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Shot 1 Shot 2
The video captures a tranquil lakeside at sunset and the sky is deep oranges, purples, and soft pinks.

Shot 1: [0s,4s]; Shot 2: [4s,8s]
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Shot 2
Shot 1: [0s,2.75s]; Shot 2: [2.75s,5s]
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A woman with striking emerald-green eyes lifts a weathered leather journal to her lips.
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Shot 1 Shot 2
A Middle-aged man runs alone, sun rising behind him. Shot 1: [0s,2.75s]; Shot 2: [2.75s,5s]

Shot 1 Shot 2 : —Shot 3
The video captures a high-angle shot of a city at night. Shot 1: [0s,2.5s]; Shot 2: [2.5s,5s]; Shot 3: [5s,8s]

Figure 1: Multi-shot videos generated by CineTrans, which enables cinematic transitions aligning
with film editing. The corresponding mask is constructed based on the timestamps of the shots,
thereby controlling cinematic transitions Project page:

ABSTRACT

Despite significant advances in video synthesis, research into multi-shot video
generation remains in its infancy. Even with scaled-up models and massive
datasets, the shot transition capabilities remain rudimentary and unstable, largely
confining generated videos to single-shot sequences. In this work, we introduce
CineTrans, a novel framework for generating coherent multi-shot videos with
cinematic, film-style transitions. To facilitate insights into the film editing style,
we construct a multi-shot video-text dataset Cine250K with detailed shot anno-
tations. Furthermore, our analysis of existing video diffusion models uncovers a
correspondence between attention maps in the diffusion model and shot bound-
aries, which we leverage to design a mask-based control mechanism that enables
transitions at arbitrary positions and transfers effectively in a training-free setting.
After fine-tuning on our dataset with the mask mechanism, CineTrans produces
cinematic multi-shot sequences while adhering to the film editing style, avoid-
ing unstable transitions or naive concatenations. Finally, we propose specialized
evaluation metrics for transition control, temporal consistency and overall qual-
ity, and demonstrate through extensive experiments that CineTrans significantly
outperforms existing baselines across all criteria.


https://uknowsth.github.io/CineTrans/
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1 INTRODUCTION

Endowed w1th extensive pre training and sophlstlcated architectures, diffusion models (

; , b) have demonstrated promising
capablhtles in generatmg v1deos with high Vlsual quahty and strong consistency comparable to real
videos ( s ; s ; s ). Part1cular1y in the
domain of text-to- Vldeo generatlon (T2V) (

, ), the breakthrough has attracted con51derable attentlon hlghhghtlng the potentlal
of diffusion models in mastering video creation (
; ). However, generating multi-shot videos with c1nematlc edltlng style and movie- l1ke
transitions from a brief user input continues to be a significant challenge.

Existing work on long video generation can be broadly categorized into two aspects. First, larger
models trained on massive datasets advance the capability of video interpretation and generatlon
enhancing the visual fidelity and maximum video length. ( , ;

, ). Second, techniques such as conditioning improve cons1stency across concatenated
samples, enabhng longer outputs through clip stitching ( ;

, , ). While both approaches partially support multl shot sequence gener-
ation, they st111 exhibit notable limitations. Large-scale models primarily focus on single-shot v1deos
due to the scarcity of shot transitions in their training datasets ( s ;

, ). Cinematic transitions are not guaranteed, let alone at precisely controlled p051—
tions. Moreover, the high computational cost and extended training time undermine the efficiency of
this approach. Meanwhile, generating individual shots separately and concatenating them requires
substantial manual intervention, and ignores prior knowledge from cinematic multi-shot dataset, re-
sulting in cuts that often misalign with real-world editing styles. Additionally, many recent works
often target narrow contexts, such as facial consistency ( , ) or specific animated
series ( , ), which constrains their applicability to general video generation.

While the aforementioned methods achieve certain multi-shot effects, very few explicitly focus on
cinematic transitions within diffusion models. In this work, we propose CineTrans, a framework
that produces multi-shot videos with cinematic transitions as shown in Figure 1. To support this,
we develop a refined data processing pipeline that processes raw footage into a dataset of 250K
video-text pairs. Our split-stitch procedure groups semantically related clips and removes gradual
transitions, and we employ transition-aware models to annotate hierarchical captions. The resulting
Cine250K provides frame-level shot labels and temporally-dense captions, preserving film editing
style and making it well-suited for multi-shot video generation, while proving effective in enabling
more natural shot transitions and stronger inter-shot consistency.

To analyze how diffusion-based models handle cinematic multi-shot sequences, we dive deep into
the attention patterns, examining attention maps across the temporal dimension. We find that the
attention maps have strong impact on the intra-shot and inter-shot frames. This insight clarifies
the underlying mechanism of shot transitions in diffusion models. Building on this, we introduce
a mask mechanism featuring strong correlations within shots and weak correlations between shots,
achieving controlled cinematic transitions and enabling zero-shot multi-shot generation.

As shown in Figure 2, our proposed CineTrans framework functions through two key aspects. First,
through an analysis of the attention maps, we prove that the mask mechanism aligns with the dif-
fusion model’s inherent understanding of cinematic multi-shot sequences. The application of mask
enables strong intra-shot frame correlations in attention module, facilitating precise frame-level cin-
ematic transitions, which remains effective even in a training-free setting. Second, the constructed
Cine250K encapsulates prior knowledge of film editing. Fine-tuning on this dataset equips Cine-
Trans with the ability to generate cinematic transitions that conform to this style, rather than simply
concatenating semantically similar clips. Consequently, CineTrans is able to producing cinematic
multi-shot videos aligned with film-editing conventions.

We evaluate the model on a series of prompts with specified transitions and conduct a comprehen-
sive analysis using multiple metrics from different perspectives. Experimental results demonstrate
that CineTrans achieves finer shot transition control and stronger consistency compared to other
multi-shot generation methods, without compromising overall quality.

Our contributions are summarized as follows:
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Figure 2: Overview of CineTrans. Existing video generation models focus primarily on single-
shot video. The multi-shot video generation cases often follow several failures, remaining unstable
and uncontrollable. Observations of these multi-shot cases reveal a structured pattern in attention
layers. Based on this insight, we introduce a mask mechanism and fine-tune the model with our
constructed dataset Cine250K, resulting in significantly improved performance.

* We developed a dataset of 250K video-text pairs, complete with frame-level shot labels and
hierarchical annotations, which facilitates video diffusion models for generating cinematic
transitions and consistency between shots.

* We analyze attention maps in diffusion models for multi-shot video generation and observe
a strong connection between attention probabilities and shot transitions. Building on this
insight, we introduce a mask mechanism that enables cinematic transitions within diffusion
models, leading to the CineTrans framework, which is effective in a training-free setting.

* We propose a series of comprehensive metrics tailored for cinematic multi-shot video gen-
eration and evaluate CineTrans, demonstrating its ability to control cinematic transitions,
enhance temporal consistency, and preserve overall quality.

2 RELATED WORK

Diffusion-based Video Generation. Diffusion-based approaches, built on the iterative denoising
framework of Latent Diffusion Model (Rombach et al., 2022), utilize scaled-up model (Kong et ul
2024; Wan et al., 2025; Yang et al., 2024; Blattmann et al., 2023; Chen et al., 2023a; 2024a;

et al.,, 2022; Lin et al., 2024; Polyak et al., 2024) and large video datasets (Micrh etal., 2019; Bdll]
et ul., 2021; Zellers et al., 2021; Xue et al., 2022; Wang et al., 2023a;b; Chen et al., 2024b; Xiong
et al., 2025) to generate high-quality, prompt adherent videos with extended durations. Owing to
strong semantic capacity, certain pretrained models (Kong et al., 2024; Wan et al., 2025) can prelim-
inarily generate multi-shot videos when provided with transition-specified prompts, but require vast
computational resources, long training, and yield imprecise transitions. In contrast, our work offers
frame-level stable cinematic transitions, seamlessly applied to the diffusion-based framework.

Multi-Shot Video Generation. Recent work has explored multi-shot video generation, which can
be categorized into two main approaches. The first generates each shot separately and then con-
catenates them, focusing on consistency between the generated shots. Animate-a-Story (He et al.,
2023) uses motion structure retrieval for plot-aligned clips guided by text prompts. SEINE (Chen
et al., 2023b) proposes a mask-based diffusion model to generate a smooth transition between shots.
Vlogger (Zhuang et al., 2024) attempts to utilize the language model to generate prompts for dif-
ferent shots of a video. DreamFactory (Xic et al., 2024) employs an LLM-based framework with
multi-agent collaboration and keyframe iteration design. MovieDreamer (Zhao et al., 2 74) adopts
a hierarchical autoregressive architecture for global coherence, and VGoT (Zheng et al., 2024) uses
keyframes and identity-preserving embeddings to enforce temporal and character c0n51stency. While
these consistency-driven approaches are effective to some extent, they do not leverage real multi-
shot video datasets and tend to overlook complex relationships between shots, including variations
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Figure 3: Dataset curation pipeline. The raw video is split into several clips and then selectively
stitched based on semantic features. A selection process then chooses high-quality multi-shot
videos. After initial assembly, gradual changes are removed. Finally, a language model is used to
annotate each video with a general caption and each shot with its shot caption, yielding temporally
dense annotations.

in camera angles and scenes, which are crucial in human-edited videos. The second approach mod-
ifies model architectures to generate multi-shot content directly. Test-Time training ( ,
) adds a layer for long multi-shot generation but is tied to a specific animated series, limiting

generalization. Mask?DiT ( , ) applies shot-wise semantic masking yet focuses on text
injection and assumes fixed shot durations. ShotAdapter ( , ) introduces transition
tokens but exhibits low consistency. LCT ( s ) enhances multi-shot understanding with

specialized positional encodings but demands large-scale training. In contrast, our method generates
cinematic multi-shot videos in a single pass with flexible frame-level control, achieving strong per-
formance even in a training-free setting and demonstrating generalizability across diverse scenarios.

Temporal-Controlled Video Generation. Several recent works in video generation focus on con-
trolling the temporal dimension, enabling the synthesis of longer videos with more dynamic and
fine-grained temporal control ( ); ( ); ( ). VSTAR

( ) draws inspiration from the band-matrix-like structure observed in the attention maps
of real videos, and introduces a Temporal Attention Regularization strategy to enhance temporal
dynamics and motion continuity during generation. Our targeted task, multi-shot video generation,
can be regarded as a variant of temporally controlled video generation. It shifts the temporal con-
trol from frame-level semantic evolution to shot-level semantic transitions, which better aligns with
real-world video editing practices and the narrative flow of long-form videos. Fundamentally, our
proposed mask mechanism, like other temporally controlled generation methods, manipulates the
attention distribution among visual tokens within the diffusion process to achieve more coherent
and controllable video synthesis.

Masked Attention Mechanism. Masked attention has been widely used to regulate contextual
dependencies and enable controllable generation. It has been applied in representation learning

( ); ( ), generative modeling ( ); ( );
( ), and fine-grained spatial or compositional control in diffusion models ( );
( ). Our work follows this line but employs attention masking for shot-level temporal

control in video diffusion, ensuring coherence across shots while preserving intra-shot consistency.

3 DATASET

A video with cinematic transitions integrates multiple clips while preserving consistency. To capture
film editing prior knowledge for multi-shot sequences, we introduce Cine250K, a dataset for cine-
matic video generation. As shown in Figure 3, starting from 633K richly edited videos from Vimeo!,
we design a multi-stage preprocessing pipeline to construct the annotated multi-shot dataset.

First, the transition points are identified by Pyscenedetect ( , ), resulting in fragmented
segments. Adjacent segments with high similarity, measured by ImageBind ( , )
features, are then stitched together according to predefined rules to assemble an initial collection
of 16M clips containing shot transitions. We filter this collection by aesthetic score, duration, and

'https://vimeo.com
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Figure 4: We observe that in multi-shot scenarios the attention maps form a block-diagonal pattern,
i.e., certain layers exhibit higher intra-shot than inter-shot frame correlations, so we design a cor-
responding masking mechanism. Using predefined transition points, the mask is applied to those
layers of the diffusion model to guide cinematic multi-shot video generation.

shot count to form the preliminary video dataset. Subsequently, since shot transitions can be cat-
egorized into instantaneous hard cuts and gradual changes that blur segment boundaries, we apply
TransNetV2 ( , ) to detect and remove all gradual transition frames which do
not clearly belong to any single shot. This yields unambiguous segments with precise shot labels,
including exact start and end frame indices. In the final step, each video receives both a general cap-
tion produced by LLaVA-Video-7b-Qwen2 ( , ) for temporally-dense descriptions
of cinematic transitions, and separate shot captions from LLaVA-NeXT ( , ).

Following the pipeline, Cine250K offers high-aesthetic videos, precise shot labels, and hierarchical
captions, thereby supplying rich prior knowledge for cinematic multi-shot video generation and
facilitating the production of videos with authentic film editing style. The details and comparison
with previous video datasets are presented in Appendix B and C.

4 METHODOLOGY

In this section, we introduce our insight and method for the proposed CineTrans. We first provide the
necessary preliminaries in Section 4.1 to facilitate the following discussions. Section 4.2 presents
our observations in the attention maps of diffusion models, highlighting the differences between
intra-shot and inter-shot correlations. Based on this observation, we introduce a block-diagonal
mask mechanism detailedly in Section 4.3 for cinematic multi-shot video generation. In Section 4.4,
we discuss the implementation of inference. An overview of the methodology is shown in Figure 4.

4.1 PRELIMINARY

Diffusion models ( , ; ) are a class of generatlve models learning to reverse
a diffusion process, which learn to corrupt data via a predefined noisy Gaussian process and then
invert that corruption through a trained neural network. Video diffusion models simply apply this
same forward-reverse framework across temporal frames, yielding coherent video sequences F =
{f1, f2,--., fn}, Where each element f; represents a video frame. A key component in these models
is integrating the attention mechanism ( , ), which allows latent variables to focus
on each other’s relevant information and can be formalized as:

Vdy,

where Q, K, V are the query, key, and value matrices, and dj, is the key dimensionality.

KT
Attention(Q, K, V) = softmax (Q ) V, (D

Cinematic multi-shot video generation task also follows the framework mentioned above, aiming to
generate videos with cinematic transitions that are both aesthetically pleasing and compliant with
the text prompts. Additionally, with the introduction of multi-shot, the core challenges include:
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* Generation of cinematic transitions. The generated sequence F = {f1, fo,..., fn} can
be divided into M sub-intervals, where each ¥, = {fi,., fi,.+1,---, fi,...—1} contains
frames from index %, t0 %,,+1 — 1, form = 1,2,..., M, M is the specified shot count,

and i; = 1, ip741 = N + 1. Within sub-intervals, frames maintain visual continuity, while
noticeable changes at the boundaries create cinematic transitions.

* Consistency within and across shots. Within a shot, visual consistency is crucial for
continuity. In contrast, inter-shot consistency emphasizes high-level semantic similarity
over low-level details, i.e., maintaining consistency across shots despite substantial com-
positional differences. This means that its evaluation is not confined to specific attributes,
such as composition or facial features, but is guided by film-editing conventions, ensuring
applicability to general scenarios.

4.2 FRAME CORRELATION IN ATTENTION MODULE

Recently, owing to the increased model size, dataset scale, and computational resources, some dif-
fusion models ( , ) have demonstrated preliminary capabilities in
generating multi-shot VIdCOS However how diffusion models internally model transitions within
a video remains unclear and warrants further exploration. We hypothesize that the correlation be-
tween adjacent frames at transition points is significantly different from that at non-transition points.
The transition point involves a substantial shift, while a non-transition point requires continuity to
maintain visual coherence, making them inherently divergent.

In video diffusion models, the denoising process captures temporal correlations through the attention
module. Specifically, the video latent representation is flattened into a sequence of tokens. Tokens
from different frames participate in the calculation of the attention maps in specific layers, enabling
the pretrained model to generate continuous, high-quality video segments. As a result, attention
maps are a valuable tool for analyzing frame correlations.

We explore and visualize frame-wise attention maps in the context of the multi-shot video gener-
ation cases. As shown in Figure 4a, it demonstrates strong correlations for intra-shot frames and
weak correlations for inter-shot frames. More specifically, the attention probability matrix exhibits
a block-diagonal structure, with each block corresponding to a shot. Figure 4a also illustrates the
quantitative differences in attention probabilities across various layers, highlighting the variations
between intra-shot and inter-shot correlations. To quantify this observation, we compute the average
ratio of mean intra-shot to inter-shot attention probabilities (26.68) and assess its correspondence
with the ground-truth shot boundaries via Pearson correlation, yielding r=0.71 (p<0.01). This sug-
gests the potential of leveraging the attention maps to guide the generation of multi-shot videos.

4.3 MASK MECHANISM

Building on our observation, we introduce a mask mechanism, a simple strategy that operates on the
attention probability in text-to-video diffusion models. Specifically, we construct an attention mask
M for the visual tokens in the attention module at specific layers as follows:

0 if 7, 7 € same shot
M;j = { J )

—oo if,j ¢ same shot

The mask matrix is subsequently added to the attention score in Eq. 1, effectively weakening the
correlations across different shots:

QK"
en

As a result, the final attention probabilities form block-diagonal matrices, with cinematic transi-
tions occurring at predefined positions. As shown in Figure 4b, transition positions are specified
in advance, and the mask matrix is constructed accordingly, enabling precise control over the pro-
cess. With the block-diagonal mask mechanism, diffusion models can generate cinematic multi-shot
videos with fine-grained control.

Attention(Q, K, V) = softmax

V. 3)

The mask mechanism functions through two aspects. First, it aligns with the phenomenon observed
in Section 4.2, conforming to diffusion models’ inherent understanding of cinematic multi-shot
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Figure 5: Qualitative results for different methods. Our proposed CineTrans outperforms others
in transition control while preserving coherence between shots, aligning with film-editing styles.
The figure illustrates the shot segmentation results and specified shot count.
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snowy peaks. (shot count: 2) amidst fluttering birds. (shot count: 2)

Figure 6: Results of transferring our method to the customization model. It enables multi-shot
video generation while maintaining consistent character identity.

sequences. Second, unmasked layers enable full-frame token attention, allowing each token to attend
to others across different shots, thereby establishing high-level semantic consistency. This facilitates
the effective utilization of multi-shot video datasets, thereby generating multi-shot videos that align
with film editing. We present the impact of masking different layers in Appendix E.2.

4.4 IMPLEMENTATIONS

Visible-First-Frame Attention. Beyond the block-diagonal pattern detailed in Section 4.2, we
additionally observe that, in certain attention layers, all visual tokens correlate strongly with the
first temporal latent. This finding suggests a pronounced reliance on initial video information. To
exploit this observation, we introduce a Visible-First-Frame mechanism within the attention layers,
augmenting the mask design from Section 4.3 to improve consistency in multi-shot video generation.
Further details are provided in Appendix D.1.

Customization. Building on our mask mechanism, we guide a diffusion model originally designed
for single-shot generation to execute user-specified transitions, thus producing genuine multi-shot
videos. For instance, by incorporating LoRA (Hu et al., 2022) weights, we achieve zero-shot gen-
eration of multi-shot sequences with enhanced consistency and user-defined styles or character at-
tributes, even though those weights are originally trained on single-shot videos.

5 EXPERIMENT

In this section, we present the implementation details, evaluation settings, and results. Section 5.1
describes the details of CineTrans and baselines, which are evaluated on a series of metrics designed
for the cinematic multi-shot video generation task. The metrics and results are presented in Sec-
tion 5.2. Section 5.3 demonstrates that CineTrans performs well due to the components we propose.
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Table 1: Quantitative results. The best and runner-up are in bold and underlined.

Transition Inter-shot Consistency Intra-shot Consistency . .

Method Control Semantic Visual Aesthetic Semantic
Scoref Subject?  Backgroundt ~ QualityT  ConsistencyT
Score T Gapl Scoret Gapl
StoryDiffusion
+CogVideoXI2V - 05214 04966 05660 03605  0.9783 0.9713 0.6296 0.2091
HunyuanVideo 0.3787 0.5631 03764  0.6053 02855  0.9606 0.9721 0.5978 0.2082
+Cinematron
HunyuanVideo 0.2111 05723 04075 05436 03485  0.9476 0.9633 0.6042 0.2064
Wanx2.1-T2V-turbo 0.2355 0.6431 03002 0.6516 02333 09332 0.9590 0.6324 0.2046
CogVideoX 0.0324 05150 05915  0.6248 02226  0.9310 0.9582 0.5509 0.2061
CineTrans-Unet (Ours) 0.8598 0.8095 02444 07247  0.1457  0.9598 0.9725 0.5747 0.2224
CineTrans-DiT (Ours) 0.7003 0.7858  0.1552  0.7874  0.1901 0.9673 0.9775 0.6508 0.2109
Table 2: Quantitative results for ablation study. The best are in bold.

Transition Inter-shot Consistency Intra-shot Consistency . .

Method Control Semantic Visual Aesthetic Semantic
Score Subject?  Backgroundt ~ QualityT  ConsistencyT
ScoreT Gapl Scoret Gapl
CineTrans-Unet Ablation
w/o Mask, w/o Tuning 0 - - - - 0.9615 0.9702 0.5901 0.2110
w/o Mask, w/ Tuning 0.2398 07900 03279 07226 02148  0.9582 0.9718 0.5711 0.2077
w/ Mask, w/o Tuning 0.6168 07962 04336 0.8186 03000  0.9616 0.9719 0.5764 0.2196
CineTrans-Unet 0.8598 0.8095  0.2444  0.7247 01457  0.9598 0.9725 0.5747 0.2224
CineTrans-DiT Ablation
w/o Mask, w/o Tuning 0.2051 05924 03421 05274 03574 09153 0.9523 0.6322 0.2063
w/o Mask, w/ Tuning 0.2112 0.6532 03422 0.6087 03312 09213 0.9526 0.6345 0.2019
w/ Mask, w/o Tuning 0.6564 0.7838  0.1772  0.7844  0.1943  0.9618 0.9746 0.6556 0.2093
CineTrans-DiT 0.7003 0.7858  0.1552  0.7874  0.1901  0.9673 0.9775 0.6508 0.2109
5.1 IMPLEMENTATION DETAILS
We implement CineTrans-Unet based on LaVie ( ), and the mask mechanism is

applied to the last six layers. We finetune the model on ClneZSOK with a batch size of 128 for
20,000 steps and the learning rate is 1 x 10~%. CineTrans-DiT extends Wan2.1-T2V-1.3B (

, ) by integrating the mask mechanism applied to transformer layers 7-28 and is released
in two variants. The training-free variant augments the block-diagonal mask with the Visible-First-
Frame Attention (Section 4.4). The second variant further applies LoRA fine-tuning (rank=64) with
a batch size of 256 for 2,800 steps. All experiments are conducted on NVIDIA A100 GPUs. We
also apply LoRA weights to CineTrans-DiT for model customization, as shown in Figure 6.

For baseline comparison, we select three categories: large-scale T2V diffusion model, multi-shot
model, and customization model. CogVideoX1.5-5B ( s ), HunyuanVideo (

, ), and Wanx2.1-T2V-turbo® leverage large-scale pretraining and thus possess strong se-
mantic understanding. Each of these models is prompted with a general instruction specifying the
desired shot count. StoryDiffusion ( , ) first produces a sequence of semantically
consistent images following both the general prompt and individual shot-specific prompts, which
CogVideoXI2V ( s ) then expands into a video. As a customization model, Cinema-
tron® offers dedicated transition capabilities and employs the same sampling procedure as Hunyuan.

5.2 EVALUATION

For comprehensive evaluation, we design 100 hierarchical prompts with transitions using GPT-40
( s ), where each initial general description is annotated with shot count and then
expanded into shot-level captions, thus constructing a complete prompt. During evaluation, each

2https://tongyi.aliyun.com/wanxiang/
3https://civitai.com/api/download/models/ 1494601 2type=Model &format=Safe Tensor
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Figure 7: Inter-shot consistency metric details and results. (a) As the number of samples in the
reference set increases, the 95% CI Width and the cumulative mean of subset converge, indicating
stability in the reference set’s inter-shot consistency distribution. (b) Inter-shot consistency distri-
butions of different methods, CineTrans most closely matches that of the film-edited reference set.

method uses its required prompt format (multi-prompt or single-prompt). To ensure fair comparison,
when using only the single general prompt, the shot count is explicitly included in the text.

Metrics. We evaluate generated videos along three dimensions: transition control, temporal consis-
tency, and overall quality. For transition control, we assess whether the shot count in the generated
video matches the specified count using the Transition Control Score, computed as in Equation 5,
where Sgenerated and Sgpecified denote the shot counts in the generated video and the prompt, respec-
tively, and k is a hyperparameter controlling the tolerance margin.
5

T = generated (4)

Sspecified

k

Transition Control Score = ﬁ (@)
Second, temporal consistency includes both intra- and inter-shot coherence. For intra-shot, follow-
ing VBench ( , ), we compute subject and background consistency for each shot
and average the results. For inter-shot, we consider both semantics and visuals. Semantically, we
compute cosine similarity of ViCLIP ( , ) features across shots. Visually, following
VBench-Long, we compute subject and background similarity between middle frame of shots and
average them. Furthermore, as discussed in Section 4.1, overly high inter-shot scores may reflect
undesirable pixel-level similarity, which violates the prior of multi-shot video design. To address
this limitation, we introduce Consistency Gap as an auxiliary metric, defined as the Jensen-Shannon
Distance between the score distribution of generated videos and that of the reference set:

JSD(P,Q) = \/;D(P 1729 4 (e

P+Q)

5 (6)

Figure 7a illustrates the convergence of the consistency distribution for the reference set, which con-
sists of 1,000 professionally edited multi-shot videos. This metric complements the raw consistency
score by quantifying the deviation from natural film-editing style, thus providing a more compre-
hensive evaluation of video consistency. Finally, following VBench, we assess overall video quality
using aesthetic quality and overall consistency, which also evaluate the visual and semantic aspects,
respectively.

Results. The quantitative comparison is shown in Table 1. Our proposed CineTrans achieves near-
perfect cinematic transition control across all prompts. In terms of consistency, CineTrans achieves
high scores and closely aligns with film-editing style, which is also shown in Figure 7b. Because
aesthetic quality is largely determined by the base model, CineTrans-Unet performs slightly worse
in this regard, whereas CineTrans-DiT exhibits superior results.

For qualitative results, as shown in Figure 5, we compare the generated results of different methods.
Our method demonstrates a remarkably frame-level transition control capability while preserving
coherence across different shots. Even without fine-tuning, CineTrans-DiT exhibits strong perfor-
mance, demonstrating the transferability of the framework. In contrast, large-scale pretrained mod-
els fail to adhere to specified shot counts or fully misinterpret the concept of cinematic transitions.
Similarly, both customized models and existing multi-shot models show low temporal consistency.
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w/o Visible-First-Frame w/ Visible-First-Frame Initial Shot w/o tuning w/ tuning

(a) Effects of Visible-First-Frame Attention. (b) Qualitative comparison of Tuning for 0.4 epoch.

Figure 8: Qualitative comparison of key components. (a) Applying the Visible-First-Frame At-
tention in CineTrans-DiT stabilizes frames. (b) Fine-tuning enhances consistency between shots.

Fade-in/fade-out smooth transition

Figure 9: Smoother transitions achieved through soft masking.

5.3 ABLATION STUDIES

We conduct ablation studies to assess the impact of the mask mechanism and fine-tuning process.
The results in Table 2 demonstrate the effectiveness of our components and the reasonable perfor-
mance of the training-free variant. In terms of inter-shot visual consistency, the fine-tuned model
yields a lower Consistency Score, reflecting increased compositional variation between shots intro-
duced by training on film-edited multi-shot videos. This effect is further corroborated by a reduced
Consistency Gap, indicating closer alignment with the film-editing style. The slight decline in Aes-
thetic Quality after fine-tuning may be attributed to aesthetic domain differences between Cine250K
and the original training set of base model. Furthermore, Figure 8 illustrates how fine-tuning and
Visible-First-Frame Attention enhance video consistency and enable stable generation.

Additionally, since hard cuts represent the majority of cinematic transitions (99.58%), we implement
shot transitions using hard masks. However, there remains a need to explore soft mask strategies
to achieve smoother multi-shot video generation, including seamless transitions between frames
without visual breaks, as well as fade-in/fade-out effects. We present preliminary results in Figure 9,
with further discussion in Appendix E.5. Soft masks improve transition smoothness and consistency
but reduce shot transition control, introducing a gap compared to cinematic transitions. Thus, hard
masks remain the primary method for shot transitions. Nonetheless, the promising results of the soft
mask approach highlight CineTrans’s flexibility and robustness, demonstrating its ability to adapt to
a wider range of transition styles.

6 CONCLUSION

In this paper, we introduce a novel framework CineTrans for cinematic multi-shot video genera-
tion and construct a comprehensive dataset Cine250K with detailed shot annotations. Through the
analysis of attention maps in video diffusion models, we identify a strong connection between at-
tention probabilities and cinematic transitions. Based on this observation, we propose a novel mask
mechanism that enables fine-grained control over cinematic transitions, thus leading to CineTrans
framework which transfers successfully in a training-free setting. Extensive experiments validate
the effectiveness of CineTrans across multiple evaluation metrics, demonstrating improved transi-
tion control, temporal consistency, and overall video quality. Our work demonstrates the potential of
diffusion models for multi-shot video generation, offering a new perspective for directly generating
movie-like videos and paving the way for future research on controllable video synthesis.
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A  SUPPLEMENTARY MATERIALS OVERVIEW

The supplementary material provides additional experimental results, implementation details,
and qualitative analysis. In addition to this PDF, the supplementary package also includes a
project page in HTML format (Cinematic_video.html), which contains interactive visu-
alizations, video demonstrations, and further results. To view the project page, please open
project_page/Cinematic_video.html in a web browser. Furthermore, we also provide
the source code, which is included in the code/ directory, along with the training logs stored in
code/log/.

B DETAILS OF DATASET CONSTRUCTION

Section 3 describes the Cine250K construction pipeline. In this section, we provide a detailed
account of different stage.

B.1 METHOD OF SPLITTING AND SHOT SEGEMENTATION

During the Splitting stage, videos are initially segmented using PySceneDetect ( , ).
In the subsequent gradual-change removal stage, TransNetV2 ( , ) is employed
to detect and handle gradual transitions, yielding the final shot boundaries and associated shot la-
bels. This pipeline is selected because Pyscenedetect operates exclusively on the CPU, offering
greater processing efficiency than Transnetv2; however, for a pre-segmented video, Transnetv2
achieves higher shot segmentation accuracy and can handle gradual transitions more effectively
than Pyscenedetect.

For Transnetv2, Figure 10 presents an example of detection. Transnetv2 provides single-frame-
prediction and all-frame-prediction, which are designed to handle hard cuts and gradual transitions,
respectively. The single-frame-prediction refers to the probability of an individual frame being a
transition. In contrast, the all-frame-prediction predicts all frames involved in a transition, essen-
tially estimating the probability of a frame being part of a gradual change. We apply threshold-based
filtering to exclude frames with a high probability of being transition frames and obtain shot labels.
Table 3 presents the threshold settings.

A EIEEEEEEY s & F 0

s AR R R REREREREEEREEREERRER.EES

Figure 10: An example of transition detection by Transnetv2. The green line represents the result
of single-frame-prediction, while the blue line represents the result of all-frame-prediction.

Table 3: Threshold settings for dataset construction.

parameter value
Pyscenedetect splitting 27
« 0.9
B 0.7
vy 0.8

Transnetv2  single-frame-threshold  0.45
Transnetv2 all-frame-threshold 0.50

To quantitatively compare accuracy on shot segmentation, we randomly select 200 videos cover-
ing multiple categories, each containing multiple shots. We then apply both Pyscenedetect and
Transnetv2 for shot segmentation and compare the results manually. A correctly segmented video is
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Table 4: Shot Segmentation Accuracy of different methods.

Method Pyscenedetect  Transnetv2
Shot Segmentation Accuracy 65.50% 87.00%

Shot 1 1

Transnetv2 Pyscenedetect

Shot 1 ) Shot 2 1

Figure 11: An example of shot segmentation by Pyscenedetect and Transnetv2. In the figure,
Transnetv2, after the removing gradual changes step, accurately segments the two shots, while
Pyscenedetect fails to identify the gradual changes. The transition frames caused by gradual
changes are marked with dashed lines.

assigned 1; otherwise, 0. The shot segmentation accuracy is then calculated accordingly, as demon-
strated in Table 4. A specific example is shown in Figure 11.

B.2 DETAILS OF STITCHING PHASE

During the Stitching stage, adjacent segments exhibiting high semantic similarity are merged to form
a single video, thereby constructing multi-shot video collections. Specifically, we extract semantic
features from the first and last frames of each segment using ImageBind (Girdhar et al., 2023) and
quantify their similarity via Euclidean distance. For the i-th segment C, we denote the semantic
features of its first and last frames as Cf, and C?_,, respectively, with their distance represented
as dis(Cf,, Cl,q)- Based on the distance, video segments are processed sequentially and either
stitched or filtered according to the following criteria.
* For a segment C, if dis(C ., Clq) > «, the segment is filtered.

€

* For C', if C*~! is absent (either non-existent or filtered), C is treated as a video’s begin-
ning.

* For C%, if dis(C!~1,Ck ) < Band dis(Ch L, C? ) < 7, then C*~! and C" are stitched
to form a new segment.

Here, « restricts significant changes within a clip, 5 enables stitching of semantically similar tran-
sitions or originally continuous segments, and y ensures consistency between the video’s beginning
and end. After processing all segments sequentially, each resulting segment is considered a complete
video, forming a preliminary dataset of videos with shot transitions.

C STATISTIC OF CINE250K

As we present in Section 3, Cine250K is a carefully curated multi-shot video dataset with detailed
captions. This section presents its overall statistics. As shown in Figure 12, the average video
duration is 10.75s, and the average caption length is 148.79. Most videos contain 2 to 3 shots. It is
important to note that although duration and shot count filtering are applied during data processing,
TransnetV2 (Soucek & Lokoc, 2024) is later utilized to remove gradual changes and re-identify
shots. As a result, the final shot count and duration do not strictly adhere to the initial filtering
criteria. After reidentification, 87.99% of the videos contain 2 to 5 shots. Figure 12 presents the shot
distribution for videos with 1 to 10 shots, which represents 99.90% of all videos.

Regarding video categories, following Vimeo’s classification, the dataset is divided into 10 cate-
gories. Among them, Travel and Documentary have relatively higher proportions. Overall, the
distribution of categories is fairly balanced.
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Table 5: Comparison of Cine250K and other video-text datasets.

Dataset #Videos Avgvideolen Avgtextlen Multi-shot shotlabel Aesthetic Resolution
InternVid (Wang et al., 2023b) 234M 11.7s 17.6 X - High 720P
LVD-2M (Xiong et al., 2025) 2M 20.2s 88.7 X - Medium Diverse
OpenVid-1M (Nan et al., 2024) M N/A N/A X - High Diverse
Panda70M (Chen et al., 2024b) 70.8M 8.5s 13.2 v X Medium T20P
LLaVA-Video-178K (Zhang et al., 2024) 178K ~ 40.4s ~ 300 v X High Diverse
Shot2Story20K (Han et al., 2023) 20K 16s 201.8 v v Medium 720P
Shot2Story 134K 134K N/A N/A v v Medium 720P
Cine250K (Ours) 250K 10.75s 148.79 v v High 720P
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Figure 12: Statistics of Cine250K. To facilitate observation, the figure presents the shot distribution
for videos containing 1 to 10 shots. The caption word count distribution only considers data with

fewer than 500 words.
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The video showcases a serene and The video begins with a wide aerial view of a lush
picturesque setting featuring a small, red green valley surrounded by rolling hills and
wooden cabin nestled amidst lush greenery. mountains. A stone viaduct with multiple arches
The cabin, with its steeply pitched roof and stretches across the valley, and a red train is

a chimney, is surrounded by dense foliage, 4 seen traveling along the tracks. The train moves
including various trees and shrubs, slowly from left to right, crossing the viaduct and
creating a sense of seclusion and moving out of the frame. The background
tranquility. A clear lake is visible in the features a clear blue sky with a few scattered
background, reflecting the surrounding clouds, and the landscape is vibrant with
landscape and adding to the peaceful greenery. The scene transitions to a closer aerial
ambiance. The sunlight filters through the view of the same red train, now clearly visible as
leaves, casting dappled shadows on the it crosses the stone viaduct. The train continues
ground and highlighting the vibrant colors its journey from left to right, maintaining a steady
of the foliage. The camera angle shifts pace. The surrounding landscape remains lush
slightly, offering different perspectives of and green, with rolling hills and mountains in the
the cabin and its surroundings, background under a clear blue sky. The video
emphasizing the natural beauty and g concludes with the train still in motion, gradually
calmness of the location. . moving out of the frame.

The video features a live musical
performance on stage, where a group of
musicians dressed in vintage-style suits and
i hats are playing various instruments. The
central figure, wearing a gray pinstripe suit,
white shirt, red tie, and a gray fedora hat, is
holding a microphone and appears to be
singing or speaking. Behind him, another
musician is playing a saxophone, while a
third musician is playing a trombone. The
stage is dimly lit with blue lighting, creating
an intimate atmosphere. A banner with the
text 'music is life' is visible in the
background, emphasizing the theme of the
performance. The musicians are deeply
engaged in their performance, contributing
to the overall ambiance of a live jazz or
swing band concert.

The video features a red classic muscle car
driving on a road during the late afternoon or
early evening. The car, with its headlights on
and license plate reading 'DL 75721", is seen
from various angles as it moves forward. The
background includes a mix of urban and natural
elements, such as buildings, trees, and
mountains under a partly cloudy sky. The
setting sun casts a warm glow over the scene,
enhancing the visual appeal. The car's sleek
design and shiny exterior are highlighted as it
navigates through the area, showcasing its
7] smooth motion and the picturesque
surroundings.

Figure 13: Example video-text pairs in Cine250K.
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Figure 14: Distribution of shot length and transition points in Cine250K as the training dataset.
Given the temporal compression of the VAE encoder, temporal slices are used as the unit.

In Figure 13, we select several example video-text pairs to demonstrate the specific characteristics of
the cinematic multi-shot sequences in the dataset and the style of captions. In Table 5, we compare
Cine250K with other datasets. As a multi-shot video dataset with detailed shot labels, the high-
quality content of Cine250K can significantly facilitate research and exploration in multi-shot video
generation.

Additionally, when Cine250K is used as the training dataset for CineTrans, the distribution of tran-
sition point positions and shot lengths is relatively uniform (Figure 14), which enables CineTrans to
achieve precise frame-level control without timestamp jitter and ensure stability when varying shot
lengths are used as conditions.
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Figure 15: Visualization of the temporal-domain attention maps of Wan2.1 when generating multi-
shot videos. Certain layers exhibit a pronounced focus on the first temporal slice, which motivates
our Visible-First-Frame Attention mechanism.

D ADDITIONAL DETAILS OF IMPLEMENTATION

D.1 VISIBLE-FIRST-FRAME ATTENTION

In Section 4.4, we introduce the implementation detail dubbed Visible-First-Frame Attention, which
serves to further stabilize the mask mechanism, particularly within DiT architectures, as demon-
strated in Figure 8a. This mechanism is also motivated by our analysis of DiT’s attention maps
during multi-shot video generation. As illustrated in Figure 15, in certain layers all visual tokens
assign high attention probabilities to tokens originating from the first frame (owing to temporal
compression in the VAE, this in fact corresponds to the first latent temporal slice), suggesting that
the initial frame assumes a special function in the diffusion model’s denoising process. In light of
this observation, we modify our mask matrix so that its first column is set entirely to zero, thereby
effecting the Visible-First-Frame Attention mechanism, which can be formulated as:

0 if j = 1ori,j € same shot
M;j = { J ! )

—oo if j # lori,j ¢ same shot

D.2 MULTI-PROMPT

In Section 5.2, we note that some methods employ a multi-prompt strategy at inference, i.e., each
shot is prompted by its own text description. CineTrans-DiT also supports this capability. In addition
to the primary mask matrix between video tokens, we introduce an additional mask between text
and video tokens, following Qi et al. (2025), to enable precise semantic control over each shot. It
is worth noting that this mask is applied only to the attention layers governing text—video token
interactions, and is distinct from our proposed mask mechanism, which operates on video—video
token interactions.

D.3 TRANSITION POINT SELECTION
In Section 4.3, we introduce the Mask Mechanism that achieves temporal control of shot transitions.

During evaluation, shot transition points should be predefined in advance to generate multi-shot
videos. To address this, we predefine several suitable shot transition points for different shot counts
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Figure 16: Multi-shot videos with shorter length for last two shots. It can be observed that the vi-
sual quality remains intact even when the shot lengths are relatively extreme.

and randomly select them during inference. However, as mentioned in Appendix C, our training set
adequately supports shot transitions at various positions, so random sampling of transition points
does not lead to issues such as visual collapse (Figure 16). Nevertheless, for optimal visual perfor-
mance, including action completeness and overall video quality, uniform shot lengths are preferred,
as they avoid extremely short shots.

E ADDITIONAL RESULTS

E.1 THE SPECIFIC DETAILS OF THE ATTENTION PROBABILITIES.

In Section 4.2, we explore the frame correlations in the case of cinematic multi-shot video generation
in diffusion models, where attention modules in certain layers exhibit a block-diagonal structure, i.e.,
strong correlations for intra-shot frames and weak correlations for inter-shot frames. In this section,
we will discuss the specific details of the attention maps across different architectures, layers, and
timesteps.

As for the architecture, we investigate both the temporal-spatial-decoupled framework and the full
attention framework. The temporal-spatial-decoupled framework applies the temporal attention
module directly to the time sequences, where tokens at different spatial locations do not interact
with each other. In contrast, the full attention framework operates on all tokens of the video, al-
lowing correlations across both temporal and spatial dimensions simultaneously. To focus on frame
correlations, we group and average the tokens in the full attention framework by the frames before
conducting further analysis. In Figure 17 and Figure 18, we use Wang et al. (2024b) and Kong et al.
(2024) as representatives of different architectures and present the attention maps across different
layers and timesteps in both qualitative and quantitative manners.

As timesteps increase, the discrepancy between intra-shot and inter-shot attention probabilities
grows in the temporal-spatial-decoupled framework, whereas it remains stable in the full atten-
tion framework. For different layers, the temporal-spatial-decoupled framework exhibits noticeable
differences across most layers, whereas the full attention framework shows disparity primarily in
the earlier layers. In summary, both frameworks demonstrate significant differences between intra-
shot and inter-shot attention probabilities. This finding further substantiates the prevalence of strong
intra-shot and weak inter-shot correlations, supporting the proposed approach.

Additionally, we present the inter-shot/intra-shot attention probability ratio for different models and
layers, as well as the Pearson correlation between this ratio and the distance from transition points
(i.e., whether the ratio increases as partition points approach true transitions), with results recorded
in Table 6. It can be observed that the inter-shot/intra-shot ratio tends to increase as partition points
approach the transition points across different models, further supporting the general presence of the
block-diagonal pattern in diffusion models.
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(a) Visualization of temporal attention maps in (b) Visualization of the averaged attention maps
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attention probability matrices across most layers attention framework. Earlier layers tend to ex-
exhibit a block-diagonal pattern. hibit a block-diagonal pattern.

Figure 17: The visualization of attention maps between visual tokens from different frames for
individual case of multi-shot video generation. Both in the temporal-spatial-decoupled framework
and full attention framework, diffusion models exhibit strong intra-shot attention and weak inter-
shot attention in certain layers.
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(a) Result of temporal attention probabilities in temporal-spatial-decoupled framework. In most layers, the
probabilities of tokens within a shot and those across shots exhibit a noticeable difference, which seems to
increase as the denoising process progresses.
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(b) Result of attention probabilities for visual tokens in full attention framework. The difference between the
probabilities of tokens within a shot and across shots remains relatively stable during the denoising process,
with a tendency to exhibit a larger disparity in the earlier layers.

Figure 18: The average attention probability for intra-shot and inter-shot across diffusion layers
and denoising steps. In both framework, the average probability within shots is obvious greater
than that between shots for certain layers.
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Figure 19: Comparison of attention maps between two cases with identical conditions but different
seeds: one exhibiting a shot transition and the other only showing a camera movement.

Table 6: Inter-shot/Intra-shot attention probability ratio and Pearson correlation for different mod-
els and layers.

Model Intra-shot/Inter-shot attention probability ratio ~ Pearson correlation
Wan2.2 (front layer 33%) 5.6792 0.9267,p<0.0001
Wan2.2 (middle layer 33%) 7.4204 0.9233,p<0.0001
Wan2.2 (late layer 33%) 6.9483 0.8496,p<0.0001
Hunyuan (front layer 33%) 4.8514 0.6571,p<0.0001
Hunyuan (middle layer 33%) 3.4478 0.7507,p<0.0001
Hunyuan (late layer 33%) 1.5194 0.4969,p<0.0001
Wan2.1 (front layer 33%) 8.3925 0.7393,p<0.0001
Wan2.1 (middle layer 33%) 14.1942 0.7319,p<0.0001
Wan2.1 (late layer 33%) 14.6686 0.6159,p<0.0001

Finally, we investigate the potential cause of this pattern by comparing two cases with identical
conditions but different seeds: one exhibiting a shot transition and the other only a camera movement
(Figure 19). Attention map analysis in Table 7 shows that the case with a shot transition exhibits a
stronger block-diagonal pattern, further proving that this attention pattern is strongly correlated with
the diffusion model’s understanding of shot transitions.

E.2 IMPACT OF MASK LAYERS ON RESULTS

For CineTrans-Unet and CineTrans-DiT, the mask mechanism employs different masking layers,
a design choice motivated by observations of the attention maps when diffusion models generate
multi-shot videos. In this section, we examine the effects of applying masks to different layers on
the quality of the generated videos, thereby demonstrating the rationale behind our masking strategy.

As shown in Figure 20a, CineTrans-Unet exhibits noticeable visual distortions when the mask is
applied to all layers or only to the early layers. In severe cases, some parts of the video become
indistinct or heavily degraded. When no mask is applied or when the mask is applied only to the
middle layers, cinematic transitions do not emerge clearly. Applying the mask to the later layers

Table 7: Inter-shot/Intra-shot attention probability ratio and Pearson correlation for two cases (with
and without transition).

Model Intra-shot/Inter-shot attention probability ratio ~ Pearson correlation

Case with shot transition

Wan2.1 (front layer 33%) 8.3925 0.7393,p<0.0001
Wan2.1 (middle layer 33%) 14.1942 0.7319,p<0.0001
Wan2.1 (late layer 33%) 14.6686 0.6159,p<0.0001
Case without shot transition

Wan2.1 (front layer 33%) 6.7575 0.3462,p<0.001
Wan2.1 (middle layer 33%) 49148 0.3378,p<0.001
Wan2.1 (late layer 33%) 6.7575 0.3462,p<0.001
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(a) Results of CineTrans-Unet.
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(b) Results of CineTrans-DiT.

Figure 20: The results of different mask strategies. Applying the mask to the later layers of the
spatial-temporal-decoupled architecture (CineTrans-Unet) and the middle layers of the full atten-
tion architecture (CineTrans-DiT) is considered more effective. For the full attention architecture,
applying the mask to all layers leads to severe visual distortion, as illustrated in the figure.
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Table 8: Quantitivate results for masking different layers in new different frameworks. The best are
in bold.

Transition Inter-shot Consistency Intra-shot Consistency . .

Method Control Semantic Visual Aesth.etlc Ser{lantlc
Scorel Subject?  Backgroundt ~ QualityT Consistency
Score?T Gapl Score T Gapl
Ablation for VideoCrafter2 (Unet)
Mask front 1/2 layers 0.0889 0.8313  0.3630  0.8338  0.3603 0.9594 0.9723 0.6287 0.2205
Mask late 1/2 layers 0.1889 0.7739 01980  0.7766  0.3416 0.9728 0.9693 0.6258 0.2213
Ablation for Wan2.2 (DiT)
Mask front 1/2 layers 0.3811 09425 05976 0.9380  0.5205 0.9570 0.9624 0.6298 0.2073
Mask middle 1/2 layers 0.5982 0.6752  0.2084  0.7234  0.1458 0.9474 0.9636 0.6395 0.2140
Mask late 1/2 layers 0.0085 - - - - 0.9466 0.9646 0.6305 0.1943
Wan2.2
Mask frpn?‘. V% layers
VideoCrafter2 {0

Mask front 4 layers
—

Figure 21: Results of masking different layers in new different frameworks.

enables effective control over transitions without significantly affecting visual quality, suggesting it
as the optimal strategy. This suggests that, in the spatial-temporal-decoupled architecture, correla-
tions in the earlier layers primarily influence visual quality, while the later layers may regulate the
consistency between adjacent frames. Therefore, applying the mask mechanism to the last six layers
is demonstrated to be effective.

As shown in Figure 20b, the proportion of layers requiring masking in CineTrans-DiT is larger than
in CineTrans-Unet, and both the early and late layers need to retain fully visible attention. Masking
all layers to this architecture may lead to low inter-shot consistency and severe visual degradation
at the transitions. Conversely, masking only the earlier or later layers fails to effectively guide
the transitions. Moreover, when fewer layers are masked, the inter-shot differences are reduced,
which deviates from the convention of multi-shot video. These observations suggest that the current
strategy of masking the middle layers achieves the optimal balance, enabling precise control over
transitions while preserving a reasonable degree of consistency.

To validate the generalizability of our heuristic mask-layer selection, we apply the same approach
to other architectures: masking the later half of layers in U-Net and the middle half of layers in
DiT. We use VideoCrafter2 Chen et al. (2024a) and Wan2.2 Wan et al. (2025) as base models, with
results presented in Table 8. Due to VideoCrafter2’s relatively limited duration and representational
capacity, the overall Transition Control Scores are relatively low. However, masking later layers still
leads to clearer shot-transition behavior. Figure 21 shows that selecting the appropriate masking
layer can indeed improve multi-shot video generation performance.

E.3 QUALITATIVE EVALUATION FOR ABLATION STUDIES

The quantitative results of the ablation studies are presented in Section 5.3, and this section provides
a supplementary qualitative analysis.
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Figure 22: Qualitative results of ablation studies.
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As shown in Figure 22, CineTrans can stably control the generation of transitions. In contrast,
models without the mask mechanism, whether finetuned or not, are almost incapable of generating
cinematic transitions. Direct application of the mask mechanism without further finetuning, i.e.,
training-free results, does indeed generate transitions. However, further training can help the model
produce shot transitions that better align with the film editing style, exhibiting higher aesthetic qual-
ity and improved consistency.

E.4 USER STUDY

To complement the experimental results, we report the findings of our user study in this section.
Specifically, we select 20 prompts for user evaluation, where participants rate each result on a scale
from 1 to 5. We evaluate different methods from the perspective of Transition Control and Overall
Consistency, with the MOS results presented in Table 9. It can be observed that CineTrans also
demonstrates strong performance in terms of user preference.

Table 9: Results of User Study

Model Transition Control  Consistency
CineTrans-DiT (ours) 4.60 £+ 0.50 4.15 £ 0.75
CineTrans-Unet (ours) 4.75 + 0.44 4.10 £0.72
StoryDiffusion+CogVideoXI2V - 3.95+0.76
HunyuanVideo+Cinematron 3.60 £ 1.95 3.80 £ 0.68
HunyuanVideo 345+ 1.88 3.50 £ 0.76
CogVideoX 2.50 + 1.24 3.05 £ 0.60
Wanx2.1-T2V-turbo 325+ 1.77 3.45 £ 0.69

E.5 ACHIEVING SMOOTHER TRANSITIONS THROUGH SOFT MASKING

This section investigates soft masking strategies applied to the hard mask mechanism proposed in
4.3, with the aim of assessing whether soft masking can enable smoother shot transitions or higher
consistency. Specifically, we explore strategies including time-dependent penalty and timestep-
dependent penalty. The following will present the details of these strategies along with the corre-
sponding experimental results.

Time-Dependent Penalty. In the hard masking scheme, the mask matrix is initially set to be fully
invisible, allowing tokens within each shot to interact for multi-shot video generation. The time-
dependent penalty allows token interactions near shot boundaries. Specifically, we initialize the
mask matrix using a Gaussian decay based on the distance between frames:
(G

Mij=e 20% . (8)
This is then mapped to the range [0, —oc0), with all tokens within each shot being fully visible sub-
sequently, thus forming a soft masking strategy around shot boundaries. The smoothness of the
transition is controlled by the parameter 0. The evaluation results are presented in Table 10 and
Figure 23, where L denotes the sequence length. As the soft mask approaches full visibility, the
transition control effect weakens until no shot transition occurs. With the appropriate hyperparam-
eter settings (e.g., o = L/12), the visual break at the transition boundary becomes less obvious.
However, excessively large o values lead to minimal difference across shot compositions, reducing
the content diversity in the multi-shot video and resulting in a more uniform appearance, which
explains the decline in semantic consistency.

Timestep-Dependent Penalty. In contrast, the Diffusion-Timestep-Dependent Penalty focuses on
the timestep of the denoising process, making the invisible region of the mask partially visible
during the early denoising steps and gradually approaching full invisibility as the process progresses.
Compared to the Time-Dependent Penalty, which focuses on shot boundaries, this soft masking
enhances interactions between all inter-shot tokens. As shown in Figure 24, the increased token
correlations result in a significant reduction in compositional differences between shots, leaving
only a residual boundary transition effect. This comes at the cost of multi-shot content diversity,
as reflected by the substantial drop in the Transition Control Score in Table 11. Therefore, the
Diffusion-Timestep-Dependent Penalty tends to strengthen inter-shot consistency, while its effect
on smoother transitions is less pronounced than that of the time-dependent penalty.
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Table 10: Quantitative results for Time-Dependent Penalty. The best are in bold. Smaller o values
approach the hard mask.

Figure 23: An illustration of the Time-Dependent Penalty.

_— TrCE::fti:f) (;n Semlannttei:shot Consiste:]icsyual Intra-shot Consistency Aesthetic Semantic
Score? Subjectt  Background? Quality T Consistency
ScoreT Gapl ScoreT Gapl
Ablation for CineTrans-DiT (training-free)
oc=1L/4 0.0220 0.8685  0.4261 0.8231 0.2499 0.9629 0.9750 0.6513 0.2025
oc=1LJ6 0.0700 0.8238  0.2411 0.8248  0.2431 0.9445 0.9606 0.6514 0.2073
oc=1L/12 0.4036 0.7987  0.2005  0.8186  0.2139 0.9400 0.9544 0.6562 0.2086
Hard Mask 0.6564 0.7838 0.1772 0.7844 0.1943 0.9618 0.9746 0.6556 0.2093
Ablation for CineTrans-DiT (trained)
oc=1L/4 0 - - - - 0.9541 0.9660 0.6453 0.2004
oc=1L/6 0.0455 0.7944 0.1885 0.8377 0.3074 0.9424 0.9598 0.6455 0.2105
o=1L/12 0.5193 0.7902  0.1796  0.8145  0.2575 0.9519 0.9659 0.6489 0.2095
Hard Mask 0.7003 0.7858  0.1552  0.7874  0.1901 0.9673 0.9775 0.6508 0.2109

E.6 OVERLAPPING AMBIGUOUS SHOT BOUNDARIES

The results in Table 1 demonstrate that our model maintains precise control over shot transitions
at specified transition points using the mask mechanism. In this section, we examine the model’s
performance under overlapping and ambiguous shot boundaries. Specifically, we introduce fluc-
tuations of +¢ frames (temporal slices) around the fixed transition points during inference, which
generates overlapping and ambiguous boundaries in the denoising process. Quantitative results are

Table 11: Quantitative results for Timestep-Dependent Penalty. The best are in bold. Smaller ¢
values approach the hard mask.

Inter-shot Consistency

Method Transition Control Score Semantic Visual

Score? Gapl Scoret Gapl

Ablation for CineTrans-DiT (training-free)

t=1.0 0 - - - R

t=0.5 0 - - - -

Hard Mask 0.6564 0.7838  0.1772  0.7844  0.1943
Ablation for CineTrans-DiT (trained)

t=1.0 0 - - - -

t=20.5 0.0741 0.7864  0.2211  0.8029  0.3655

Hard Mask 0.7003 0.7858  0.1552  0.7874  0.1901
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Figure 24: An illustration of the Timestep-Dependent Penalty.
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Figure 25: A Result of Overlapping Ambiguous Shot Boundary.

shown in Table 12 and Figure 25. It can be observed that, even under overlapping and ambiguous
shot boundaries, the model retains a reasonable Transition Control Score and produces effects re-
sembling fade-in/fade-out transitions to some extent. These results confirm the robustness of the
mask mechanism, demonstrating that the model retains effective control even in the presence of
ambiguous or overlapping shot boundaries.

F EVALUATION

F.1 PROMPT DETAILS

In Section 5.2, we present a set of prompts generated by GPT-4o0 (Achiam et al., 2023) to evaluate
the performance of multi-shot video generation. Figure 26a provides the prompt used to guide GPT.

Given the long inference time of video generation models, we design 100 prompts for evaluation,
covering multiple categories. For these prompts, the transition guidance can be divided into two
types. One type explicitly specifies a significant semantic change, such as prompts that include
phrases like The video transition to, clearly indicating shot changes. The other type implicitly
guides the shot transition, where the prompt does not explicitly differentiate content changes be-
tween shots, but rather provides an overall description of the video. This type of prompt design
accounts for the fact that some cinematic multi-shot videos only involve switching camera angles
without significant semantic change. The multi-shot guidance in such cases primarily relies on the
prompt’s opening phrase: The multi-shot video consists of {num_shot} shots. Figure 26b presents
examples of these two types of prompts, and Figure 26¢ shows the word cloud distribution for this set
of prompts. Table 13 outlines the categories of the prompts. It is worth noting that, for methods re-
quiring multi-prompt inference, we employ GPT-40 to expand the general prompt into shot-specific
captions according to the designated shot count.

F.2 METRIC DETAILS
In Section 5.2, we establish evaluation metrics from three aspects: transition control, temporal con-

sistency, and overall video quality. This section will provide a detailed explanation of the specific
definitions of these metrics.
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Prompt for GPT-40

You are part of a team of
bots that create videos. You
are now required to
generate video descriptions
of content with lens
transitions to be used for
sampling in the video
generation model.
Regarding lens transitions,
semantically coherent scene
transformations, and
changes in camera angles
are allowed. The total
number of words in the
description is around 70
words, shot count is in the
range of 2-4. The theme of
the video is {categor}.

Prompt with explicit shot cl

The video begins with a
comfortable living room, bathed
in soft, warm light from large
Windows, with plush furniture
arranged around a sofa. The
scene transitions to a bookshelf
filled with an assortment of
books, picture frames, and
decorative items. The video ends
with a shot of the living room as
night falls, the lights dim and a
peaceful atmosphere fills the
space. The whole video shows a
warm and comfortable scene in
the living room.

Shot Count: 3

The multi-shot video consists of
two shots. The video captures an
expansive tundra stretching
beneath a pale blue sky, where
the earth is hard and cracked,
and sparse tufts of grass cling to
life. Snow-capped mountains loom
on the horizon, their peaks
piercing the sky. The wind
whispers across the barren
landscape, carrying with it the
scent of pine and cold air. In the
distance, a herd of wild reindeer
moves slowly across the plains,
their movements graceful against
the stark, frozen backdrop.

Shot Count: 2
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Figure 26: The details of the prompts used for evaluation. (a) Prompt for GPT-40. The designated
video theme vary. (b) Prompt examples for evaluation. (c) Word cloud of prompts for evaluation.
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Figure 27: Overview of the metric design. We devise evaluation measures along three complemen-
tary dimensions: transition control, temporal consistency, and overall video quality.
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Table 12: Quantitative results for Overlapping Ambiguous Shot Boundaries. The best are in bold.
Smaller ¢ values approach the fixed transition points.

Inter-shot Consistency

Method Transition Control Score Semantic Visual

Score? Gapl Scoret Gapl

Ablation for CineTrans-DiT (training-free)

No Mask 0.2051 0.5924  0.3421 0.5274  0.3574
t=2 0.2698 0.7227  0.1918  0.8109  0.2612
t=1 0.4123 0.7344  0.1846  0.8044  0.2299
Fixed Transition Points 0.6564 0.7838  0.1772  0.7844  0.1943
Ablation for CineTrans-DiT (trained)
No Mask 0.2112 0.6532  0.3422  0.6087  0.3312
t=2 0.4240 0.7526  0.1976  0.8311  0.3082
t=1 0.5461 0.7302  0.1837  0.8245  0.2764
Fixed Transition Points 0.7003 0.7858  0.1552  0.7874  0.1901

Table 13: Details of prompt categories for evaluation.

category count
scenary 34
architecture 10
human 25
object 31

Transition Control. For transition control, we define the Transition Control Score to measure
whether the shot count in the generated video aligns with the specified count, as formulated in
Equation 5.

Figure 27 visualizes the calculation method for the Transition Control subpanel. In practice, when
x < 1, kis set to 2, and when = > 1, k is set to 1.6. Given that the prompts used for evaluation all
specify multiple transitions, the score is set to 0 when the generated video consists of a single shot.
When the shot count in the generated video matches the specified value, the score is recorded as 1.
More generally, the score is determined based on the absolute difference from the specified value.

Temporal consistency. In terms of temporal consistency, we consider both intra-shot consistency
and inter-shot consistency. Intra-shot consistency treats each shot as a separate video and calculates
the metric between adJacent frames using a method similar to that in VBench ( , ).
The focus of this section is on inter-shot consistency. As for frame extraction, we use the middle
frame of each shot for calculation. However, if the video does not generate multiple shots, inter-shot
consistency cannot be evaluated. As shown in Table 1, the original LaVie ( , ) lacks
the ability to generate transitions, and therefore its inter-shot consistency metric does not have a
corresponding value.

Regarding the metric definition, inter-shot consistency cannot directly serve as the final evaluation
metric. In multi-shot video generation, the goal is to ensure that the generated video aligns with the
editing style of film-edited videos. High consistency would imply pixel-level similarity, which may
contradict the multi-shot nature of real video editing. To address this, we extract 1000 film-edited
videos as a validation dataset and compute their inter-shot consistency as a reference set. The final
metric is then determined by the Jensen-Shannon Distance (JSD) between the inter-shot consistency
of the generated video and that of film-edited videos, as shown in Equation 6. A lower JSD indicates
a closer alignment with the reference distribution.

Videos whose inter-shot consistency distribution aligns with film editing styles are considered to
exhibit higher inter-shot consistency performance, while those deviating from film editing practices
are regarded as having lower performance. This defines the evaluation metric based on inter-shot
consistency.
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Figure 28: Failure case with similar composition consistency, which probably results from insuffi-
cient training.

G LIMITATION

G.1 FAILURE CASE

The role of the mask mechanism in controlling the occurrence of transitions remains relatively sta-
ble. Nevertheless, in occasional cases (particularly under the training-free setting), the compositions
of different shots may become overly similar, as illustrated in Figure 28. Although such content
changes are perceptible to the human eye, the shot segmentation model does not recognize them
as multi-shot videos due to the high compositional similarity, and the resulting visual experience
also deviates from the film editing style. These cases can be attributed to insufficient training or the
absence of such data types in the training set, which prevents the model from generating videos of
the same scene with varied compositions. Potential improvements may come from expanding the
dataset or further training.

G.2 FUTURE WORK

Although CineTrans has achieved promising results in cinematic multi-shot video generation us-
ing the mask mechanism, there are still limitations to be addressed, along with several promising
directions for future research.

* While the mask mechanism enables control over the occurrence of shots, the specification
of camera viewpoints could be made more controllable, for example, enabling changes
in shooting perspective within a scene that are more consistent with the film production
pipeline. Therefore, achieving higher content consistency and more precise control over
camera viewpoints will be a key future direction, potentially requiring the incorporation of
3D information as prior knowledge.

* Multi-shot videos could also be extended to greater lengths. Incorporating auto-regressive
generation into the video generation pipeline represents a promising approach for produc-
ing longer multi-shot videos.

* Fine-grained consistency presents an area for further improvement. While our method
demonstrates strong overall consistency, achieving fine-grained alignment across shots re-
mains challenging due to the intricate spatial understanding required. This limitation is
primarily due to the lack of detailed background and scene context annotations in the train-
ing data. Future work will focus on incorporating more granular annotations and leveraging
advanced model designs to address this challenge.

H USE OF LARGE LANGUAGE MODELS

We clarify the involvement of large language models (LLMs) in the preparation of this work. LLMs
are not used for research design, methodological decisions, or experimental analysis. Their use is
limited to two aspects: (i) improving the clarity and readability of the manuscript through language
editing, and (ii) generating evaluation prompts during the assessment phase, as explicitly noted in
Section 5.2. All substantive research contributions, including the conception of the problem, model
design, implementation, and analysis, are conducted entirely by the authors.
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