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Abstract

Both transduction and rejection have emerged as important techniques for defending
against adversarial perturbations. A recent work by Tramer (2022) showed that, in
the rejection-only case (no transduction), a strong rejection-solution can be turned
into a strong (but computationally inefficient) non-rejection solution. This detector-
to-classifier reduction has been mostly applied to give evidence that certain claims
of strong selective-model solutions are susceptible, leaving the benefits of rejection
unclear. On the other hand, a recent work by Goldwasser et al. (2020) showed that
rejection combined with transduction can give provable guarantees (for certain
problems) that cannot be achieved otherwise. Nevertheless, under recent strong
adversarial attacks (GMSA (Chen et al., 2022), which has been shown to be much
more effective than AutoAttack against transduction), Goldwasser et al.’s work was
shown to have low performance in a practical deep-learning setting. In this paper,
we take a step towards realizing the promise of transduction+rejection in more
realistic scenarios. Theoretically, we show that a novel application of Tramèr’s
classifier-to-detector technique in the transductive setting can give significantly
improved sample-complexity for robust generalization. While our theoretical
construction is computationally inefficient, it guides us to identify an efficient
transductive algorithm to learn a selective model. Extensive experiments using
state of the art attacks (AutoAttack, GMSA) show that our solutions provide
significantly better robust accuracy.

1 Introduction

A recent line of research (Goldwasser et al., 2020; Montasser et al., 2021; Goodfellow, 2019; Wang
et al., 2021; Wu et al., 2020) has investigated augmenting models with transduction or rejection
to defend against adversarial perturbations. However, the results of leveraging these new options
have been mixed. For example, a recent work by Tramer (2022) gives an equivalence between
classification-only and classification-with-rejection; the major application of the author’s results has
been to provide bounds on the performance of defenses with rejection, which can be used to show that
the robustness of defenses with rejection may be lower than the authors originally claimed, casting
doubt on the benefits of rejection.

On the other hand, some recent work in theory has demonstrated that transduction, that is leveraging
the unlabeled test-time input for learning the model, may have significant impact on adversarial
robustness. Specifically, Montasser et al. (2021) studied the setting of transduction (without rejection),
and show that robust learning with transduction allows for significant improvemnents in sample
complexity, reducing dependency on VC dimension from exponential to linear; however, this comes
at the cost of significantly greater assumptions on the data (OPTU2 for the realizable case rather than
the OPTU of the inductive setting 1). Goldwasser et al. (2020) studied transduction and rejection, and
show even more surprising results, not achievable with transduction or rejection alone. However, one
prominent limitation of these works seems to be that none has yet resulted in practical robust learning
mechanisms in the deep learning setting typically considered.

1The optimal robust risk is OPTU = infh∈H Pr(x,y)∼D
[
∃z ∈ U(x) : h(z) , y

]
.
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Realizable
Agnostic Generalization BoundSoundness Completeness Generalization

Condition Condition Bound

Induction (Montasser et al., 2019) OPTU = 0 OPTU = 0 O

(
2VC(H) log(n)+log(1/δ)

n

)
OPTU + O

(√
2VC(H)+log(1/δ)

n

)
Transduction (Montasser et al., 2021) OPTU2 = 0 OPTU2 = 0 O

(
VC(H) log(n)+log(1/δ)

n

)
2OPTU2 + O

(√
VC(H)+log(1/δ)

n

)
Rejection (Theorem A.2, A.6) OPTrej

U
= 0 OPTrej

U
= 0 O

(
2VC(T (H)) log(n)+log(1/δ)

n

)
OPTrej

U
+ O

(√
2VC(T (H))+log(1/δ)

n

)
Transduction+Rejection (Goldwasser et al., 2020) OPTU = 0 OPTU = 0 O

(√
VC(H) log(n)

n +
log(1/δ)

n

)
2 OPTU +2

√
2 OPTI + O

(√
VC(H) log n+log(1/δ)

n

)
Transduction+Rejection (Theorem 4.1, A.12) OPTU2/3 = 0 OPTU2 = 0 O

(
VC(H) log(n)+log(1/δ)

n

)
2OPTU2/3 + O

(√
VC(H)+log(1/δ)

n

)

Table 1: Summary of generalization bounds for the four settings. Compared to transduction alone and
Goldwasser et al. (2020), our defense weakens the necessary conditions in the realizable case and improves
the asymptotic error in the agnostic case. Compared to induction and rejection alone, sample complexity has a
linear rather than exponential dependence on the VC dimension. Compared to Goldwasser et al. (2020), the
dependence on the error bound ϵ improves from inverse quadratic to inverse linear in the realizable case.

Specifically, compared to Goldwasser et al. (2020), which considered arbitrary perturbations, we
focus on the classic and practical scenario of bounded perturbations for deep learning. Somewhat
surprisingly, we show that a novel application of Tramèr’s classifier-to-detector technique in the trans-
ductive setting can give significantly improved sample-complexity for robust generalization, noting
that bounded perturbations are critical for the construction to work. To obtain these improvements,
we do not require stronger assumptions on the data, as with Montasser et al. (2021); in the realizable
case, we only need to assume OPTU2/3 = 0, which is even better than the OPTU = 0 assumption in
the inductive case. Table 1 gives more details; the notation is described in Section 3. Our results give
a first constructive application of Tramèr’s classifier-to-detector reduction which leads to improved
sample complexity.

While our theoretical construction is computationally inefficient due to the use of Tramèr’s reduction,
it guides us to identify a practical transductive algorithm for learning a robust selective model. In
addition, we present an objective for general adaptive attacks targeting selective classifiers based
on our algorithm. Our transductive defense algorithm gives strong empirical performance on image
classification tasks, both against our adaptive attack and against existing state-of-the-art attacks
such as AutoAttack and standard GMSA. We obtain 81.6% and 57.9% transductive robust accuracy
with rejection on CIFAR-10 and CIFAR-100, respectively, a significant improvement on the current
state-of-the-art result of 71.1% and 42.7% (Peng et al., 2023; Wang et al., 2023; Croce et al., 2020)
for robust accuracy up to the perturbation considered (l∞ with budget ϵ = 8/255).

The rest of the paper is organized as follows. Section 2 reviews main related work, and Section 3
presents some necessary background. We develop our theory results in Section 4. Guided by our
theory, Section 5 develops a practical robust learning algorithm, leveraging both transduction and
rejection. We provide systematic experiments in Section 6, and conclude in Section 7.

2 RelatedWork

In recent years, there have been extensive studies on adversarial robustness in the traditional inductive
learning setting, where the model is fixed during the evaluation phase (Carlini & Wagner, 2017;
Goodfellow et al., 2015; Moosavi-Dezfooli et al., 2016). Most popular and effective methods are
adversarial training, such as PGD (Madry et al., 2018), TRADES (Zhang et al., 2019). These methods
are effective against adversaries on small dataset like MNIST, but still ineffective on complex dataset
like CIFAR-10 or ImageNet (Croce et al., 2020). Defenses beyond adversarial training have been
proposed but most are broken by strong adaptive attacks (Croce & Hein, 2020; Tramer et al., 2020).

To break this robust bottleneck, recent work has proposed alternative settings with relaxed yet re-
alistic assumptions, particularly by allowing rejection and transduction. In robust learning with
rejection (a.k.a., abstain), we allow rejection of adversarial examples instead of correctly classify-
ing all of them (Tramer, 2022). Variants of adversarial training with rejection option have been
considered (Laidlaw & Feizi, 2019; Pang et al., 2022; Chen et al., 2021; Kato et al., 2020; Sotgiu
et al., 2020; He et al., 2022), including generalizations to unseen attacks (Stutz et al., 2020) and to
certified robustness (Sheikholeslami et al., 2020; Baharlouei et al., 2022; Sheikholeslami et al., 2022).
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(Tramer, 2022) proves an equivalence between robust learning with rejection and standard robust
learning in the inductive setting and shows that the evaluation of past defenses with rejection was
unreliable.

The other approach is to define an alternative notion of adversarial robustness via transductive
learning, i.e. "dynamically" ensuring robustness on the particular given test samples rather than on
the whole distribution. Similar settings have been studied but under the view of "test-time defense"
or "dynamic defense" (Goodfellow, 2019; Wang et al., 2021; Wu et al., 2020). (Goldwasser et al.,
2020) is the first paper to formalize transductive learning for robust learning, and the first to consider
transduction+rejection. It considers general adversaries on test data and presents novel theoretical
guarantees. (Chen et al., 2022) formally defines the notion of transductive robustness as a maximin
problem and presents a principled adaptive attack, GMSA. (Montasser et al., 2021) discusses robust
transductive learning against bounded perturbation from a learning theory perspective and obtains
corresponding sample complexity.

3 Preliminaries

Robust Error Robust Error (with Rejection)

Inductive errU(h; x, y) := supz∈U(x) 1{h(z) , y} errrej
U

(h; x, y) := supz∈U(x) 1{h(z) < {y,⊥} ∨ h(x) , y}

Transductive errU(h;x,y, z̃, ỹ) := 1
m

∑m
i=1 1 {h (z̃i) , ỹi} errrej

U
(h;x,y, x̃, z̃, ỹ) := 1

m
∑m

i=1 1

{
(h (z̃i) < {ỹi} ∧ z̃i = x̃i)
∨ (h (z̃i) < {ỹi,⊥} ∧ z̃i , x̃i)

}

Table 2: Summary of the robust error in all settings. Note that transductive error of the learner A is
the corresponding notion of error where h = A(x,y, z̃).

Let X denote the input space, Y the label space, D the clean data distribution over X × Y. We
will assume binary classification for our theoretical analysis: Y = {±1}. Let U(x) denote the set
of possible perturbations of an input x, e.g., for ℓp norm perturbation of budget ϵ,U is the ℓp ball
of radius ϵ: U(x) = {z : ∥z − x∥p ≤ ϵ}. We assume U satisfies ∀x ∈ X, x ∈ U(x); essentially
all interesting perturbations satisfy this. Let U2(x) := {z : ∃t ∈ U(x), such that z ∈ U(t)}, and
U−1(x) := {z : x ∈ U(z)}. If a perturbation set Λ satisfies Λ2 = U, then we say Λ = U1/2;
U−1/2 = (U−1)1/2. WhenU is the ℓp ball of radius ϵ,U2 is that of radius 2ϵ,U−1 = U, andU1/2 is
that of radius ϵ/2; we defineU3,U1/3, andU−1/3 similarly.

All learners are provided with n i.i.d. training samples 2 (x,y) = (xi, yi)n
i=1 ∼ D

n. There are m i.i.d.
test samples (x̃, ỹ) ∼ Dm, and the adversary can perturb x̃ to z̃ ∈ U(x̃). We describe the main
settings below; the corresponding notions of error are in Table 2. For each setting, we define risk as
the expected worst-case error up to the perturbationU, and empirical risk similarly.

Induction. In the traditional robust classification setting (e.g., Madry et al. (2018)); also called the
inductive setting or simply induction), the learning algorithm (the defender) is given training set
(x,y), learns a classifier h : X 7→ Y from some hypothesis classH .

Rejection. In the setting of robust classification with rejection, the classifier has the extra power of
abstaining (i.e., outputting a rejection option denoted by ⊥), and furthermore, rejecting a perturbed
input does not incur an error. The learning algorithm is given training set (x,y) and learns a selective
classifier h : X 7→ Y ∪ {⊥} from some hypothesis class H . An error occurs only when h rejects a
clean input, or accepts and misclassifies. We define additionally OPTrej

U
:= infh∈H Rrej

U
(h;D).

Transduction. In the setting of robust classification with transduction (e.g., Montasser et al. (2021)),
the learning algorithm (the transductive learner) has access to the unlabeled test input data; the goal
is to predict labels only for these given test inputs (a transductive learner need not generalize). The
learner A is given the training data (x,y) and the (potentially perturbed) test inputs z̃, and outputs m
labels h(z̃) = (h(z̃i))m

i=1 as predictions for z̃. That is, the learner is a mapping A : (X×Y)n×Xm 7→ Ym.
A special case is when A learns a classifier h and use it to label z̃; the labels are also denoted as h(z̃).

2Here x = (xi)n
i=1 and similarly with y, x̃, ỹ, etc. We will also overload the notationU, e.g.,U(x) := {u ∈

Xn : ui ∈ U(xi)}.
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Our setting: Transduction+Rejection. A transductive learner for selective classifiers A is given
(x,y, z̃), and outputs rejection or a label for each input in z̃. That is, the learner is a mapping
A : (X ×Y)n × Xm 7→ (Y ∪ {⊥})m. An error occurs when it rejects a clean test input or accepts and
misclassifies.

4 Theoretical Analysis

In this section, we present the theorem statements and proof sketches for the realizable case in the
setting with transduction and rejection. The proof details and results for the agnostic case and the
setting with rejection alone are in Appendix A.

For comparison with existing results in the inductive-only and transduction-only settings (Montasser
et al., 2019; 2021), we follow their setup: assume there exists a classifier (without rejection) with
0 robust error from a hypothesis class H of VC-dimension VC(H), and the learner constructs a
selective classifier for labeling the test inputs (or constructs a set of selective classifiers and uses any
of them for labeling). The goal is to design a learner with a small robust error.

Theorem 4.1. For any n ∈ N, δ > 0, hypothesis classH of classifiers without rejection, perturbation
setU such thatU = U−1 andU1/3 exists, and distributionD over X × Y satisfying OPTU2/3 = 0,
there exists a transductive learner A that constructs a set of selective classifiers ∆ s.t. the following
is true: with probability ≥ 1 − δ over (x,y) ∼ Dn, (x̃, ỹ) ∼ Dn, we have that for any z̃ ∈ U(x̃), if
∆ , ∅, then for any h ∈ ∆, 3

errrej
U

(h;x,y, x̃, z̃, ỹ) ≤
VC(H) log(2n) + log(1/δ)

n
.

For U satisfying our conditions (including lp balls), we obtain a stronger guarantee than those
using only transduction or only rejection. First, compared to the guarantee for transduction without
rejection (Montasser et al., 2021) (see Table 1), our result requires weaker assumptions on the data:
we need OPTU2/3 = 0 rather than OPTU2 = 0. For example, consider the ℓp norm perturbation:
U(x) = {z : ∥z − x∥p ≤ ϵ}. Transduction alone requires that there exists a classifier with 0 robust error
up to the perturbationU2, i.e. up to an ℓp norm perturbation of adversarial budget 2ϵ. In contrast,
our result shows that using both transduction and rejection only requires there exists a classifier with
0 robust error up to perturbationU2/3, corresponding to adversarial budget of 2ϵ/3. Equivalently,
for a data distribution with a margin 2ϵ, transduction without rejection can only handle adversarial
perturbations with budget ϵ, while combining transduction and rejection can handle adversarial
perturbations with budget 3ϵ, tolerating three times the adversarial magnitude. Second, compared
to rejection only (see Table 1), this bound has a linear sample complexity rather than exponential.
Therefore, combining transduction and rejection has the benefits of both techniques.

Furthermore, note that the result bounds the rate of incorrect rejections as well, i.e. the rate of
rejections on clean data, with the same bound as a direct consequence of the definition of robust error
under transduction and rejection. However, the result, while potentially very strong, comes with the
caveat that the defense is not guaranteed to find a nonempty ∆ (i.e., the defense is sound but may not
be complete) under conditions weaker than OPTU2 = 0; by Lemma A.14 in Appendix A.3, ∆ is guar-
anteed to be nonempty, and hence we have completeness, under the same conditions as transduction
alone. Hence, the result is strictly stronger than the result for transduction alone (Montasser et al.,
2021).

Consider an adversarial budget ϵ, and suppose z̃ is the given potentially perturbed test input and x̃
is the corresponding clean test input. To obtain the guarantee, we need to find a model which is
ϵ/3-robust at q = x̃ + (z̃ − x̃)/3. Such a model always exists when OPTU2/3 = 0. However, given only
z̃ without knowing q or x̃, our algorithm finds a model ϵ/3-robust at every perturbation within 2ϵ/3
of z̃ and thus ∆ may be empty.

While weaker conditions don’t guarantee that we find a model satisfying the conditions, the result
still provides intuition for the success of our derived empirical defense. For typical data distributions
and hypothesis classes, it might be expected that, if we fail to find a ϵ-robust hypothesis at the

3Note that ∆ is a function of x, y, and z̃, so this is more precisely a bound of
supz̃∈U(x̃),h∈A(x,y,z̃) errrej

U
(h;x,y, x̃, z̃, ỹ).

4



Under review as a conference paper at ICLR 2024

(a) (b)

Figure 1: (a) h is ϵ/3-robust at z̃; ĥ correctly classifies z̃.(b) h is not ϵ/3-robust at z̃; ĥ rejects z̃.

fully-perturbed data, we will nevertheless be more likely to find a model which is robust nearer
the clean data distribution (i.e. where the condition is required by the theory) rather than further
away. Determining conditions for this is an interesting direction for future research. Note that
such conditions do exist: in Appendix A.3 we present a distribution D, hypothesis class H , and
perturbation U for which ∆ is guaranteed to be nonempty and the error bound above applies, but
where transduction has a minimum asymptotic error of 1/2.

Proof Sketch. For intuition, think ofU as the ℓp norm perturbation with adversarial budget ϵ. We
omit technical details; see Appendix A.3 for the complete proof. Consider some clean training set
x,y, clean test set x̃, ỹ, with perturbed test data z̃ with z̃i within ϵ of x̃i. Let z̃′ = x̃ + (z̃ − x̃)/3 be
the intermediate perturbation a third of the way between x̃ and z̃.

First, following Montasser et al. (2021), define the set of robust hypotheses ∆U
1/3

H
(x,y, z̃′) as

∆U
1/3

H
(x,y, z̃′) = {RU1/3 (h;x,y) = 0 ∧ RU1/3 (h; z̃′) = 0}. That is, we find those classifiers that satisfy:

(1) they are ϵ/3-robustly correct (i.e., correct and robust to perturbations of budget ϵ/3) on the
training data (x,y); (2) they have ϵ/3 margin on the intermediate perturbations z̃′ (i.e., have the same
prediction for all perturbations of budget ϵ/3). This then guarantees, as shown in Montasser et al.
(2021), that with high probability, for any h ∈ ∆U

1/3

H
(x,y, z̃′) the robust error facing perturbation of

budget ϵ/3 is bounded by VC(H) log(2n)+log(1/δ)
n if OPTU2/3 = 0.

Next, following Tramer (2022), define a transformation FU1/3 that maps a classifier without rejection,

h, to the selective classifier ĥ = FU1/3 (h): ĥ(x) =
{

h(x) if ∀x′ ∈ U−1/3(x) , h(x′) = h(x)
⊥ otherwise

. That is, ĥ

rejects x if it is within ϵ/3 from h’s decision boundary, otherwise accepts and predicts h(x).

Now, consider a clean test sample (x̃, ỹ) and x̃’s adversarial perturbation z̃. Define an intermediate
perturbation z̃′ = x̃ + (z̃ − x̃)/3. We will show that if h is correct at z̃′, then ĥ makes no error at z̃.

If z̃ = x̃, then z̃′ = x̃ = z̃. Since h is ϵ/3-robust at z̃′, h(z̃) = h(z̃′) = ỹ and so ĥ(z̃) = ỹ which
is correct. Otherwise, we need to consider two cases: (a) h is ϵ/3-robust at z̃; (b) h is not. See
visualization in Figure 1. In both cases, the ϵ/3-balls about z̃ and z̃′ intersect. Let z̃′′ be some point in
the intersection. Since h is ϵ/3-robust at z̃′, h(z̃′′) = h(z̃′) = ỹ. Now, in case (a) where h is ϵ/3-robust
at z̃, h(z̃) = h(z̃′′) = ỹ, which is correct. In case (b) where h is not ϵ/3-robust at z̃, ĥ rejects z̃ and
makes no error.

Hence if h is correct at z̃′, then ĥ makes no error at z̃. So the error bound for h implies the desired
error bound for any ĥ in the set ∆′ =

{
ĥ = FU1/3 (h) : h ∈ ∆U

1/3

H
(x,y, z̃′)

}
.

As we have access only to the adversarial test data z̃, to ensure ϵ/3-robustness at the unknown z̃′, we
need to ensure ϵ-robustness at z̃. Let ∆′′ := ∪

{
ĥ = FU1/3 (h) : h ∈

⋂
z̃′∈U−2/3(z̃) ∆

U1/3

H
(x,y, z̃′)

}
and let

∆̂ =
⋃

z̃′∈U−2/3(z̃) ∆
U1/3

H
(x,y, z̃′). By the above, as ∆′′ ⊆ ∆′, any ĥ in ∆′′ achieves the desired bound.

If |∆̂| = 1, then |∆′| = 1 and as ∆′ ⊆ ∆̂, ∆̂ = ∆′ and so any ĥ in ∆′′ ∪ ∆̂ likewise achieves the bound.

Hence, if we let ∆ =
{
∆′′ ∪ ∆̂ |∆̂| = 1,
∆′′ otherwise

, we obtain the theorem statement.
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Remark: More direct approaches may seem possible, but have surprising pitfalls. At first glance,
this approach may seem less natural than simply applying the analysis of Montasser et al. (2021)
to a potential z̃′ ∈ U1/2(x̃) with the condition of OPTU , obtaining a U1/2-robust classifer h′, and
deriving an ϵ-robust selective classifier by the transformation FU1/2 . While this seems possible at
first, as Tramer (2022) shows that applying this transformation results in doubled robustness, this
isn’t possible in this situation, as h′ is only guaranteed to be U1/2-robust at z̃′, not at every ϵ/2
perturbation of x̃ as needed by the analysis. Similarly, it might seem possible to obtain an ϵ/2-robust
classifier at z̃ using Montasser et al. (2021), and derive the desired ϵ-robust classifier from FU1/2 ; this,
however, requires the condition OPTU2 , as the analysis of Montasser et al. (2021) only applies on
perturbations up to half the margin; hence, this approach gains no advantage from rejection.

5 Defense by Transduction and Rejection

The analysis of Theorem 4.1 suggests the following defense algorithm: (1) first obtain a classifier h
that is robust and correct on the training data and also robust on the test inputs, (2) then transform h
to a selective classifier ĥ by rejecting inputs too close to the decision boundary of h. We describe the
resulting defense below, which we refer to as TLDR (Transductive Learning Defense with Rejection).

Step (1) To get h, we perform adversarial training on both the training set and the test set, using a
robust cross-entropy objective. As in TADV (Chen et al., 2022) we train with private randomness.
Specifically, we train a model with softmax output as the class prediction probabilities hs and the
class prediction is h(x) = arg maxy∈Y hs

y(x). Given the labeled training data (x,y) and the test inputs
z̃, we optimize the following objective:

min
h

1
n

∑
(x,y)∈(x,y)

[
LCE(hs(x), y) + max

x′∈U(x)
LCE

(
hs(x′), y

)]
+
λ

m

∑
z̃∈z̃

[
max

z̃′∈U(z̃)
LCE

(
hs(z̃′), h(z̃)

)]
(1)

where LCE is the cross-entropy loss and λ > 0 is a hyper-parameter.

Step (2) Having learned h, we now turn h into a selective classifier ĥ. Recall that ĥ rejects the input x
if there exists x′ ∈ U1/3(x) with h(x) , h(x′); otherwise accepts and predicts the label h(x). So we
only need to determine the existence of x′ ∈ U1/3(x) with h(x) , h(x′). We use a standard inductive
attack, PGD, for this by solving:

arg max
x′∈U1/3(x)

LCE(hs(x′), h(x)). (2)

When U is ℓp norm ball of radius ϵ, the constraint is then ∥x′ − x∥ ≤ ϵ/3. In practice, we can
generalize this to ∥x′ − x∥ ≤ ϵdefense where ϵdefense is a hyper-parameter we call the rejection radius.

5.1 Adaptive Attacks

Since no strong adaptive attacks exist for the new transduction+rejection setting to our knowledge,
we design one here. Our attack is based on GMSA in Chen et al. (2022), which has been shown
to be a strong attack for transductive defense (without rejection). The goal of the attack is to find
perturbations z̃ of the clean test inputs x̃ such that the transductive learner has a large error when
given (x,y, z̃). GMSA runs in stages; in each stage t, it simulates the transductive learner on the
current data set (x,y, z̃t) to get a classifier ht, and then maximizes the minimum or average loss
of {hi}

t
i=1 to get the updated perturbations of the test inputs z̃t+1 (called GMSAMIN and GMSAAVG,

respectively). See Chen et al. (2022) for the details.

GMSA does not directly apply to our setting since we have selective classifiers ĥ with a rejection
option which is not considered in GMSA. Our contribution is to design a method to get the updated
perturbations z̃ of the test inputs in each stage such that the selective classifier incurs a large error.
Recall that ĥ constructed from h incurs error in two cases: (1) it accepts z̃ and misclassifies with
h(z̃) , y; (2) z̃ = x̃ and it rejects z̃. We consider the two cases below.

Case (1) We will propose a novel loss measuring the loss of a selective classifier ĥ on a perturbation
(z̃, y) from a clean test point (x̃, y) for such kind of error; maximizing this loss gives the desired
z̃. Recall that we need z̃ to be accepted and also the prediction h(z̃) , y. For the latter, we can
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maximize LCE(hs(x̃), y) where hs is the class probabilities of h (i.e., its softmax output). The former
is equivalent to minh(z̃′),h(z̃) ∥z̃ − z̃′∥ ≥ ϵdefense.

Now, suppose LDB,h(z̃′) is a surrogate loss function on the closeness to the decision boundary; it
increases when z̃′ gets closer to the decision boundary of h. Then the condition is equivalent to
∥z̃ − p(z̃)∥ = ϵdefense where p(z̃) = arg max∥z̃′−z̃∥≤ϵdefense

LDB,h(z̃′). Now, as the maximum value of
∥z̃ − p(z̃)∥ is exactly ϵdefense, we would like to maximize ∥z̃ − p(z̃)∥ to satisfy the condition.

Summing up, for this case, we would like to maximize:

LREJ(z̃, y) := LCE(hs(z̃), y) + λ′ ∥z̃ − p(z̃)∥ , where p(z̃) = arg max
∥z̃′−z̃∥≤ϵdefense

LDB,h(z̃′) (3)

and λ′ > 0 is a hyper-parameter. Finally, for LDB,h, the following definition works well in our
experiments: LDB,h(z̃′) := rank2 hs(z̃′) −max hs(z̃′), which is maximized at the decision boundary as
the top-two class probabilities are equal.

Case (2) A critical step in an effective application of LREJ to a transductive attack is the selection
of which points to perturb. To do this, we apply a post-processing step after finding z̃ by maximiz-
ing (equation 3). We must predict whether ĥ is more likely to incur error on z̃ or on the clean input
x̃ (i.e., ĥ(x̃) , y). If we expect that the clean point is likely to be incorrectly classified or rejected,
then we update z̃ to x̃. In GMSA, we have access to a series of models trained on previous attack
iterations; we estimate the likelihood of success at z̃ and x̃ by the fraction of previous models which
fail at each point.

Combining these cases with GMSA gives our final attack (details in Algorithm 1 in Appendix B.5).

6 Experiments

This section performs experiments to evaluate the proposed method TLDR and compare it with
baseline methods (e.g., those using only rejection or transduction). Our main findings are: 1)
TLDR outperforms the baselines significantly in robustness, confirming the advantage of combining
transduction and rejection. 2) Our adaptive attack is significantly stronger than existing attacks which
were not designed for the new setting, providing a strong evaluation. 3) Rejection rates rise steadily
with the rejection radius, but few clean samples are rejected and the robust accuracy remains stable.

6.1 Datasets and Defense/Attack Setup

We evaluate on MNIST (LeCun, 1998) and CIFAR-10 (Krizhevsky et al., 2009). We consider an
adversarial budget of ϵ = 0.3 in l∞ on MNIST and ϵ = 8/255 in l∞ on CIFAR-10 and CIFAR-100.
For defense, on MNIST, we use a LeNet architecture; on CIFAR-10 we use a ResNet-20 architecture.
In both cases, we train for 40 epochs with a learning rate of 0.001 using ADAM for optimization. On
MNIST, we use 40 iterations of PGD during training with a step size of 0.01. On CIFAR-10, we use
10 iterations of PGD in training with a step size of 2/255. In training TLDR, we set λ = 0.176 after a
warm start period in which λ = 0. We use a rejection radius of ϵ/4 for selective classifiers. For attack,
we use 10 iterations of GMSA on both datasets. On MNIST, we use 200 steps of PGD with a stepsize
of 0.01 while generating adversarial examples. On CIFAR-10, the PGD attacks use 100 steps with a
stepsize of 1/255. Defense settings used while training models in GMSA (including internal PGD
settings) are the standard defense settings. Internal optimizations in the calculation of LREJ use 10
steps of PGD with a stepsize of 15% of the rejection radius. We use λ′ = 1 in LREJ; we observe little
sensitivity to the parameter.

6.2 Attack Evaluation

Table 3 shows the results of different attack methods on TLDR. Previous work (Chen et al., 2022)
shows that transduction-aware attacks are necessary against transductive defenses; we observe that
attacks (PGD on LCE or LREJ and AutoAttack) from the traditional setting perform poorly against
our defense. We can also see that GMSA significantly outperforms even a rejection-aware transfer
attack (referred to as PGD targeting LREJ; note that PGD and AutoAttack do not target the final
model in this case, given the transductive setting, but instead target a proxy trained by the adversary);
see Algorithm 2 in Appendix B.5 for the full details.
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Attack MNIST CIFAR-10

PGD (LCE) 0.991 0.794
PGD (LREJ) 0.988 0.781
AutoAttack 0.989 0.756
GMSA (LCE) 0.988 0.853
GMSA (LREJ) 0.972 0.739

Table 3: Robust accuracy by different attacks on
TLDR. The strongest attack is boldfaced.

Loss MNIST CIFAR-10

AutoAttack (Croce & Hein, 2020) 0.980 0.592

LCE 0.977 0.524
LREJ(LCE) 0.974 0.470
LREJ 0.973 0.458

Table 4: Robust accuracy under different attack
losses on a fixed adversarially trained model
with rejection, AutoAttack for comparison. The
strongest attack is boldfaced.

This shows that GMSA is critical for attacking a transductive defender; while PGD and AutoAttack
are strong against an inductive model, they performs poorly facing transduction. Finally, we observe
that GMSA with LCE is much weaker than GMSA with LREJ. This shows another key component in
our adaptive attack, the loss LREJ, is also critical to get a strong attack against our defense.

To further investigate the importance of LREJ, we attack an adversarially trained model with rejection
with PGD on different losses: LREJ, cross-entropy LCE, and LREJ with LDB,h replaced by LCE, with
AutoAttack given for comparison. Table 4 shows that LREJ significantly outperforms both PGD
targeting alternative losses and AutoAttack. See Appendix C for an evaluation of the effectiveness
with which LREJ targets rejection using the binarization test (Zimmermann et al., 2022).

6.3 Robustness of TLDR

Setting Defense Attacker MNIST CIFAR-10
pREJ Robust accuracy pREJ Robust accuracy

Induction AT (Madry et al., 2018) AutoAttack – 0.897 – 0.448

Rejection only AT (with rejection) PGD (LREJ) 0.852 0.968 0.384 0.634

Transduction only RMC (Wu et al., 2020) GMSA (LCE) – 0.588 – 0.396
DANN (Ganin et al., 2016) GMSA (LCE) – 0.062 – 0.055
TADV (Chen et al., 2022) GMSA (LCE) – 0.943 – 0.541

Transduction+Rejection URejectron (Goldwasser et al., 2020) GMSA (LDISC) 0.274 0.721 0.000 0.145
Transduction+Rejection TLDR (ours) GMSA (LREJ) 0.126 0.972 0.208 0.739

Table 5: Results on MNIST and CIFAR-10. Robust accuracy is 1 - robust error; see Section 3. pREJ
is the percentage of inputs rejected. The baseline results are from (Chen et al., 2022). The strongest
attack against each defense is shown. The best result is boldfaced.

Setting Defense Architecture Attacker CIFAR-10 CIFAR-100
pREJ Robust accuracy pREJ Robust accuracy

Induction Peng et al. (2023) Ra WideResNet-28-10 AutoAttack – 0.651 – 0.372
Induction Peng et al. (2023) Ra WideResNet-70-16 AutoAttack – 0.711 – 0.388
Induction Wang et al. (2023) WideResNet-28-10 AutoAttack – 0.673 – 0.388
Induction Wang et al. (2023) WideResNet-70-16 AutoAttack – 0.707 – 0.427

Transduction+Rejection TLDR (ours) ResNet-20 GMSA (LREJ) 0.208 0.739 – –
Transduction+Rejection TLDR (ours) WideResNet-28-10 GMSA (LREJ) 0.111 0.816 0.171 0.579

Table 6: Comparison with state-of-the-art (Croce et al., 2020). The best result is boldfaced.

Baselines. (1) AT: adversarial training (Madry et al., 2018); (2) AT (with rejection): adversarial
training (AT) with rejection; (3) RMC (Wu et al., 2020); (4) DANN (Ganin et al., 2016); (5)
TADV (Chen et al., 2022); (6) Rejectron (Goldwasser et al., 2020). Among them, (1) is in the
traditional induction setting, (2) is rejection only, (3)(4)(5) are transduction only, and (6) incorporates
both transduction and rejection.

Evaluation. We attack the defenses and report the robust accuracy (1 - the robust error defined in
Section 3). To attack inductive classifiers, we use AutoAttack (Croce & Hein, 2020). For inductive
selective classifiers, we use PGD on the rejection-aware loss LREJ from Eqn (3). For transductive
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TLDR Components Attacker MNIST CIFAR-10
Rejection Ltest pREJ Robust accuracy pREJ Robust accuracy

✓ ✓ GMSA (LREJ) 0.588 0.967 0.208 0.739

✓ × GMSA (LREJ) 0.646 0.975 0.179 0.725

× ✓ GMSA (LCE) – 0.900 – 0.516

× × GMSA (LCE) – 0.935 – 0.516

Table 7: Ablation study of TLDR. The best result is boldfaced.

classifiers, we use GMSA which has been shown to be a strong adaptive attack on transduction (Chen
et al., 2022). Finally, for our transductive selective classifiers, we use our adaptive attack in Section 5.1
(roughly GMSA with LREJ). For Rejectron (Goldwasser et al., 2020) we use GMSA with a loss
function LDISC targeting their defense; see Appendix B.6 for the details. For transductive models,
we report the stronger of GMSAMIN and GMSAAVG. Inductive models are trained with standard
adversarial training (Goodfellow et al., 2015), and transductive models with the TLDR loss in Eqn
(1). As Rejectron depends heavily on a key hyperparameter determining confidence needed to reject,
we report the results for the parameter value strongest against our attack. The best-performing value
on CIFAR-10 effectively eliminated the possibility of rejection (hence the rejection rate of 0); other
choices resulted in near-0 robust accuracy.

Comparison of Defenses. Table 5 shows the robust accuracy and rejection rate of different methods.
We observe that either transduction or rejection can improve the performance, while combining both
techniques leads to the best results. In particular, our defense outperforms existing transductive
defenses such as RMC and DANN. Results for l2 perturbations are given for l2 in Appendix C. See
Table 6 for a comparison to the state-of-the-art. With a much smaller ResNet-20 architecture, TLDR
outperforms the strongest existing baseline on CIFAR-10; with a WideResNet-28-10 architecture we
obtain improvements in robust accuracy above the state-of-the-art of over 10% and 15%, respectively,
on CIFAR-10 and CIFAR-100.

Discussion on Evaluation. As our key focus is on demonstrating the potential advantages of one
setting (transduction+rejection) over others, comparisons between settings are necessary. In each
setting, robust accuracy represents the same concept, the fraction of samples on which we are correct.
The difference between settings lies in their different notions of “correctness”; each concept of
correctness incorporates both the potential advantages and the disadvantages of each setting, e.g. in
the rejection case, a new type of error is possible: rejecting a clean sample. Hence, we compare the
fraction of samples on which we can be correct between settings (and between defenses in the same
setting).

6.4 Ablation Study of TLDR

Compared to traditional defenses, TLDR has two novel components: using the given test inputs in
training the classifier (the second term in Equation (1), referred to as Ltest), and transforming the
trained classifier into one with rejection. Table 7 shows the results of the ablation study on these two
components. In all cases, rejection significantly improves results. The use of transduction is helpful
on CIFAR-10, but reduces performance on MNIST, potentially due to the lower difficulty of deriving
robust predictions on MNIST; hence, the knowledge of the specific test inputs is less useful.

7 Conclusion

Existing works on leveraging transduction and rejection gave mixed results on their benefits for
adversarial robustness. In this work we take a step in realizing their promise in practical deep
learning settings. Theoretically, we show that a novel application of Tramèr’s results give improved
sample complexity for robust learning in the bounded perturbations setting. Guided by our theory, we
identified a practical robust learning algorithm leveraging both transduction and rejection. Systematic
experiments confirm the benefits of our constructions. There are many future avenues to explore,
such as improving the theoretical bounds, and improving the efficiency of our algorithms.
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Appendix

A Proof Details

Before introducing the proof for the generalization results, we first need to make some additional
definitions. We define the empirical robust risk as

R̂U(h; S ) =
∑

(x,y)∈S

 sup
z∈U(x)

1{h(z) , y}


And we can define the empirical robust risk under rejection accordingly:

R̂rej
U

(h; S ) =
∑

(x,y)∈S

 sup
z∈U(x)

1{h(x) , y ∨ h(z) < {y,⊥}}


And we can define the corresponding robust empirical risk minimization procedure (under rejection)
as follows:

RERMH (S ) := argmin
h∈H

R̂U(h; S )

RERMrej
H

(S ) := argmin
h∈H

R̂rej
U

(h; S )

A.1 Rejection Only: Realizable Case

Definition A.1 (Realizable Robust PAC Learnability under Rejection). For Y = {0, 1}, ∀ϵ, δ ∈
(0, 1),H = Hc×Hr, the sample complexity of realizable robust (ϵ, δ) - PAC learning ofH with respect
adversaryU under rejection, denoted asMRE(ϵ, δ;H ,U), is defined as the smallest m ∈ N ∪ {0} for
which there exists a learning ruleA : (X×Y)m 7−→ (Y∪ {⊥})X s.t. for every data distributionD over
(X × Y)m where there exists a predictor with rejection option h∗ ∈ H with 0 risk, RU,rej(h∗;D) = 0
with probability at least 1 − δ over S ∼ Dm,

Rrej
U

(A(S );D) ≤ ϵ
If no such m exists,MRE(ϵ, δ;H ,U) = ∞. We say thatH is robustly PAC learnable under rejection
in the realizable setting with respect to adversaryU if ∀ϵ, δ ∈ (0, 1),MRE(ϵ, δ;H ,U) is finite.
Theorem A.2 (Sample Complexity for Realizable Robust PAC Learning under Rejection). In the
realizable setting, for anyH = Hc ×Hr andU, and any ϵ, δ ∈ (0, 1/2),

MRE(ϵ, δ;H ,U) = 2O((dr+dc) log(dr+dc)) 1
ε

log
(

1
ε

)
+ O

(
1
ε

log
(

1
δ

))
(4)

where dr = VC(Hr), dc = VC(Hc).

The idea of the proof is to adapt the classical sample compression argument (Littlestone & Warmuth,
1986) with improvements based on (Montasser et al., 2019; Hanneke et al., 2019; Moran& Yehudayoff,
2016). The generalization result in the inductive case directly comes from Equation (29).

Proof. First, we define the concept of sample compression scheme and sample compression algorithm.

Definition A.3 (Sample Compression Scheme). Given ∀m ∈ N samples, S ∼ Dm, a sample
compression scheme of size k is defined by the following pair of functions:

1. Compression function κ : (X ×Y)m 7→ (X ×Y)≤k.

2. Reconstruction function: ρ : (X ×Y)≤k 7→ H .

An algorithmA is a sample compression algorithm if ∃κ, ρ s.t. A(S ) = (κ ◦ ρ)(S ).

Fix ϵ, δ ∈ (0, 1), m > 2(dr + dc) log(dr + dc). Let the compression parameter, n =
O

(
(dr + dc) log (dr + dc)

)
. Let D be any distribution, then by realizability of the learner,

infh∈H Rrej
U

(h;D) = 0. Thus, ∀S sampled fromD, we have R̂
rej
U (RERMrej

H
(S ); S ) = 0.
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Compression First, we define a compression function κ as through the following inflation and
discretization procedure. Given the training data S := {(xi, yi)}i∈[m], we define the following index
mapping:

I(x) = min{i ∈ [m] : x ∈ U(xi)}, ∀x ∈
⋃
i∈[m]

U(xi). (5)

In another word, this index function outputs the first indexed training sample to include x in its
neighborhood.

Then, we consider the set of RERM mapping learned by a size n subset of the training data:

Ĥ = {RERMrej
H

(L) : L ⊆ S , |L| = n}. (6)

Note that

|Ĥ | ≤ |{L : L ⊆ S , |L| = n}| =
(

m
n

)
≤

(em
n

)n
. (7)

Then, we inflate the data in the following way:

SU =
⋃
i∈[m]

{(
xI(x), x, yI(x)

)
: x ∈ U (xi)

}
. (8)

Note that xI(x) can be different from xi.

Let’s define the following transformation T :

T (h)(x, x′, y) := 1{h(x) , y ∨ h(x′) < {y,⊥}}, h ∈ H . (9)

And we can obtain the transformed hypothesis class T (H) := {T (h)|h ∈ H}.

Now, we proceed to define the dual space G of T (H) as the following set of functions.

G := {g(x,x′,y)|g(x,x′,y)(t) = t(x, x′, y), t ∈ T (H)}. (10)

We denote the VC dimension of the dual space as VC∗(T (H)) := VC(G).

By Lemma A.1,

VC(T (H)) = O
(
(dr + dc) log (dr + dc)

)
. (11)

By the classic result in (Assouad, 1983), the VC dimension of the dual space satisfies the following
inequality:

VC∗(T (H)) < 2VC(T (H))+1. (12)

Now, we can construct the compressed dataset ŜU as the following. For each (x, x′, y) ∈ SU ,
{g(x,x′,y)(t)}t∈T (Ĥ) gives a labeling. When ranging over (x, x′, y) ∈ SU , the labeling may not be unique.
So for each unique labeling, we choose a representative (x, x′, y) ∈ SU , and let ŜU be the set of the
representatives. That is:

ŜU =
{
(x, x′, y) ∈ SU

∣∣∣∣∣ {g(x,x′,y)(t)}t∈T (Ĥ) provides a unique labeling
}
. (13)

Intuitively, ŜU split the infinite size dataset SU into finite size according to the labeling of T (Û) on
the dual space. Thus, ŜU is not necessarily unique but always exists. And |ŜU | equals the number of
possible labeling for T (Ĥ).

Let d∗ := VC(G) = VC∗(T (H)) denote the VC-dimension of G, the dual hypothesis class of
T (Ĥ) (Assouad, 1983). By applying Sauer’s Lemma, we obtain that for |T (Ĥ)| > d∗,

|ŜU | ≤
e|T (Ĥ)|

d∗

d∗

. (14)
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Let n = Θ (VC (T (H))). For m ≥ n, we have

|ŜU | ≤
(
e|T (Ĥ)|

)d∗
(15)

≤
(
e|Ĥ |

)d∗
(16)

≤

(
e
(em

n

)n)d∗
(17)

≤

(
e2m

n

)nd∗

(18)

=

(
e2m

VC(T (H))

)Θ(VC(T (H))·VC(T (H∗)))

. (19)

Now we have obtain the compression map: κ(S ) = ŜU .

Reconstruction Now, we want to reconstruct a hypothesis from ŜU . First, suppose we have a
data distribution over ŜU , denoted as P. This distribution P over samples will be later used in the
α−boosting procedure.

Then, we sample the set of n i.i.d. samples from P and obtain S ′ ∈ ŜU . By classic PAC learning
guarantee (Blumer et al., 1989), for n = Θ(VC(T (H))) = Θ(dr + dc) log(dr + dc), we have with
non-zero probability ∀t ∈ T (H) with

∑
(x,x′,y)∈S ′ t(x, x′, y) = 0 implies E(x,x′,y)∼Pt(x, x′, y) < 1/9.

Let L = {(x, y) : (x, x′, y) ∈ S ′} ⊆ S , and tP = T (RERMrej
H

(L)). Since R̂
rej
U (RERMrej

H
(L); L) = 0,

∀(x, x′, y) ∈ S ′, tP(x, x′, y) = 0. Thus, ∀P over ŜU , there exists a weak learner tP ∈ T (Ĥ), s.t.
E(x,x′,y)∼P tP(x, x′, y) < 1/9.

Now, we use tP as a weak hypothesis in a boosting algorithm, specifically α−boost algorithm from
(Schapire & Freund, 2012) with ŜU as the dataset and Pk generated at each round of the algorithm.
Then with appropriate choice of α, running α−boosting for K = O(log(|ŜU |)) rounds gives a sequence
of hypothesis h1, . . . , hK ∈ Ĥ and the corresponding ti = T (hi) such that ∀(x, x′, y) ∈ ŜU ,

1
K

K∑
k=1

1{hk(x) , y ∨ hk(x′) < {y,⊥}} (20)

=
1
K

K∑
k=1

tk(x, x′, y) (21)

<
2
9
<

1
3
. (22)

Since ŜU includes all the unique labellings, 1
K

∑K
k=1 tk(x, x′, y) < 1

3 , ∀(x, x′, y) ∈ ŜU implies

1
K

K∑
k=1

tk(x, x′, y) <
1
3
, ∀(x, x′, y) ∈ SU . (23)

Let h̄ := Majority(h1, . . . , hK), i.e., h̄ outputs the prediction in Y ∪ {⊥} that receives the most votes
from {h1, . . . , hK}. Then ∀(x, x′, y) ∈ ŜU ,

1{h̄(x) , y ∨ h̄(x′) < {y,⊥}} = 0. (24)

This is because: (1) on x, less than 1/3 of hi’s do not output y, so h̄(x) = y; (2) on x′, less than 1/3 of
hi’s do not output y or ⊥, so the majority vote must be in y or ⊥, i.e., h̄(x) ∈ {y,⊥}.

In summary, given the same m training samples, we can simply find a h̄ with 0 robust error on S :

R̂
rej
U (h̄;D) =

m∑
i=1

 sup
z∈U(x)

1{h̄(x) , y ∨ h̄(z) < {y,⊥}}
 = 0. (25)
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Now we have the compression set with size:

nK = O(VC(T (H)) log(|ŜU |)) = O(VC(T (H))2 VC∗(T (H)) log(m/VC(T (H))))

Then, we apply Lemma 11 of (Montasser et al., 2019) (Replacing RU with Rrej
U

still holds), we obtain
for sufficiently large m, with probability at least 1 − δ,

Rrej
U

(h̄;D) ≤ O
(
VC(T (H))2 VC∗(T (H))

1
m

log(m/VC(T (H))) log(m) +
1
m

log(1/δ)
)
. (26)

We then can extend the sparsification procedure from (Moran & Yehudayoff, 2016; Montasser
et al., 2019) to the rejection scenario. Since t1, . . . , tK ∈ T (Ĥ), the classic uniform convergence
results (Shalev-Shwartz & Ben-David, 2014) implies that we can sample N = O(VC∗(T (H))) i.i.d.
indices i1, . . . , iN ∼ Uniform([K]) and obtain:

sup
(x,x′,y)∈SU

∣∣∣∣∣∣∣∣ 1
N

N∑
j=1

ti j (x, x′, y) −
1
K

T∑
i=1

ti(x, x′, y)

∣∣∣∣∣∣∣∣ < 1
18

(27)

And thus, we can combine Equation (20) with Equation (27) and obtain:

∀(x, x′, y) ∈ SU ,
1
N

N∑
j=1

ti j (x, x′, y) ≤ −
1

18
+

1
K

K∑
i=1

tk(x, x′, y) < −
1
18
+

4
9
=

1
2

we can further obtain an improved hypothesis t̄′ := Majority(ti1 , . . . tiN ) with

t̄′(x, x′, y) = 0,∀(x, x′, y) ∈ SU
Thus, the compression set has a reduced size:

nN = O(VC(T (H)) · VC∗(T (H)))

Now, we apply Lemma 11 of (Montasser et al., 2019) and can obtain the following improved bound.
Applying similar strategy from Equation (24), we can obtain

h̄
′

:= Majority(hi1 , . . . hiN ) = ρ(ŜU) = A(S ) (28)

which is our full reconstruction map.

Then, for large sample size m ≥ c VC(T (H)) VC∗(T (H)) (c is a sufficiently large constant), with
probability at least 1 − δ,

RU,rej(h̄′;D) ≤ O
(
VC(T (H)) VC∗(H)

1
m

log(m) +
1
m

log(1/δ)
)

(29)

Plugging in Lemma Appendix A.1 and solving for m gives

MRE(ϵ, δ;H ,U) = 2O(VC(T (H))) 1
ε

log
(

1
ε

)
+ O

(
1
ε

log
(

1
δ

))
(30)

= 2O((dr+dc) log(dr+dc)) 1
ε

log
(

1
ε

)
+ O

(
1
ε

log
(

1
δ

))
(31)

□

Lemma [VC dimension of robust loss with rejection] Let VC(Hc) = dc, and VC(Hr) = dr. Then,
VC(T (H)) = O

(
(dr + dc) log (dr + dc)

)
.

Proof. Suppose d > dr + dc.

By definition of VC dimension, the max number of labeling of d points is 2d on h ∈ T (H). And since
the label of h is a deterministic function of hc and hr, by Sauer’s Lemma, the number of labeling of h
is at most O(ddr ) × O(ddc ) = O(ddr+dc ).

Thus, 2d = O(ddr+dc ). And d = O((dr + dc) log(dr + dc)).

If d < dr + dc, d = O(dr + dc) log(dr + dc) by definition.

□
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A.2 Rejection Only: Agnostic Case

Now, we define notion of PAC learnability in the agnostic case under rejection setting as the follows:
Definition A.4 (Robust PAC Learnability under Rejection). For Y = {0, 1}, ∀ϵ, δ ∈ (0, 1),H =
Hc ×Hr, the sample complexity of robust (ϵ, δ) - PAC learning ofH with respect to perturbationU
under rejection, denoted asMAG(ϵ, δ;H ,U), is defined as the smallest m ∈ N ∪ {0} for which there
exists a learning ruleA : (X ×Y)m 7−→ (Y ∪ {⊥})X s.t. for every data distributionD over (X ×Y)m,

Rrej
U

(A(S );D) ≤ OPTrej
U
+ ϵ

with probability at least 1 − δ over S ∼ Dm. If no such m exists,MAG(ϵ, δ;H ,U) = ∞. We say that
H is robustly PAC learnable under rejection ifMAG(ϵ, δ;H ,U) is finite for all ϵ, δ ∈ (0, 1).
Lemma A.5. LetMRE =MRE(1/3, 1/3;H ,U). Then,

MAG(ϵ, δ;H ,U) = O
(
MRE

ϵ2
log2

(
MRE

ϵ

)
+

1
ϵ2

log
(

1
δ

))
(32)

Proof. The proof detail follows exactly the same from the Proof of Theorem 8 from (Montasser et al.,
2019) with the loss replaced. □

Theorem A.6 (Sample Complexity for Agnostic Robust PAC Learning under Rejection). In the
agnostic setting, for anyH = Hc ×Hr andU, and any ϵ, δ ∈ (0, 1/2),

MAG(ϵ, δ;H ,U) = O
(
VC(T (H)) VC∗(T (H)) log (VC(T (H)) VC∗(T (H))) (33)

1
ε2 log2

(
VC(T (H)) VC∗(T (H))

ε

)
+

1
ε2 log

(
1
δ

))
(34)

= 2O(VC(H)) 1
ε2 log2

(
1
ε

)
+ O

(
1
ε2 log

(
1
δ

))
(35)

= 2O((dr+dc) log(dr+dc)) 1
ε2 log2

(
1
ε

)
+ O

(
1
ε2 log

(
1
δ

))
(36)

where dr = VC(Hr), dc = VC(Hc).

Proof. Combining results from Lemma Lemma A.5 and Theorem A.2 gives the complexity result.

Solving Equation (35) gives the following generalization result given in Table 1

Pr
(x,y)∼Dn

[
Rrej
U

(A(x,y);D) ≤ ϵ
]
≥ 1 − δ

where ϵ = O
(√

2VC(T (H))+log(1/δ)
n

)
. □

A.3 Transduction+Rejection: Realizable Case

We will prove a more general result which then implies Theorem 4.1. First, the training data can
also be perturbed, i.e., the adversary perturbs z ∈ U(x) and z̃ ∈ U(x̃), and the learner A are given
(z,y, z̃) instead of (x,y, z̃). The criterion in the transductive rejection error (see Table 2) is then the
worst case over both z ∈ U(x) and z̃ ∈ U(x̃). Second, we will consider OPTU3 = 0 and prove the
guarantee toleratingU2. This then implies the guarantee toleratingU when OPTU3/2 = 0.

In general the set of optimally learned classifiers ∆ is defined as follows Montasser et al. (2021):

∆U
H

(z,y, z̃) =

{h ∈ H : RU−1 (h; z,y) = 0 ∧ RU−1 (h; z̃) = 0} (Realizable Case)
arg min

h∈H
max {RU−1 (h; z,y),RU−1 (h; z̃)} (Agnostic Case)

where

RU(h; z,y) = sup
x̃∈U(z)

1
n

n∑
i=1

1{h(x̃i) , yi}

17
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and
RU(h; z) = RU(h; z, h(z)).

Recall the transformation F which we define following Tramèr Tramer (2022) in Section 4.

Then, we define the relaxed robust shattering dimension following Montasser et al. (2021):
Definition A.7 (Relaxed Robust Shattering Dimension). A sequence z1, . . . , zk ∈ X is relaxed U-
robustly shattered by H , if ∀y1, . . . , yk ∈ {±1}: ∃xy1

1 , . . . , x
yk
k ∈ X and ∃h ∈ H such that zi ∈ U(xyi

i )
and h(U(xyi

i )) = yi, ∀1 ≤ i ≤ k. The relaxedU-robust shattering dimension rdimU(H) is defined as
the largest k for which there exist k points that are relaxedU-robustly shattered byH .

Define the set of intermediate perturbations as follows:
Definition A.8 (Intermediate Perturbations). Given x and z and perturbationsU1 andU2, the set of
possible intermediate perturbations between x and z is

ipU1,U2
(x, z) =

{
{x} if x = z
U1(x) ∩U−1

2 (z) otherwise
Theorem A.9. For any n ∈ N, δ > 0, classH , perturbation setU, and distributionD over X ×Y
satisfying OPTU−1U = 0:

Pr
(x,y)∼Dn

(x̃,ỹ)∼Dn

[
∀z ∈ U3(x),∀z0 ∈ ipU,U2 (x, z),∀z̃ ∈ U3(x̃),∀z̃0 ∈ ipU,U2 (x̃, z̃),
∀ĥ ∈ FU

(
∆U
H

(z0,y, z̃0)
)

: errrej(ĥ;x,y, x̃, z̃, ỹ) ≤ ϵ

]
≥ 1 − δ

where ϵ = rdim
U−1 (H) log(2n)+log(1/δ)

n ≤
VC(H) log(2n)+log(1/δ)

n .

Proof. We adapt the strategy of Theorem 5 of Tramer (2022) for the rejection scenario.

By setting z = z0, z̃ = z̃0 and applying Theorem 1 of Montasser et al. (2021), we obtain the following

Pr
(x,y)∼Dn

(x̃,ỹ)∼Dn

[
∀z0 ∈ U(x),∀z̃0 ∈ U(x̃),∀h ∈ ∆U

H
(z0,y, z̃0) : errz̃0,ỹ(h) ≤ ϵ

]
≥ 1 − δ (37)

as OPTU−1(U) = 0.

Suppose (x,y), (x̃, ỹ) ∼ Dn. Now, let z ∈ U3(x), z̃ ∈ U3(x̃) and take some z0 ∈ ipU,U2 (x, z), z̃0 ∈

ipU,U2 (x̃, z̃), both of which are necessarily nonempty asU3 = U2U, and ĥ ∈ FU
(
∆U
H

(z0,y, z̃0)
)
.

Write ĥ = FU(h) for some h ∈ ∆U
H

(z0,y, z̃0).

From Equation (37) (replacing z with z0 and z̃ with z̃0), it is enough to show that
errrej(ĥ;x,y, x̃, z̃, ỹ) ≤ errz̃0,ỹ(h).

Suppose that ĥ incurs an error under rejection at point z̃i; it is enough to show that h incurs an error
at z̃0i . Furthermore, note that because h ∈ ∆U

H
(z0,y, z̃0), we have that h(U−1(z̃0i )) = {h(z̃0i )} as

z̃0i ∈ U
−1(z̃0i ). Write h(z̃0i ) = ŷi.

We have one of the following:

1. ĥ(z̃i) , ỹi and z̃i = x̃i

2. ĥ(z̃i) < {ỹi,⊥} and z̃i , x̃i

In the first case, we must have z̃0i = x̃i as well as z̃0i is an intermediate perturbation between x̃i and z̃i,
so, as h(U−1(z̃i)) = h(U−1(z̃0i )) = ŷi, ĥ does not reject z̃0i and ĥ(z̃0i ) = ŷi. Hence, h(z̃0i ) = ŷi as well
so, as ĥ makes an error at z̃i, ŷi , y and so h makes an error at z̃0i .

In the second case, if h(U−1(z̃i)) , {h(z̃i)}, then ĥ would reject z̃i and hence not incur an error.
So h(U−1(z̃i)) = {h(z̃i)} and so ĥ(z̃i) = h(z̃i). Since z̃0i ∈ U(x̃i) ∩ U−2(z̃i), there exists some
z̃′0i
∈U(z̃0i ) ∩U

−1(z̃i) and so, h(z̃0i ) = h(z̃′0i
) = h(z̃i) = ĥ(z̃i) = ŷi, so h incurs an error at z̃0i .

In either case, we have that h makes an error at z̃0i , showing the result. □
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Sample Complexity Given ϵ and δ, we need

rdimU−1 (H) log(2n) + log(1/δ)
n

≤ ϵ

for the result to hold.

Now, noting that log(2n) = 1 + log n ≤ 1 +
√

n for n ≥ 16; hence we need to solve for the n such that

rdimU−1 (H)(1 +
√

n) + log(1/δ)
n

= ϵ

or, equivalently
rdimU−1 (H) + log( 1

δ
) +
√

n

n
= ϵ

or
√

n = nϵ − rdimU−1 (H) − log(
1
δ

)

or

n = n2ϵ2 − 2ϵ
(
rdimU−1 (H) + log(

1
δ

)
)

n +
(
rdimU−1 (H) + log(

1
δ

)
)2

or

n2ϵ2 −

(
2ϵ

(
rdimU−1 (H) + log(

1
δ

)
)
+ 1

)
n +

(
rdimU−1 (H) + log(

1
δ

)
)2

= 0.

Solving, the result holds if

n ≥
2ϵ

(
rdimU−1 (H) + log( 1

δ
)
)
+ 1 +

√
(2ϵ

(
rdimU−1 (H) + log( 1

δ
)
)
+ 1)2 − 4

(
rdimU−1 (H) + log( 1

δ
)
)2
ϵ2

2ϵ2

= O

 rdimU−1 (H) + log( 1
δ
)

ϵ
+

√
rdimU−1 (H) + log( 1

δ
)

ϵ
3
2


and, similarly, using

rdimU−1 (H) log(2n) + log(1/δ)
n

≤
VC(H) log(2n) + log(1/δ)

n
we have the result if

n = O

VC(H) + log( 1
δ
)

ϵ
+

√
VC(H) + log( 1

δ
)

ϵ
3
2


Remark: If OPTU−1U = 0, we can guarantee the existence of an ĥ which satisfies our conditions,
but we can’t guarantee that we will find it, as we cannot find ∆U

H
(z0,y, z̃0) without z0 and z̃0. We

can, however, construct that an algorithm which, if it returns a model, always returns on which meets
the conditions.

Simplified Result To obtain a bound which does not involve an intermediate perturbation step, we
may let

∆Urej,H (z,y, z̃) :=

∆̂ ∪ ∆U′rej,H (z,y, z̃) |∆̂U
H

(z,y, z̃)(z̃)| = 1, and
l∆U′rej,H (z,y, z̃) otherwise

where
∆U′rej,H (z,y, z̃) =

⋂
z̃′∈U−2(z̃)

∆U
H

(z,y, z̃′)

where
∆̂U
H

(z,y, z̃) =
⋃

z̃′∈U−2(z̃)

∆U
H

(z,y, z̃′).
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If |∆̂U
H

(z,y, z̃)(z̃)| = 1, then as ∆U
H

(z0,y, z̃0)(z̃) ⊆ ∆̂U
H

(z,y, z̃)(z̃), ∆̂U
H

(z,y, z̃)(z̃) =

∆U
H

(z0,y, z̃0)(z̃) since ∆U
H

(z0,y, z̃0) is nonempty as OPTU−1(U) = 0.

Note that for common classes of perturbations, we can simplify the ∆′rej. Note that the conditions of
the theorem hold for perturbations defined via ϵ-balls in a metric.

Lemma A.10. In the realizable case, ifU =U−1,

∆U′rej,H (z,y, z̃) = ∆U
3

H
(z,y, z̃)

Proof. Suppose h ∈ ∆U′rej,H (z,y, z̃). Then by the definitions of ∆rej and ∆, for any z′ ∈ U−2(z), z̃′ ∈
U−2(z̃), we have that, for any x ∈ U−1(z′) and x̃ ∈ U−1(z̃′), h(xi) = h(z′i) and h(x̃i) = h(z̃′i). Now,
as there exists some z′′ ∈ U(z′) ∩U−1(bz) and h(x) = h(z′) = h(z′′) = h(z) by an argument similar
to that in Theorem A.9 and similarly for x̃ and z̃, we have that for any x ∈ U−3(z) and x̃ ∈ U−3(z̃),
h(xi) = h(zi) and h(x̃i) = h(z̃i), and so

∆U′rej,H (z,y, z̃) ⊆ ∆U
3

H
(z,y, z̃)

Now, if h ∈ ∆U
3

H
(z,y, z̃), we have that, for any x ∈ U−3(z) and x̃ ∈ U−3(z̃), h(xi) = h(zi) and

h(x̃i) = h(z̃i). Now, suppose z′ ∈ U−2(z), z̃′ ∈ U−2(z̃). Since x ∈ U(x) for all x, z′ ∈ U−3(z), z̃′ ∈
U−3(z̃) as well. Hence, h(z′i) = h(zi) and h(z̃′i) = h(z̃i). Now, if x ∈ U−1(z′) and x̃ ∈ U−1(z̃′), we
have x ∈ U−3(z) and x̃ ∈ U−3(z̃) and so h(xi) = h(zi) and h(x̃i) = h(z̃i). But then h(xi) = h(z′i) and
h(x̃i) = h(z̃′i). Hence, we have that

∆U
3

H
(z,y, z̃) ⊆ ∆U′rej,H (z,y, z̃)

and the result follows. □

From this, we immediately derive the corollary

∆Urej,H (z,y, z̃) ⊇ ∆U
3

H
(z,y, z̃).

Remark: Note that this means that ∆U′rej,H (z,y, z̃) is nonempty if OPTU6 = 0, and, by the definition

of ∆, ∆ is also nonempty if |∆̂U
H

(z,y, z̃)(z̃)| = 1, i.e. if there exists only one possible labeling of the
z̃ which is robust at some possible intermediate perturbation.

Now, by the above and from Theorem A.9 we may immediately derive Theorem 4.1 by noting
that if U = U−1, U−1U = U2, and if ĥ ∈ FU(∆U

H
(z,y, z̃)) = FU1/3 (∆U

1/3

rej,H (z,y, z̃)) then we have

ĥ ∈ FU1/3

(
∆U

1/3

H
(z0,y, z̃0)

)
for some z0 ∈ ipU1/3,U2/3 (x, z) and z̃0 ∈ ipU1/3,U2/3 (x̃, z̃).

Furthermore, following from Lemma A.10, ∆U
1/3

rej,H (z,y, z̃) is nonempty is OPTU2 = 0, showing
completeness that the ∆ of Theorem 4.1 is nonempty under that condition, as well as, as noted above,
under the condition that there exists only one possible labeling consistent on a potential intermediate
perturbation.

Now, we demonstrate that there exists a data distribution for which the transductive learner implied by
∆ finds a solution for which the bound applies, but where no transductive learner has zero asymptotic
robust error

Theorem A.11. There exists a distribution D over X × Y, a hypothesis class H , and
perturbation set U for which, with probability ≥ 1 − 21−n, for any (x,y), (x̃, ỹ) ∼

Dn and any z̃ ∈ U3(z̃), ∆Urej,H (x,y, z̃) is nonempty and for all h ∈ ∆Urej,H (z,y, z̃),

errrej
U

(h;x,y, x̃, z̃, ỹ) = 0 but, there exists no transductive learner (without rejection) A for which
limn→∞ E

[
supz̃∈U(x̃) errU(A(x,y, z̃);x,y, z̃, ỹ)

]
< 1/2.

Proof. Consider the simple discrete distributionD with (x, y) ∼ D is (1, 1) with probability 1/2 and
(−1, 0) with probability 1/2. Now, letU(x) = {y | |y − x| < 1.5} and letH be the class of
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Now, letH be the class of threshold functions hw(x) = 1x≥w and h−w(x) = 1x<w for integer w.

First, note that with probability 1 − 21−n both (−1, 0) and (1, 1) appear in x. In that case, any
h ∈ ∆U

H
(x,y, z̃′) must be robust at −1 and 1 up to a radius of 1/2; and hence h must be hw for some

w ∈ [−1/2, 1/2] (and hence, w = 0). Hence, |∆̂| ≤ 1; note that for any possible perturbation of −1
or 1 is within U2 (i.e. within 1 unit of) either −1 or 1; hence, there always exists some z̃′ where
∆U
H

(x,y, z̃′) is nonempty.

But then, there must exist exactly one element in ∆̂, and so ∆ is nonempty. Consider z̃i. We have two
cases:

If z̃i ∈ [−1,−1/2] ∪ [1/2, 1], then, as h is robustly correct with radius 1/2 about 1 and −1, then
x̃i = sign(z̃i) and hence h(x̃i) = sign(z̃i). If x̃i = z̃i we do not reject as h is robust with radius 1/2
about −1 and 1. Thus, we do not incur an error at z̃i.

If z̃i ∈ (−1/2, 1/2), then z̃i must be perturbed. But we have both positive and negative values within
1/2 of z̃i, and so FU(z̃i) =⊥. Hence, we do not occur an error at z̃i.

In all cases, we do not incur an error if both x = −1 and x = 1 appear in the training data, and so
errrej
U

(h;x,y, x̃, z̃, ỹ) is 0 with probability ≥ 1 − 21−n.

To see that there exists no transductive algorithm (without rejection) that can have asympotic error
below 1/2, note that any x̃ can be perturbed to z̃ where all z̃ are 0; hence, samples from class 0 and
class 1 are indistinguishable and the minimum error on z̃ achievable by h is the minimum of the
fraction of the x̃ which are −1 and the fraction which are 1. As n→ ∞, these both tend to 1/2 and
the result follows. □

A.4 Transduction+Rejection: Agnostic Case

Note that, ifU can be decomposed into a formU = (U1/3)3 whereU1/3 = U−1/3 (as with standard
perturbations in lp), we obtain a bound which depends on OPTU2/3 rather than OPTU2 , enabling, for ĥ
satisfying the conditions, much stronger guarantees if OPTU2/3 << OPTU2 . Note that as ∀x x ∈ U(x),
∀xU2/3(x) ⊆ U2(x), and so OPTU2/3 ≤ OPTU2 .
Theorem A.12. For any n ∈ N, δ > 0, classH , perturbation setU, and distributionD over X ×Y:

Pr
(x,y)∼Dn

(x̃,ỹ)∼Dn

[
∀z ∈ U3(x),∀z0 ∈ ipU,U2 (x, z),∀z̃ ∈ U3(x̃),∀z̃0 ∈ ipU,U2 (x̃, z̃),
∀ĥ ∈ FU

(
∆U
H

(z0,y, z̃0)
)

: errrej(ĥ;x,y, x̃, z̃, ỹ) ≤ ϵ

]
≥ 1 − δ

where

ϵ = min

2 OPTU−1U +O


√

VC(H) + log(1/δ)
n

 , 3OPTU−1U + O


√

rdimU(H) ln(2n) + ln(1/δ)
n


 .

Proof. Suppose (x,y), (x̃, ỹ) ∼ Dn. Now, let z ∈ U3(x), z̃ ∈ U3(x̃) and take some z0 ∈

ipU,U2 (x, z), z̃0 ∈ ipU,U2 (x̃, z̃), both of which are necessarily nonempty, and ĥ ∈ FU
(
∆U
H

(z0,y, z̃0)
)
.

Write ĥ = FU(h) for some h ∈ ∆U
H

(z0,y, z̃0).

We will begin as in Theorem A.9. As before, there are two cases in which ĥ can incur an error at z̃i:

1. ĥ(z̃i) , ỹi and z̃i = x̃i

2. ĥ(z̃i) < {ỹi,⊥} and z̃i , x̃i

Now, if z̃i = x̃i, an error occurs if ĥ rejects z̃i or if h robustly predicts some ŷi , ỹi; hence an error
occurs if h is notU−1-robust at z̃0i or if h(z̃0i ) , ỹi.

Otherwise, h must beU−1-robust at z̃i, as, otherwise, ĥ would reject z̃i. Hence, as there exists some
z̃′0i
∈ U(z̃0i )∩U

−1(z̃i), if h isU-robust at z̃0i , we must have h(z̃i) = h(z̃0i ), and so, if ĥ makes an error,
h is notU−1-robust at z̃0i or h(z̃0i ) , ỹi.
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Now, in both cases, errors only occur if h is notU−1-robust at z̃0i or h(z̃0i ) , ỹi. As x̃i ∈ U
−1(z̃0i ), we

have, equivalently, that an error occurs if h is notU−1-robust at z̃0i or h(x̃i) , ỹi.

Hence,
errrej(ĥ;x,y, x̃, z̃, ỹ) ≤ errrej(h; x̃, ỹ) + RU−1 (h; z̃0)

Now, the right hand is exactly what is bounded in Theorem 2 of Montasser et al. (2021); as we have
h ∈ ∆U

H
(z0,y, z̃0), we have

errrej(ĥ;x,y, x̃, z̃, ỹ) ≤ errrej(h; x̃, ỹ) + RU−1 (h; z̃0) ≤ ϵ
where

ϵ = min

2 OPTU−1U +O


√

VC(H) + log(1/δ)
n

 , 3OPTU−1U + O


√

rdimU(H) ln(2n) + ln(1/δ)
n




with probability ≥ 1 − δ by its proof. □

As in the realizable case, we can immediately derive the following corollary. However, we cannot
simplify the definition of ∆rej as before; see Lemma A.14.
Corollary A.13. For any n ∈ N, δ > 0, classH , perturbation setU whereU = U−1, and distribution
D over X ×Y:

Pr
(x,y)∼Dn

(x̃,ỹ)∼Dn

 ∀z ∈ U3(x),∀z̃ ∈ U3(x̃),∀ĥ ∈ FU
(
∆Urej,H (z,y, z̃)

)
:

errrej(ĥ;x,y, x̃, z̃, ỹ) ≤ ϵ

 ≥ 1 − δ

where

ϵ = min

2 OPTU−1U +O


√

VC(H) + log(1/δ)
n

 , 3OPTU−1U + O


√

rdimU(H) ln(2n) + ln(1/δ)
n


 .

Lemma A.14. In the agnostic case, we have that ifU = U−1,

∆Urej,H (z,y, z̃) ⊆ ∆U
3

H
(z,y, z̃)

Proof. By the definition of R, we have

RU−3 (h; z̃) =
1
n

n∑
i=1

1
{
∃x̃i ∈ U

−3 (z̃i) : h (x̃i) , h (z̃i)
}

=
1
n

n∑
i=1

1
{
∃z̃′i ∈ U

−2 (z̃i)∃x̃i ∈ U
−1

(
z̃′i
)

: h (x̃i) , h (z̃i)
}

= max
z̃′i∈U

−2(z̃i)

1
n

n∑
i=1

1
{
∃x̃i ∈ U

−1 (
z̃′i
)

: h (x̃i) , h (z̃i)
}

= max
z̃′i∈U

−2(z̃i)
RU−1 (h; z̃′)

where the last equality holds as x ∈ U(x) for all x and asU = U−1, which together show that if for
some z̃i and z̃′i ∈ U

−2(z̃i) we have that h(z̃′i) , h(z̃i), that either there exists some z̃′′i ∈ U = U
−1(z̃′i)

such that h(z̃′′i ) , h(z̃′i ) or there exists some z̃′′i ∈ U = U
−1(z̃i) such that h(z̃′′i ) , h(z̃i) (as before, note

that z̃i = U(z̃′′i ) for some z̃′′i ∈U(z̃′i) by the definition ofU3); the reverse is similar.

We can derive a result for RU−3 (h; z,y) similarly.

Suppose h ∈ ∆Urej,H (z,y, z̃). Then, h minimizes max {RU−1 (h; z′,y),RU−1 (h; z̃′)} for all z′ ∈

U−2(z), z̃′ ∈ U−2(z̃), so by the above, h must also minimize
max

z′∈U−2(z),z̃′∈U−2(z̃)
max

{
RU−1 (h; z′,y),RU−1 (h; z̃′)

}
= max

{
max

z′∈U−2(z)
RU−1 (h; z′,y), max

z̃′∈U−2(z̃)
RU−1 (h; z̃′)

}
= max {RU−3 (h; z̃),RU−3 (h; z,y)}
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and so h ∈ ∆U
3

H
(z,y, z̃).

However, minimizing

max
z′∈U−2(z),z̃′∈U−2(z̃)

max
{
RU−1 (h; z′,y),RU−1 (h; z̃′)

}
does not necessarily imply that h minimizes max {RU−1 (h; z′,y),RU−1 (h; z̃′)} for all z′ ∈
U−2(z), z̃′ ∈ U−2(z̃), so the reverse may not hold. □

A.5 Extension to Unbalanced Training and Test Data

We provide a sketch of a proof that allows extending Theorem 1 of (Montasser et al., 2021) to
unbalanced training and test sets; however, for simplicity, we will work with the original form. The
assumptions are the same, except that we have n training points and m test points.

The proof is exactly as before up to the "Finite robust labelings" portion (which points are and are
not labelled don’t matter up to then and the symmetry arguments still apply). The basic idea of
determining the probability of zero loss on the training and test sets and error > ϵ on the test examples
with permutation still applies. Let Eσ,x be the event that there exists a labelling ĥ(xσ(1:n+m)) in the
allowable set where this occurs.

We have

Pr
σ

[
Eσ,x

]
≤ Pr
σ

[
∃ĥ ∈ ΠU

H
(x1, . . . , xn+m) : errxσ(1:n),yσ(1:n) (ĥ) = 0 ∧ errxσ(n:n+m),yσ(n:n+m) (ĥ) > ϵ

]
and, as in (Montasser et al., 2021), note the probability of choosing such a perturbation σ for a fixed
ĥ is at most ( m

n + m

)s
≤

( m
n + m

)⌈ϵm⌉
=

(n + m
m

)−⌈ϵm⌉
≤

(n + m
m

)⌈−ϵm⌉
if we assume the number of total errors s ≥ ⌈ϵm⌉ without loss of generality (otherwise, err > ϵ would
be impossible).

Hence, by a union bound,

Pr
σ

[
Eσ,x

]
≤

∣∣∣ΠU
H

(x1, . . . , xn+m)
∣∣∣ (n + m

m

)⌈−ϵm⌉
and so

Pr
σ

[
Eσ,x

]
≤ (n + m)rdim

U−1 (H)
(n + m

m

)⌈−ϵm⌉
by Sauer’s Lemma (in the form of Lemma 3 of (Montasser et al., 2021)).

Now, we bound the probability by δ, we need

(n + m)rdim
U−1 (H)

(n + m
m

)⌈−ϵm⌉
≤ δ

which, solving, gives us

ϵ ≥
rdimU−1 (H) log n+m

m
(n + m) + log n+m

m

1
δ

m
=

rdimU−1 (H) log(n + m) + log 1
δ

m log
(
1 + m

n

)
Which reduces to the original result if n = m (note that the logarithms are base-2).

Corollary If we fix n + m,H , and δ, the guarantee is strongest (i.e. we minimize ϵ) when n = m.
To see this, consider the denominator. Write α = m

n . Then, we wish to maximize nα log(1 + α) (or
equivalently f (α) = α log(1 + α) subject to α ≥ 0. Now, note that f ′(α) = log(1 + α) − 1 = 0 when
α = 1, i.e. when m = n.

Also, we can see from the result above, that if we fix m and δ, then the minimum value of ϵ tends
towards ∞ as n → ∞, so there does not necessarily exist a labelled training set sampled from D
which provides a guarantee with high probability of arbitrarily low error on a fixed test set.
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B Experimental Details

B.1 Computing Infrastructure

We used a SLURM cluster with A100 GPUs to run our experiments.

B.2 Baseline Details

The baselines are trained with standard adversarial training (Goodfellow et al., 2015) (Madry et al.,
2018). Attacks against AT without rejection use standard PGD with a cross-entropy objective, while
attacks against AT with rejection use PGD targeting LREJ as described in algorithm 3. In all cases,
the parameters for PGD in training are the same as those used in TLDR’s training process for the
same dataset.

B.3 Defense

In our implementation, we begin to incorporate the transductive term in our objective (see Equa-
tion (1)) after initially training the model with the inductive loss term only; this allows learning a
better baseline before we begin to enforce robustness about the test points. In our experiments, we
use the transductive loss in the final half of the training epochs.

B.4 Adaptive Attack

Solving for the perturbation x̃ by iteratively optimizing LREJ poses several difficulties.

First, the rejection-avoidance term
∥∥∥x̃ − arg max||x′−x̃||≤ϵ LDB,h(x′)

∥∥∥ is not differentiable with respect to
x̃. While it is possible to approximate the derivative with the derivative of a proxy (e.g. differentiating
though some fixed number of PGD steps, necessitating second-order optimization), this is extremely
expensive and does not improve results in our experiments (see below).

Intuitively, we might see that this would be the case: if the decision boundary is smooth, we might
expect the maximizers inU(x + ∆) andU(x) to be the same for small ∆ unless x′ is near the border
ofU(x) given thatU(x + ∆) ≈ U(x). In this case, approximating x′ as constant with respect to x is
reasonable.

In addition, note that if h(x) = y, the adversary must find a x̃ where h(x̃) , y which is not rejected: if
maximizing LREJ with PGD, the rejection-avoidance term penalizes moving x̃ towards the decision
boundary. As this is necessary to find a valid attack (when h(x̃) = y at initialization), we adjust λ
adaptively during optimization by setting it to zero when h(x̃) = y.

B.5 Transductive Attack Details

We present two rejection-aware transductive attacks: a stronger but more computationally intensive
rejection-aware GMSA (Algorithm 1) and a weaker but faster rejection-aware transfer attack which
takes the transductive robust rejection risk into account (Algorithm 2).

Finally, note the attack with LREJ, without GMSA, is effective against selective classifiers based on
the transformation F (and via Tramèr’s equivalency, selective classifiers in general). So we summarize
this attack on a fixed model in Algorithm 3.

B.6 Rejectron Experiments

Goldwasser et al.’s implementation of Rejectron (Goldwasser et al., 2020) trains a classifier (call
it hc) on the training set and a discriminator (hd) to distinguish between the (clean) training and
(potentially-perturbed) test data. Samples are rejected if the discriminator classifies them as test data;
otherwise, the classifier’s prediction is returned. Our adaptive attack is then very simple: we follow
the approach of Algorithm 1 but with a loss function LDISC which targets the defense.
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Algorithm 1 Rejection-Aware GMSA
Require: A clean training set T , a clean test set E, a transductive learning algorithm for classifiers A, an

adversarial budget of ϵ, mode either MIN or AVG, a radius used for rejection ϵdefense, and a maximum
number of iterations N ≥ 1. E|X refers to the projection on the feature space for E.

1: Search for a perturbation of the test set which fools the model space induced by (T,U(E|X)).
2: E′ = E
3: Ê = E
4: errmax = − inf
5: for i=0,. . . ,N-1 do
6: Train a transductive model on the perturbed data.
7: h(i) = A(T, E′|X)
8:

err =
1
|E′|

|E′ |∑
i=1

1
{(

F(h(i)) (x̃i) < {ỹi} ∧ x̃i = xi

)
∨

(
F(h(i)) (x̃i) < {ỹi,⊥} ∧ x̃i , xi

)}
{The x̃i and the xi are the ith datapoints of E′ and E, repectively; yi is the true label.}

9: if errmax < err then
10: Ê = E′
11: end if
12: for j = 1, . . . , |E| do
13: if mode = MIN then
14:

x̃ j = arg max
∥x̃−x j∥≤ϵ

min
1≤k≤i
LREJh(k) (x̃, y j)

15: else
16:

x̃ j = arg max
∥x̃−x j∥≤ϵ

1
i

i∑
k=1

LREJh(k) (x̃, y j)

17: end if
{Select whether to perturb by comparing success rates against past models for the clean and perturbed
samples.}

18:
errclean =

1
i

∑
0≤k≤i

1
[
F

(
h(k)

)
(x j) , y j

]
19:

errperturbed =
1
i

∑
0≤k≤i

1
[
F

(
h(k)

)
(x̃ j) < {y j,⊥}

]
{Do not perturb if the perturbation reduces robust rejection accuracy less on average than leaving the
points unchanged.}

20: if errperturbed < errclean then
21: x̃ j = x j
22: end if
23: E′j = x̃ j, yi

24: end for
25: end for
26: Return: Ê

Given a sample (x, y), the attacker’s goal is to flip the label, and, simultaneously, to avoid rejection;
hence, we maximize the following loss:

LDISC(x, y) = LCE(hs
c(x), y) + λLCE(hs

d(x), 1)

where class 1 for hd corresponds to test data, signalling rejection, and where hs returns the softmax
activations of h. MaximizingLDISC then minimizes the confidence in the true label and the probability
of rejection.

Figures 2 and 3 show our adaptive attack’s performance on MNIST and CIFAR-10. τ is a key
hyperparameter of Rejectron, which determines the confidence needed by hd to reject a sample; to
evaluate Rejectron fairly, we report the results on best-performing value of τ, based on (transductive)
robust rejection accuracy; see Table 5. On CIFAR-10, performance is near-zero and rejection rate
is near 100% for small values of τ. The best-performing value of τ is 1 (effectively eliminating the
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Algorithm 2 Transductive Rejection-Aware Transfer
Require: A model h, a clean labelled test point (x, y), an adversarial budget of ϵ, and a radius used for rejection
ϵdefense.
{Search for a perturbation x̃ of x for which h predicts ŷ , y robustly.}

1:

x̃ = arg max
∥x̃−x∥≤ϵ

[
LCE(hs(x̃), y) + λ

∥∥∥∥∥x̃ − arg max
∥x′−x̃∥≤ϵdefense

LDB,h(x′)
∥∥∥∥∥ , ]

where LCE is the cross-entropy loss, hs returns the softmax activations of h and where
LDB,h(x) = rank2hs(x) −max hs(x).
{If the attack did not succeed against h (in other words, if h does not robustly predict ŷ , y), check whether
to leave x unperturbed.}

2:
x′ = arg max

∥x′−x̃∥≤ϵdefense
LCE(hs(x′), h(x̃))

3: if h(x′) , h(x̃) ∨ h(x̃) = y then
4: Leave x unperturbed if F(h) rejects it, or if h(x) , y.
5:

x′′ = arg max
∥x′′−x∥≤ϵdefense

LCE(hs(x′′), h(x))

6: if h(x) , y ∨ h(x′′) , h(x) then
7: x̃ = x
8: end if
9: end if

10: Return: x̃

Algorithm 3 Inductive Rejection-Aware Attack
Require: A model h, and a clean labelled test point (x, y), an adversarial budget of ϵ, and a radius used for

rejection ϵdefense.
1: Search for a perturbation x̃ of x for which h predicts ŷ , y robustly.

x̃ = arg max
∥x̃−x∥≤ϵ

[
LCE(hs(x̃), y) + λ

∥∥∥∥∥x̃ − arg max
∥x′−x̃∥≤ϵdefense

LDB,h(x′)
∥∥∥∥∥ ]

where LCE is the cross-entropy loss, hs returns the softmax activations of h and where
LDB,h(x′) = rank2hs(x′) −max hs(x′)

2: Return: x̃

possibility of rejection), leading to a rejection rate of 0; this behavior on CIFAR-10 illustrates the
algorithm’s struggles with the practical high-complexity deep learning setting.

C Additional Experiments

C.1 Warm Start in TLDR

Warm start (epochs) Rejection Rate Robust Rejection Accuracy
0 0.813 0.153
500 0.531 0.177
1000 0.830 0.171

Here we perform experiments showing that in training TLDR, it is best to first trains a baseline model
without transductive regularization Ltest in the early stage (warm start) and then add transductive
regularization for later training.

We generate the data with 100 Gaussians (one per class) equally spaced in l∞ with a separation of
3 units between means. The adversarial budget is 2 units, and we ensure that the data is sparse by
generating 10 samples per class. The models are 10 layer feedforward networks with skip connections.

The synthetic models are trained for 1000 epochs total; we see the best performance when the model
has transductive regularization but is allowed to learn an initial baseline model before transductive
regularization is used in training. Doing so reduces the risk of the regularization term harming
performance.
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Figure 2: Effects of τ on performance of Rejec-
tron on MNIST with attacker GMSA (LDISC).

Figure 3: Effects of τ on performance of Rejec-
tron on CIFAR-10 with attacker GMSA (LDISC).

C.2 GMSA Method

TLDR Components Attacker MNIST CIFAR-10
Rejection Transductive Regularization pREJ Robust accuracy pREJ Robust accuracy

✓ ✓ GMSAAVG (LREJ) 0.796 0.968 0.195 0.744
✓ ✓ GMSAMIN (LREJ) 0.588 0.967 0.208 0.739
✓ × GMSAAVG (LREJ) 0.646 0.975 0.179 0.725
✓ × GMSAMIN (LREJ) 0.202 0.980 0.182 0.733
× ✓ GMSAAVG (LCE) – 0.900 – 0.516
× ✓ GMSAMIN (LCE) – 0.914 – 0.601
× × GMSAAVG (LCE) – 0.935 – 0.516
× × GMSAMIN (LCE) – 0.942 – 0.556

Table 8: Full ablation results of TLDR.

We present extended results of our defense ablation and compare the results of GMSAAVG, which
optimizes the average loss of past iterations, and GMSAMIN, which optimizes the worst-case loss. See
(Chen et al., 2022). We can see that while the two perform about the same on the full TLDR defense
(GMSAMIN performs slightly better), GMSAAVG is much stronger for models not incorporating both
components.

C.3 Rejection Radius
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Figure 4: Effects of rejection radius ϵdefense on MNIST (inductive) with attacker PGD (LREJ).

The rejection radius ϵdefense is an important hyper-parameter for TLDR; however, the model’s perfor-
mance is not very sensitive to it. Figure 4 shows the trend of robust accuracy, the rejection rate on
adversarial test data, and the rejection rate on clean test data, for the inductive classifier on MNIST;
Figure 5 shows those for TLDR. The robust accuracy remains stable. The theoretical analysis suggests
setting the radius to ϵ/3 where ϵ is the adversarial budget. Given TLDR’s low sensitivity to the
parameter, we use ϵ/4 for consistency as the inductive case performs best with that setting. The
rejection rate on the adversarial test data rises rapidly with the rejection radius (reaching 0.949 for
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Figure 5: Effects of rejection radius ϵdefense on MNIST (TLDR) with attacker GMSA (LREJ).

TLDR for ϵdefense = ϵ), but the rejection rate on clean data increases much more slowly (0.108 when
ϵdefense = ϵ). So among all rejected inputs only a few are clean inputs, leading to low errors as desired.

The rejection rate on clean inputs is presented for the transductive case in order to illustrate the
difference in effects on clean and perturbed data, but, as the adversary may select to perturb, some
clean points were not in the training set, and, hence, the clean rejection rates should not be considered
reliable. The rejection rates rise with the rejection radius: adversarial rejection rates increase rapidly
as the rejection radius increases, while clean rejection rates increase only slowly. In all cases, far
more perturbed samples are rejected than clean samples.

C.4 Binarization test on PGD (LREJ)

MNIST CIFAR-10

Decision Boundary Closeness ASR RASR Inverted ASR Inverted RASR ASR RASR Inverted ASR Inverted RASR

0.9 0.935 0.451 1.0 0.375 0.973 0.824 0.971 0.781

0.999 0.945 0.394 1.0 0.447 0.976 0.813 0.964 0.790

0.99999 0.953 0.414 0.981 0.434 0.974 0.819 0.938 0.813

Table 9: Results of the binarization test applied to PGD (LREJ).

Finally, to evaluate the effectiveness with which LREJ targets rejection, we apply the binarization
test (Zimmermann et al., 2022). As the binarization test is designed for inductive defenses we evaluate
on PGD (LREJ), and as the binarization test assumes that rejection does not depend on the generated
dataset or the modified model, we modified LREJ to target the original model in the calcuation of
LDB,h (e.g. we wish to avoid rejection as if the model was unchanged).

For the inverted case, we modified λ′, setting it to -10 (we are seeking rejection, not avoiding it). As
noted in Appendix C , we drop the rejection-avoidance term when h(x̃) = y; hence, the negated second
term poses issues for maximization in PGD (e.g. PGD would preferentially select perturbations which
do not succeed). To avoid this issue, we have added an additional success indicator to our attack
objective, which we use to ensure that PGD selects the loss-maximizing successful perturbation.
Without these modifications, we observed low attack success rates in the inverted test; however, the
results with these simple changes do indicate that our attack does take the rejection component of the
defense into account, the key purpose of the inverted test.

The attack settings for the regular test are unchanged from those used for evaluation. For the test
settings, we chose values as close as possible to those used in (Zimmermann et al., 2022), with a
single boundary sample, with 200 samples sampled from each of the surfaces and corners of the l∞
ball, with 512 trials per experiment. We used 81 inner samples for MNIST, and 253 inner samples for
CIFAR-10, selected to maximize subject to the requirement that the total sample count is below the
dimensionality of the features. In both cases, the base model is a standard adversarially trained model
trained on that dataset, transformed into a selective classifier with the transformation F.
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Figure 6: Robustness scaling with adversarial budget ϵ on MNIST

Figure 7: Rejection rate scaling with adversarial budget ϵ on MNIST.

We ran the test for a range of values for the decision boundary closeness, a hyperparameter determining
the test hardness. ASR is the rate at which the attack successfuly found a perturbation which both
flips the label and evades detection; RASR is the maximum of the success rates on surfaces and
corners. While the ASR values in some experiments are slightly below the cutoff of 0.95 and are
technically failures, they do indicate that the attack is successfully targeting the defense. While
a slightly stronger attack may exist, these results do not indicate significant unreliability in our
evaluation of the robustness of TLDR.

C.5 Ablation on Attacks: Attack Radius

The theory suggests that incorporating rejection can allow a transductive learner to tolerate perturba-
tions twice as large; we investigate how transduction and rejection affects the robustness as ϵ grows
(models are adversarially trained with the corresponding ϵ and the selective classifiers use a rejection
radius of ϵ/2). The results are shown for the natural choice of adversary, as in the experiment section
(e.g. GMSA with LREJ for the transduction+rejection). For selective classifiers, the rejection rate
scaling is shown.

We see that the combination of rejection and transduction does indeed maintain high accuracy for
larger ϵ; at ϵ = 0.6, it has 96.2% of the robust accuracy that transduction alone had for ϵ = 0.3. This
aligns with the theory, given the increased constant factors of OPTU2 in Corollary A.13 compared to
the results for classifiers in (Montasser et al., 2021).

Note also the behavior of the inductive classifier: accuracy improves past ϵ = 0.6. To see why,
note that a model adversarially trained for ϵ ≥ 1 will return near-uniform predictions for all classes
(resulting in a robust accuracy of approximately 10%, as seen), making finding adversarial examples
slightly more difficult than for smaller ϵ where this does not occur. The decline in rejection rate for
very large ϵ is a similar phenomenon.

C.6 Weighting of LREJ

We examine the effect of the hyperparameter λ′ between the cross-entropy and rejection-avoidance
terms in LREJ on MNIST; see Equation 3. In the inductive case, as shown in Figure 8, there is little
sensitivity to λ′ in either attack success rate or rejection rate. When targeting TLDR, there is little
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Figure 8: Effects of λ′ on results of PGD optimizing LREJ targeting adversarial training with rejection
on MNIST.
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Figure 9: Effects of λ′ on results of GMSA optimizing LREJ targeting TLDR on MNIST.

sensitivity in terms of attack success rate as seen in Figure 9; rejection rate is highest for intermediate
values of λ′ but, as expected, rejection rate declines with λ′ beyond that.

C.7 Robustness to l2

Setting Defense Attacker MNIST CIFAR-10
pREJ Robust accuracy pREJ Robust accuracy

Induction AT (Madry et al., 2018) AutoAttack – 0 – 0.445

Rejection only AT (with rejection) PGD (LREJ) 0.112 0.921 0.130 0.754

Transduction only TADV (Chen et al., 2022) GMSA (LCE) – 0.913 – 0.813

Transduction+Rejection TLDR (ours) GMSA (LREJ) 0.078 0.933 0.007 0.845

Table 10: Results on MNIST and CIFAR-10 up to l2 budget. The strongest attack against each defense
is shown. The best result is boldfaced.

To evaluate our defense’s generality, we consider robustness to l2 as well and compare to the
strongest defenses from each setting in Table 10; on MNIST we use ϵ = 5 and on CIFAR-10 we use
ϵ = 128/255. We observe strong performance from TLDR, outperforming defenses with transduction
or rejection alone.

C.8 Generalization of TLDR

To evaluate how closely TLDR’s generalization follows the our provided bounds in Theorems A.9
and A.12, we apply TLDR to randomly-sampled subsets of the MNIST training and test sets. In each
case, we run ten trials and present the robust error (1 - robust accuracy) with attacker GMSA (LREJ).
Given the large VC dimension of the model considered (LeNet) (Bartlett et al., 2017), the results
shown are consistent with Theorem A.12; we wish to determine whether the actual errors observed
follow the inverse-square relationship of the theorem.

In Figure 10, the size of the training set is set equal to the size of the test set (the standard assumption
for our results); in Figure 11, the full training set is used and only the test set size is changed. See
Appendix A.5 for a discussion of generalization bounds for train and test sets of differing sizes.
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Figure 10: Generalization of TLDR with equal train and test size on MNIST.

Figure 11: Generalization of TLDR with full training set on MNIST.

As the bounds are in PAC form, we use an estimate of the 99th percentile of error in order to evaluate
the generalization of TLDR; these are calculated with a best-fit beta distribution of the results on each
instance size.

We then consider the inverse-square-root fit of these 99th percentile error estimates; as the gurarantee
takes the form of an upper bound, and error is upper bounded by 1, we exclude any error values
equal to 1 (corresponding to instances where all trials had a robust accuracy of 0). We find that in
the case where train size is fixed, the 99th percentile errors closely follow the inverse-square-root
trend in the test set size m; while the results for equal train and test set sizes more closely follow an
inverse-cube-root relationship in m.

D Limitations

While our framework is theoretical-sound with lower sampled complexity than the rejection-only
case and with more relaxed optimality condition than the transductive-only case, our sample com-
plexity proof under the transductive rejection case requires the non-emptiness of ∆ in Theorem 4.1.
While weaker conditions don’t guarantee that we find a model satisfying the conditions, the result
demonstrate that empirical defense incorporating both transduction and rejection have the potential to
outperform others. Our proposed defense algorithm TLDR, though effective at improving the robust
accuracy under rejection, incurs a high computational cost relative to standard adversarial training
due to the joint training with the unlabeled data. If it is possible to delay evaluation until a sufficiently
large batch of samples arrives, the cost can be made insignificant via amortization. The need to
perform a full training process prior to evaluation means, however, that the defense is not suitable
for latency-sensitive applications. Our adaptive attack is even more costly, as effectively attacking
this defense using GMSA requires multiple iterations of the full transductive training process; hence,
adversaries attacking TLDR require substantial resources.
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