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Abstract

Model extraction attacks are designed to steal trained models with only query access, as is
often provided through APIs that ML-as-a-Service providers offer. Machine Learning (ML)
models are expensive to train, in part because data is hard to obtain, and a primary incentive
for model extraction is to acquire a model while incurring less cost than training from scratch.
Literature on model extraction commonly claims or presumes that the attacker is able to
save on both data acquisition and labeling costs. We thoroughly evaluate this assumption
and find that the attacker often does not. This is because current attacks implicitly rely
on the adversary being able to sample from the victim model’s data distribution. We
thoroughly research factors influencing the success of model extraction. We discover that
prior knowledge of the attacker, i.e. access to in-distribution data, dominates other factors
like the attack policy the adversary follows to choose which queries to make to the victim
model API. Our findings urge the community to redefine the adversarial goals of ME attacks
as current evaluation methods misinterpret the ME performance.

1 Introduction

Modern ML models are valuable intellectual property, in part because they are expensive to train (Sharir
et al., 2020; Patterson et al., 2021), and model extraction (ME) attacks threaten their confidentiality. In
a ME attack, the adversary attempts to steal a victim model over query access, in order to obtain an
approximate copy of that model with similar performance (Tramèr et al., 2016). In the most common class
of ME attacks, the adversary uses queries to the victim model as a training set for obtaining a copy of that
model1.

ME attacks are a looming threat for ML-as-a-Service providers, whose business model depends on paid
query access to their models over APIs. In fact, Kumar et al. (2020) outlines that ME is one of the most
concerning threats to the industry. Typically, the claimed motivation to conduct ME attacks is to avoid
the costs involved in training a model from scratch. Most notably, this refers to the data collection and
data labeling costs, and sometimes mentions the training computational costs. The implicit assumption
is that ME is data- and/or compute- cheaper (Jagielski et al., 2020) – the adversary’s goal is to get the
best performing model using the least resources. This includes using easily available queries, possibly from
another distribution than the victim’s as well as minimizing the query complexity, i.e. stealing the model
using less samples than was used to train it in the first place. Intuitively, this query efficiency criterion can be
possible, provided the attacker identifies the most informative queries from the available query distribution.

In this paper we investigate primary assumptions and arguments made in the ME literature. We find that
current research does not adequately account for how the adversary’s prior knowledge contributes to their
ability to choose the right queries to make. Many existing attacks demonstrating impressive performance
assume the attacker has access to either a small number of unlabeled samples from the true victim’s training
distribution (thereafter, in-distribution data or IND), or a potentially larger number of unlabeled samples
from a different, yet similar, distribution (thereafter, out-of-distribution data or OOD) (Correia-Silva et al.,
2018; Orekondy et al., 2019a; Dziedzic et al., 2022; Jagielski et al., 2020; Pal et al., 2020; Zhang et al., 2021;

1Figure 6 illustrates such a typical attack, while other types of ME attacks are discussed in Section 2.
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Okada et al., 2020; Karmakar & Basu, 2023). In contrast, attacks that do not assume any prior knowledge,
and perform in a data-prior free manner, usually exhibit a drastically higher query complexity (Truong et al.,
2021; Jagielski et al., 2020).

We extensively experiment with ME attacks using additional control mechanisms to disambiguate the effect
of prior knowledge from the attack policy. We find that performance of current ME attacks is dominated by
the IND data; in settings where IND is mixed with OOD data to decrease the data costs, the impact of OOD
is minor; moreover, when only IND is used, we find that the victim model merely serves as a labeling oracle,
and not necessarily the most cost-effective one. Overall, our position is that the practical threat
posed by ME attacks is often exaggerated since the attacker bears comparable costs to the
victim.

To summarize, we make the following contributions:

• We demonstrate how prior knowledge dominates ME performance and cost efficiency, even in cases
where OOD data is used to augment the attacker’s query distribution, thus leaking information
about IND decision boundaries at lower acquisition costs.

• By modifying victim models such that the OOD leakage is reduced, we further demonstrate the
dependence on prior knowledge, which can only be compensated by increasing the query complexity.

• We show that if the adversary has access to even just a small amount of IND data, ME becomes a
labeling oracle. In other words, aside from providing a label, victim labels leak limited information
about the decision boundaries.

2 Related work

Model extraction attacks, also called model stealing, were first explored by Tramèr et al., who proposed an
attacker that queries the victim model to label its dataset and trains a model to match these predictions.
Various works extended the attack with the goal of achieving similar task accuracy while minimizing the
number of queries required. Most of these attacks either assume access to a surrogate dataset (Correia-Silva
et al., 2018; Orekondy et al., 2019a) or to a portion of the real training set (Rakin et al., 2021), or use
random queries (Krishna et al., 2019; Chandrasekaran et al., 2020) in domains like NLP. We discuss the
relation between ME to active learning in Appendix A. Truong et al. attested that, in order to successfully
extract the victim model, the attacker’s dataset must share semantic or distributional similarity to the real
training dataset; otherwise resulting in an insufficient extraction accuracy. To mitigate this issue, they
propose a data-free model extraction attack (DFME) that does not require a surrogate dataset. Inspired by
data-free knowledge distillation (Lopes et al., 2017), they train a generative model to synthesize queries which
maximize disagreement between the attacker’s and the victim’s models. A similar method was also proposed
by MAZE (Kariyappa et al., 2021). (Lin et al., 2023) investigated ways to reduce the query complexity of
data-free approaches. These results align with our analysis and show that the adversary can compensate for
the absence of prior knowledge by using a very large query budget.

Jagielski et al. proposed a ME attack that, in addition to accuracy, targets fidelity. In this scenario,
the attacker focuses on the exact reproduction of the victim model behaviour on all possible inputs up to
symmetries. Carlini et al. argued that ME attacks are essentially a cryptanalytic problem, and proposed
an attack based on differential cryptanalysis, with the goal of high fidelity extraction. Note that this line of
research falls outside the scope of our work, since both the worst and the average-case query complexities
reported by both papers significantly exceed accuracy-based ME attacks empirically. As such, in this work
we will focus our evaluations on ME attacks that target task accuracy.

While the most commonly used threat model for ME attacks assumes black-box query access to the victim
model, it is important to note that there is a significant line of work which focuses on side-channel ME
attacks (Zhu et al., 2021; Hu et al., 2019; Yan et al., 2020; Hua et al., 2018; Xiang et al., 2020; O’Brien Weiss
et al., 2023; Duddu et al., 2018). This line of work is out of scope for our paper since most side-channels are
fixable with careful system re-design, while ME attacks should remain unaffected as long as model provides
genuine responses to queries.
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It is worth mentioning that in the limit there is little that a victim can do to stop ME. Unlimited data
sampling allows for exhaustive search of all possible inputs, whereas functions that are used to approximate
decision boundaries in the limit can approximate arbitrary functions (Hornik et al., 1989). This leads to an
inherent performance trade-off, where the victim sacrifices performance of the model to limit information
leakage to an acceptable level.

3 Background

In this section, we first discuss the different costs involved in model extraction and connect them with the ME
literature; we cover related works in detail in Section 2. We then describe how prior literature approached
cost reduction using random data, why this can work theoretically, and what assumptions are required.
Subsequently, we describe the additional mechanism we use to disambiguate the effect of the attack policy
from increased query budget in ME.

3.1 Definitions

In what follows, we refer to in-distribution data as IND and out-of-distribution data as OOD. Note that
we follow the conventions of the field and use these terms loosely to describe the distribution that training
data comes from for the victim model as IND, while OOD refers to any data that comes from a different
distribution.

We define an ME adversary as 3-tuple (DIND, DOOD, Π), where DIND represents the adversary’s access to the
IND, i.e. it’s prior knowledge, DOOD represents the adversary’s unrelated OOD query distribution, and Π
represents the adversary’s query selection policy. When attacking, the adversary uses Π to select samples
to be queried from its IND and OOD distributions. Then, the queries are issued to the victim model to
obtain labels. These labels can be either full probability vectors, top-k probabilities, or label-only. In our
evaluations, we focus on the stronger setting of full probability vectors. At last, the adversary trains a model
on the labeled query set. Importantly, since attacks in the current literature vary all three from the above,
it is hard to pinpoint why a given attack seemingly performs better – could it be a better attack policy or
perhaps more informative data? This is the question we answer.

3.2 Primer on ML costing

We are not aware of any ME literature that formally defines what makes model extraction attacks successful.
While high-fidelity extraction attackers explicitly expect to extract a model within a given error, intuitively,
accuracy-driven ME can be considered successful if stealing a model costs less than developing it. That is,
as long as the accuracy of the stolen model matches the victim it is a success. The overall cost of producing
and deploying a model can be broken down into three main parts: (1) data collection, (2) data labeling, and
(3) model training. We note that there are other costs corresponding to ML infrastructure, however they
are not relevant to the current ME threat model.

Now we turn to CIFAR10 as a cost case study – note that CIFAR10 is one of the most evaluated benchmarks
for ME. Here we assume CIFAR10 dataset with 60k samples that can be labeled for 35$∗50+10∗25$ = 2000$
with Google Cloud Cloud (2024) and 0.04$ ∗ 60000 = 2400$ with Amazon Sagemaker Amazon (2024). Data
collection here is practically free, since per category one can scrape the internet freely. We model the defender
cost as c = n ∗ (pl + cc) and the attacker cost as ca = na ∗ (pla + cca), where n is the number of points to
annotate, pl is the per-label cost and cc is the data collection cost. We assume that the attacker wants to
succeed in the attack and thus attacker’s cost is less than that of a defender n ∗ (pl + cc) > na ∗ (pla + cca).
First, we consider the attacker who extracts a model with DFME with 20 million queries. If we assume that
the defender used Google Cloud to label their data, we find that the attacker’s labels have to cost less than
0.00012$:

20M ∗ pla < 2, 400$ → pla < 0.00012$ .

The queries in DFME are synthetic, therefore there is no data collection cost (cca = 0). Next, we consider a
ME attack that only utilizes 5% = 3000 datapoints of prior knowledge, and no additional queries of any sort.

3



Under review as submission to TMLR

(a) (b) (c)

Figure 1: Consider a linear classifier for which the decision boundary is given by the line y = αx. An
attacker attempts to steal the model (i.e. find the corresponding α = 1 from the example above). The
green region x ∼ [20, 80] is in-distribution behaviour that the attacker wants to replicate, the red region
x ∼ [0, 20] ∪ [80, 100] is out of distribution and is not important for the task. The left case requires a single
parameter to be approximated, the middle needs 5, whereas the right requires 9.

Here, attacker breaks even at 0.8$ per-label. Note that with 5% of data, as we show later in Section 5.1, it is
indeed possible to extract a model, while remaining well within a reasonable budget in the current labeling
market. At the same time, extraction with DFME stops being cost-effective when the attacker queries are
even minimally priced by the defender.

This case study suggests that the claim over the cost-effectiveness of ME is not so trivial, and should be
carefully considered in different use-cases. An attacker must estimate the cost elements defined above, namely
sample complexity, data collection, and data labeling, in order to properly justify performing the attack. We
now turn to the investigating the cost effectiveness of current ME attacks in the literature.

4 Methodology

A common threat model assumes IND data is scarce and expensive to obtain, thus many attackers attempt
to reduce their data collection costs through OOD queries. Note that this is the most common way for ME
literature to reduce costs. But how might this work? Hyperbolizing, this implies that by asking questions
about e.g. a ‘dog’, one may learn something about unrelated concept of a ‘building’. In this section, we first
provide intuition for when such extraction is possible. We then build on this intuition and design an explicit
mechanism to measure how much OOD queries can possibly contribute to attack performance.

Warm-up: Linear classification Consider a linear classifier that splits the input space into two decision
regions, and the corresponding decision boundary is defined by the line y = αx. Here, (x, y) denotes the
two-dimensional input, and α is the single model parameter that determines the entire decision boundary,
which we demonstrate in Figure 1. ME in this context is equivalent to estimating the decision boundary
over the green IND region where x ∼ [20, 80]. The attacker is assumed to have the ability to query the
model with arbitrary data but has no knowledge of where the IND region starts or ends. We assume that
the depicted red region, x ∼ [0, 20] ∪ [80, 100], is OOD. Note that it is only important to perform well on the
task in the IND region, and neither the victim nor the attacker are concerned with making predictions for
OOD inputs.

The left-most plot represents the case of a naive victim model with the original decision boundary. Here
ME reduces to estimating a single parameter α, which can be achieved by using just 2 data points. Note
that, in this case, the IND model can be extracted equally well using both IND or OOD data points, as the
model behaviour is shared between both domains. In the middle case, we slightly increase the complexity
of the decision boundary in the OOD area by introducing a new linear boundary with non-zero intercept
in each region. Here, the OOD queries reveal less information over the IND behaviour, thus requiring the
adversary to sample from both regions in order to faithfully learn the boundary. As the attacker does not
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know where the IND and OOD regions are, it must approximate a piece-wise linear boundary, i.e. the slopes
and the intercepts of the new lines, in addition to the slope of the original IND boundary. This increases the
required number of parameters to 5 and the minimal required sample size to 6, and consequently, the cost of
ME. In the right-most case, we further increase the complexity by introducing two additional linear decision
boundaries per region, resulting in a total of 9 parameters to be estimated using at least 10 data points.

The above example demonstrates that while the IND area was not modified, adding complex and task-
independent boundaries to OOD regions can significantly increase the attacker’s required capacity and sample
complexity, thus making ME more costly. This behaviour is related to the locally independent nature of
large models when performing regression or classification tasks. As sampling the boundary at one point
does not necessarily reveal any information on the boundary IND, the attacker must explore the entire input
domain. The main assumption here is that the attacker cannot know which areas are important. In other
words, we find that ME attacks implicitly assume that the adversary has prior knowledge of the distribution
to be able to reproduce the victim model’s predictions on the task of interest. Without such knowledge, the
adversary is unable to tell whether making a query to the victim model will aid its goal of learning the true
decision boundaries. Hence, we demonstrate that ME adversaries either require prior knowledge about the
underlying distribution or need to submit a large number of queries to the victim model.

4.1 Sampling complexity intuition

When useful responses are limited to the IND region only, the attacker’s success is dominated by the percent-
age of queries sampled from IND, which is a function of the attacker’s prior knowledge of the victim’s true
distribution. In this scenario, the weakest attacker, with no prior knowledge, is the random guess attacker
that samples useful information with probability |Xuseful|/|X |, where X is the entire input domain and Xuseful
is the IND part of the domain. The strongest attacker here has precise knowledge of the IND region within
X and can sample only from this region, which results in samples useful for the attacker’s goal. This is
the strongest attacker, as no ME defense can truly defend against such an attacker unless it corrupts the
utility of the model as it predicts on the IND domain. Instead, the average-case attacker has partial prior
knowledge about the true distribution. As such, the probability of sampling IND is a function of this prior,
which indicates the overlap between the true distribution and the attackers’ query distribution. We estimate
the probability of randomly sampling IND for models considered in this section and find it equals 0.00001%
for CIFAR10 models and 0.01% for MNLI. We expand on the procedure in Appendix E.

4.2 On hardness of OOD detection

Recently, Tramer (2021) demonstrated that robust adversarial example detection is as hard as robust classi-
fication. Here, robustness of the detector refers to consistent detection over the ϵ-radius around a data
point, representing the maximal distance for an adversarial example. Fundamentally, Tramer demon-
strates that robust detection over an ϵ region around a given (not necessarily adversarial) data point
implies, albeit inefficient, an ability to successfully classify for at least ϵ/2 region. One way to reason
about the hardness of sampling from IND is to think about how informative the predictions of the vic-
tim model are on OOD queries. Simply put into Bayesian interpretation, Tramer says that an ability
to compute PD(x = xi, y = yi), i.e. perform OOD detection robustly with knowledge of the labels, im-
plies an ability to classify robustly PD(y = yi|x = xi). Intuitively, that follows from the Bayes rule with
PD(x = xi, y = yi) = PD(y = yi|x = xi) ∗PD(x = xi), where PD(x = xi) represents prior knowledge over the
true data distribution D, i.e. the likelihood of xi coming from D. In this paper we do not make assumptions
about the labels – one can certainly imagine an attacker who has access to some labeled data. Do note how-
ever that label information is not necessary for a classic OOD detection i.e. checking if a given point comes
from a given distribution PD(x = xi). There are two possibilities. First, if the attacker knows the labels of
the points being queried, then the setting is exactly the same as the one considered by Tramer i.e. robust
OOD detection is reducible to robust classification. Second, if the attacker is assumed to be capable of
estimating PD(x = xi) robustly, reduction to classification without labels is impossible – the attacker would
simply need to use the model as a labeling oracle.
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Practically, this implies that with the OOD informativeness controlled, ME might not be the most efficient
way for the attacker to achieve their objectives, given the capabilities they have access to. If they have the
labels and an OOD detector, then they can already perform classification. If they do not have the labels,
they can, at most, get the benefit of labeling their dataset, after which they get classification. If they are
unable to solve the OOD detection problem, they would have to first build an OOD detector (which means
collecting costly datapoints) since otherwise, OOD queries provide them no information about the IND
region. In other words, once we take into account the OOD informativeness control, a model extraction
attacker is only as good as their knowledge of the underlying dataset; but if this knowledge
includes labels, often there is no need to extract models in the first place. This allows us to
evaluate the performance of the attacker policy relative to the IND.

4.3 Out-of-Distribution instrumentation

In Section 5 we empirically evaluate our hypothesis that ME attacks make an implicit assumption about the
usefulness of OOD queries. We show that when this assumption does not hold, and the OOD region is not
indicative of the IND behaviour, ME attack success is reduced to being a function of prior knowledge. Due
to space limitations, we only briefly describe the details of the model instrumentation, and refer the reader
to Appendix F for full details.

Given the original victim model Vo, we create a hybrid victim model Vh by combining Vo with an additional
module Vf with different, or additional, decision boundaries. This additional model is used to provide
predictions for OOD queries that differ from the predictions they would have gotten from the original model.
For each query x, the hybrid model Vh applies some decision rule R to classify x as IND or OOD, and
uses the corresponding model for prediction. We design the additional model Vf such that the decision
boundaries of both models would have similar smoothness properties; thus, learning the “fake” boundaries is
expected to be of the same level of difficulty, with nearly statistically indistinguishable output distributions.
We discuss this further in Appendix F.4. For the decision rule R, we apply some pre-defined threshold τ over
the prediction confidence of Vo, with a softmax temperature of 2 to better calibrate R. If the confidence is
higher than τ , the hybrid model returns Vo(x), otherwise it returns Vf (x). Prediction confidence serves as a
naive OOD detector (Hendrycks & Gimpel, 2016; DeVries & Taylor, 2018) and represents one of the simplest
settings for the attacker. More advanced OOD detectors will strictly improve the separation of IND and
OOD queries, therefore decreasing the number of false negative queries, i.e. OOD queries that are classified
IND and are provided with a meaningful prediction by Vo. For the fake model Vf we fit a Gaussian Mixture
Model (GMM) for each class, and split the input domain into centroids defined by an anchor point. These
are used to “assign” queries to one of the GMMs for prediction with a random yet consistent class prediction
around anchor point.

For a given query sample x, we compute its feature representation and find the nearest L2 anchor point. We
sample a fake prediction ỹ using the GMM corresponding to the chosen anchor point and return it as the
fake model prediction Vf (x) = ỹ. The construction of the GMMs and their anchor points, discussed in detail
in Appendix F, results in OOD samples being “wrongly” predicted while still exhibiting similar smoothness
properties. Put altogether, we have presented here a method to control the usefulness of the victim model’s
predictions on OOD queries – which will allow us to ablate its effect on the performance of ME.

We note that the principles of our instrumentation are similar to those used by the defense proposed by
Kariyappa & Qureshi (2020), however the exact construction of Vf differs, where Kariyappa & Qureshi
(2020) train a separate model to provide incorrect responses, while we sample statistically plausible ones.

5 Evaluation

In the next subsections sections we empirically answer the following five questions:

• (Section 5.1) Does model extraction work? Yes, model extraction definitively works in that it is
possible to approximate a blackbox model from just queries, although not all queries are equally
useful.
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• (Section 5.2) Is it possible to extract a model using small number of queries? Sometimes, assuming
the attacker has access to some prior knowledge over the distribution and can choose a limited
number of high-quality queries that provide task-informative responses.

• (Section 5.3) Can model extraction be used to reduce the data costs? Sometimes, assuming that
OOD responses provide task-informative answers, data costs can be reduced.

• (Section 5.4) Can model extraction be used both to reduce the data costs and at the same time use
small number of queries? No, if OOD only reveals limited information about the IND behaviour,
a ME attacker must either have prior knowledge of the distribution and the ability to sample IND
samples or have a very large query budget and traverse the input domain.

• (Section 5.5) Can model extraction be used to reduce data labeling costs? Sometimes; we find that
in practice the victim model provides no additional benefits other than serving as a labeling oracle.
For some use cases, there are no more cost-effective sources for obtaining labels; for example, for
medical data.

Experimental Setting. To answer the questions described above, we evaluate a range of ME attacks on
common vision and language benchmarks. We measure the attacker’s performance as the accuracy difference
between the victim and the attacker on the original task. We define a successful attack as one that produces
a model that performs on a task nearly as well as the victim model. Unless stated otherwise, in all our
experiments we assume that the attacker has a black-box access to the victim model: the adversary issues a
query, and the victim model responds with a vector that indicates the probability of classifying the input in
each of the task classes. We note that this setting provides the most information to the adversary. In other
words, it advantages the ME adversary.

We define by baseline attacker an attacker that has access to a randomly sampled subset of the victim’s
true training dataset and uses this data only to query the victim and train the attack model. Since ME
quality is mainly affected by the quality of the attacker queries, real victim training data represents one of
the best query sets for the attacker (compressed datasets e.g. Wang et al. (2018) or disjoint IND data can
potentially lead to an equally capable extraction set). Throughout our work, we quantify different levels of
prior knowledge by the percentage of the data available to the attacker and evaluate the attack accuracy as
a function of this measure. We also evaluate ME adversaries that utilize a mixture of IND and OOD data.

Vision. For vision tasks, we evaluate the CIFAR-10 dataset (Krizhevsky et al., 2009), for which we follow
the setting and training details described by the state-of-the-art DFME attack (Truong et al., 2021). We
additionally evaluate the Indoor67 (Quattoni & Torralba, 2009), CUBS200 (Wah et al., 2011) and Cal-
tech256 (Griffin et al., 2007) datasets, and follow the setting and training details described by the Knockoff
Nets attack (Orekondy et al., 2019a), one of the strongest ME attacks. Due to space limitation, we provide
the Knockoff Nets results in Appendix G, and focus the discussion on CIFAR-10. In all experiments we use
the pretrained victim models provided by the authors.

NLP. We evaluate the MNLI classification task (Williams et al., 2018), in a standard setting (Krishna et al.,
2019). For the victim model, we use the publicly-released, pre-trained 12-layer transformer BERT-base
model (Devlin et al., 2018), and fine-tune it for 3 epochs with a learning rate of 0.00003.

5.1 Does model extraction work?

We start off by answering the foundational question – does ME work? Our answer to this is yes, ME attacks
definitely work, and it is indeed possible to approximate a blackbox model from just queries, matching
performance to the victim model. As seen in Figure 2, and as evident in the large number of works in this
field, there are many settings in which a ME adversary can obtain a model that has a desirable performance
over the task of interest.

However, not all queries are equally useful for ME. To demonstrate this, we evaluate a ME attacks on real
models that use queries sampled from data distributions that differ from the victim model’s training distri-
bution, i.e. OOD queries. Here, we consider a number of possible distributions, where some are closer to
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Figure 2: A comparison between the baseline attacker, which only uses its prior knowledge, and an attacker
that can augment its queries with additional queries sampled from other data distributions. We fix the query
budget to be the size of the original training set for a fair comparison. Attackers with more prior knowledge
do not benefit much by augmenting the query set.

the true distribution than others. Namely, for CIFAR-10, we use: Random - uniformly sampled random
images; Surrogate - real images sampled from a surrogate (SVHN and CIFAR-100) dataset; DFME -
synthetic queries generated using the DFME attack. For Indoor67, CUBS200, and Caltech256, we evaluate
only the surrogate variant using the ImageNet dataset, as described by Orekondy et al.. Results are pre-
sented in Appendix G. For MNLI we use: Random - nonsensical sequence of random words built from the
WikiText-103 corpus (Merity et al., 2017), sampled letter-by-letter; Nonsensical - nonsensical sequence of
real words built from the WikiText-103 corpus, sampled word-by-word; Wiki - real sentences sampled from
the WikiText-103 corpus.

We investigate the case where the query budget is constant and is set to the size of the original training
dataset, i.e. the maximal query complexity still considered to be cost-effective. For each prior knowledge
percentage x%, we fill the remaining queries with any of the previously described alternative data sources.
We evaluate for up to 50% prior knowledge, because we find that the attacker’s query set is dominated
by IND samples for higher proportions and is thus less informative. We include the case where all queries
are sampled from the query distribution, and the attacker has no (0%) prior knowledge. Note that DFME
requires a significantly higher query budget and incurs a high computational cost, therefore we evaluate this
setting for a query budget of 20M and with up to 30% prior knowledge.

As can be seen in Figure 2 in the no prior knowledge setting (0%), most attacks were able to obtain a success
rate significantly higher than random guess. It is interesting to observe the behaviour of the synthetic queries.
The random images or random text based attacks are significantly outperformed by other methods. This
comes in contrast to the success of DFME’s synthetic samples performance. This contrast suggests that
it is a question of query complexity, where in cases where the samples differ from natural samples, a high
query budget must be used (DFME’s success dramatically reduces when lowering the query budget (Lin
et al., 2023)). Additionally, it is interesting to observe the margin between the success of different OOD-
based attacks and the success of the baseline attacker. As can be seen, for lower prior knowledge settings,
most attacks improve upon the baseline attacker, enabling the attacker to learn additional information
using the OOD queries. For example, for CIFAR-10, an attacker with 1% prior knowledge can improve its
performance by up to 50%. However, with higher levels of prior knowledge, the attacker gains little benefit
from the additional OOD queries. A CIFAR-10 attacker with 50% prior knowledge only increases its success
rate by up to 1.4%. In Appendix B we evaluate the effect of additional queries for a given prior knowledge
percentage, showing diminishing returns from them.
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Figure 3: Evaluation of the risk posed by an attacker with some prior knowledge over the true data distri-
bution, using different labeling sources. As can be seen, labels provided by the victim model, either in the
richer soft-label setting or in the more restrictive label-only setting, does not provide benefit over the real
ground truth labels. This shows that the victim is essentially a labeling oracle.

5.2 Can ME be used with only a few queries?

ME seeks to obtain a copy of the victim model while incurring reduced costs compared to training from
scratch. In Section 3.2 we note that one way to reduce costs is to limit the interaction with the victim
model to the minimum – that is, reduce the overall ME query budget. In this subsection we investigate such
reduction and discover that it is indeed sometimes possible. In Figure 2 we demonstrate that limiting the
query budget for all cases but DFME, still leads to the high attack performance. What is more, even the
baseline attacker with only 10% of the data, i.e. reducing the query complexity by a factor of 10, manages
to develop a model with a relatively high performance, i.e. 79.21% compared to 95.54% for CIFAR-10 and
77.85% compared to 83.64% for MNLI; with 50% it approaches the original test accuracy of the model,
i.e. 92.09% for CIFAR-10 and 81.94% for MNLI. We find that the baseline attacker with more than 50% of
the original victim training set can extract the model (see Figure 3). Although we observe this phenomenon
consistently in the case above, in our answer to the next question we will show that such good performance
heavily depends on the prior IND knowledge or requires OOD data that, as described in Section 4, informs
the attacker about the IND performance.

5.3 Can ME be used to reduce data costs?

A common threat model assumes that IND is scarce and expensive. As such, it is desirable to reduce data
collection costs by avoiding, or minimizing the use of IND queries, and prioritizing the use of OOD queries.
We find that in some cases ME attacks can indeed do so. More precisely, in Figure 2 we show that OOD
queries provide a feasible substitute for IND queries in lower prior knowledge settings. However, we claim that
this is only possible because OOD queries inform the adversary about the IND performance i.e. IND decision
boundaries can be inferred from the OOD ones, either because the distributions are sufficiently similar or
because the model optima are predictable. To explicitly estimate if all OOD queries will aid ME performance,
we instrument the model with the OOD detector as described in Section 4.3. Our instrumentation, in essence,
allows us to control how much information can be derived about the IND from the OOD region.

Per Section 4, an intelligent attacker would have to distinguish between IND and OOD samples to bypass the
instrumentation or otherwise waste queries and potentially learn non-existent decision boundaries. A poor
attack policy would inevitably learn fake decision boundaries, while a strong attacker would learn to avoid
them. Theoretically, in Section 4.1 we discuss that with no prior knowledge, it should be improbable for
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Figure 4: The effect of controlling OOD informativeness with different values of τ against an attacker that
utilizes additional queries. In all cases other than DFME, the attacker adds the size of the training set
additional queries, and for DFME adds 20M queries. When comparing the results to the original setting
(real model), where the OOD region is unmodified, we can see a clear decrease in the attack accuracy.

an attacker to sample from the IND region alone. Furthermore, in Section 4.2 we argue that when samples
from both regions are considered, prior knowledge is required to distinguish between the two.

We empirically evaluate this argument using the methodology described in Section 4.3. We show that when
the informativeness of the OOD region is deteriorated, OOD queries cannot replace the need for expensive
IND queries. We evaluate different threshold values (τ) against an attacker that, in addition to its prior
knowledge samples, uses additional ∥Dtrain∥ queries, i.e. the size of the original training dataset. For
DFME, we allow that attacker to use 20M additional queries. Different threshold values influence the results
by changing the number of additional queries that are predicted by Vf versus Vo – the lower the threshold,
the better for the attacker. We measure the false-positive rate (FPR) for the different threshold values
in Appendix F.3.

The results in Figure 4 clearly demonstrate the described effect. As the attacker has less prior knowledge, it
is more reliant on the benefit of the additional queries. As such, it is more impacted by the fake boundaries
that control OOD informativeness. The attack accuracy is thus reduced closer to, or below, the accuracy
of the baseline, which makes no additional queries. This effect is weaker for some of the settings in our
NLP task, specifically the nonsensical and wiki queries. This is due to the similarity between the true data
distribution and these query distributions. We discuss this observation in more detail in Appendix H.

5.4 Can ME be used both to reduce the data costs and use only a few queries?

Both Q2 and Q3 assessed that ME costs could be reduced by either using substitute data or reducing the
number of queries; but can an adversary achieve both? The discussion of Q3 gives a clear answer to this
question - no.

We showed that unless the OOD dataset is chosen in such a way as to inform the attacker about the IND
behavior, the attacker must either rely on the IND data available to them or utilize a very large query
budget. It is impossible to achieve both in this setting.

5.5 Can ME be used to reduce data labeling costs?

In Q2, Q3, and Q4, we discussed ME assuming a reduction of costs on data collection and the overall number
of queries. We concluded that in generality, such reduction is unattainable, and OOD queries do not trivially
replace IND queries. In this section, we turn to label cost reduction.

Label cost reduction could be achieved in two ways: by reducing the cost of a single query or, alternatively,
by increasing the amount of information that a single query provides. Note that an increase in the former

10
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does not always mean that overall cost increases, as combined with the increase in the latter, they can cost
less overall.

We find that in the classification setting considered in this work, we could not find a method to consistently
increase the informativeness of the response, suggesting that the victim model merely serves as a labeling
oracle, even in cases where seemingly more information is provided than just a label. To demonstrate this, we
revisit our baseline attacker and compare its performance when trained on: 1) soft-label i.e. full probability
vector; 2) using label-only; and finally, 3) using the real ground truth labels. Results presented in Figure 3
demonstrate that the attacker’s performance is nearly equivalent in all three cases. This phenomenon aligns
with the prior literature (Orekondy et al., 2019b). Additionally, we examined each of the cases from a
computational perspective and compared their convergence rates. In Figure 5 we present this comparison
for the case where the attacker utilizes 30% prior knowledge. We observe that the convergence rate is similar
across the three attackers, i.e. the attacker does not even “learn faster” by querying the victim model.
In Appendix C we additionally show this for the 5% and 60% prior knowledge settings and observe a similar
phenomenon.

We additionally examine the response informativeness effect for attackers who can utilize additional queries
for other query distributions. Results, presented in Appendix D, show that for lower prior knowledge settings,
and for query distributions that significantly differ from the true distribution, soft-labels provide some benefit
over label-only access. However, this effect diminishes as the attacker uses more prior knowledge, or acquires
access to a query distribution which is closer to the true distribution.
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Figure 5: Comparison between the convergence rate of an attacker that uses the victim’s full probability
vector output (soft labels), an attacker that utilizes a label-only access to the victim model, and an attacker
that uses the real ground truth labels. In all cases the attacker has access to 30% of the true training samples.
The attacker does not “learn faster” by attacking the victim model, and only benefits from the victim model
when it has little prior knowledge over the true data distribution.

In light of the finding that the victim model serves as a labeling oracle, how cost-effective is querying the
victim? We discussed current annotations costs in Section 3.2, where we suggested that for many use cases,
including current ME benchmarks, crowdsourcing annotations may be a cost effective alternative. However,
this is not true for all cases, as e.g. medical data will most likely have higher data collection and labeling
costs. We therefore conclude that it is sometimes possible to reduce labeling costs by not running ME and
instead finding an alternative labeling provider.
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6 Conclusion

In this paper we investigate the common assumption that ME attacks are more cost-effective than training
a model from scratch. Primarily, it is assumed that OOD data can be utilized for reducing data collection
costs, and by using a limited number of queries to the victim model both labeling costs and training costs
can be reduced as well. We show that often this is not the case. We demonstrate that the performance of
an attacker with a reasonable query budget is bounded by their access to IND data. Augmenting the IND
data with data from another distribution relies on informative responses for task-irrelevant queries. We show
that decorrelation of OOD from IND responses changes the attacker-victim dynamic, where attacks become
much less cost-effective, forcing the attacker to collect IND data. We show that given sufficient IND data,
the victim model mainly serves as a labeling oracle, which in turn is not necessarily more cost-effective than
online labeling services. We thus conclude that the adversarial goals and incentives of ME attacks should be
redefined.
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Figure 6: Illustration of model extraction attacks. In this setting, the victim model is trained on some
training data that is not accessible by the adversary. The adversary attempts to steal the victim model over
query access, in order to obtain an approximate copy of that model with similar performance. Typically, the
adversary achieves this by querying the victim model to collect an “attacker dataset”. This, in turn, is used
to train a stolen, surrogate copy that mimics the victim’s behavior.

A A note on current literature

Active learning is a branch of semi-supervised learning which focuses on finding query efficient-training
regimes, i.e. it explores methods that can learn a task with the least number of questions to the oracle.
Chandrasekaran et al. formulated that ‘the process of model extraction is very similar to active learning’ and
suggested that improvements in query synthesis active learning should directly translate to model extraction.
This relationship works in both directions and implies that greater performance in model extraction directly
translated to better active learning regimes.

Some of the current literature reports an ability to extract complex models with a handful of queries
e.g. Tramèr et al. claims successful extraction of a Multilayer Perceptron with around a thousand queries
or Zanella-Beguelin et al. extracts SST-2 BERT with around two thousand queries. This suggests that there
exists (very) query-efficient training strategies, with oracles providing labels for otherwise unlabeled data.
Yet, in practice, literature in active learning reports less impressive results in these settings. For example,
sophisticated state-of-the-art regimes on CIFAR-10 report improvements up to 7% for 5% and up to 5% for
10% of dataset (Yoo & Kweon, 2019; Beck et al., 2021; Yi et al., 2022). Most importantly, the improvements
are similarly dominated by the original data access.

Indeed, our paper questions the apparent free lunch reported in model extraction literature, and suggests
that extraction reported is mostly an artifact of underlying data access, drastically overestimating potency
of the attacks. To best understand the underlying attack performance it is imperative to consider the benefit
of model extraction for no-data settings and cover them extensively, focusing on the low 0–5% regions.

B Effect of surrogate dataset over attack performance

In Section 5.1 we investigated the performance gain of using additional queries drawn from a different data
distribution. We evaluated this for a query budget of the size of the original training dataset. This budget
represents the maximal query complexity that can still be considered successful. Here, we further extend the
results presented in Figure 2 and evaluate the effect of the number of additional queries from various data
sources.

Results are presented in Figure 7. We show that, in most cases, larger numbers of additional queries only have
a limited effect, which is also very dependent on the quality of the queries and the level of prior knowledge.
Adversaries with higher levels of prior knowledge are less affected by the additional queries. The DFME
queries, while being out-of-distribution, do perform very well, but at the cost of prohibitively high query
budgets.
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Figure 7: Evaluating the effect of adding different amounts of additional queries for a given level of attacker
prior knowledge. Plots (a)-(d) present attacks over the CIFAR-10 victim model and (e)-(f) are for the MNLI
victim model. In all plots, a query budget of 0 represents the baseline attack accuracy, as presented in
fig. Figure 3. Results show that adding larger amounts of additional queries has a limited effect, which is
dependent on the query quality and amount of prior knowledge.

C Attack convergence rate comparison

Following the discussion in Section 5.5, we further investigate the actual benefit of attacking the model rather
than training from scratch, from the computational perspective. We examine the convergence rate of the
attack accuracy. Figure 8 presents a comparison between the convergence rate of the three cases - an attacker
that uses the victim’s soft labels (i.e. full probability vectors), an attacker that has a label-only access to the
victim model, and an attacker that uses the real (ground truth) labels. We show that the convergence rate is
similar across the three attackers, i.e. the attacker does not “learn faster” by querying the victim model. We
show that in cases where the attacker has limited prior knowledge over the data distribution, e.g. in the 5%
case, the attacker does get some benefit from using the victim’s soft labels; however, this benefit disappears
with increased prior knowledge.

D Effect of response informativeness

In Section 5.5 we discussed the role of ME in reducing data labeling costs. We found that, in the setting
considered in this work, ME attacks serve as a labeling oracle. To demonstrate this, we showed that when
training the baseline attacker with soft-label access to the victim model, i.e,. when the victim model responds
to each issued query with a full-probability vector, we did not get any significant improvement over cases
where the attacker was trained with label-only access or even the real ground truth labels. In order to
further emphasize the limited possible gain an attacker can get by obtaining labeling through a ME attack,
we compare the difference in attack performance between soft-label access and label-only access for attackers
that can utilize additional queries from other query distribution.
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Figure 8: Comparison between the convergence rate of an attacker that uses the victim’s full probability
vector output (soft labels), an attacker that utilizes a label-only access to the victim model, and an attacker
that uses the real ground truth labels. In all cases the attacker has access to 30% of the true training samples.
The attacker does not “learn faster” by attacking the victim model, and only benefits from the victim model
when it has little prior knowledge over the true data distribution.

Similar to the results presented in Figure 2, we evaluate this for a constant query budget, fixed to the size
of the original training set. Due to the high computational cost of DFME, we omit this setting in this
evaluation.

The results, presented in Figure 9, demonstrate that soft-labels aid the attacker mainly in the lower prior
knowledge settings and for query distributions that are significantly different from the true distribution. In
other cases, the victim model serves as a labeling oracle, and the soft labels provide little gain over the
label-only access. For example, in the CIFAR-10 case, an attacker that utilizes additional random queries
and has access to 1% of prior knowledge can improve it’s performance by additional 20.8%, from 26.43% to
47.24% attack accuracy. However, the same attacker with 10% prior knowledge can only improve by 1.25%,
from 81.31% to 82.56%, and another attacker with 1% prior knowledge that can utilize SVHN queries can
only increase by 7.19%, from 68.14% to 75.33%. In the case of MNLI, the benefit of soft labels is even
weaker, due to the similarity between the distributions, as further discusses in Appendix H.

E Sampling complexity intuition

In Section 4.1 we discuss the intuition behind the complexity of sampling IND queries with or without prior
knowledge over the distribution. Here, we provide a toy example of this complexity for different levels of
prior knowledge, modeled by the overlap between the IND and the attacker’s query distribution. We then
extend intuition for our considered models, and estimate the complexity of sampling IND in this setting.
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Figure 9: Comparison between the attack performance in the soft-label setting, i.e., full probability vector,
and the label-only setting. Evaluated for the baseline attacker, that utilizes only prior knowledge, and
attackers that can utilize additional queries from other distributions (random images, SVHN, and CIFAR-
100 in the case of CIFAR-10, and random sentences, nonsensical sentences, and wiki for the MNLI setting).
Results demonstrate that soft-labels aid the attacker mainly in the lower prior knowledge settings and for
query distributions that are significantly different from the true distribution. In other cases, the victim
model serves as a labeling oracle, and the soft labels provide little gain over the label-only access.
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Figure 10: Gaussian overlap as a function of Wasserstein distance.

19



Under review as submission to TMLR

E.1 Sampler bias toy example

We explore the relation between a prior knowledge level and the attacker’s probability of successfully sampling
from the useful domain. We denote the sampler from the useful domain, i.e. the in-distribution domain,
as Vs ∼ N (µv, σv), and the attacker’s sampler, i.e. the distribution from which queries are drawn, as
As ∼ N (µa, σa). We model the prior knowledge level as the Wasserstein distance between both distributions.

Figure 10 plots the probability of sampling from the “informative” overlap region as a function of Wasserstein
distance between Vs and As when µ and σ are sampled uniformly. Small differences in sampling distributions,
i.e. less prior knowledge, result in a significant reduction in in-distribution sampling probability. This, in
turn, results in wasted queries, as sampling outside of the overlap is not informative, and in reduced model
capacity, as the attacker “wastes” capacity on learning the irrelevant OOD region. This holds even in cases
where distributions overlap significantly. Note that in practice, with more dimensions, the volume would
overlap less, and the useful sampling probability would be even further reduced.
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Figure 11: Estimating the sampling complexity of our real victim models by measuring the percentage of
random queries that are predicted by the model with high confidence, e.g. above 90%. This is in comparison
to the complexity when using queries from the true distribution, sampled from the test set. We evaluate
this for both the original model, with a softmax temperature T=1 (a), and for a less confident model, with
a high softmax temperature T=2 (b).

E.2 Sampling complexity in real models

In the previous section, we explore the sampling complexity of an attacker in a toy setting. In this section,
we extend this notion to a more realistic scenario of estimating the sampling complexity for our real victim
models. For this, we attempt to estimate the in-distribution volume and the complexity of sampling within it
by measuring the number of random queries in this volume. Similarly to our OOD control module, described
in detail in Appendix F, we define a query as in-distribution, i.e. inside the volume, by observing the model’s
confidence in predicting this query. High confidence queries, above some predefined confidence threshold, are
considered to be in-distribution. Therefore, for the task of volume estimation, we measure the percentage of
random queries that are above this threshold. In this section, we use a threshold value of 90.

In Figure 11 (a) we present our estimation in both victim models. As can be seen, only 59% of the random
queries are sampled from within the volume in the case of the CIFAR-10 model, and only 45% in the case of
the MNLI model. We additionally compare this to the sampling complexity when using real in-distribution
data, by measuring the percentage of samples from the test set that are predicted by the model with a
high confidence. In this case, where we have significant prior knowledge over the distribution, the sampling
complexity is drastically decreased.
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As our estimation dependents on the model confidence, it is also interesting to observe how the complexity
changes when the model becomes less confident. For this reason, in Figure 11 (b) we perform the same
evaluation, however, we decrease the victim model’s confidence by increasing its softmax temperature from
1 to 2. This change results in a less confident model in general and, as evident from the results, it is nearly
impossible to sample from within the distribution without any prior knowledge: only 0.00001% for CIFAR10
and 0.01 for MNLI.

F Controlling OOD informativeness - full implementation details

In this section, we elaborate on the implementation details behind our methodology for evaluating the effect
of limiting the utility of OOD queries, described shortly in Section 4.3. Given the original victim model Vo,
we create a hybrid victim model Vh by combining the original victim model Vo with an additional module
with different, or additional, decision boundaries Vf . For each query x, we apply a decision rule R over x,
to determine which of the two modules, Vo or Vf , should be used for predicting this query.

The decision rule R is implemented by applying a threshold value τ over the prediction confidence of Vo.
If a query x has a low prediction confidence, we define it as an OOD query and return the prediction
Vf (x). Otherwise, we define it as IND and return Vo(x). We calibrate R by increasing the model’s Softmax
temperature to 2, as discussed in more detail in Appendix F.2. Thresholding the prediction confidence serves
as a naive approximation for OOD detection, and using more sophisticated OOD detection methods will
only increase the effect of modifying the OOD behaviour. As such, the exploration of different decision rules
is out of scope for this work.

As for the fake model Vf , we implement it by fitting a Gaussian Mixture Model (GMM) for each class of
the training data. For each class c ∈ {1, 2, ..., C}, where C is the number of classes, we sample S = 5000
training data points labeled as class c, i.e. {(x1, c), (x2, c), ..., (xS , c)}. We then use the victim model Vo to
compute the predictions of this set, i.e. the logits. We fit a GMM to this set of logits {ỹ1, ỹ2, ..., ỹS}, where
ỹi = Vo(xi).

For each class, we create m = 5 anchor points A1
c , . . . , Am

c that will be used to “assign” queries for this
class. For this, we first compute the feature representations of the data samples used for fitting the class
GMM,i.e. {(x1, c), (x2, c), . . . , (xS , c)}, using some feature extractor ϕ. Then, we cluster these feature vectors
{ϕ(x1), . . . , ϕ(xS)} into m clusters using the Kmeans clustering algorithm. We define the anchor points to
be the centroids of each cluster. For vision tasks, we use a pre-trained ResNet34 for the feature extractor ϕ;
for NLP tasks we use a pre-trained BERT-base model.

At last, we sample m permutations πj : C → C, for j ∈ [m]. The permutations would ensure that no query
would be predicted using its “real” assigned class, therefore avoiding tail-of-distribution samples classified
as OOD samples (i.e. false-positives samples), to be correctly labeled and leak information about true IND
behaviour.

For a given query sample x, we compute its feature representation ϕ(x) and find the nearest anchor point Aj
i ,

in terms of the L2 distance between ϕ(x) and all C ×m anchor points. The anchor point Aj
i represent the jth

anchor point of the ith class. We then permute the assigned class i using the jth permutation,i.e. i′ = πj [i],
and sample a “fake” logit ỹ from the GMM we fitted earlier to class i′. This value is returned as the complex
model prediction, Vf (x) = ỹ.

This construction requires the evaluation of a subset of the training data used for fitting the GMMs. The
evaluation, fitting, and clustering process are done only once; hence, it is relatively computationally inexpen-
sive. During inference, each query directed to the fake model Vf adds some computational cost of computing
its feature representation, and performing a nearest neighbor search. However, this is only true for OOD
samples and false-positive IND samples. Most legitimate users’ queries, i.e. the true-positive queries, are
completely unaffected by the introduction of this additional module.

It is important to note that while our method decreases the utility of existing ME attacks, as shown in our
results, we do not present it as a defense mechanism but rather as a method for evaluating our hypothesis. An
efficient defense mechanism can be designed based on these principles, with some additional effort. However,
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Figure 12: As our OOD detection rule is distinguishing between in and out of distribution queries based on
the model confidence, we evaluate the effect of decreasing the model’s confidence by increasing the softmax
temperature T from 1 to 2. Results shown in this plot show that this indeed even further lowers the benefit
the attacker gains by utilizing OOD queries.

this is out of scope for our paper. We propose a method for measuring the reliance of ME attacks on the
informativeness of OOD regions, as part of a bigger discussion over the role of prior knowledge and the
common methodology of ME attacks, and do not investigate the utilization of it as part of any defense
mechanism.

F.1 Effect of anchor points and permutations

The design of our proposed OOD module Vf satisfies two main objectives. The first, and most important,
is to avoid leaking real IND behaviour by the predictions made by Vf . The second, was to lure the attacker
to waste effort and capacity in learning fake and more complex decision boundaries, and therefore reducing
further it’s performance over the real IND decision boundaries.

To obtain the first goal, we introduced the permutation mechanism. As mentioned before, some tail-of-
distribution samples are falsely classified as OOD samples, e.g.false-positives. As these samples share the
same distribution as the anchor points, when searching for the nearest neighbor anchor point, they would be
correctly assigned to their real class. When no permutation is applied, this will result in a prediction that
resembles the original prediction given by Vo, and therefore leaks information. To avoid this, the matching
anchor point should direct the sample to a different class by using some class-level permutation.

To obtain the second goal, we introduce multiple new decision spaces by using multiple permutations per
class. As a result, two samples that were initially assigned to one class can now be directed to two different
classes, placing a new decision boundary between them. For this, we use multiple (m = 5) anchor points per
class, and each anchor point is coupled with a different permutation. Therefore, two samples x1 and x2 that
were assigned to two anchor points related to class i: A1

i and A2
i , will now we reassigned to two different

classes. x1 would be predicted using the GMM fitted for class j = π1(i) and x2 would be predicted using
the GMM fitted for class k = π2(i).

To better demonstrate the effect of using multiple permutations and anchor points, we provide an ablation
study in Figure 20. We compare the performance of our OOD module in 4 different settings: (i) using one
anchor point per class and no permutations (ii) using one anchor point per class with class-level permutation
(iii) using 5 anchor points per class with the same permutation shared between all anchor points (iv) our
proposed method - 5 anchor points per class with 5 different permutations. These would be denoted as "1
anchor, no perm", "1 anchor, 1 perm", "5 anchors, 1 perm", "5 anchors, 5 perms", respectively. The biggest
effect can be attributed to the simple addition of permutations; however, it can be further emphasized by
incorporating the additional anchor points and multiple permutations.
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F.2 Softmax temperature influence

In order to calibrate R to better distinguish between IND and OOD samples, we increase the model’s Softmax
temperature to 2. By doing so, we force the model to be less confident, which results in more queries being
predicted by Vf and not Vo. As shown in Figure 11, a temperature value of 2 indeed detects most of the
OOD queries. In Figure 12 we demonstrate the effect of the temperature value over the behaviour of our
controlled informativness experiment and show that a better calibrated decision rule indeed further lowers
the benefit the attacker gains by utilizing OOD queries.

It is important to note that this also increases the FPR of the IND samples, i.e.the percentage of IND
samples predicted by Vf instead of Vo. A higher FPR results in a decline in model test accuracy. However,
as shown in Table 1, and described in more detail in Appendix F.3, this decrease is not linearly dependent
on the exact FPR.

F.3 Impact of τ

The value of the confidence threshold τ determines the utility – extraction difficulty trade-off. In Section 4.3
we evaluate our OOD control mechanism on different values of τ , and observe the effect each has over the
attack performance. In order to verify that we are not trivially rejecting all inputs, we additionally measure
the false-positive rate (FPR) for the different threshold values. In Table 1, we detail the relation between
the threshold value, the FPR, and the effect on the victim’s test accuracy. For lower τ values, most queries
are predicted using the original Vo, i.e. the victim model’s utility is barely harmed since most queries are
answered by the real model. In this case, the attacker’s performance is barely affected, as it can still get
informative responses by issuing OOD queries. As τ increases, more queries– including some IND ones–
are predicted by the “fake” model Vf . This makes it more difficult for an attacker to infer which decision
boundaries are IND. We discussed the underlying complexity in detail in Sections 4.1 and 4.2. As can be
seen, the attack accuracy dramatically decreased, which verifies that the OOD behaviour leaks almost no
information about the IND behaviour. To further demonstrate this, we present in Figure 13 a comparison
between the labels predicted by Vo and those predicted by Vf for actual OOD queries (i.e. true positives)
as well as tail-of-distribution IND samples that were detected as OOD (i.e. false positives). We show this
comparison for an attacker that utilizes additional SVHN queries, 30% prior knowledge, and for a threshold
of τ = 95. It is clear that, although the “fake” labels are heavily biased towards one class for the additional
queries, in both cases, they are uncorrelated with victim models’ predicted labels.

CIFAR-10 MNLI
Temp. 1 Temp. 2 Temp. 1 Temp. 2

τ FPR Acc FPR Acc FPR Acc FPR Acc

0 0 95.5 0 95.5 0 83.6 0 83.6
75 2.5 94.5 7.4 91.4 3.5 83.2 9.1 81.9
90 4.7 93.2 15.9 84.1 7.1 82.4 32.8 72.8
95 6.5 92.0 40.5 60.4 10.4 81.5 71.1 49.6
99 10.6 88.92 99.7 2.32 27.7 75.2 100 32.1

Table 1: The threshold value τ determines which samples are marked as in-distribution, predicted by the
original model Vo, and which are treated as OOD and predicted by Vf . The higher the threshold, the higher
the false positive rate is. This, in turn, has a negative effect over the teacher test accuracy. This also
implies that higher threshold values result in a higher true positive rate. The Softmax temperature (denoted
as “Temp.” in the table) also affects the FPR and can be used to better calibrate the OOD detection
component.

F.4 On learning of fake boundaries

Although modern learning is an inherently stochastic process, learning with standard tools such as SGD
has a bias towards structured solutions (Soudry et al., 2018; Mousavi-Hosseini et al., 2022). For the same
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Figure 13: (a) The agreement between the attacker model and the victim model, for the CIFAR-10 task and
an attacker utilizing SVHN additional queries. The agreement is separated into the real task (Vo) and the
fake task (Vf ). We can see that fake task agreement is higher than random guessing (10%), which implies
that the attacker was able to learn the fake, irrelevant task, and waste some capacity.
(b)-(c): Comparison between the labels predicted by Vo (x-axis) and the labels predicted by Vf (y-axis), for
an attacker that utilizes additional SVHN queries, 30% prior knowledge, and for a threshold of τ = 95. Each
bar i demonstrates the distribution of the “new” fake labels that would have been predicted by Vo as class
i. The y-axis is normalized to show the percentage of samples from each class. Although the fake models’
predictions are biased towards one class for the additional queries, in both cases they are un-correlated with
the victim models’ predictions, and therefore present new decision boundaries for the OOD queries.

model parameter budget, SGD learns the smoothest boundaries first and only gets to the other boundaries
if the capacity permits (Ben Arous et al., 2021). This has real practical implications on the fake regions
that we add to the model. Namely, we can not add decision boundaries that are more complex than the real
task, since SGD learns to ignore them in light of the real decisions, limiting the extent to which we can add
arbitrary complexity into the models.

In Section 4 we have discussed the query budget and model capacity that the attacker must spend if it can
not distinguish between the task-related (IND) and unrelated (OOD) queries. To verify, we explicitly check
that the attacker indeed learned both the task related and unrelated knowledge, and did not “ignore” the
predictions made by Vf due to the SGD bias described above.

For this reason, we investigate the agreement between the attacker model and both Vo and Vf , for the SVHN
additional queries case. We separate the agreement of the samples predicted by Vo and the samples predicted
by Vf . Figure 13 demonstrates that the attacker model agreement with Vf is higher than chance level, which
is 10% in this case (for the 10 CIFAR-10 classes). This proves that the attacker learned both the real and
the fake task and, as such, wasted capacity on learning irrelevant decision boundaries.

G Knockoff Nets Evaluation

In addition to the CIFAR-10 and MNLI datasets, we evaluate our main experiments on the Indoor67 (Quat-
toni & Torralba, 2009), CUBS200 (Wah et al., 2011) and Caltech256 (Griffin et al., 2007) datasets. For this,
we follow the setting and training details considered by the Knockoff Nets attack (Orekondy et al., 2019a),
and use the pre-trained victim models provided by the authors. Orekondy et al. provides two strategies
for sampling queries (i) random - in which the queries are sampled uniformly at random from some query
distribution (ii) adaptive - in which the queries are sampled according to a learned policy π. We note that
there is no official implementation for the adaptive strategy, and thus we reimplement the method with the
details provided by Orekondy et al.. We simplify the hierarchy to be one-level deep, and omit the coarse-to-
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Figure 14: We evaluate the effect of augmenting the attacker’s queries with additional queries sampled from
the ImageNet dataset, in comparison to our baseline attacker, which only use its prior knowledge. We fix
the query budget to be the size of the original training set to provide a fair comparison between the different
attackers. It can be seen that, as the attacker has more prior knowledge over the true distribution, it does not
gain much benefit by augmenting the query set. Since the ImageNet dataset does share some distributional
similarity with the true training data distributions, we observe a significant improvement from utilizing it
in the lower prior knowledge settings.

fine label hierarchy used to supplement the policy. We observe similar performance to the original results
in (Orekondy et al., 2019a).

For the attacker model, we use a ImageNet pretrained ResNet-34 architecture. We refer the reader
to Orekondy et al. for full training details.

Similar to the evaluations in Section 5.1, we show in Figure 14 that ME indeed works, and the model can
be approximated with blackbox query access. To better visualize this, we compare the performance of a
baseline attacker, that only uses its prior knowledge over the distribution, with that of the OOD-based
attacker. Here, the baseline attacker is assumed to have access to either a randomly or adaptively sampled
subset of the victim’s true training dataset. Following Orekondy et al. we use ImageNet (Deng et al., 2009)
as the surrogate (additional) dataset, from which we either sample randomly or using the adaptive strategy.
We follow the setting described in Section 5.1, and fix the query budget to be the size of the original training
dataset. The results, presented in Figure 14 align with the results in Section 5.1, as they show that as the
attacker has more prior knowledge, it benefits less from utilizing additional queries. We do observe that in
the lower prior knowledge settings, the ImageNet additional queries do provide a significant improvement,
especially for the Indoor67 and Caltech256 datasets. We hypothesize that this is due to a high similarity
between the distributions. This also aligns with the main findings of our paper.

Figure 14 additionally answers the questions described in Section 5.2 and Section 5.3. Namely, ME can be
used with only a few queries, as the attack is succesfull both when bounding the query budget to the size of
the original training set, and when using just a smaller fraction of IND samples. Moreover, the results also
show that the use of ImageNet queries as OOD data is indeed effective and can help reduce the data costs
involved with using expensive IND samples.

However, as we discussed in Section 4 and further evaluated in Section 5.4, the answers to the previous
questions depends on the implicit assumption that the IND decision boundaries can be inferred from the
OOD ones. We evaluate this assumption in this case study as well, following the methodology described
in Section 4.3. We set the model’s softmax temperature to 2, and use ∥Dtrain∥ additional queries.
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Figure 15: The effect of limiting the OOD informativeness with different values of τ against an attacker
that utilizes ∥Dtrain∥ additional ImageNet queries. When comparing the results to the original setting (real
model), where the OOD region is unmodified, we can see a clear decrease in the attack accuracy.
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(d) Indoor67 (adaptive)
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(e) CUBS200 (adaptive)
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(f) Caltech256 (adaptive)

Figure 16: Empirical evaluation of the risk posed by an attacker with some prior knowledge over the true
data distribution. The prior knowledge is expressed as access to a percentage of the true training set. In
most cases, an attacker with more then 50% access can nearly fully extract the model, however, in this case,
the extraction is not more efficient than training from scratch. The attacker does not gain much by querying
the victim model versus using the real labels, which also seems to be equivalent to a label-only access to the
victim model. This shows that, other than performing as a labeling oracle, the extraction is meaningless in
this case.

Figure 15 demonstrates that limiting the informativeness of OOD queries indeed decreases the benefit the
attacker gained by utilizing additional ImageNet queries, even to the point of performing worse than the
baseline in the higher prior knowledge settings. This again aligns with our findings in Section 5.4 and
suggests that the attacker can not acheive both goals, and in the absence of prior knowedlge, corresponding
to higher data collection costs, a high query budget must be used.

Aligning with the findings reported in Section 5.5, we present in Figure 16 a comparison between the attack
performance using soft-label access to the victim model to that of an attacker with access to the real
(ground truth) labels or label-only access to the victim model. This comparison provides the same evidence
as described in Section 5.5. It demonstrates that attacking the victim model is merely using the victim
model as a labeling oracle in the absence of access to the real labels, and the attacker does not gain much
additional benefit. This phenomena was also observed by Orekondy et al..
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Figure 17: We compare the confidence values of the victim model over the true data distribution versus the
different types of out-of-distribution queries. Results show that the model tends to be highly confident for
both in-distribution as well as for some of the out-of-distribution queries, making it harder for the OOD
component to make any impact for lower threshold values. This result can explain the surprising success of
using random nonsensical queries in the language domain versus the poor results of using random queries in
the vision domain.

H NLP distribution similarity

The results presented in Figure 4 show that the effect of limiting the leakage from OOD behaviour to IND
behaviour is weaker for some of the settings in our NLP task, specifically the nonsensical and wiki queries.
This might seem confusing. The wiki queries are broadly equivalent to the surrogate dataset queries that are
commonly used in the vision domain, however they exhibit a different response in our evaluation. As both
random images and random nonsensical sentences have no real meaning, one might expect similar behaviour
between them. In the past, nonsensical queries were even used as a benchmark under the name of random
queries e.g. by Truong et al..

This difference between the vision and NLP domains is due to the similarity between the true data distri-
bution and the aforementioned query distribution. Although the queries are drawn from either a random
nonsensical distribution in the nonsensical case, or a from a different corpus in the wiki case, we observe
that many common words are shared between all three distributions. This results in similar model behaviour
between the OOD queries and the true data. It can explain the success of the queries in this domain, which
comes in significant contrast to the lack of success of random or some surrogate queries in the vision domain,
where the input space is a continuous pixel space rather than a (relatively small) discrete dictionary of
words. The similarity between distributions results in high confidence values for both in-distribution and
out-of-distribution queries, making it difficult to separate them and apply our method. We show the confi-
dence distribution for each query type in Figure 17. In the case of the random queries, where each letter is
sampled, and the sentences are not composed of real words, we can observe a significantly lower gain from
the additional queries, which is more in line with the findings from the vision domain.

I Task and model complexity

In this section, we investigate the relationship between task and model complexity, as well as the query
complexity of model extraction attacks. In Figure 18 we observe that for simpler tasks, such as classification
over the SVHN and SST-2 datasets, even an adversary with little prior knowledge can successfully extract
the model, e.g. 5% data access. This is in contrast to the results we demonstrated for the CIFAR-10 and
MNLI datasets, which are significantly harder tasks to learn.

We additionally investigate the effect of the size of the victim model architecture. In addition to the ResNet-
34-8x CIFAR-10 victim model evaluated so far, we trained two CIFAR-10 victim models: a larger ResNet-
50-8x and a smaller ResNet-18-8x. Note that we trained these models ourselves, while for the ResNet-34-8x
architecture, we used the pre-trained model by Truong et al.. The results, presented in Figure 19, show that
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Figure 18: The baseline attacker is able to successfully extract
some victim models very easily, with as little as 5% of the training
data. We hypothesize that this is due to the inherent linearity of
these datasets.
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Figure 19: We investigate whether the
victim model size has any impact on
the attack success. We observe no
impact when increasing (ResNet-50-
8x) or decreasing (ResNet-18-8x) the
model size. All models are incredi-
bly over-parameterized and, therefore,
the differences between the models are
insignificant in terms of the attack
complexity.

this has minimal impact on the attack success. Lack of differences here can be explained by the fact that
all three models share similar accuracy - 94.22% for ResNet-18-8x, 95.54% for ResNet-34-8x, and 93.72% for
ResNet-50-8x.

As previously noted, the models in practice mainly serve as labeling oracles, meaning the difference in the
attack performance is connected to the model accuracy. Having said that, it is worth mentioning that we
have not performed a thorough hyperparameter search in the training of the models. This should not affect
the validity of the results and should only cause a slightly lower accuracy.
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Figure 20: An ablation study of the use of multiple anchor points and permutations in the instrumentation
of the OOD module. Comparing between 4 settings shows that indeed our proposed method ("5 anchors, 5
perms") results with the biggest degradation of the attacker’s performance even when given access to higher
levels of prior knowledge.
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