
Oral Cancer Detection using Mobile Vision
Technology

Lena D. Swamikannan, Akshay Bhagwan Sonawane, Jay S. Patel, C.S. Mani, Lakshmi Narayana,
and Lakshman Tamil

Abstract—Oral cancer is the 13th most common cancer, affect-
ing 380,000 people globally. The biggest challenge is that in its
initial stage, cancer can go unnoticed until it reaches the most
advanced, difficult-to-treat stages. Although a 90% survival rate
is assured when diagnosed earlier, early-stage detection requires
expensive periodic dental check-ups. Under these circumstances,
converting a smartphone into a cancer screening tool has the
potential to reduce cancer mortality. Mobile vision technology is
a promising platform for early diagnosis of oral cancer. The aim
of this research is to develop a telemedical mobile application for
Oral Cancer Detection (OCD) using deep learning as a backend.
This paper details experiments with various lightweight ma-
chine learning architectures, including MobileNetV3Large, which
achieved an 84% accuracy, 86% sensitivity and 80% specificity
on the test data. By incorporating the machine learning model
into the smartphone app, users can capture or upload images for
instant or offline screening, ensuring on-device processing that
maintains privacy. This application promises to revolutionize oral
healthcare accessibility and delivery.

Index Terms—oral cancer, deep neural networks, mobile vision
technology

I. INTRODUCTION

According to the World Health Organization [1], nearly 3.5
billion people globally suffer from oral diseases, with three-
quarters residing in middle-income countries. Furthermore,
projections by the American Cancer Society [2] for 2024
estimate that there will be 58,450 new cases and 12,230 deaths
resulting from cancers of the oral cavity and pharynx. Oral
cancer can be classified into three stages based on the extent
of its spread:

1. Localized: The cancer is confined within the organ of
origin with no evidence of spread.

2. Regional: The cancer has spread to nearby structures or
lymph nodes.

3. Distant: The cancer has metastasized to distant parts of
the body, such as the lungs.

The survival rates for oral cancer, particularly cancers of
the lip, tongue, and floor of the mouth, are significantly
higher when the disease is detected and treated while still in
the localized stage. Many patients when they first notice the
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lesions (localized stage), tend to dismiss them as normal and
overlook them, but these lesions have the potential to turn into
cancerous ones.

Regular screening by dentists is essential to enable early
diagnosis of this type of cancer. But the high cost of dental
insurances and dental office visits are barriers for most of the
people to go for regular dental visits. According to the 2023
Gallup poll [3], the proportion of Americans who postponed
medical treatment due to cost rose to 38%, up from 26% in
2021. Hence, there is a need to develop screening tools that are
cost-effective, easy to use and at the same time are accurate.

The drastic development in camera quality in smartphones
has given the power of vision to smartphones. By incorporating
medical diagnostic capabilities into smartphones, they can act
as personal healthcare assistants. It provides the capability of
analyzing the image in real-time using a camera and interpret-
ing the result is termed as Mobile Vision Technology. This
technology uses advanced deep-learning models to analyze
the image and recognize and/or classify them. The application
of Mobile Vision Technology in healthcare offers immense
potential for everyone, particularly for those in the lower
socio-economic strata and for individuals residing in remote
locations away from city centers. We opted to develop the
mobile application on the Android platform initially due to
its global market dominance and its prevalence among people
with limited financial means.

Deep Learning is a boon for medical image analysis, with
deep learning-based networks playing a significant role in
analyzing images and interpreting results. For accurate di-
agnosis, these networks should be trained on large datasets.
However, our Oral Cancer dataset is small. While there are
many histopathological oral cancer datasets available, datasets
for smartphone-captured oral cancer images are scarce. The
challenge is to develop an efficient deep-learning model for
oral cancer screening using a small dataset. To address this
challenge, we apply the concepts of data augmentation and
transfer learning.

Models that are pre-trained on ImageNet [4] database are
used for baseline transfer learning in this research. Though
the pre-trained models we’ve chosen doesn’t possess medical
domain expertise, it is fine-tuned on our customized Oral
database. These models are primarily selected due to their pop-
ularity in the world of image classification. The presence of a
cancer-specific database could open the door to transformative
applications, much like the paradigm-shifting influence of Im-
ageNet in its domain. Just as ImageNet revolutionized general



Fig. 1. Workflow for developing a Telemedical Smartphone Application for Oral Cancer Detection: First, we prepare the data according to the specifications
of the model to be trained. Then, we perform domain-adaptive fine-tuning on the pre-trained model with the SmartOralpix dataset. Next, evaluations are
performed on the test dataset from Kaggle. The above workflow is repeated for all the lightweight models listed in this paper. We pick the best-performing
model by analyzing and comparing the results of all the models. Finally, we integrate the best model into an Android application.

image classification, a dedicated cancer-related database holds
the potential to drive significant advancements in the realm of
cancer image detection and interpretation.

While powerful pre-trained models often achieve higher
accuracy, they are not suitable for implementation on mo-
bile phones due to their high computational requirements.
Therefore, for our implementation, we have chosen to focus
exclusively on lightweight architectures. Specifically, we have
experimented with all variants of MobileNet [5], [6], [7] and
MobileViT-S [8] due to their design catering to smartphone
applications. These models are optimized and then deployed
on mobile platforms.

The main contributions of this paper are:
• Developed a customized database of oral images for this

research problem.
• Analysed the performance of various lightweight

pre-trained models based on CNN and hybrid
(CNN+Transformer) approaches, leveraging the
combined strengths of local and global processing.

• Proposed transfer learning strategies to fine-tune cross-
domain problems.

• Developed an Android app for screening the oral lesions
without relying on internet connection, thus increasing
accessibility in remote areas.

The rest of the paper is organised as follows: Section II
discusses the literature survey performed for this research.
Section III introduces the database and its details. Section IV
presents the proposed approach to create an efficient model
for oral lesion classification. Section V gives the results and
discussion of the experiments. Section VI explains the outline
of Android app and Section VII reports the conclusions.

II. RELATED WORK

The computer vision community has extensively studied
methods to automate oral cancer detection, where most of

these studies are performed on memory-intensive Deep Con-
volutional Neural Network (DCNN) architectures. There are
various types of oral images utilized in diagnosing oral cancer
using deep learning models. They are Histopathological im-
ages (obtained from examining biopsy samples), Hyperspectral
images (analysing spectrum of the image), Computed Tomog-
raphy (using X-rays) scan images, Autofluorescence images
(using special light source usually ultraviolet or bluelight),
White light images (using visible light), and Color images
(using camera). Research efforts aimed at classifying oral can-
cer, regardless of the type of image used, have predominantly
focused on either traditional CNN models [9]–[19] or Con-
ventional Vision Transformers [20]. Hybrid approaches that
combine these methods have not been extensively explored.
The studies [14]–[18] did not use pre-trained models, instead
they use conventional CNN architecture. Table I summarizes
the literature survey on deep learning based studies on Oral
Cancer Detection.

A. Heavyweight Architectures

Zubair et al. [19] made use of AlexNet, GoogleNet, VGG19,
Inceptionv3, ResNet50, and SqueezeNet for binary classifica-
tion (normal and cancer) and multiclass classification (Oral
Thrush (OT), Fissured Tongue (FT), Geographic Tongue (GT),
Strawberry Tongue (ST), and Leukoplakia (LP)) of oral cancer
dataset. This research is focused on lesions occurring in
the tongue. Due to limited data availability for the target
task, transfer learning concept was applied, in which these
networks were pre-trained with ImageNet database. In this
work, VGG19 achieved an accuracy of 97.5% for binary
classification and ResNet50 achieved an accuracy of 96% for
multi-class classification. Sang et al. [21] explored three vari-
ants of VGG architecture (VGG-16, VGG-CNN, and VGG-
CNN-S). Among these, VGG-CNN-S reported an accuracy of
86.9%. This classifier uses autofluorescence and white light
images as the input for the deep learning model. Welikala’s



TABLE I
SUMMARY OF RESEARCH STUDIES IN AUTOMATED ORAL CANCER DETECTION

Reference Imaging
Technique

Architecture Explored Database Details Source

[20] Histopathological Vision Transformer, Xception, ResNet50,
InceptionV3, Densenet121, Densenet169,
InceptionResNetV2,
Densenet201, EfficientNetB7

Normal-2435,
Cancer-2511

Kaggle

[9] Histopathological AlexNet Normal-2435,
Cancer-2511

Kaggle

[10] Histopathological AlexNet, VGG-16, VGG-19, ResNet-50 Normal-1656,
Cancer-6665

Private

[11] Histopathological
and Color image

ResNet50, MobileNetV2, VGG16, VGG19,
DenseNet

Histo:
Normal-2494,
Cancer-2698
Color:
Normal-44,
Cancer-87

Private

[13] Color image ResNet101, Faster R-CNN Total-2155 Private
[19] Color image AlexNet, GoogLeNET, VGG19, Incep-

tionv3, ResNet50, SqueezeNet
Total-200 Private

[12] Histopathological ResNet, Inception Networks, U-Net Total=143 Private
This
study

Color image All four variants of MobileNet (V1, V2,
V3Small, V3Large), MobileViT-S

Total-296,
Normal-148,
Cancer-148

Private

et al. [13] MeMoSA project used ResNet-101 for image clas-
sification and Faster R-CNN for object detection, achieving
promising F1 scores for the early detection of oral cancer
using annotated clinical images and proposed to develop
healthcare application. Although heavyweight architectures
yield the best results, implementing them on mobile devices
is challenging. These models can be integrated with webportal
applications instead. For example, Cogan et al. [22] developed
a mammogram screening telemedical webportal application
using Faster R-CNN with ResNet-101, integrating a model
with approximately 44 million parameters to classify breast
cancer images.

(a) Cancer (b) Cancer

(c) Normal (d) Normal

Fig. 2. Sample images from the SmartOralpix Dataset, which are captured
using smartphones

B. Lightweight Architecture

Howard et al. [5] developed MobileNetV1 architecture to
accommodate constraints of mobile and embedded devices.

This research received increased attention due to its popularity
of reduced memory requirement by neural network models
known as lightweight models. These architectures are specif-
ically designed to minimize computational requirements thus
making them ideal for implementation in memory-constrained
devices. The key idea is to use Depthwise Seperable convo-
lution (depth-convolution followed by point-wise convolution)
instead of standardized convolution, that results in less com-
putation. The extensive research on this concept led to Mo-
bileNetV2. Sandler et al. [6] achieved much less computation
requirement compared to MobileNetV1, by introducing linear
bottlenecks and inverted residuals. This research contribution
led to MobileNetV3 [7], which uses MobileNetV2 approach
combined with squeeze and excitation networks.

Transformers have recently garnered significant attention
due to the success of GPT models in natural language process-
ing. Despite their exploration in image processing tasks, Vision
Transformers are typically too computationally intensive for
mobile devices. Mehta et al. [8] proposed a hybrid architecture
combining the strength of CNNs and Transformers. This Mo-
bileViT architecture is designed to be lightweight and efficient,
making it suitable for mobile and resource-constrained envi-
ronments. Many deep learning-based automatic oral cancer
detection systems exist. However, a lightweight model that
is integrated into a healthcare app that is downloadable from
playstore doesn’t exist. To the best of our knowledge, a hybrid
light weight architecture has not been explored in oral cancer
research.

III. MATERIALS AND METHODS

A. Database [SmartOralpix]:

A customized oral database called ‘SmartOralpix’ has been
created by collecting images captured by dentists through
smartphones. These are privately collected images. See Fig.2



for example images from the dataset. The sample size for
each class in SmartOralpix is shown in Table II. Each image
in SmartOralpix dataset has been carefully labeled by den-
tists/oral surgeons, ensuring accurate and reliable annotation.
To overcome the problem of limited images we have, we ap-
plied on-the-fly data augmentation technique that enhanced the
training image size to more than 128,000 which is described
in the next section.

TABLE II
SMARTORALPIX DATABASE

Class No. of Images
Normal 148
Cancer 148

B. Datasets and Data augmentation

SmartOralpix is split into training data (80%) and validation
data (20%). For testing, we use Oral Cancer dataset from
Kaggle. The test dataset comprises of 21 cancerous images
and 10 normal images. The test dataset should be from an
independent source to bring out the clear generalization of the
model and so we have relied on this test dataset even though its
size is extremely small. Although the size is not good enough
to provide a statistically significant result, it is sufficient for
prototyping the model.

The training dataset being not sufficiently large enough has
a high chance of overfitting. To address this challenge, data
augmentation is employed to expand the scope of the existing
dataset. We prefered on-the-fly data augmentation instead of
pre-augmented dataset. This method introduces a degree of
variability within training data, thus resulting in improved
generalization.

The orientation of a lesion relative to the camera can indeed
vary depending on how the photo was taken. However, it’s also
crucial to preserve the anatomical orientation when processing
medical datasets. Implementing all possible augmentations,
such as excessive rotations, shears, or flips, could potentially
distort crucial anatomical details, leading to inaccuracies in
diagnosis or assessments. So, we followed the safety of data
augmentation standards proposed by Shorten et al. [23]. The
following are the geometric transformations used. Rotation
range=10◦; width and height shift range=0.2; zoom and shear
range=0.2; Horizontal flip is used, whereas Vertical flip is not
used as it completely changes the anatomy.

C. Data Preprocessing

We utilized models with pre-trained weights from the Im-
ageNet database for our experiments. By adopting the same
preprocessing steps used in the original ImageNet training, we
ensured consistency and maximized the benefits of the trans-
fer learning strategy. The preprocessing involves three steps:
reading, resizing and scaling. The first step: OpenCV library
is used, which loads the image in GBR (green/blue/red) then
converted to RGB (red/green/blue). The second step: resizing
the input image according to the architecture’s input size.

All versions of MobileNet has an input size of 224×224×3,
whereas MobileViT-S has an input size of 256×256×3. See
Table III for details on the input dimensions for each of the
architectures. The third step: scaling pixel values to [-1,1]. In
all architectures except for the MobileNetV3, a pre-processing
step to accomplish this is implemented explicitly, whereas
MobileNetV3 architecture has a built-in function.

D. Cross Domain Adaptation

Due to the limited size of our training dataset, we leverage
the concept of transfer learning. All selected lightweight
models have been pre-trained on the ImageNet database, which
is not a medical database. This approach enables cross-domain
adaptation, compensating for the absence of a domain-specific
database or model tailored to our specific problem. We main-
tain the base model in a frozen state, adding a few layers on
top that are exclusively trained on the SmartOralpix database.
It’s crucial to ensure that these newly added layers have
adequately converged during training. This verification step
must be completed before initiating the fine-tuning process of
the pre-trained layers, laying the groundwork for a successful
transfer learning strategy.

E. Experimental Setup

All studies related to this research were carried out using
TensorFlow (2.12.0 version) and TensorFlow Lite Support
(0.4.4 version), with Python (3.8.19 version) on a desktop
with MAC MINI. All training and testing were conducted on
the GPU, utilizing Apple’s Metal API for acceleration. The
Mac Mini features 8GB RAM, an M1/M2 chip, and a 16-core
Neural Engine. Android Studio 2022.3.1 platform is used for
developing OCD (Oral Cancer Detector) mobile application.

IV. PROPOSED METHOD

The proposed approach involves appending additional layers
to the base model, with these layers being specifically tailored
to the domain of interest. Given that this problem involves a
cross-domain adaptation and our dataset is very small, incor-
porating domain-specific layers near the final network layer
can significantly enhance the likelihood of achieving optimal
results. This approach leverages the fine-tuning strategy, where
the base model’s pre-trained features are adapted to better suit
the specific task at hand, thus maximizing performance despite
the limited amount of data. We experimented with this transfer
learning strategy using both CNN architectures (specifically all
variants of MobileNet) and hybrid architecture (MobileViT-
S). Finally, we compare the experimental results from all the
models and picked the best model to implement it as an An-
droid application. The research workflow for experimentation,
evaluation, comparison of results, and integration into Android
application are shown in Fig.1.

A. Fine-tuning Layers

Initially, we augmented the pre-trained model by integrating
an additional 15 layers specifically designed to capture the
unique features of our dataset. By deeply customizing the



TABLE III
SUMMARY OF MOBILE-FRIENDLY MODELS UTILIZED IN THIS STUDY

Models Architecture Input image size (W × H × D) No.of parameters (millions)
MobileNetV1 [5] CNN 224 × 224 × 3 4.2
MobileNetV2 [6] CNN 224 × 224 × 3 3.4

MobileNetV3Small [7] CNN 224 × 224 × 3 2.5
MobileNetV3Large [7] CNN 224 × 224 × 3 5.4

MobileViT-S [8] CNN+Transformer 256 × 256 × 3 5.6

model beyond adding a classification layer for the target task
and fine-tuning the existing layers [20], we enhanced the
integration of domain-specific knowledge, thereby improving
the model’s ability to manage the distinctive characteristics of
our data. We first trained on our newly added layers using
a moderate learning rate of 0.001. This rate was carefully
chosen to allow these layers to adapt quickly to the new data
without altering, keeping the features in the base model frozen.
These newly added layers use Swish activation function [24]
which is proved to enhance performance in deeper network
layers. Once these layers had trained well and converged
effectively, demonstrating stability and improved performance,
we proceeded to unfreeze the base layers. This allowed us to
fine-tune the entire model, including both the newly added and
base layers, at a lower learning rate below 0.001. This fine-
tuning step ensures that the entire model adjusts harmoniously
to the dataset, enhancing overall accuracy and robustness.

B. Width Multiplier

The width multiplier, denoted by alpha is a global hyperpa-
rameter that is used to built computationally efficient models.
Its value lies between 0 and 1 [5], [6], [7]. After conducting
various empirical experiments, we determined that a width
multiplier of 1 is sufficient for all MobileNet variants in our
research problem. This configuration strikes a balance be-
tween model complexity and performance, providing adequate
capacity to learn the necessary features without overfitting,
especially given our small training dataset.

C. Manual Leaning Rate scheduler

In our training process, we employed a manual learning
rate adjustment strategy, guided by continuous monitoring of
accuracy and loss graphs over epochs via TensorBoard. An
integral part of this strategy was the decision to manually
tweak the hyperparameters and learning rates by observing
model performance. This allowed for precise adjustments,
selecting the crucial learning rate for fine-tuning, instead of
relying on an automatic learning rate scheduler. This criterion
was set to ensure that the model had reached its optimal
performance state under the current configuration before any
further adjustments were deemed necessary.

D. Optimizing for Mobile Application

Given that MobileNetV3Large emerged as the best-
performing model, we used the TensorFlow Lite (TFLite)
converter to transform the TensorFlow model into TFLite
format. This conversion was essential to optimize the model

for mobile devices, ensuring efficient on-device inference. The
TFLite converter allows us to maintain the performance of the
original TensorFlow model while producing a lightweight and
fast version suitable for mobile deployment.

V. RESULTS AND DISCUSSION

During training, we used model checkpoints to save the
best weights at periods of minimum validation loss, ensuring
effective generalization of input image data. We selected
binary cross-entropy as the loss function and Adaptive Mo-
ment Estimator (Adam) as the optimizer. A batch size of 32
works well based on experimentation, as our dataset performed
poorly with higher batch sizes.

A. Evaluation Metrics

It is important to evaluate the model to understand its
efficiency and accuracy. Various metrics, such as the Con-
fusion matrix, F1 score, Accuracy and AUC-ROC (Area
Under the Receiver Operating Characteristics Curve) are used
for this purpose. In our confusion matrix, we label ‘0’ for
normal (negative class) and ‘1’ for cancer (positive class).
The positive class is set to cancer because it is critical
from a medical perspective to minimize false negatives (i.e.,
misclassifying cancer as normal). Misclassifying a negative
instance as positive is less harmful compared to the risk
of missing a true positive (cancer case). In the context of
cancer screening, sensitivity (also known as recall) is more
important than specificity. Sensitivity measures the proportion
of actual positives (cancer cases) correctly identified by the
model, which is crucial to ensure that cancer cases are not
missed. High sensitivity reduces the risk of false negatives,
which is vital in medical diagnosis to ensure timely treatment
and intervention. Specificity, on the other hand, measures
the proportion of actual negatives (normal cases) correctly
identified. While high specificity is also desirable, it is less
critical in the context of screening compared to sensitivity,
as the consequences of a false negative (missing a cancer
diagnosis) is more severe than a false positive (misidentifying
a normal case as cancer).

In Fig. 3, we present the confusion matrices, accuracy
curves, and loss curves for each of the experimented models. In
Fig. 4, we plot the Receiver Operating Characteristic (ROC)
curves which shows the performance exceeding 0.5 for all
models. It is important to note that direct comparisons with
other studies are not feasible because the dataset used in this
research is private.



(a) MobileNetV1 confusion matrix (b) MobileNetV1 accuracy curve (c)MobileNetV1 loss curve

(d) MobileNetV2 confusion matrix (e) MobileNetV2 accuracy curve (f) MobileNetV2 loss curve

(g) MobileNetV3Small confusion matrix (h) MobileNetV3Small accuracy curve (i) MobileNetV3Small loss curve

(j) MobileNetV3Large confusion matrix (k) MobileNetV3Large accuracy curve (l) MobileNetV3Large loss curve

(m) MobileViT-S confusion matrix (n) MobileViT-S accuracy curve (o) MobileViT-S loss curve

Fig. 3. The Confusion Matrices, Accuracy curves, and Loss curves are displayed for each lightweight model predicting oral cancer. In the confusion matrix,
the label 0 represents Normal class, while the label 1 represents Cancer class.



TABLE IV
MODEL PERFORMANCE- EVALUATION METRICS

Trained Models Precision(%) Sensitivity(%) Specificity(%) F1 score(%) Accuracy(%) AUC Inference time(sec)
MobileNetV1 90 90 80 90 87 0.90 0.0288
MobileNetV2 100 81 100 89 87 0.92 0.0400

MobileNetV3Small 100 76 100 86 84 0.92 0.0059
MobileNetV3Large 90 86 80 88 84 0.92 0.0171

MobileViT-S 100 76 100 86 84 0.92 0.0295
Dentist’s score 100 90.5 100 95 93.5 - -

B. Result and Analysis

The performance metrics from the model experiments are
summarized in Table IV. The analysis reveals that Mo-
bileNetV1 excels with good scores across all metrics: precision
of 90%, specificity of 80%, sensitivity of 90%, F1 score
of 90%, and accuracy of 87%. However, the continuous
fluctuations in validation accuracy, even after training for 400
epochs, highlights the model’s inconsistency and instability.
Due to these observed fluctuations, MobileNetV1 was not
selected. MobileNetV3Large and MobileNetV2 are the best
performers among stable models. When comparing these two
models, MobileNetV3Large demonstrates higher sensitivity of
86% and a more stable learning curve, which suggests better
generalization. Also, the MobileNetV3Large converged faster
when compared to MobileNetV2. Moreover, based on Fig 4,
MobileNetV3Large demonstrates a more stable ROC curve
compared to MobileNetV2. When comparing the inference
time of all the TFLite models, MobileNetV3Small emerges
as the fastest, followed by MobileNetV3Large. However,
MobileNetV3Large offers more stable performance metrics
across various tasks, making it a dependable option for mobile
applications despite its slightly longer inference time. As a
result, MobileNetV3Large TFLite model has been integrated
into the OCD application, that is being developed.

Additionally, MobileNetV3Small and MobileViT-S exhibit
a significant drop in sensitivity, adversely affecting their F1
scores and overall accuracy. We expected MobileViT-S to
perform well, given its advanced architecture designed for
vision tasks. It exhibits significantly lower sensitivity of 76%,
which severely affects its reliability, despite having a high
specificity.

VI. MOBILE APPLICATION - ANDROID

We named this Android application as Oral Cancer Detector
(OCD). The OCD encompasses five distinct steps. The term
“step” in this context pertains to a distinct screen that becomes
visible upon button interaction. The first step features an
OCD splash screen containing a disclaimer. Proceeding to
the second step, users are presented with a choice: either
to instantaneously capture a live photo using their device’s
camera (“Take Photo” button) or to peruse their image gallery
(“Upload” button) and pick an image. In the third step, we
suggest using “Crop” button, to crop the image and focus
on the lesions. Once the image is ready, users can move
forward by clicking on the “Analyze” button, which is the
fourth step. This button smoothly integrates with our TFLite

(a) MobileNetV1 (b) MobileNetV2

(c) MobileNetV3Small (d) MobileNetV3Large

(e) MobileViT-S

Fig. 4. The solid line shows the Receiver Operating Characteristic curve
(ROC curve: sensitivity versus 1-specificity) obtained for the Kaggle dataset.
The AUC values are determined from these plots.

model. Upon selection, the model pre-processes the input
image followed by prediction and displays the result in the
fifth activity. If the application interprets the lesion to be
cancerous, then this step will display “Referral Suggested”,
if not cancerous, it will display “No Referral Suggested”. The
requirement of this application is that the suspicious lesion
should be cropped properly, to obtain the accurate result. Fig.
5 shows the screenshots of the user interface in our OCD
android application.

VII. CONCLUSIONS

In our experiments, MobileNetV3Large performed excep-
tionally well with accuracy of 84% and sensitivity of 86%,
even with a relatively small unaugmented training data and its
simple network architecture. This performance is notable, as it
indicates that MobileNetV3Large can provide accurate results
without requiring extensive computational resources or large
amounts of unaugmented training data. Although other models
did not show balanced performance, we believe that with more
unaugmented training data and further fine-tuning strategy,
their performance could be significantly improved. We had
anticipated that MobileViT-S would outperform other models



Fig. 5. Screenshots of User Interface (UI) in our OCD Android application.

due to its hybrid approach. However, this was not observed in
our initial results. We attribute this to the limited size of our
unaugmented training dataset and the specific nature of our
task. With additional unaugmented training data and further
optimization, we expect MobileViT-S performance to improve
and potentially even surpass that of all variants of MobileNet.
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