pA ` 2Dqpt ´ δβq2 “ pA ` 2Dqp2δβp2 ´ δβq ´ δβq2 “ pA ` 2Dqδ2

βp3 ´ 2δβq2 ď pA ` 2Dqp2 ´ δβq2.
We then use the fact that 2D ď B ` C for all p0, p1, p2 P r0, 1s to conclude that

Npa, b, cq

δ2
βpA ` B ` Cq

ď
pA ` 2Dqδ2

βp2 ´ δβq2

δ2
βpA ` B ` Cq

ď
p2 ´ δβq2

δ2
β

.

From the analysis of (i), (ii), (iii), and (iv), we conclude that, for any θ0, θ1, θ2 P O, we have

E
“`

Gβp1 ´ xÂ, Θyq ´ Gβp1 ´ xÂ, Θ̃yq
˘2

| Θ̂, Θ, Θ̃ P tθ0, θ1, θ2u
‰

E
“`

fβ ˝ ∆βp1 ´ xÂ, Θyq ´ fβ ˝ ∆βp1 ´ xÂ, Θ̃yq
˘2

| Θ̂, Θ, Θ̃ P tθ0, θ1, θ2u
‰

ď
p2 ´ δβq2

δ2
β

,

and therefore, it holds that

E
“`

Gβp1 ´ xÂ, Θyq ´ Gβp1 ´ xÂ, Θ̃yq
˘2‰

E
“`

fβ ˝ ∆βp1 ´ xÂ, Θyq ´ fβ ˝ ∆βp1 ´ xÂ, Θ̃yq
˘2‰

ď
p2 ´ δβq2

δ2
β

.

Using the above result in Equation (4), we get that

E
”

V
”

s∆β

´

1 ´ xÂ, Θy

¯

| Θ̂
ıı

E
”

V
”

∆β

´

1 ´ xÂ, Θy

¯

| Θ̂
ıı ď

ˆ

1 `
2 ´ δβ

δβ

˙2
“

4
δ2

β

ď 4.

where we used that δβ P r1, 3{2s (see Appendix D for a detailed proof).

C Extension to general spaces

To extend the proof technique of Section 5.2 and Section 5.3, we first need to introduce the alignment
function αpθ̂q :“ maxθPOxπ‹pθ̂q, θy as well as optimal environment mapping ρpθ̂q “ arg maxθPOxπ‹pθ̂q, θy.
We can define the extended regret function ∆β

`

x, α
˘

:“ φβ

`

α
˘

´ φβ

`

α ´ x
˘

and note that

∆βpαpΘ̂q ´ xÂ, Θy, αpΘ̂qq “ φβpαpΘ̂qq ´ φβpxÂ, Θyq.

Integrating over the Bernoulli outcome, we can write the expected regret using ∆βpx, αpθ̂qq:

Er∆βpαpΘ̂q ´ xÂ, Θy, αpΘ̂qqs “ ErφβpxÂ, ρpΘ̂yq´φβpxÂ, Θyqs ě ErφβpxA‹, Θyq´φβpxÂ, Θyqs,

where we used that Θ̂ and Θ are identically distributed and that the inequality xπ‹pθq, ρpθqy ě xπ‹pθq, θy

holds point-wise for all θ P O and therefore holds in expectation. Similarly to the proof in Section 5.2, we
construct a function s∆βpx, αpθ̂qq as the tightest upper bound on ∆βpx, αpθ̂qq that satisfies the requirements
of Lemma 15.
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Definition 25 (Extended regret surrogate) For every θ̂ P O, we construct the extended regret sur-
rogate function s∆βpx, αpθ̂qq as the tightest upper bound on ∆βpx, αpθ̂qq such that s∆βpx, αpθ̂qq{x is non-
decreasing over x ě 0.

Namely, let δβpαpθ̂qq “ arg maxxPr0,1`αs
∆βpx,αpθ̂qq

x , we define the function s∆βpx, αpθ̂qq as

s∆βpx, αpθ̂qq “

#

∆βpx, αpθ̂qq x P r0, δβpαpθ̂qqs

∆βpδβpαpθ̂qq, αpθ̂qq ` px ´ δβpαpθ̂qqq ¨ κβpαpθ̂qq x P sδβpαpθ̂qq, 1 ` αpθ̂qs
,

where κβpαpθ̂qq “ ∆βpδβpαpθ̂qq, αpθ̂qq{δβpαpθ̂qq “ maxxPr0,1`αpθ̂qs

∆βpx,αpθ̂qq

x .

We are now equipped to extend Lemma 17 to general action and parameter spaces.

Lemma 26 Let the extended regret surrogate be defined as in Definition 25. Then, it holds that

ErBernpφβpxA‹, Θyqq ´ BernpφβpxÂ, Θyqqs2 ď 2d ¨ E
”

V
”

s∆βpαpΘ̂q ´ xÂ, Θy, αpΘ̂qq | Θ̂
ıı

.

Proof 27 The proof follows closely the technique used to prove Lemma 17. We note that conditioned on
Θ̂ “ θ̂, the extended regret surrogate is a mapping from r0, 1 ` αpθ̂qs to r0, 1s, that ∆βp0, αpθ̂qq “ φβpαpθ̂qq ´

φβpαpθ̂qq “ 0 and fulfills the assumptions of Lemma 15.

Noting that V
”

φβpxÂ, Θyq | Θ̂
ı

“ V
”

∆βpαpΘ̂q ´ xÂ, Θy, αpΘ̂qq | Θ̂
ı

and using Lemma 12, we have that the
information ratio Γ can be bounded by

Γ ď d ¨

E
”

V
”

s∆β

´

αpΘ̂q ´ xÂ, Θy, αpΘ̂q

¯

| Θ̂
ıı

E
”

V
”

∆β

´

αpΘ̂q ´ xÂ, Θy, αpΘ̂q

¯

| Θ̂
ıı .

Similarly to the analysis for the case O Ď A, we continue the proof by noting that the ratio of expected
variance can be written as a ratio of expected squared difference,

E
”

V
”

s∆βpαpΘ̂q ´ xÂ, Θy, αpΘ̂qq | Θ̂
ıı

E
”

V
”

∆βpαpΘ̂q ´ xÂ, Θy, αpΘ̂qq | Θ̂
ıı “

E
”

E
”

`

s∆βpαpΘ̂q ´ xÂ, Θy, αpΘ̂qq ´ s∆βpαpΘ̂q ´ xÂ, Θ̃y, αpΘ̂qq
˘2

| Θ̂
ıı

E
”

E
”

`

∆βpαpΘ̂q ´ xÂ, Θy, αpΘ̂qq ´ ∆βpαpΘ̂q ´ xÂ, Θ̃y, αpΘ̂qq
˘2

| Θ̂
ıı

“

E
”

E
”

`

s∆βpX, αpΘ̂qq ´ s∆βpX̃, αpΘ̂qq
˘2

| Θ̂
ıı

E
”

E
”

`

∆βpX, αpΘ̂qq ´ ∆βpX̃, αpΘ̂qq
˘2

| Θ̂
ıı ,

where Θ̃ is a random variable independent and identically distributed as Θ, and in the last equality we used
a more compact notation X “ αpΘ̂q ´ xÂ, Θy and X̃ “ αpΘ̂q ´ xÂ, Θ̃y.

Conditioned on Θ̂ “ θ̂, for x P r0, δβpαpθ̂qqr, we have s∆βpx, αpθ̂qq “ ∆βpx, αpθ̂qq and for x P rδβpαpθ̂qq, 2s, we
have that s∆βpx, αpθ̂qq ď ∆βpx, αpθ̂qq ` κβpαpθ̂qqpx ´ δβpαpθ̂qqq as ∆βpδβpαpθ̂qq, αpθ̂qq ď ∆βpx, αpθ̂qq. Using
this observation we can upper bound the difference s∆βpx, αpθ̂qq´∆βpx, αpθ̂qq by a function Gβpx, αpθ̂qq such
that

Gβpx, αpθ̂qq “

#

0 x P r0, δβpαpθ̂qqr

px ´ δβpαpθ̂qqqκβpαpθ̂qq x P rδβpαpθ̂qq, 2s
.

We note that for all x, y P r0, 2s, we have that

|∆βpx, αpθ̂qq ` Gβpx, αpθ̂qq ´ ∆βpy, αpθ̂qq ´ Gβpy, αpθ̂qq| ě | s∆βpx, αpθ̂qq ´ s∆βpy, αpθ̂qq|.
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Indeed, for x, y P r0, δβpαpθ̂qqs, we have |∆βpx, αpθ̂qq ` Gβpx, αpθ̂qq ´ ∆βpy, αpθ̂qq ´ Gβpy, αpθ̂qq| and
| s∆βpx, αpθ̂qq ´ s∆βpy, αpθ̂qq| are equal to zero. Then for x, y P pδβpαpθ̂qq, 2s, we have that

|∆βpx, αpθ̂qq ` Gβpx, αpθ̂qq ´ ∆βpy, αpθ̂qq ´ Gβpy, αpθ̂qq| “ |∆βpx, αpθ̂qq ´ ∆βpy, αpθ̂qq ` κβpαpθ̂qqpx ´ yq|

ě | s∆βpx, αpθ̂qq ´ s∆βpy, αpθ̂qq|,

and for x P pδβpαpθ̂qq, 2s, y P r0, δβpαpθ̂qqs, we have again

|∆βpx, αpθ̂qq`Gβpx, αpθ̂qq´∆βpy, αpθ̂qq´Gβpy, αpθ̂qq| “ |∆βpx, αpθ̂qq´∆βpy, αpθ̂qq`κβpαpθ̂qqpx´δβpαpθ̂qqq|

ě | s∆βpx, αpθ̂qq´ s∆βpy, αpθ̂qq|.

As the inequality p∆βpx, αpθ̂qq ` Gβpx, αpθ̂qq ´ ∆βpy, αpθ̂qq ´ Gβpy, αpθ̂qqq2 is greater than or equal to
p s∆βpx, αpθ̂qq ´ s∆βpy, αpθ̂qqq2 holds everywhere, it holds also in expectation, and we have that

Er
`

s∆βpX, αpΘ̂qq ´ s∆βpX̃, αpΘ̂qq
˘2

s

Er
`

∆βpX, αpΘ̂qq ´ ∆βpX̃, αpΘ̂qq
˘2

s
ď

Er
`

∆βpX, αpΘ̂qq ´ ∆βpX̃, αpΘ̂qq ` GβpX, αpΘ̂qq ´ GβpX̃, αpΘ̂qq
˘2

s

Er
`

∆βpX, αpΘ̂qq ´ ∆βpX̃, αpΘ̂qq
˘2

s

“ 1`2
Er

`

∆βpX, αpΘ̂qq´∆βpX̃, αpΘ̂qq
˘`

GβpX, αpΘ̂qq´GβpX̃, αpΘ̂qq
˘

s

Er
`

∆βpX, αpΘ̂qq´∆βpX̃, αpΘ̂qq
˘2

s
`
Er

`

GβpX, αpΘ̂qq´GβpX̃, αpΘ̂qq
˘2

s

Er
`

∆βpX, αpΘ̂qq´∆βpX̃, αpΘ̂qq
˘2

s

ď 1`2

g

f

f

e

Er
`

GβpX, αpΘ̂qq ´ GβpX̃, αpΘ̂qq
˘2

s

Er
`

∆βpX, αpΘ̂qq ´ ∆βpX̃, αpΘ̂qq
˘2

s
`
Er

`

GβpX, αpΘ̂qq ´ GβpX̃, αpΘ̂qq
˘2

s

Er
`

∆βpX, αpΘ̂qq ´ ∆βpX̃, αpΘ̂qq
˘2

s
, (5)

where in the second inequality, we used Cauchy-Schwarz inequality. We can then focus on studying the
ratio of expected squared differences between Gβ and ∆β . We will first apply a transformation fpxq “

minp∆βpδβpαpθ̂qq, αpθ̂qq, xq to crop the values of ∆β that are above ∆βpδβpαpθ̂qq, αpθ̂qq. We can write the
resulting function f ˝ ∆β as

f ˝ ∆βpx, αpθ̂qq “

#

∆βpx, αpθ̂qq x P r0, δβpαpθ̂qqr

∆βpδβpαpθ̂qq, αpθ̂qq x P rδβpαpθ̂qq, 2r.

We observe that the transformation f contracts the function ∆β as, for all x, y P r0, 2s, we have
|f ˝ ∆βpx, αpθ̂qq ´ f ˝ ∆βpy, αpθ̂qq| ď |∆βpx, αpθ̂qq ´ ∆βpy, αpθ̂qq|. As the inequality holds every-
where, it holds also in expectation and we have that Er

`

f ˝ ∆βpX, αpΘ̂qq´f ˝ ∆βpX̃, αpΘ̂qq
˘2

s ď

Er
`

∆βpX, αpΘ̂qq´∆βpX̃, αpΘ̂qq
˘2

s and it follows that

Er
`

GβpX, αpΘ̂qq ´ GβpX̃, αpΘ̂qq
˘2

s

Er
`

∆βpX, αpΘ̂qq ´ ∆βpX̃, αpΘ̂qq
˘2

s
ď

Er
`

GβpX, αpΘ̂qq ´ GβpX̃, αpΘ̂qq
˘2

s

Er
`

f ˝ ∆βpX, αpΘ̂qq ´ f ˝ ∆βpX̃, αpΘ̂qq
˘2

s
.

Similarly to Lemma 19, we will bound the ratio conditioned on Θ̂, Θ, Θ̃ P tθ0, θ1, θ2u, for any triplet θ0, θ1, θ2 P

O, in order to provide an upper bound on the ratio when taking the expectations over θ0, θ1, θ2 P O.

Using a very similar proof to the one for Lemma 19, we can show that

E
“`

Gβ

`

X, αpΘ̂q
˘

´ Gβ

`

X̃, αpΘ̂q
˘˘2

| Θ̂, Θ, Θ̃ P tθ0, θ1, θ2u
‰

E
“`

f ˝ ∆β

`

X, αpΘ̂q
˘

´ f ˝ ∆β

`

X̃, αpΘ̂q
˘˘2

| Θ̂, Θ, Θ̃ P tθ0, θ1, θ2u
‰

ď
4κβpαq2p1 ` α ´ δβpαqq2

∆βpδβpαq, αq2 ,

where α “ minθ̂PO αpθ̂q ď 1. Then using the definitions of κβpαq and ∆βpα, αq, we can simplify the right-
hand side of the above inequality as

4κβpαq2p1 ` α ´ δβpαqq2

∆βpδβpαq, αq2 “
4p1 ` α ´ δβpαqq2

δβpαq2 ď
p4 ´ 2δβpαqq2

δβpαq2 .
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Plugging the above result in Equation (5), we get that

E
”

V
”

s∆β

´

αpΘ̂q ´ xÂ, Θy, Θ̂
¯

| Θ̂
ıı

E
”

V
”

∆β

´

αpΘ̂q ´ xÂ, Θy, Θ̂
¯

| Θ̂
ıı ď

ˆ

1 `
4 ´ 2δβpαq

δβpαq

˙2
ď

42

δβpαq2 ď
42

α2 ,

where we used the fact that δβpαq ě α (see Remark 28). This result concludes the proof of Proposition 4.

Remark 28 Remark about a ď δβpaq for all a P r0, 1s.

We recall that ∆βpx, aq “ φβpaq ´ φβpa ´ xq and start by computing the derivative of ∆βpx, aq{x:

d

dx

ˆ

∆βpx, aq

x

˙

“
φ1

βpa ´ xqx ´ pφβpaq ´ φβpa ´ xqq

x2 .

Let Npx, aq be the numerator of the above ratio, the first-order condition for the maximizer can therefore be
written as

Npx, aq “ φβpaq ´ φβpa ´ xq ´ x φ1
βpa ´ xq,

and the equality Npx, aq “ 0 is achieved for x “ δβpaq. We observe that Np0, aq “ φβpaq ´ φβpaq “ 0. We
will now show that Npx, aq is strictly decreasing for x P r0, as (thus Npx, aq ă 0 for x Ps0, as) and strictly
increasing for x ě a, which implies that the equation Npx, aq “ 0 has a unique positive solution and that this
solution is strictly larger than a.

To do this, we study the sign of d{dxNpx, aq “ x φ2
βpa ´ xq for x P r0, as and for x ě a. As x ě 0 is

always non-negative, the sign of the derivative is given by the sign of φ2
βpa ´ xq. We recall that φ2

βpzq “

β2φβpzqp1 ´ φβpzqqp1 ´ 2φβpzqq. As φβpzq P r0, 1s for all z P R, we have that φ2
βpzq is positive if φβpzq ă 1{2

and negative if φβpzq ą 1{2. As φβp0q “ 1{2 and φβpzq is increasing, we have that φβpzq ă 1{2 for all z ă 0
and φβpzq ą 1{2 for all z ą 0. Therefore, for x P r0, as, we have that a ´ x ě 0 and φ2

βpa ´ xq ď 0, which
implies that Npx, aq is strictly decreasing for x P r0, as. Similarly, for x ě a, we have that a ´ x ď 0 and
φ2

βpa ´ xq ě 0, which implies that Npx, aq is strictly increasing for x ě a.

D Analyzing the functions ∆βpδβq and δβ

In this section, we study the quantities ∆βpδβq{δβ and δβ , illustrated respectively on Figure 4 and Figure 5.
We will prove several important properties of δβ , ∆βpδβq{δβ , which are used in the proof of Lemma 19. First,
we prove that the function κβpxq :“ ∆βpxq{x has a unique maximizer δβ which lies in between s1, 2s. Then
we prove that δβ is a decreasing function of β. We then analyze its limits and show that limβÑ0` δβ “ 3{2
and limβÑ8δβ“1, thus refining the domain of δβ to r1, 3{2s. After that we analyze the monotonicity of the
function ∆βpδβq{δβ and show that it is an increasing function of β.

D.1 Uniqueness of the maximizer δβ

To see rigorously that κβpxq has exactly one maximum in r0, 2s and that this unique maximum δβ lies in the
interval r1, 2s, we will follow a similar technique as in Remark 28, that is studying the derivative of κβpxq to
derive optimality conditions and showing that these conditions are satisfied by only one point in r1, 2s. We
start by computing the derivative of κβpxq:

κ1
βpxq “

ˆ

∆βpxq

x

˙1

“
φ1

βp1 ´ xqx ´ pφβp1q ´ φβp1 ´ xqq

x2 ,

where we used that ∆1
βpxq “ φ1

βp1 ´ xq and ∆βpxq “ φβp1q ´ φβp1 ´ xq.

Let Npxq “ φ1
βp1 ´ xqx ` φβp1 ´ xq ´ φβp1q be the numerator of κ1

βpxq. Since the denominator x2 is strictly
positive for all x ą 0, the sign of κ1

βpxq is determined by the sign of Npxq and the sign of Npxq has to reverse
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Figure 4: Illustration of κβpxq “ ∆βpxq{x over
x P r0, 2s for different values of β. The maximum
of the function is attained at x “ δβ .
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∆βpδβq{δβ

Figure 5: Illustration of δβ and ∆βpδβq{δβ as func-
tions of β. One can observe that δβ decreases with
β while ∆βpδβq{δβ increases.

at the maximizer δβ . We will start by studying the derivative N 1pxq “ ´φ2
βp1 ´ xqx. As x Ps0, 2s is positive,

the sign of N 1pxq follows that of ´φ2
βp1 ´ xq “ ´β2φβp1 ´ xqp1 ´ φβp1 ´ xqqp1 ´ 2φβp1 ´ xqq, and we have

that N 1pxq is positive when φβp1 ´ xq ă 1{2, that is for x ă 1 and negative when φβp1 ´ xq ą 1{2, that is for
x ą 1. We therefore have that Npxq is increasing over the interval r0, 1r, reaches a maximum at x “ 1, and
decreases over the interval s1, 2s. We now evaluate Npxq at the points x “ 0, x “ 1, x “ 2. We have that
Np0q “ φβp1q ´ φβp1q “ 0 and Np1q “ φ1

βp0q ` φβp0q ´ φβp1q “ β{4 ` 1{2 ´ φβp1q. Now let fpβq “ φβp1q, we
have that f 1pβq “ fpβqp1 ´ fpβqq is maximal for β “ 0 and for β ą 0, we have that fpβq ă fp0q ` f 1p0qβ “

1{2 ` β{4, therefore we have that Np1q ą 0 for β ą 0. As Np0q “ 0, Np1q ą 0 and N 1pxq ě 0 for x P r0, 1s,
we have that Npxq is positive over the interval r0, 1s. As N 1pxq is negative for x Ps1, 2s, by continuity of the
function, we only have to show that Np2q ă 0 to prove that there exists a point δβ in r1, 2s at which Npxq

changes sign. We have that Np2q “ 2φ1
βp´1q ` φβp´1q ´ φβp1q. Then using that φβp´1q “ 1 ´ φβp1q and

that φ1
βp´1q “ βφβp1qp1´φβp1qq, we have that Np2q “ 2βφβp1qp1´φβp1qq`1´2φβp1q. As φβp1q P r1{2, 1r,

we have that φβp1qp1 ´ φβp1qq ď 1{4 and therefore Np2q ď β{2 ` 1 ´ 2φβp1q “ 2pβ{4 ` 1{2 ´ φβp1qq ă 0,
using the same argument as previously. As Npxq is positive over r0, 1s, strictly decreasing over s1, 2s, and
negative at x “ 2, there exists a unique point δβ P r1, 2s such that Npδβq “ 0. We therefore have that κβpxq

has a unique maximum δβ in r1, 2s.

D.2 On the monotonicity of δβ

We now study how the quantity δβ varies with β. To this end, we analyze the total derivative of the first-order
optimality condition satisfied by δβ , which takes the form Npx, βq “ φ1

βp1 ´ xqx ` φβp1 ´ xq ´ φβp1q.

Since δβ is defined by the condition Npδβ , βq “ 0, we may differentiate this identity with respect to β and
apply the chain rule. We obtain

0 “
d

dβ
Npδβ , βq “ BxNpδβ , βq

dδβ

dβ
` BβNpδβ , βq implying that dδβ

dβ
“ ´

BβNpδβ , βq

BxNpδβ , βq
.

We now compute the partial derivatives appearing in the above expression. Using the identity φ1
βpxq “

βφβpxqp1 ´ φβpxqq and the chain rule, we obtain BxNpx, βq “ ´xφ2
βp1 ´ xq, where the second derivative of

φβ is given by φ2
βpxq “ β2φβpxqp1 ´ φβpxqqp1 ´ 2φβpxqq. Since δβ ą 1, it follows that φβp1 ´ δβq ă 1{2, and

therefore 1 ´ 2φβp1 ´ δβq ą 0. This implies that φ2
βp1 ´ δβq ą 0, and hence BxNpδβ , βq ă 0.
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We now compute the partial derivative with respect to β and we obtain

BβNpx, βq “ xBβφ1
βp1 ´ xq ` Bβφβp1 ´ xq ´ Bβφβp1q,

where Bβφ1
βpxq “ φβpxqp1 ´ φβpxqq p1 ` βxp1 ´ 2φβpxqqq and Bβφβpxq “ xφβpxqp1 ´ φβpxqq. Substituting

these expressions into the formula for BβNpx, βq and simplifying gives

BβNpδβ , βq “ φβp1 ´ δβqp1 ´ φβp1 ´ δβqqp1 ` β δβp1 ´ δβqp1 ´ 2φβp1 ´ δβqqq ´ φβp1qp1 ´ φβp1qq.

We now let q “ φβp1 ´ δβq and p “ φβp1q and plug x “ δβ into the expression. Noting that Bβφβpxq “

xφβpxqp1 ´ φβpxqq, we obtain BβNpδβ , βq “ qp1 ´ qqp1 ` βδβp1 ´ δβqp1 ´ 2qqq ´ pp1 ´ pq. We then recall
that the first-order condition Npδβ , βq “ 0 implies the identity p ´ q “ βδβqp1 ´ qq, which we may use to
eliminate p and simplify the expression for BβNpδβ , βq. A short algebraic manipulation gives

BβNpδβ , βq “ βδ2
βqp1 ´ qq pβqp1 ´ qq ´ p1 ´ 2qqq .

The first part of the expression βδ2
βqp1´qq is positive. We then have to analyze the sign of βqp1´qq´p1´2qq.

Since δβ ą 1, we have that q ă 1{2, and it follows that 1 ´ 2q ą 0. Furthermore, from the identity
p ´ q “ βδβqp1 ´ qq and the fact that p ă 1, we have βδβqp1 ´ qq ă 1 ´ q ď 1 ´ 2q. As δβ ą 1, the inequality
βqp1 ´ qq ă 1 ´ 2q follows. We conclude that βqp1 ´ qq ´ p1 ´ 2qq is negative, and so BβNpδβ , βq ă 0.
Combined with the fact that BxNpδβ , βq ă 0, we obtain

dδβ

dβ
“ ´

BβNpδβ , βq

BxNpδβ , βq
ă 0,

which shows that the value of δβ is strictly decreasing with increasing values of β.

D.3 Evaluating δβ at the limits β Ñ 0` and β Ñ 8

We now turn to the analysis of the limits of δβ as β Ñ 0` and β Ñ 8. We begin with the small β regime.
For small β, we use Taylor expansions around β “ 0 and obtain

φβpxq “
1
2 `

βx

4 ´
pβxq3

48 ` Opβ5q, and φ1
βpxq “

β

4 ´
β3x2

16 ` Opβ5q.

We plug these expansions into the first-order condition Npx, βq “ 0 and obtain,

Npx, βq “
β3

48 x2p3 ´ 2xq ` Opβ5q.

Dividing by β3 and taking the limit as β Ñ 0` shows that δβ must satisfy x2p3 ´ 2xq “ 0. The only solution
to this equation in the interval r1, 2s is x “ 3{2, and so we conclude that limβÑ0` δβ “ 3

2 . We now analyze
the limit β Ñ 8. Suppose by contradiction that there exists ε ą 0 and a sequence βn Ñ 8 such that
δβn

ě 1 ` ε for all n. Then, since φβn
p1 ´ δβn

q ď expp´βnεq, it follows that φβn
p1 ´ δβn

q Ñ 0 as βn tends
to 8. But from the first-order condition

φβp1q ´ φβp1 ´ δβq “ βδβφβp1 ´ δβqp1 ´ φβp1 ´ δβqq,

the left-hand side tends to 1 while the right-hand side tends to 0, which is a contradiction. Hence, we must
have

lim
βÑ8

δβ “ 1.

Combined with the monotonicity of δβ in β, we refine its domain to δβ P r1, 3{2s for all β ą 0. These results
are in agreement with the numerical results illustrated in Figure 5.
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E Adapting information ratio bounds from linear to logistic bandits

This section presents how to rigorously adapt the TS information bound from Dong et al. (2019, Proposition
17) to the one-step compressed Thompson Sampling such that it can be combined with the regret bound
from Dong & Van Roy (2018, Theorem 1) or with Gouverneur et al. (2025, Theorem 1).

Proposition 29 (Dong et al. (2019, Proposition 17) extended to one-step compressed TS) For
all β ą 0, under the logistic bandit setting with logistic function φβpxq, letting Θ̃‹

t and Θ̃t satisfy the
conditions in Dong & Van Roy (2018, Proposition 2), the one-step compressed TS information ratio is
bounded as

Γ̃pΘ̃‹
t , Θ̃tq :“ EtrRpπ‹pΘ̃‹

t q, Θq ´ Rpπ‹pΘ̃tq, Θqs2

ItpΘ̃‹
t ; Rpπ‹pΘ̃tq, Θq, Θ̃tq

ď d
p1 ` exppβq4

32 exppβq2 .

Proof 30 We combine the proof techniques from Dong et al. (2019, Proposition 17) and Dong & Van Roy
(2018, Proposition 3). To simplify the exposition we will omit the subscript t and reuse the notation intro-
duced in Section 5. With these notation, the one-step compressed information ratio can be written as

ErBernpφβpxπ‹pΘ̃‹q, Θyqq ´ Bernpφβpxπ‹pΘ̃q, Θyqqs2

IpΘ̃‹; Bernpφβpxπ‹pΘ̃q, Θyqq, Θ̃q
.

Similarly to Dong et al. (2019, Proposition 17), we let L1 “ infxPr´1,1s |φβpxq1| “
β exppβq

p1`exppβqq2 and L2 “

supxPr´1,1s |φβpxq1| “
β
4 . We will start by analyzing the numerator which we write as

ErBernpφβpxπ‹pΘ̃‹q, Θyqq´Bernpφβpxπ‹pΘ̃q, Θyqqs2 “ Erφβpxπ‹pΘ̃‹q, Θyq ´ φβpxπ‹pΘ̃q, Θyqs2

ď L2
2 ¨ Erxπ‹pΘ̃‹q, Θy ´ xπ‹pΘ̃q, Θys2,

where the inequality follows from φβpx1q´φβpx2q

x1´x2
ď supxPr´1,1s |φβpxq1| for all x1, x2 P r´1, 1s.

We then focus on the denominator, which we lower bound similarly as in Dong & Van Roy (2018, Lemma
2). Introducing the notation Rpθ̃q “ Bernpφβpxπ‹pθ̃q, Θyqq, we can write

IpΘ̃‹; Bernpφβpxπ‹pΘ̃q, Θyqq, Θ̃q
piq
“ IpΘ̃‹; Θ̃q ` IpΘ̃‹; Bernpφβpxπ‹pΘ̃q, Θyqq|Θ̃q

pjq
“

ÿ

θ̃POε

ÿ

θ̃‹POε

PrΘ̃“θ̃sPrΘ̃‹“θ̃‹sDKLPRpθ̃q|Θ̃‹“θ̃‹PRpθ̃q

pkq

ě
ÿ

θ̃POε

ÿ

θ̃‹POε

PrΘ̃“θ̃sPrΘ̃‹“θ̃‹s2
`

ErRpθ̃q|Θ̃‹“θ̃‹s ´ ErRpθ̃qs
˘2

,

where Oε is the set of values for the random variables θ̃‹ and Θ̃t as defined in Dong & Van Roy (2018,
Proposition 2). The inequality (i) follows from the chain-rule; (j) follows from Θ̃‹

t and Θ̃t being independent
as they satisfy the conditions in Dong & Van Roy (2018, Proposition 2); (k) is obtained using the Donsker-
Varadhan inequality (Gray, 2013, Theorem 5.2.1) as in Russo & Van Roy (2016, Lemma 3). We then
continue to lower bound

(k) “ 2
ÿ

θ̃POε

ÿ

θ̃‹POε

PrΘ̃“θ̃sPrΘ̃‹“θ̃‹s
`

Erφβpxπ‹pθ̃q, Θyq|Θ̃‹“θ̃‹s ´ Erφβpxπ‹pθ̃q, Θyqs
˘2

ě 2L2
1

ÿ

θ̃POε

ÿ

θ̃‹POε

PrΘ̃“θ̃sPrΘ̃‹“θ̃‹s
`

Erxπ‹pθ̃q, Θy|Θ̃‹“θ̃‹s ´ Erxπ‹pθ̃q, Θys
˘2

,

using the fact that φβpx1q´φβpx2q

x1´x2
ě infxPr´1,1s |φβpxq1| for all x1, x2 P r´1, 1s.
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Combining the inequality on the numerator and the denominator, we get that

Γ̃pΘ̃‹
t , Θ̃tq ď

L2
2

2L2
1

´

ř

θ1POε
PrΘ̃“θ1s

`

Erxπ‹pθ1q, Θy|Θ̃‹“θ1s ´ Erxπ‹pθ1q, Θys
˘

¯2

ř

θ̃POε

ř

θ̃‹POε
PrΘ̃“θ̃sPrΘ̃‹“θ̃‹s

`

Erxπ‹pθ̃q, Θy|Θ̃‹“θ̃‹s ´ Erxπ‹pθ̃q, Θys
˘2 . (6)

Without loss of generality, we write Oε “ tθ̃1, . . . , θ̃|Oε|u. Now, we define the random matrix M P R|Oε|ˆ|Oε|

where for each i, j P t1, . . . , |Oε|u the corresponding entry is given by

Mi,j “

b

PrΘ̃‹“θ̃isPrΘ̃‹“θ̃js
`

Erxπ‹pθ̃iq, Θy|Θ̃‹“θ̃js ´ Erxπ‹pθ̃iq, Θys
˘

.

We note that we can rewrite eq. (6) using the trace and the Frobenius norm of the matrix M , as

Γ̃pΘ̃‹
t , Θ̃tq ď

L2
2

2L2
1

TracepMq2

||M ||F
ď

L2
2

2L2
1

Rank(M),

where the last inequality is obtained from Russo & Van Roy (2016, Fact 10).

The proof concludes showing the rank of the matrix M is upper bounded by d. For the sake of brevity, we
define Θ̄ :“ ErΘqs and Qi :“ ErΘ|Θ̃‹“θ̃is for all i P t1, . . . , |Oε|u. We then have Erxπ‹pθ̃iq, Θy|Θ̃‹“θ̃js “

xπ‹pθ̃iq, Qjy and Erxπ‹pθ̃iq, Θys “ xπ‹pθ̃iq, Θ̄y . Since the inner product is linear, we can rewrite each entry
Mi,j of the matrix M as

b

PrΘ̃‹“θ̃isPrΘ̃‹“θ̃jsxπ‹pθ̃iq, Qj ´ Θ̄y.

Equivalently, the matrix M can be written as
»

—

—

—

–

b

PrΘ̃‹“θ̃1sπ‹pθ̃iq

...
b

PrΘ̃‹“θ̃|Oε|sπ‹pθ̃iq

fi

ffi

ffi

ffi

fl

”b

PrΘ̃‹“θ̃1spQ1 ´ Θ̄q . . .
b

PrΘ̃‹“θ̃|Oε|spQ|Oε| ´ Θ̄q

ı

.

This rewriting highlights that M can be written as the product of a |Oε| by d matrix and a d by |Oε| matrix
and therefore has a rank lower or equal than minpd, |Oε|q.

F Regarding the gaps in previous literature

In Section 1, we mentioned that the main results of Dong et al. (2019) are incorrect because of two issues.
The first one concerns their regret analysis, which combines incompatible results. The second one regards
a gap in their analysis of the Thompson Sampling information ratio for values of β ą 2. We elaborate on
both problems below.

Regarding the incompatible results As mentioned earlier, the regret analysis in Dong et al. (2019,
Theorems 1 and 5) combines incompatible results. Specifically, the paper uses a uniform bound on the
information ratio of the “standard” Thompson Sampling (provided in Dong et al. (2019, Appendix B, Eq.
(18))) together with Dong & Van Roy (2018, Theorem 1), which requires a uniform bound on the information
ratio of the one-step compressed Thompson Sampling. This inconsistency invalidates the regret bounds
derived in Dong et al. (2019, Theorems 1 and 5). We emphasize that the problem is “hidden” in Dong et al.
(2019, Proposition 9), which incorrectly restates Dong & Van Roy (2018, Theorem 4). It is important to
note that there is no straightforward way to extend the result from Dong & Van Roy (2018, Theorem 4)
such that the regret bound is compatible with bounds on the “standard” Thompson Sampling (and not with
one-step compressed Thompson Sampling), since this compressed version of Thompson Sampling is central
to Dong & Van Roy (2018, Theorem 4).

While it is possible to use Dong & Van Roy (2018, Proposition 1) directly with a uniform bound on the
“standard” Thompson Sampling information ratio, this approach is limited because Dong & Van Roy (2018,
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Proposition 1) provides a loose bound. Specifically, this bound depends on the cardinality of the parameter
space Θ through the entropy HpΘ‹q (or on the cardinality of the action space through HpA‹q in the original
version Russo & Van Roy (2016, Proposition 1)). This issue is highlighted in Dong & Van Roy (2018) at the
end of Section 3, and serves as a motivation for introducing the one-step compressed Thompson Sampling
regret analysis in the paper. Combining Dong & Van Roy (2018, Proposition 1) with our bound on the
Thompson Sampling information ratio, Proposition 4, results in a regret bound of the order Op

a

dT logp|O|qq,
which becomes vacuous for infinite or continuous parameter spaces.

Regarding the gap in the analysis of the TS ratio for β ě 2 We identified an issue in the proof
of Dong et al. (2019, Theorem 5) at the end of the proof on page 20, where the inequality χ ą ξ ą 0.1λ is
stated without justification. This inequality plays a crucial role in deriving their bound on the Thompson
Sampling information ratio, but the only evidence provided is Dong et al. (2019, Figure 3), which illustrates
the functions χpλ, βq and ξpλ, βq for the specific case of β “ 2. While this figure suggests that the inequality
holds for β “ 2, it cannot be used to conclude that the inequality holds in general for β ě 2. Additionally,
it remains unclear how the figure was obtained as the computation of χpλ, βq and ξpλ, βq for given values of
λ and β is highly intricate; despite our best efforts, we were not able to reproduce the figure.
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