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Abstract

Self-correction of large language models (LLMs) emerges as a critical component
for enhancing their reasoning performance. Although various self-correction meth-
ods have been proposed, a comprehensive evaluation of these methods remains
largely unexplored, and the question of whether LLMs can truly correct themselves
is a matter of significant interest and concern. In this study, we introduce Cor-
rectBench, a benchmark developed to evaluate the effectiveness of self-correction
strategies, including intrinsic, external, and fine-tuned approaches, across three
tasks: commonsense reasoning, mathematical reasoning, and code generation.
Our findings reveal that: 1) Self-correction methods can improve accuracy, espe-
cially for complex reasoning tasks; 2) Mixing different self-correction strategies
yields further improvements, though it reduces efficiency; 3) Reasoning LLMs
have limited optimization under additional self-correction methods and have high
time costs. Interestingly, a comparatively simple chain-of-thought (CoT) baseline
demonstrates competitive accuracy and efficiency. These results underscore the
potential of self-correction to enhance LLM’s reasoning performance while high-
lighting the ongoing challenge of improving their efficiency. Consequently, we
advocate for further research focused on optimizing the balance between reasoning
capabilities and operational efficiency. Project Page: https://correctbench.github.io/

1 Introduction

The rapid advancement of large language models (LLMs), exemplified by GPT-3.5 [72] and LLaMA
3 [16], has precipitated a transformative shift in artificial intelligence (AI), yielding state-of-the-
art performance across diverse tasks [56]. Specifically, these tasks include content generation [1],
natural language understanding [31], and complex decision-making [67], all of which have been
revolutionized by the extensive pretraining and sophisticated architectures of LLMs. Notably, the
introduction of frameworks like Chain-of-Thought (CoT) [61] has further expanded LLM’s capacity
for multi-step reasoning, enabling them to tackle more intricate tasks.

Despite these advancements, ensuring the reliability and accuracy of model outputs, especially for
reasoning-intensive tasks, remains a formidable challenge. In response, recent works have focused
on self-correction strategies aimed at refining LLMs’ decision-making processes [29, 34] through
iterative revision. Pioneering approaches such as RARR [20], Refiner [44], and CRITIC [21] illustrate
the potential of integrating feedback loops and corrective components into model architectures.
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Figure 1: Comparison of different LLMs across various self-correction types and task scenarios.

However, these approaches often yield inconsistent gains across different tasks, prompting deeper
questions about their capability of correction and generalizability. This observation motivates the
central question: Can LLMs truly correct themselves? Moreover, it remains unclear whether more
intricate self-correction schemes necessarily translate into superior overall performance.

To address these issues, this paper presents CorrectBench, a systematic benchmark for investigating
how self-correction methods affect LLMs performance across multiple tasks. Building on a recent
survey of self-correction approaches [29], we categorize such methods into three primary categories
(i.e., intrinsic correction, external correction and fine-tuned correction), and select 11 representative
methods from them. Additionally, we establish comparative baselines using both the widely adopted
CoT [61] and a standard prompting strategy denoted as ‘Base’ (detailed in Appendix G.1).

For a rigorous and comprehensive assessment, we construct two curated datasets: CorrectBench-
base, which integrates diverse subtasks with 3,825 question-answer pairs drawn from 7 distinct
subdatasets, and CorrectBench-test, a curated collection of question-answer pairs specifically tailored
for correction-oriented experiments. These subdatasets cover three principal tasks: commonsense
reasoning [47], mathematical reasoning [23], and code generation [7]. We then apply these subdatasets
to both instruction-based LLMs (e.g., LLaMA 3.1-8B-Instruct [40], Qwen 2.5-7B-Instruct [70], GPT-
4o [26], Claude 3.5-Sonnet [2]) and reasoning LLMs2 (e.g., DeepSeek-V3 [12]). Figure 1 compares
the baseline (‘Base’) performance with the mean performances of intrinsic and external correction
methods separately, revealing that self-correction bolsters overall accuracy (detailed in Figure 8).

Key insights. First, self-correction methods substantially enhance accuracy, particularly in complex
reasoning tasks. Meanwhile, mixing multiple methods, while improving accuracy, incurs higher
computational costs and reduced efficiency. For reasoning LLMs, these methods offer only marginal
gains with increased time usage. Interestingly, the CoT [61] strategy demonstrates a favorable
trade-off between operational efficiency and overall accuracy, challenging the prevailing assumption
that more sophisticated correction frameworks inherently produce superior outcomes.

To summarize, our work provides three key contributions:

• A Comprehensive Benchmark. We propose CorrectBench, the first benchmark devised
to systematically evaluate the impact of self-correction on LLMs inference. Spanning
multiple tasks and model categories, CorrectBench offers a robust, reproducible platform
for methodological comparisons.

• Two Datasets. We present CorrectBench-base and CorrectBench-test, both meticulously
constructed to encompass a broad range of question-answer formats and reasoning scenarios,
facilitating thorough assessments of different correction methods.

• Insights and Implications. Our empirical findings show that self-correction substantially
advances LLMs’ performance, especially on tasks demanding extensive reasoning. However,
the increased computational load of mixing multiple correction strategies must be weighed
against potential accuracy gains. Moreover, for reasoning LLMs, additional correction

2This paper defines “reasoning LLMs” as those models that are specifically enhanced with complex reasoning
capabilities through a post-training optimization process.

2



methods provide limited improvements, emphasizing critical cost-efficiency concerns for
practical applications.

2 CorrectBench: A Benchmark of Self-Correction in LLMs

CorrectBench is a systematically designed benchmark that quantifies the extent to which various
correction methods improve model outputs in reasoning-intensive scenarios. As illustrated in Figure 2,
CorrectBench characterizes self-correction along three principal dimensions: Task Scenario, Self-
Correction Type, and LLM Type. The evaluation pipeline begins with selecting a specific task scenario
and dataset, followed by applying a chosen correction method, and concludes with assessing the
model’s iterative self-correction process across diverse LLMs.

Question: Which of the following is

the largest planet in our solar system?

A) Earth B) Mars C) Jupiter D) Venus?

T1: Commonsense Reasoning

Answer: C.

T2: Mathematical Reasoning

Question: Natalia sold clips to 48 of

her friends in April, and then she sold

half as many clips in May. How many

clips did Natalia sell altogether in

April and May?

Answer: 72.

T3: Code Generation

Question: Write a Python function

that takes two integers as input and

returns their sum.

Answer:

def add_numbers(a, b):

return a + b
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Figure 2: An overview of the CorrectBench framework.
Iterative Self-Correction Paradigm. In a standard LLM evaluation, the model generates an initial
response r0 to a question q given an initial prompt p0, formally r0 = M(q, p0), where M denotes
the LLM. While this process becomes iterative in the self-correction paradigm. Specifically, for the
k-th iteration, pk = pk−1 ∪ rk−1, rk = M(q, pk), where pk is the updated prompt that includes
the previous response rk−1. After K iterations, the final output rK reflects the model’s corrected
response. This iterative mechanism enables the model to continually refine its output based on newly
revealed errors or inconsistencies.

Question

Initial 

Response
Response1 Responsen−1 Response𝑛

Correction Method Addition Iteration

Figure 3: Mixture of different correction methods.

Mixture Framework. While individual self-
correction methods can improve model responses,
it is plausible that integrating multiple methods
may yield further improvements in accuracy. To
examine these potential synergies, we propose
the mixture framework, illustrated in Figure 3.
The response of one correction method serves as
input to the next, forming a dynamic pipeline of
iterative refinements. This setup enables us to
analyze how distinct self-correction methods in-
teract, thereby guiding the development of optimal configurations for improving LLM’s performance.

2.1 Self-Correction Method

CorrectBench comprehensively evaluates three distinct categories of self-correction methods:

S1: Intrinsic Correction. This category focuses on the LLMs’ capacity to internally identify and
correct errors without external tools. Methods such as RCI [30], Self-Refine [38], CoVe [13], and
Reflexion [54] enable the LLMs to re-evaluate its prior reasoning steps and resolve inconsistencies
based on its internal knowledge.
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S2: External Correction. In contrast to S1, S2 (e.g., Reflexion [54], RARR [20], RATT [74],
CRITIC [21]) leverages external resources, such as knowledge bases or Google search tools, to
address gaps in the internal representation. This external support can correct factual inaccuracies or
logical oversights, though it may constrain the model’s capacity for divergent reasoning.

S3: Fine-tuned Correction. Fine-tuned correction methods including DCoT [45], SCORE [76],
and SuperCorrect [69] enhance LLMs’ self-correction performance through targeted fine-tuning.
Although potentially effective, these methods require substantial training and are often limited by the
scope and quality of the fine-tuning data.

2.2 Task Scenario

CorrectBench investigates self-correction methods across three representative task scenarios:

T1: Commonsense Reasoning. This scenario probes the model’s capacity to address factual or logical
inconsistencies within everyday knowledge domains. Relevant datasets include HotpotQA [71],
CommonsenseQA [47]3, and the more challenging GPQA[50], which emphasizes complex reasoning.

T2: Mathematical Reasoning. Datasets in this task scenario emphasize the detection and cor-
rection of errors in mathematical derivations, algebraic manipulations, and multi-step reasoning.
Representative datasets include GSM8K [11], AQUA [8], and MATH [23].

T3: Code Generation. This scenario assesses the LLM’s ability to generate functionally correct and
logically consistent code from natural language prompts. For instance, HumanEval [7] measures the
LLM’s ability to detect and correct syntax errors, logical flaws, and other coding mistakes.

2.3 LLM Type

To ensure a broad and realistic appraisal, CorrectBench encompasses two categories of LLMs:

M1: Instruction-Based LLMs. LLMs are designed to follow user-provided instructions to generate
relevant outputs, making them highly versatile across diverse tasks. This category includes both open-
source and closed-source LLMs, distinguished by their accessibility and design paradigms. Open-
source LLMs, such as Qwen 2.5-7B/70B-Instruct [70], as well as LLaMA 3.1-8B/70B-Instruct [40],
offer transparency and flexibility for modification, enabling detailed analysis and fine-tuning. Con-
versely, closed-source LLMs, including OpenAI’s GPT-3.5 [42], GPT-4o [26], and Anthropic’s
Claude 3.5-Sonnet [2], excel in real-world tasks due to proprietary optimizations, but restrict direct
access and customization for research purposes.

M2: Reasoning LLMs. Reasoning LLMs are models specifically enhanced with advanced reasoning
capabilities through targeted post-training optimization processes. These models are designed to
excel in tasks requiring multi-step logical reasoning, often incorporating integrated self-correction
mechanisms to refine their outputs. Representative examples include QWQ-32B-Instruct [66],
o3-mini and DeepSeek-R1 [12]. DeepSeek-V3 [12], in particular, adopts an innovative approach
to distilling reasoning capabilities from long chain-of-thought models, leveraging its predecessor.
By integrating verification and reflection patterns from R1, DeepSeek-V3 achieves substantial
improvements in reasoning accuracy while maintaining precise control over output style and length.

2.4 Research Question

This study aims to elucidate the effectiveness of different self-correction methods in enhancing LLMs’
performance, addressing the following core research questions:

[RQ1] To what extent can LLMs achieve accurate results by leveraging intrinsic (S1) and external
(S2) self-correction methods4 without requiring further intervention?

[RQ2] How does mixing multiple self-correction methods influence model accuracy and robustness,
and what are the associated computational trade-offs?

[RQ3] For reasoning LLMs with built-in correction mechanisms, to what extent can the above
self-correction methods provide additional benefits?

3CommonsenseQA is represented as CS-QA in the following.
4S3 is analyzed separately due to dataset-specific constraints.
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Table 1: Main results on CorrectBench for the average of multiple LLMs. Values in () indicate the
change from the baseline. Blue signifies improvements, and orange indicates declines, where darker
shades reflect larger magnitudes. Further details are given in Appendix H.

Type Method HotpotQA(↑) CS-QA(↑) GPQA(↑) GSM8K(↑) AQUA(↑) MATH(↑) HumanEval(↑)

-
Base 80.76 79.96 18.56 86.46 61.23 75.12 72.71
CoT 83.29 ( +2.53 ) 78.03 ( -1.93 ) 16.52 ( -2.04 ) 91.96 ( +5.50 ) 60.24 ( -0.99 ) 72.59 ( -2.53 ) 60.10 ( -12.61 )

S1

RCI 79.67 ( -1.09 ) 76.29 ( -3.67 ) 19.98 ( +1.42 ) 87.00 ( +0.54 ) 67.12 ( +5.89 ) 74.92 ( -0.20 ) 67.46 ( -5.25 )
CoVe 83.04 ( +2.28 ) 78.54 ( -1.42 ) 37.41 ( +18.85 ) 92.23 ( +5.77 ) 71.12 ( +9.89 ) 79.30 ( +4.18 ) 76.96 ( +4.25 )
Self-Refine 85.49 ( +4.73 ) 81.06 ( +1.10 ) 40.69 ( +22.13 ) 91.74 ( +5.28 ) 69.46 ( +8.23 ) 81.77 ( +6.65 ) -
Reflexion-v1 69.52 ( -11.24 ) 63.89 ( -16.07 ) 19.25 ( +0.69 ) 67.64 ( -18.82 ) 48.33 ( -12.90 ) 65.01 ( -10.11 ) -

S2

Reflexion-v2 87.98 ( +7.22 ) 82.21 ( +2.25 ) 26.85 ( +8.29 ) 89.87 ( +3.41 ) 68.23 ( +7.00 ) 81.36 ( +6.24 ) -
RARR 85.47 ( +4.71 ) 80.57 ( +0.61 ) 36.82 ( +18.26 ) 88.92 ( +2.46 ) 66.81 ( +5.58 ) 82.78 ( +7.66 ) 77.35 ( +4.64 )
RATT 79.59 ( -1.17 ) 80.81 ( +0.85 ) 25.90 ( +7.34 ) 88.08 ( +1.62 ) 68.06 ( +6.83 ) 80.74 ( +5.62 ) 73.44 ( +0.73 )
CRITIC - 81.77 ( +1.81 ) - 77.46 ( -9.00 ) - - -

- Average 83.54 ( +2.78 ) 80.18 ( +0.22 ) 31.28 ( +12.72 ) 85.04 ( -1.42 ) 68.47 ( +7.24 ) 80.15 ( +5.03 ) 73.80 ( +1.09 )

3 Experiment Settings

Dataset Preparation. To ensure consistency and reproducibility, we employ CorrectBench-test
for experimental evaluations. For each dataset within CorrectBench-test, we randomly select 100
samples and subsequently refine this selection by excluding a minimal number of outliers or irrelevant
instances, thereby ensuring a more precise representation of error patterns. Comprehensive details
regarding the datasets and preprocessing steps are provided in Appendix B.1, thereby promoting
transparency and reproducibility for subsequent research.

Task and Model Selection. CorrectBench adopts a hierarchical strategy to evaluate self-correction
across diverse task scenarios and LLM types. Specific datasets are selected to match the characteristics
and objectives of each self-correction method, ensuring that the benchmark captures comprehensive
error types and correction challenges. Further specifications regarding selections of datasets and
LLMs are included in Appendix B.2, ensuring full reproducibility of the evaluation methodology.

Evaluation Metrics. We employ both task-specific and judgment-based metrics to evaluate the
self-correction capabilities of diverse tasks: 1) Task-Specific Metrics. These metrics are tailored
to evaluate model performance across different tasks. For T1, accuracy is computed as: ACC =
1
N

∑N
i=1 I(ŷi = yi), where N is the total number of samples, yi is the ground truth, ŷi is the predicted

answer, and I(·) is the indicator function. For T2, the solve rate represents the percentage of problems
correctly solved by the model out of the total number of problems. For T3, pass@k evaluates whether
at least one of the k generated solutions for a problem passes all test cases. The final pass@k score is
calculated as the average pass rate across all problems. 2) Judgment-Based Metrics. In cases where
the model’s response is ambiguous or incomplete, we conduct human evaluations, where human
evaluators apply stringent criteria to ensure an impartial and thorough assessment of the judgments.
Additionally, we employ GPT-4o as an LLM-as-a-Judge paradigm, providing an automated yet
consistent scoring mechanism for large-scale experimental runs.

4 Empirical Results and Analysis

4.1 Main Results

Table 1 summarizes the average performance improvements attained by various self-correction
methods over the ‘Base’. The results reveal that each self-correction method demonstrates perfor-
mance improvements over the ‘Base’ to varying degrees, with particularly pronounced gains in more
complex tasks such as GPQA and MATH. For instance, CoVe from S1 yields an improvement of
+23.24% on GPQA. However, simpler tasks like GSM8K exhibit more modest gains (e.g., +5.28%
for CoVe). By contrast, external correction methods S2 generally achieve higher average gains than
S1. For example, Reflexion-v15 experiences declines on tasks such as HotpotQA (-11.13%) and
AQUA (-12.90%). However, Reflexion-v26 increases its effectiveness, yielding improvements of
+7.33% on HotpotQA and +7.00% on AQUA. We analyze that is because Reflexion [54] was initially

5Reflexion-v1 denotes reflexion without external tools
6Reflexion-v2 denotes reflexion with external tools
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Figure 4: Average performance improvements achieved by S1 across multiple LLMs.

HotpotQA CS-QA GPQA AQUA GSM8K MATH HumanEval
Dataset

15

10

5

0

5

10

15

20

25

 (%
)

LLaMA3.1-8B
LLaMA3.1-70B
Qwen2.5-7B
Qwen2.5-72B
Claude3.5
GPT-3.5
GPT-4o
QWQ-32B
DeepSeek-V3
Open LLM
Closed LLM
Reasoning LLM
Baseline ( =0)

Figure 5: Average performance improvements achieved by S2 across multiple LLMs.

designed to leverage external tools for enhanced correction, but Reflexion-v1, stripped of these tools,
lacks optimization. This leaves weaker LLMs prone to getting "stuck," producing persistent incorrect
outputs and lowering the average score. Finally, S3 generally lags behind these methods, likely due
to smaller model sizes and narrower training objectives (Details in Section 4.5).

4.2 Results of Intrinsic Correction

Figure 4 illustrates the mean performance gains realized by all S1 methods across nine LLMs and
multiple datasets, where y=0 denotes the baseline. For detailed results of each method, refer to
Appendix E.1. Although S1 improves accuracy overall, the degree of improvement varies across
instruction-based and reasoning LLMs. 1) Instruction-based LLMs. Closed-source LLMs exhibit
uneven performance gains. For instance, LLaMA3.1-8B-Instruct shows significant declines on AQUA
and HumanEval, whereas Qwen2.5-7B-Instruct demonstrates modest gains. These discrepancies
likely stem from smaller parameter sizes and weaker instruction-following capabilities. In contrast,
open-source LLMs offer more consistent and stable performance improvements. Notably, GPT-4o
shows substantial gains on GPQA, whereas Claude3.5 achieves similar enhancements, highlighting
the robust instruction-following adaptability of open-source architectures. 2) Reasoning LLMs.
DeepSeek-V3’s performance remains close to the baseline across most tasks. While it demonstrates
slight improvements on datasets such as CS-QA, GPQA, and MATH, it exhibits marginal declines on
others. To further investigate this phenomenon, we conducted additional experiments (see Section 4.8),
revealing that DeepSeek-V3’s built-in correction mechanism delivers a strong baseline performance.
This high initial performance likely limits the impact of other correction methods. Conversely, QWQ
attains considerable improvements on most datasets except CS-QA and MATH, likely reflecting the
constraints posed by its smaller parameter size.

4.3 Results of External Correction

Figure 5 illustrates the average performance improvements achieved by each LLM utilizing external
correction methods (S2) across various datasets. The trends observed align closely with those depicted
in Figure 4, indicating a consistent enhancement in overall performance. Notably, external correction
methods demonstrate greater stability, which can be attributed to their reliance on authoritative
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external resources. By referencing these resources, S2 effectively mitigates the occurrence of
incorrect responses. However, this reliance on external inputs may also limit the LLM’s capacity for
divergent or creative reasoning, resulting in steadier but less flexible performance compared to intrinsic
correction methods. For comprehensive results for each method, please refer to Appendix E.2.

[RQ1] To what extent can LLMs achieve accurate results by leveraging intrinsic (S1) and
external (S2) self-correction methods without requiring further intervention?
Conclusion: Both S1 and S2 enable significant performance gains, particularly for complex
tasks requiring multi-step reasoning or domain-specific knowledge. By iteratively refining
responses, these methods effectively correct themselves even without additional fine-tuning.
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Figure 6: Comparison of different LLMs with mixture methods.

4.4 Results of Mixture Method

We further explored whether mixing multiple self-correction methods results in additive or synergistic
performance improvements. Specifically, the responses generated by the baseline method (Base) are
utilized as auxiliary prompts for an intrinsic method (S1), an external method (S2), or a mixture of
both (S1+S2). As shown in Figure 6, we evaluated two representative configurations (e.g., F1: ‘Base
to S1 to S2’ and F2: ‘Base to S2 to S1’) on two benchmark tasks: GPQA and MATH. The results
revealed two key findings. Firstly, applying one or more correction methods consistently improves
model performance to varying degrees. Secondly, S2 generally yields larger performance gains
compared to S1. Notably, complex reasoning tasks, such as GPQA, benefit the most from these mixed
methods. However, these mixtures often introduce additional computational overhead. To address the
associated efficiency and accuracy trade-offs, we conducted a complementary analysis of response
times under different correction methods and model configurations, as detailed in Section 4.7.

4.5 Results of Fine-tuned Correction
Table 2: Performance of fine-tuned methods on selected
datasets.

Fine-tuned LLM Method CS-QA(↑) GSM8K(↑)

- Base 31.40 56.75
LLaMA2-7B-hf DCoT 29.65(-1.75) 41.20(-15.55)
Gemma-7B-it SCORE 43.26(+11.86) 75.30(+18.55)
LLaMA2-13B-chat SCORE 41.45(+10.05) 72.10(+15.35)
Qwen2.5-Math-7B-Instruct SuperCorrect 46.25(+14.85) 84.30(+27.55)

MATH(↑) HumanEval(↑)

- Base 41.71 26.25
Qwen2.5-Math-7B-Instruct SuperCorrect 70.16(+28.45) 39.30(+13.05)

Table 2 summarizes the performance of
fine-tuned correction methods (S3), reveal-
ing two main observations. First, S3 (e.g.,
DCoT) often exhibits inconsistent out-
comes across diverse tasks. This variability
stems from their reliance on fine-tuning
with narrowly focused datasets, which re-
stricts their broader applicability. Second,
domain-specific fine-tuning proves espe-
cially promising for models tailored to spe-
cialized tasks. For example, SuperCorrect, fine-tuned on Qwen2.5-Math-7B-Instruct, demonstrates
marked improvements in mathematical reasoning (e.g., on GSM8K and MATH), outperforming other
methods by a wide margin. This underscores the effectiveness of leveraging task-aligned models,
particularly when fine-tuning objectives closely align with the target domain requirements.
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4.6 Results of Correction and Misjudgment

Table 3: Performance of correction rate and misjudg-
ment rate.

Method Rate GPQA AQUA HotpotQA Overall

Cove CR 31.6 36.0 52.1 40.8
MR 8.1 8.0 6.7 7.5

RARR CR 30.7 49.3 51.3 47.1
MR 5.5 4.3 4.5 4.5

In order to further assess the correction
ability, we divide the responses of differ-
ent models to questions in the three most
challenging tasks (GPQA, AQUA, and
HotpotQA) into error-based dataset and
correction-based dataset, corresponding to
the wrong and correct question-response
pairs, respectively. We select CoVe and
RARR from S1 and S2 respectively to eval-
uate on Claude 3.5-Sonnet. We hereby define two new metrics: Correction Rate (CR) indicates the
proportion of incorrect responses that are successfully corrected, and Misjudgment Rate (MR) refers
to the proportion of correct responses that are misjudged to be corrected wrongly. The results shown
in Table 3 reflects that both methods achieve high CRs and low MRs, which shows that self-correction
methods can effectively correct the wrong examples with less misjudgment.

4.7 Results of Response Time
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Figure 7: Average response times for LLaMA3.1-70B,
GPT-4o, and DeepSeek-V3. Intrinsic (S1) and external
(S2) methods generally increase inference duration rela-
tive to Base and CoT.

Figure 7 compares the average response
times across representative models (e.g.,
LLaMA3.1-70B and GPT-4o from M1,
DeepSeek-V3 from M2) under various cor-
rection methods. In general, both intrin-
sic and external methods extend inference
times relative to baseline approaches (Base
and CoT), largely due to increased rea-
soning complexity or reliance on exter-
nal services (especially for RATT). More-
over, reasoning LLMs, such as DeepSeek-
V3, exhibit notably longer execution times
than instruction-based models, likely at-
tributable to their built-in correction mech-
anisms. In contrast, the baseline CoT
method achieves notably shorter response
times while maintaining a reasonable accu-
racy (combined with Table 1). This observation underscores that more complex correction strategies
do not always yield superior outcomes, highlighting the critical trade-off between model accuracy and
computational efficiency. As shown in Table 4, RARR offers a balanced trade-off between efficiency
and accuracy, with only 533 tokens and 2 API calls. Reflexion-v2 and RATT achieve the highest
accuracies, reflecting the benefit of external retrieval or code execution, while their overhead remains
manageable (below 15% additional search tokens). Bootstrap-based confidence intervals for these
results are reported in Appendix B.3.

[RQ2] How does mixing multiple self-correction methods influence model accuracy and robust-
ness, and what are the associated computational trade-offs?
Conclusion: Mixing self-correction methods typically results in accuracy improvements, though
at the cost of increased computational overhead. Such mixtures are particularly beneficial for
high-precision tasks where the trade-off of more runtime is justifiable.

4.8 Results of Reasoning LLMs

To further investigate why DeepSeek-V3 shows limited improvement from self-correction, we
compare instruction-based LLMs and reasoning LLMs on the Base alone. Table 5 shows that
DeepSeek-V3 consistently achieves top-2 or even top-1 performance across all datasets. Combined
with the results of Section 4.2, we find that this may be because reasoning LLMs already incorporate
robust intrinsic correction mechanisms, limiting additional gains from external correction steps. In
particular, DeepSeek-V3 integrates advanced reflection modules and comprehensive error-detection
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Table 4: Comprehensive resource cost analysis on the MATH dataset (150 samples). Values in green
indicate the best trade-off between cost and accuracy, while red highlights the least efficient results.
“Efficiency Rank” represents the ratio of Accuracy / (Token Count × API Calls).

Method Type Avg. Tokens API Calls Search Tokens (%) Accuracy (%) Efficiency Rank
Base - 791 1.0 0 (0%) 68.5 0.0866
CoT - 1804 1.0 0 (0%) 69.5 0.0385
CoVe S1 2019 1.0 0 (0%) 75.0 0.0371
RCI S1 1780 1.2 0 (0%) 70.2 0.0328
Reflexion-v1 S1 1460 3.5 0 (0%) 72.8 0.0143
Reflexion-v2 S2 1712 4.0 154 (8.25%) 74.5 0.0109
RARR S2 533 2.0 89 (14.31%) 76.3 0.0716
RATT S2 2185 3.0 162 (6.9%) 78.7 0.0120

Table 5: Comparison of baseline performance among instruction-based and reasoning LLMs. Per-
column maxima are bolded; per-column minima are underlined. Per-row maxima are highlighted
with blue; per-row minima are highlighted with orange.

Type LLM HotpotQA CS-QA GPQA GSM8K AQUA MATH HumanEval

Open-source

LLaMA3.1-8B-Instruct 75.80 76.16 9.74 81.55 53.88 74.37 73.44
LLaMA3.1-70B-Instruct 81.28 81.88 15.62 90.63 62.65 78.21 62.18
Qwen2.5-7B-Instruct 74.05 74.75 7.53 90.23 47.50 74.28 79.11
Qwen2.5-72B-Instruct 83.63 81.92 9.85 91.11 57.58 66.91 86.13

Closed-source
Claude3.5-Sonnet 88.29 80.25 32.34 95.81 81.26 83.51 84.69
GPT-3.5 82.94 77.92 27.29 79.14 55.15 70.44 80.29
GPT-4o 89.16 80.65 22.49 91.15 65.82 69.54 77.04

Reasoning

QWQ-32B 62.43 82.78 10.85 63.41 52.42 73.78 19.86
DeepSeek-V3 89.29 83.35 31.35 95.12 74.79 85.02 91.67
DeepSeek-R1 88.92 79.93 41.15 92.63 80.23 84.21 89.06
o3-mini 81.24 74.28 27.17 92.45 78.26 67.97 85.75

routines distilled from its earlier R1 series, enabling thorough multi-step reasoning at the outset. This
high baseline effectively reduces the scope for further improvement through additional self-correction.
Consequently, attempts to augment DeepSeek-V3 with further self-correction methods produce
minimal net gains while incurring additional computational overhead.

[RQ3] For reasoning LLMs with built-in correction mechanisms, to what extent can the above
self-correction methods provide additional benefits?
Conclusion: Reasoning LLMs (e.g., DeepSeek-V3) already embed sophisticated error-detection
and correction processes. As a result, additional self-correction methods confer only marginal
gains and may increase computational overhead, highlighting a performance ceiling in highly
reasoning LLMs.

4.9 Failure Mode Taxonomy and Case Analysis

To better understand why different self-correction strategies succeed or fail, we conducted a supple-
mental failure-mode analysis on the GPQA (250 samples) and MATH (500 samples) datasets. Six
major categories of failure were identified, alongside a residual “Other” category, as summarized
in Table 6. Logical Oversight (32.9%) and Factual Inaccuracy (22.0%) dominate, implying that
intrinsic corrections (S1) are suitable for reasoning-related errors, while external corrections (S2)
excel at factual validation. These findings motivate our adaptive correction controller (Sec. 6), which
dynamically selects correction strategies based on detected failure types.

5 Related Work

Self-Correction Methods. With the continuous development of self-correction techniques [62, 65,
18, 32, 63], researchers have proposed various approaches to enhance the performance of large
language models. Intrinsic methods, such as CoVe [13] and RCI [30], improve the precision and
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Table 6: Error taxonomy of LLM self-correction failures across GPQA and MATH. Logical and
factual errors dominate, suggesting distinct correction strategies (S1 vs. S2).

Failure Mode Pro. (%) Description Suggested Correction

Logical Oversight 32.9 Reasoning step errors (e.g., misapplied formula) S1: CoT, RCI
Factual Inaccuracy 22.0 Outdated or incorrect retrieved evidence S2: RARR, RATT
Over-Reliance on Tools 14.6 Excessive external API calls causing inefficiency S2 (bounded)
Ambiguous Output 14.2 Incomplete or vague final answer S1 refinement
Contextual Misunderstanding 10.8 Misinterpreted question or missing context S1+S2 hybrid
Computational Error 3.5 Faulty code execution or symbolic computation S2 verification
Other 2.0 Miscellaneous or formatting issues -

consistency of generated content through self-supervised mechanisms within the model. At the same
time, extrinsic methods, such as CRITIC [21], RATT [74], and RARR [20], rely on an external tool
to evaluate and provide feedback on the generated outputs, guiding the model towards optimization.
Fine-tuned methods, such as DCoT [45], Supercorrect [69], and SCORE [76], further enhance the
performance of the model by fine-tuning it for specific tasks, enabling more accurate and efficient
handling of complex tasks. The continuous evolution of these methods provides diverse options and
techniques for self-correction. Detailed discussions on the related word are provided in Appendix C.

Correction Benchmarks. Benchmarking the LLMs’ self-correction ability [57, 15, 77, 14, 5, 79,
53, 37] has prompted the development of specialized benchmarks for different tasks. For instance,
CriticBench [34] evaluates critique ability using discrimination results, but it struggles with task-
specific fine-grained metrics and reliance on costly human annotations or potentially biased GPT-4
outputs. In the realm of vision-language models, VISCO [64] focuses on self-correction in multimodal
tasks, while Beyond Correctness [78] specifically targets self-correction in large models for code
generation. Our CorrectBench focused on striking a trade-off between reasoning capability and
efficiency, proposing more generalized and nuanced evaluation methods for complex reasoning tasks.

6 Future Improvements in Self-Correction

Looking ahead, several promising directions can further enhance the robustness and adaptability
of self-correction in large language models. (1) Dynamic Adjustment: reinforcement learning or
meta-controller mechanisms could dynamically select among correction strategies (S1–S3) based
on task complexity or confidence levels, reducing redundant computation through early stopping.
(2) Task-Specific Optimization: domain-oriented fine-tuning, such as the 10.2% improvement
achieved by SUPERCORRECT on MATH, suggests the value of adaptive pipelines that align with
domain reasoning depth and structure. (3) Human-in-the-Loop Integration: in sensitive fields like
medicine or law, coupling automated correction with limited expert feedback could improve factual
reliability and ensure accountable model behavior. (4) Meta-Controller Framework: developing a
lightweight controller to detect and correct intermediate reasoning inconsistencies may help refine the
chain-of-thought process and prevent logical drift. Further analysis and discussions of these future
directions are provided in Appendix D.

7 Conclusion

This paper presents CorrectBench, a comprehensive and extensible benchmark for evaluating the
self-correction capabilities of large language models (LLMs) across diverse reasoning-intensive tasks,
including commonsense inference, mathematical problem-solving, and code generation. Through
systematic evaluation, we demonstrate that modern LLMs are increasingly capable of genuine self-
correction, with reasoning-oriented models such as DEEPSEEK-R1 achieving substantial baseline
accuracy and showing consistent improvement through iterative refinement. CorrectBench not only
reveals the effectiveness of various correction paradigms (S1, S2, S3) but also exposes critical
limitations—such as diminishing returns in deeper correction chains and resource inefficiencies in
web-augmented methods. These insights emphasize the necessity for adaptive, cost-aware correction
mechanisms that balance efficiency and reasoning depth. Overall, this study provides a unified
foundation for understanding and benchmarking LLM self-correction. We hope this work serves as a
stepping stone toward more trustworthy and self-improving language models.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly state the main contributions of the paper,
including evaluating the performance of three types of self-correction methods on three
types of tasks, exploring the effects of mixture-based methods, and testing the correction
performance of the reasoning model. These contributions are supported by the theoretical
analysis and experimental results in the main text. In order to avoid over-generalization, the
scope and limitations of the study are also discussed in the text.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Section ?? discusses the limitations of our approach and future directions for
scalability, including adaptive correction pipelines, integration in agents, and human-in-the-
loop correction.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: This paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide all necessary details to reproduce the main experimental results.
This includes complete descriptions of datasets, models, evaluation metrics, and prompt
implementation details in Section ?? and Section G.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
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In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide anonymized access to key code and data used in the experiments,
with detailed instructions for reproducing the main results, including environment setup,
running commands, and datasets.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We specify all necessary experimental details to understand and interpret our
results. This includes the data splits and model configuration.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: While we provide quantitative results for all experiments, we do not include
error bars or statistical significance tests.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We report the response time cost of calling API by different methods in Section
4.7.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have carefully reviewed the NeurIPS Code of Ethics and confirm that our
research complies with all relevant ethical guidelines. Our work does not involve human
subjects, private or sensitive data, or potentially harmful applications.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer: [Yes]
Justification: We discuss the potential broader societal impacts of our work in the Impact
Statement section. On the positive side, our method can help researchers understand the
correction ability of LLMs better.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [No]
Justification: The paper does not introduce or release any models or datasets that pose
significant risks of misuse. Therefore, no specific safeguards are necessary.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We make use of publicly available datasets and code assets, all of which are
properly cited in the main paper. For each asset, we explicitly state the license (e.g., MIT,
Apache 2.0, CC-BY 4.0) and ensure our use complies with the terms. Version information
and source URLs are also provided where applicable.
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Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We introduce new assets in the paper, including the collected datasets for
evaluating self-correction of LLMs. We provide complete documentation alongside these
assets, including descriptions of their structure, usage instructions, licensing terms, known
limitations, and guidelines for responsible use. All release materials are anonymized and
hosted in accordance with NeurIPS submission policies.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
All experiments are performed using synthetic or publicly available machine-generated
datasets.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects,
and thus IRB approval is not applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: This work involves the use of LLMs as a core component of our methodology.
Specifically, we use instruction-based LLMs and reasoning-based LLMs for evaluations.
The role of the LLM in our pipeline is described in detail in Sections 2.3.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.
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A Overview of Correction Performance

Figure 8 shows the comparison between the performance of the baseline and the average performance
of the intrinsic correction and external correction methods on different tasks on different LLMs. It
can be observed that both intrinsic correction and external correction outperform the baseline on most
models and tasks.
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Figure 8: Comparative performance of different LLMs across various self-correction types and task
scenarios.

B Dataset

B.1 Data Setting

This benchmark includes datasets from various domains as shown in Table 7: GSM8K, AQuA, and
MATH for mathematical reasoning, HotpotQA, CommonsenseQA, and GPQA for commonsense
reasoning, and HumanEval for code generation. GSM8K and AQuA feature high school-level math
and quantitative reasoning problems, while MATH provides a broader set of mathematical challenges.
HotpotQA and CommonsenseQA (CS-QA) test multi-hop and commonsense reasoning, respectively,
with GPQA expanding on the latter by including more diverse questions. HumanEval consists of
programming problems to assess code generation abilities.
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Table 7: Statistics of the datasets used in CORRECTBENCH.

Type Dataset Samples License

Commonsense
HotpotQA 300 CC BY-SA 4.0
CommonsenseQA 300 MIT License
GPQA 250 Apache License 2.0

Math
GSM8K 250 MIT License
AQuA 254 Apache License 2.0
MATH 500 MIT License

Coding HumanEval 164 MIT License

All - 2018 -

To ensure consistency and reproducibility, each dataset is sampled to include 100 examples, selected
through a randomized process. To refine the dataset quality, we remove outliers or irrelevant samples,
ensuring a more accurate representation of typical error patterns. For mathematical reasoning datasets
such as GSM8K, AQuA, and MATH, we ensure that selected problems span diverse difficulty levels
to capture a comprehensive assessment of model performance. Similarly, commonsense reasoning
datasets (HotpotQA, CS-QA, and GPQA) are curated to include a balanced mix of multi-hop and
diverse reasoning tasks. For HumanEval, programming problems are filtered to maintain relevance to
standard coding scenarios while avoiding overly specialized or ambiguous cases.

B.2 Dataset and LLM Selection

Table 8 summarizes the experimental evaluation of various self-correction methods across multiple
datasets. The ‘✓’ indicates that the corresponding method is evaluated on the dataset, whereas the ‘-’
signifies that there are no experiments.

Table 8: Selection of different datasets and LLMs for all self-correction methods.

Type Methods T1 T2 T3 LLM Type
HotpotQA CS-QA GPQA GSM8K AQUA MATH HumanEval M1 M2

S1

RCI ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
CoVe ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Self-Refine ✓ ✓ ✓ ✓ ✓ ✓ - ✓ ✓
Reflexion-v1 ✓ ✓ ✓ ✓ ✓ ✓ - ✓ ✓

S2

Reflexion-v2 ✓ ✓ ✓ ✓ ✓ ✓ - ✓ ✓
RARR ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
RATT ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
CRITIC - ✓ - ✓ - - - ✓ ✓

S3

DCoT - ✓ - ✓ - - - - -
SCORE - ✓ - ✓ - - - - -
Supercorrect - ✓ - ✓ - ✓ ✓ - -

B.3 Bootstrap Confidence Intervals for Resource Cost Results

To validate the robustness of the trade-offs in Table 4, we report 95% bootstrap confidence intervals
for each method’s accuracy across five random subsamples. The mean accuracy difference between
S1 and S2 methods is statistically significant (p < 0.05), confirming that cost-normalized accuracy
scales with correction depth.
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C Comprehensive Related Works

C.1 Self-Correction Methods

Theoretical Perspectives. Recent research has delved into the theoretical foundations of self-
correction in large language models (LLMs), particularly examining how these models refine their
outputs through iterative self-examination. Key transformer components, such as softmax attention
and multi-head attention, have been identified as central mechanisms in enabling this self-correction
process [60]. Several studies have highlighted the limitations of intrinsic self-correction. For
instance, LLMs often encounter challenges when attempting to self-correct reasoning tasks without
external feedback, resulting in degraded performance in specific scenarios [25]. Nevertheless, other
research has demonstrated that intrinsic self-correction can be effective under certain conditions,
such as employing zero-temperature settings and fair prompts. These conditions help LLMs enhance
accuracy across various tasks by providing a more structured and deterministic framework for
response refinement [35]. Further investigations reveal that intrinsic self-correction processes can
converge over multiple iterations, yielding stable performance improvements, particularly in iterative
and complex tasks [36]. However, some studies challenge the notion that LLMs can consistently
enhance their outputs through self-correction alone. These findings suggest that LLMs often struggle
to differentiate between previously generated alternatives, which limits the effectiveness of their
self-correction mechanisms [27]. Additionally, innovative approaches such as the Divergent CoT
(DCoT) method have been proposed. By generating and comparing multiple divergent reasoning
chains, this method improves reasoning accuracy and facilitates more effective self-correction during
complex reasoning tasks [45].

Self-Detection of Mistakes. Self-detection of mistakes in LLM responses, often with the aid of
external information, has been widely explored across several domains. In misinformation detection,
numerous studies have investigated how LLMs can identify and correct errors in the information they
generate [75, 10, 6, 41]. Similarly, context-faithfulness, which examines whether LLMs maintain
consistency with the context in which they are deployed, has also been a focal point in recent research
[59, 17, 52]. Other works have concentrated on harmful content detection, where LLMs are tasked
with identifying potentially harmful or offensive outputs [49], as well as bias detection, which aims
to identify and mitigate biases in LLM responses [4, 19]. Despite significant progress, recent studies
have shown that even state-of-the-art LLMs struggle to reliably detect their own mistakes across a
variety of tasks [58, 28]. For instance, research demonstrates that LLMs often fail to identify errors in
their outputs, even when performing complex reasoning or content generation tasks. These findings
highlight a crucial gap in the current self-correction capabilities of LLMs, underscoring the need for
further research into more robust error detection and correction mechanisms.

Fine-tuning Methods. Self-training, or self-improvement, involves models utilizing their own
responses to enhance performance. Several studies have explored the use of self-evaluation or
self-correction for generating training data. For example, [3] and [22] leverage self-correction as a
means to create training datasets, while [43] employ self-evaluation as a training signal to improve
model performance. Another direction within self-training focuses on improving reasoning in LLMs
by selecting high-quality generated outputs. [73] enhance reasoning by selecting outputs based
on ground-truth final answers, whereas [24] emphasize self-consistency as a method for refining
reasoning. [39] adopt a different approach by using high-confidence sentences generated by LLMs
to train classifiers, demonstrating the potential of leveraging model confidence in improving task
performance.

C.2 Correction Benchmarks.

Benchmarking the LLMs’ self-correction ability has prompted the development of specialized bench-
marks for different tasks. For instance, CriticBench [34] evaluates critique ability using discrimination
results, but it struggles with task-specific fine-grained metrics and reliance on costly human anno-
tations or potentially biased GPT-4 outputs. In the realm of vision-language models, VISCO [64]
focuses on self-correction in multimodal tasks, while Beyond Correctness [78] specifically targets
self-correction in large models for code generation. Our CorrectBench focused on striking a trade-off
between reasoning capability and efficiency, proposing more generalized and nuanced evaluation
methods for complex reasoning tasks.
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D Limitations and Future Directions

Adaptive Correction Pipelines. The iterative nature of self-correction in LLMs presents an oppor-
tunity to develop adaptive correction pipelines that dynamically determine when and how to refine
model outputs. Current self-correction methods often employ a fixed number of refinement steps,
which may not be optimal for all tasks or inputs. By investigating optimal stopping criteria [46],
researchers can design systems that allocate computational resources more efficiently, thereby balanc-
ing accuracy and efficiency. Techniques such as reinforcement learning and meta-learning could be
leveraged to train models that autonomously decide the appropriate number of correction iterations
based on the complexity and confidence of their responses [9]. Furthermore, adaptive pipelines can
incorporate uncertainty estimation to identify instances where additional refinement is necessary,
potentially reducing unnecessary computation for straightforward queries while allocating more
resources to complex or ambiguous cases [48].

Integration for Agents. Incorporating self-correction mechanisms into autonomous LLM-based
agents can significantly enhance their functionality beyond static conversational roles. Agents
equipped with self-correction capabilities are better suited to perform complex, multi-step tasks that
require continuous adaptation and error mitigation. This integration can enable agents to engage
in more sophisticated interactions, such as dynamic problem-solving, real-time data analysis, and
interactive decision-making in diverse domains [55, 33]. By embedding self-correction within the
agent’s operational framework, these systems can achieve higher levels of autonomy and reliability,
making them more effective in real-world applications. Additionally, the ability to self-correct allows
agents to better handle unforeseen scenarios and maintain performance consistency across varying
contexts, thereby broadening their applicability and utility.

Human-in-the-Loop Correction. While automated self-correction methods offer significant im-
provements in model accuracy and reliability, integrating human feedback can further enhance these
outcomes, especially in high-stakes or sensitive applications. Human-in-the-loop (HITL) correction
involves leveraging expert knowledge to validate and refine model outputs, ensuring that the responses
meet stringent quality and safety standards [51]. Effective HITL systems can combine the strengths
of automated refinement with the nuanced understanding of human experts, thereby addressing
limitations inherent in purely algorithmic approaches. For instance, in domains such as medical
diagnostics, legal reasoning, or financial analysis, expert oversight can prevent critical errors and
ensure that the model adheres to ethical guidelines and regulatory requirements. Future research
should focus on developing seamless interfaces for human-AI collaboration, optimizing the balance
between automation and manual intervention, and exploring scalable methods for incorporating
diverse expert inputs without compromising efficiency [68].
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E Additional Experiments for Performance Improvement

This section evaluates performance gains from self-correction methods across various LLMs and
datasets. Figure 9 shows the performance gains of the CoT method across models and datasets.
Most models surpass the baseline (‘y=0’ for Base), though some fall short. For instance, LLaMA
3.1-8B-Instruct performs poorly overall, and no model achieves improvements on the HumanEval
dataset.

E.1 Performance Gains for Intrinsic Correction methods

Performance Gains for RCI. Figure 10 illustrates the performance gains from the RCI method across
all LLMs on the evaluated datasets. Over half the data points surpass the baseline, demonstrating its
effectiveness. Notably, for GPT-4o, nearly all data points exceed the baseline, highlighting significant
improvements.

Performance Gains for CoVe. As depicted in Figure 11, the CoVe method delivers significant
performance enhancements across all LLMs on the evaluated datasets. The majority of data points
surpass the baseline, with substantial improvement magnitudes, underscoring the effectiveness of the
CoVe method.

Performance Gains for Self-Refine. Figure 12 demonstrates the performance gains achieved by the
Self-Refine method across all LLMs on the selected datasets. Nearly all data points lie above the
baseline. In particular for the GPQA dataset, all LLMs exhibit significant performance improvements.

Performance Changes for Reflexion-v1. Figure 13 depicts the performance outcomes of the
Reflexion-v1 method without tools across all LLMs on the evaluated datasets. In this scenario, nearly
all data points fall below the baseline, indicating a performance decline across most models and
datasets.

E.2 Performance Gains for External Correction methods

Performance Gains for Reflexion-v2. In contrast to the results without tools, Figure 14 highlights
the performance improvements achieved by Reflexion-v2 with tools. The majority of data points
surpass the baseline, demonstrating the effectiveness of tool integration in enhancing performance.

Performance Gains for RARR. Figure 15 illustrates the performance improvements resulting from
the RARR method across all LLMs on the evaluated datasets. Nearly all data points exceed the
baseline. Specifically, the GPQA dataset shows significant performance enhancements across all
models.

Performance Gains for RATT. Figure 16 showcases the performance gains achieved by the RATT
method across various LLMs on the evaluated datasets. Most data points lie above the baseline,
reflecting the positive impact of the RATT method in improving model performance.
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Figure 9: Performance Gains for CoT.
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Figure 10: Performance Gains for RCI.
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Figure 11: Performance Gains for CoVe.
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Figure 12: Performance Gains for Self-Refine.
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Figure 13: Performance Gains for Reflexion-v1.
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Figure 14: Performance Gains for Reflexion-v2.
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Figure 15: Performance Gains for RARR.
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Figure 16: Performance Gains for RATT.

F Contrast Experiments for Diverse LLMs

In this section, we compare the performance of various models across multiple datasets using different
methods. The HotpotQA, GSM8K, and GPQA datasets are selected to represent commonsense
reasoning, mathematical reasoning, and complex reasoning, respectively. Each figure depicts the
performance of 9 LLMs on the three datasets under a specific method. For each figure, the first
subgraph compares the performance of open-source LLMs, identifying the best-performing one. The
second subgraph evaluates the best open-source LLM against closed-source LLMs, and the third
subgraph summarizes the performance of the best open-source LLM, the best closed-source model,
and reasoning models.

The performance of different models across the three datasets using various methods is summarized
in Figures 17 to 25. For instance, Figure 17 represents results for Base method, while other figures
illustrate performance for methods such as CoT, RCI, Cove, Self-Refine, Reflexion-v1, Reflexion-v2,
RARR, and RATT, respectively.

Among the evaluated LLMs, GPT-4o and Qwen2.5-72B-Instrcut consistently demonstrate superior
performance as the best open-source LLM and closed-source LLM, respectively, across most methods.
Based on these results, it is evident that closed-source LLMs generally outperform open-source LLMs.
Furthermore, reasoning LLMs (e.g., DeepSeek-V3) exhibit the best overall performance, excelling
particularly in tasks requiring complex reasoning capabilities, as demonstrated by their consistent
dominance across all datasets and methods.
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Figure 17: Performance Comparison of Base
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Figure 18: Performance Comparison of CoT
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Figure 19: Performance Comparison of RCI
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Figure 20: Performance Comparison of CoVe
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Figure 21: Performance Comparison of Self-Refine
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Figure 22: Performance Comparison of Reflexion-v1
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Figure 23: Performance Comparison of Reflexion-v2
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Figure 24: Performance Comparison of RARR
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Figure 25: Performance Comparison of RATT

G Prompt and Result Example

G.1 Base

Prompt Example. Base’s prompt example is as follows:

Base’s prompt example

Zero-shot Prompt: Your final answer in the form boxed{answer}, at the end of your response.
A:
Critique Prompt: Review your previous answer and find problems with your answer.
Improve Prompt: Based on the problems you found, improve your answer. Please reiterate
your answer, with your final answer a single numerical number, In the form boxed{answer}.

Result Example on GSM8K. Base’s result example on GSM8K dataset is as follows:

Base’s result example on GSM8K dataset

▶qustion: Q: Josh decides to try flipping a house. He buys a house for $80,000 and then puts
in $50,000 in repairs. This increased the value of the house by 150%. How much profit did he
make?Please solve the question above, then store the final answer in boxed{answer}.

output: To determine Josh’s profit from flipping the house, let’s break down the costs and the
increased value step by step. 1. **Initial Purchase Cost**: Josh buys the house for **$80,000**.
2. **Repair Costs**: He spends **$50,000** on repairs. 3. **Total Investment**: Total cost =
Purchase cost + Repair costs Total cost = $80,000 + $50,000 = **$130,000**. 4. **Increased
Value**: The repairs increase the value of the house by **150%**. To find the new value: New
value = Original value + (150% of original value) New value = $80,000 + (1.5 * $80,000)
New value = $80,000 + $120,000 = **$200,000**. 5. **Profit Calculation**: Profit = New
value - Total investment Profit = $200,000 - $130,000 = **$70,000**. Thus, Josh’s profit is:
boxed{70000}.

final_answer: 70000

correct answer: 70000

correct: true
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G.2 CoT

Prompt Example. CoT’s prompt example is as follows:

CoT’s prompt example

prompt_based Prompt: Please understand and solve the question above step by step, then
store the final answer in boxed{answer}.
Zero-shot-cot Prompt: Let’s think step by step. In the form boxed{answer}, at the end of your
response.
Critique Prompt: Review your previous answer and find problems with your answer.
Improve Prompt: Based on the problems you found, improve your answer. Please reiterate
your answer, with your final answer a single numerical number, In the form boxed{answer}.

Result Example on MATH. CoT’s result example on MATH dataset is as follows:

CoT’s result example on MATH dataset

▶qustion: Q: What is the sum of the values of x that satisfy the equation xˆ2-5x+5=9?
Please understand and solve the question above step by step, then store the final answer in
boxed{answer}.
output: To solve the equation ( xˆ2 - 5x + 5 = 9 ), follow these steps: 1. **Move all terms to
one side to set the equation to zero:** [ xˆ2 - 5x + 5 - 9 = 0 ] Simplify: [ xˆ2 - 5x - 4 = 0 ] 2.
**Identify the quadratic equation:** The equation is in the form ( axˆ2 + bx + c = 0 ), where: - (
a = 1 ) - ( b = -5 ) - ( c = -4 ) 3. **Find the sum of the roots of the quadratic equation:** For a
quadratic equation ( axˆ2 + bx + c = 0 ), the sum of the roots is given by: [text{Sum of roots} =
-frac{b}{a} ] Substitute the values of ( a ) and ( b ):[ text{Sum of roots} = -frac{-5}{1} = 5]
Therefore, the sum of the values of ( x ) that satisfy the equation is: [boxed{5}]

final_answer: 5

correct answerr: 3

correct: false

error: Final_answer and answer do not match

G.3 RCI

Prompt Example. RCI’s prompt example is as follows:

RCI’s prompt example

Initial Prompt: Let’s think step by step. In the form boxed{answer}, at the end of your
response.
Critique Prompt: Review your previous answer and find problems with your answer.
Improve Prompt: Based on the problems you found, improve your answer. Please reiterate
your answer, with your final answer a single numerical number, In the form boxed{answer}.

Result Example on MATH. RCI’s result example on MATH dataset is as follows:

RCI’s result example on MATH dataset

▶Question: What is the degree of the polynomial (4 + 5x3 + 100 + 2πx4 +
√
10x4 + 9)?

Correct Answer: 4
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Round 0: The degree of a polynomial is defined as the highest exponent of the variable, which
is the variable with the highest degree. We have a polynomial in the variable x, which includes
the terms 4, 5x3, 100, 2πx4,

√
10x4, and 9. The term 5x3 has an exponent of 3, the terms 2πx4

and
√
10x4 have an exponent of 4, and all of the other terms have an exponent of 0. Therefore,

the degree of the polynomial is boxed4.

Round 1 - Critique: No, I do not see any problems with my answer. I think I have already
provided a clear and complete answer. Final Answer: The final answer is boxed4. The degree
of a polynomial is defined as the highest exponent of the variable, which is the variable with the
highest degree. In this case, x4 is the term with the highest power of x. Thus, the degree of the
polynomial is 4.

Round 1 - Output: I think I have already provided a clear and complete answer. To confirm
this answer, we can analyze the terms of the polynomial. The polynomial contains the terms 4,
5x3, 100, 2πx4,

√
10x4, and 9. The term 5x3 has an exponent of 3, the terms 2πx4 and

√
10x4

have an exponent of 4, and all of the other terms have an exponent of 0. In this case, the variable
is x, and the term with the highest degree is x4. Therefore, the degree of the polynomial is
{boxed{4}.}

Final Answer: 4

Correct: True

G.4 CoVe

Prompt Example. CoVe’s prompt example is as follows:

CoVe’s prompt example

Baseline prompt: Please generate a response to the following question. Answer directly and
concisely. Question: question

Verification prompt: The following is a baseline response to a question. Please generate a set
of verification questions to check the accuracy of each fact in the response. List each question on
a new line, prefixed with a number and a dot (e.g., 1., 2.). Baseline Response: Baseline response

Execute prompt: Please answer the following question independently. Ensure your answer is
not influenced by any previous responses.

Final prompt: The following is a baseline response and its verification results. Please generate
a final response by correcting any errors in the baseline response based on the verification results.
Initial Question: question. Baseline Response: Baseline response. Verification Results: Your
final answer should be in the form boxed{answer}, at the end of your response.

Result Example on MATH. CoVe’s result example on MATH dataset is as follows:

CoVe’s result example on MATH dataset

▶Question: Berengere and her American foreign-exchange student Emily are at a bakery in
Paris that accepts both euros and American dollars. They want to buy a cake, but neither of
them has enough money. If the cake costs 6 euros and Emily has an American five-dollar bill,
how many euros does Berengere need to contribute to the cost of the cake if 1 euro = 1.25 USD?

Baseline Response: Emily’s $5 is equivalent to 4 euros (since $5 / 1.25 = 4 euros). The cake
costs 6 euros, so Berengere needs to contribute **2 euros** to cover the remaining cost.
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5 Verifications with 1 verification shown : Is the cost of the cake confirmed to be 6 euros? To
confirm whether the cost of the cake is 6 euros, you would need to refer to the specific context
or source where the price was mentioned. Without additional information or context, I cannot
independently verify the cost of the cake. If you have a specific reference or details, please
provide them for a more accurate answer.

Final Verified Response: Based on the verification results, the baseline response correctly
calculates Berengere’s contribution under the assumption that the exchange rate is 1 euro = 1.25
USD, the cake costs 6 euros, and there are no additional fees or factors affecting the total cost.
Here’s the corrected and verified response:Emilyś $5 is equivalent to 4 euros (since $5 / 1.25 =
4 euros). The cake costs 6 euros, so Berengere needs to contribute **2 euros** to cover the
remaining cost. boxed{2 text{euros}}.

Predicted Answer: 2 text{euros}

Correct Answer: 2 text{euros}

Correct: True
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G.5 Self-Refine

Prompt Example. Self-Refine’s prompt example is as follows:

9-Shot init Prompts with 2 Shots Shown Below

▶ # Q: Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops.
How many lollipops did Jason give to Denny?

# solution using Python:
def solution():
"""Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops. How
many lollipops did Jason give to Denny?"""
jason_lollipops_initial = 20
jason_lollipops_after = 12
denny_lollipops = jason_lollipops_initial - jason_lollipops_after
result = denny_lollipops
return result
▶ # Q: There are 15 trees in the grove. Grove workers will plant trees in the grove today. After
they are done, there will be 21 trees. How many trees did the grove workers plant today?

# solution using Python:
def solution():
"""There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they
are done, there will be 21 trees. How many trees did the grove workers plant today?"""
trees_initial = 15
trees_after = 21
trees_added = trees_after - trees_initial
result = trees_added
return result

4-Shot feedback Prompts with 1 Shot Shown Below

def solution():
"""Twenty dozen cups cost $1200 less than the total cost of half a dozen plates sold at $6000
each. Calculate the total cost of buying each cup."""
plates = 6
plate_cost = 6000
cups = 12 * 20
cup_cost = plate_cost
result = cup_cost
return result

# There is an error in the code above because of lack of understanding of the question. What is
the error? To find the error, go through semantically complete blocks of the code, and check if
everything looks good.

# Let us go through the error and check step-by-step
plates = 6
plate_cost = 6000
# looks good

# Let’s check the other parts
cups = 12 * 20
cup_cost = plate_cost
# wrong! The cost of a cup is not the same as the cost of a plate. The cost of a cup is $1200
less than the total cost of half a dozen plates sold at $6000 each. So we need to calculate the
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cost of a cup first (total cost of half a dozen plates sold at $6000 each - $1200) and use that.

Okay! Here is the rewrite:

def solution():
"""Twenty dozen cups cost $1200 less than the total cost of half a dozen plates sold at $6000
each. Calculate the total cost of buying each cup."""
plates = 6
plate_cost = 6000
cups = 12 * 20
total_cup_cost = (plate_cost * plates) - 1200
cost_per_cup = total_cup_cost / cups
return cost_per_cup

### END ###

Result Example on MATH. Self-Refine’s result example on MATH dataset is as follows:

Self-Refine’s result example on MATH dataset

▶question: What is the degree of the polynomial (4 + 5x3 + 100 + 2/pix4 + sqrt10x4 + 9)?

▶ 8 attempt examples with 1 shown below:

solution_curr: def solution():#Parking Lot Cars cars_initial = 3 cars_arrived = 2 total_cars =
cars_initial + cars_arrived return total_cars
This code is correct and matches the solution I described. It correctly calculates the total number
of cars in the parking lot by adding the initial number of cars and the number of cars that
arrived.If you’d like me to review the other problems or provide feedback on the code, please let
me know!

solution_fixed: def solution():#Parking Lot Cars cars_initial = 3 cars_arrived = 2 total_cars =
cars_initial + cars_arrived return total_cars
Upon reviewing the code, I notice that it is actually correct and matches the solution you
described. It correctly calculates the total number of cars in the parking lot by adding the initial
number of cars and the number of cars that arrived.Therefore, there is no error in the code. It
is a simple and straightforward calculation that produces the correct result.f you’d like me to
review any other code or provide feedback, please let me know!

feedback: Let’s go through the code step by step to identify the error.The code is calculating
the total number of cars in a parking lot by adding the initial number of cars and the number of
cars that arrived.Here’s the code:“‘python

answer: 5

correct_answer: 4

final_answer: 5

correct: False
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G.6 Reflexion

Prompt Example. Reflexion’s prompt example is as follows:

Reflexion’s prompt example

▶ (reflect_prompt)
You are an advanced reasoning agent that can improve based on self refection. You will be given
a previous reasoning trial in which you were given access to an Docstore API environment
and a question to answer. You were unsuccessful in answering the question either because you
guessed the wrong answer with Finish[<answer>], or you used up your set number of reasoning
steps. In a few sentences, Diagnose a possible reason for failure and devise a new, concise,
high level plan that aims to mitigate the same failure. Use complete sentences. Here is an
example:{examples}
Previous trial:
Question: {question} {scratchpad}
Reflection:

▶ (react_agent_prompt)
Solve a question answering task with interleaving Thought, Action, Observation steps. Thought
can reason about the current situation, and Action can be three types: (1) Search[entity], which
searches the exact entity on Wikipedia and returns the first paragraph if it exists. If not, it will
return some similar entities to search. (2) Lookup[keyword], which returns the next sentence
containing keyword in the last passage successfully found by Search. (3) Finish[answer], which
returns the answer and finishes the task. You may take as many steps as necessary. Here are
some examples: examples
(END OF EXAMPLES)
Question: {question} {scratchpad}

▶ (react_reflect_agent_prompt)
Solve a question answering task with interleaving Thought, Action, Observation steps. Thought
can reason about the current situation, and Action can be three types: (1) Search[entity], which
searches the exact entity on Wikipedia and returns the first paragraph if it exists. If not, it will
return some similar entities to search. (2) Lookup[keyword], which returns the next sentence
containing keyword in the last passage successfully found by Search. (3) Finish[answer], which
returns the answer and finishes the task. You may take as many steps as necessary. Here are
some examples: examples
(END OF EXAMPLES)
{reflections}
Question: {question} {scratchpad}

▶ (reflecion_header)
You have attempted to answer following question before and failed. The following reflection(s)
give a plan to avoid failing to answer the question in the same way you did previously. Use them
to improve your strategy of correctly answering the given question.

Result Example on AQUA. Reflexion’s result example on AQUA dataset is as follows:

Reflexion’s result example on AQUA dataset

▶Question:A travel company wants to charter a plane to the Bahamas. Chartering the plane
costs $5,000. So far, 12 people have signed up for the trip. If the company charges $200 per
ticket, how many more passengers must sign up for the trip before the company can make any
profit on the charter?

▶ options: A:7 B:9 C:13 D:27 E:45

Trial 1: Scratchpad:
Thought 1: To determine how many more passengers need to sign up for the trip before the
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company can make a profit, we need to calculate the total revenue required to cover the charter
cost and then find out how many additional tickets need to be sold.

Action 1: The cost of chartering the plane is $5,000. Each ticket is sold for $200. To break
even, the company needs to sell enough tickets to cover the $5,000 cost.
Observation 1: Invalid Action. Valid Actions are Lookup[topic] Search[topic] and
Finish[answer].

Thought 2: To find out how many tickets need to be sold to cover the $5,000 cost, we divide
the total cost by the price per ticket. Then, we subtract the number of tickets already sold to find
out how many more are needed.

Action 2: The company needs to sell enough tickets to cover the $5,000 cost. Each ticket is
$200, so the number of tickets needed to break even is $5,000 / $200 = 25 tickets. Since 12
tickets have already been sold, we need to find out how many more are needed to reach 25 tickets.

Observation 2: Invalid Action. Valid Actions are Lookup[topic] Search[topic] and Fin-
ish[answer].

Thought 3: To find out how many more passengers need to sign up, we calculate the total
number of tickets needed to break even and subtract the number of tickets already sold. The
company needs to sell 25 tickets to cover the $5,000 cost. Since 12 tickets have already been
sold, the company needs to sell 25 - 12 = 13 more tickets to break even. Therefore, to make a
profit, they need to sell at least 13 more tickets.

Action 3: Finish[13] Observation 3: Answer is CORRECT

▶ Correctness: True

correct_answer: c

final_answer: c

correct: True

G.7 RARR

Prompt Example. RARR’s prompt example is as follows:

RARR’s prompt example

▶(Prompts for generating hallucinations.)

EVIDENCE_HALLUCINATION = Generate a paragraph that answers the question.

▶Question: What is New York-Style pizza?

Text: New York-style pizza has slices that are large and wide with a thin crust that is foldable
yet crispy. It is traditionally topped with tomato sauce and mozzarella cheese, with any extra
toppings placed on top of the cheese.

▶Question: When did the first McDonald’s open?

Text: The McDonald’s brothers opened their first McDonald’s restaurant in 1940 in San
Bernardino, California. Originally, a carhop drive-in system was used to serve customers. The
initial menu items were centered around barbecue and the first name the brothers called their
business was "McDonald’s Famous Barbecue."

39



▶Question: {query}

▷(6 Prompts for RARR with 1 Prompt Shown Below.)
QGEN_PROMPT
I will check things you said and ask questions.

▶You said: Your nose switches back and forth between nostrils. When you sleep, you switch
about every 45 minutes. This is to prevent a buildup of mucus. It’s called the nasal cycle.
To verify it,
1. I googled: Does your nose switch between nostrils?
2. I googled: How often does your nostrils switch?
3. I googled: Why does your nostril switch?
4. I googled: What is nasal cycle?
▶You said: The Stanford Prison Experiment was conducted in the basement of Encina Hall,
Stanford’s psychology building.
To verify it,
1. I googled: Where was Stanford Prison Experiment was conducted?
▶You said: The Havel-Hakimi algorithm is an algorithm for converting the adjacency matrix of
a graph into its adjacency list. It is named after Vaclav Havel and Samih Hakimi.
To verify it,
1. I googled: What does Havel-Hakimi algorithm do?
2. I googled: Who are Havel-Hakimi algorithm named after?
▶You said: "Time of My Life" is a song by American singer-songwriter Bill Medley from the
soundtrack of the 1987 film Dirty Dancing. The song was produced by Michael Lloyd.
To verify it,
1. I googled: Who sings the song "Time of My Life"?
2. I googled: Which film is the song "Time of My Life" from?
3. I googled: Who produced the song "Time of My Life"?
▶You said: Kelvin Hopins was suspended from the Labor Party due to his membership in the
Conservative Party.
To verify it,
1. I googled: Why was Kelvin Hopins suspended from Labor Party?
▶You said: Social work is a profession that is based in the philosophical tradition of humanism.
It is an intellectual discipline that has its roots in the 1800s.
To verify it,
1. I googled: What philosophical tradition is social work based on?
2. I googled: What year does social work have its root in?
▶You said: {claim}
To verify it,

Result Example on gsm8k. RARR’s result example on gsm8k dataset is as follows:

RARR’s result example on gsm8k

▶question: A robe takes 2 bolts of blue fiber and half that much white fiber. How many bolts
in total does it take?

text: Let me help solve this word problem step by step:1. Blue fiber needed: 2 bolts2. White
fiber needed: Half of blue = 2 / 2 = 1 bolt 3. Total bolts = Blue + White = 2 + 1 = 3 bolts
Therefore, it takes 3 bolts in total to make the robe.

revisions: original_text: Let me help solve this word problem step by step:1. Blue fiber
needed: 2 bolts 2. White fiber needed: Half of blue = 2 / 2 = 1 bolt 3. Total bolts = Blue +
White = 2 + 1 = 3 bolts Therefore, it takes 3 bolts in total to make the robe.

revised_text: Default revision text
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final_answer: 3

correct_answer: 3

correct: True

G.8 RATT

Prompt Example. RATT’s prompt example is as follows:

RATT’s prompt example

▶ (Query_prompt)
Question: question.Content: previous_answer.Instruction: I want to verify the content
correctness of the given question, especially the last sentences.Please summarize the content
with the corresponding question.This summarization will be used as a query to search with
Bing search engine. The query should be short but need to be specific to promise Bing can find
related knowledge or pages.You can also use search syntax to make the query short and clear
enough for the search engine to find relevant language data.Try to make the query as relevant as
possible to the last few sentences in the content. **IMPORTANT** Just output the query
directly. DO NOT add additional explanations or introducement in the answer unless you are
asked to.

▶ (Filter_prompt)
Text: content. Question: question. Please read the following text and extract only the
sections that are relevant to the given question. Organize the extracted information coherently,
maintaining the structure of multiple paragraphs with subtitles, and split the paragraphs with
Question: question, Text to Filter: content, Instruction: Extract only the relevant information
related to the question. Keep the structure clear with multiple paragraphs and subtitles. Provide
the filtered information directly without additional explanations or commentary.

▶ (Draft_prompt)
Question: question.IMPORTANT:Try to answer this question/instruction with step-by-step
thoughts and make the answer more structural.Use ‘\n\n’ to split the answer into several
paragraphs.Just respond to the instruction directly. DO NOT add additional explanations or
introducement in the answer unless you are asked to.If you have got the final answer, in the
form \boxed{answer}, at the end of your response.

▶ (Revise_prompt)
Existing Text in Wiki Web: content. Question: question. Answer: answer. I want to revise
the answer according to retrieved related text of the question in WIKI pages. You need to check
whether the answer is correct. If you find some errors in the answer, revise the answer to
make it better. If you find some necessary details are ignored, add it to make the answer more
plausible according to the related text. If you find that a part of the answer is correct and does
not require any additional details, maintain that part of the answer unchanged. Directly output
the original content of that part without any modifications. **IMPORTANT** Try to keep
the structure (multiple paragraphs with its subtitles) in the revised answer and make it more
structural for understanding. Split the paragraphs with ‘\n\n‘ characters. Just output the revised
answer directly. DO NOT add additional explanations or announcements in the revised answer
unless you are asked to. If you have got the final answer, in the form \boxed{answer}, at the
end of your response.

▶ (Refine_prompt)
Agent_drafts:agent_drafts.Referencing the answers provided by all agents, synthesize a more
detailed and comprehensive response by integrating all relevant details from these answers.
Ensure logical coherence and provide ONLY THE MERGED ANSWER AS THE OUTPUT,
omitting any discussion of the comparison process or analytical thoughts.If you have got the
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final answer, in the form \boxed{answer}, at the end of your response.

▶ (Refine_prompt)
Final_prompt: Based on the original answer and an additional supplementary answer, generate
a response that is richer in detail and logically coherent. Review the original answer:1. If any
part of the answer is correct and requires no further details, retain that portion unchanged and
output it directly as it is.2. For parts that may be improved or lack necessary details, enhance
them by integrating information from the supplementary answer to make the response more
comprehensive and accurate.3. If you identify any errors within the answers, correct these
errors while ensuring that the revised content remains logically coherent. Original Answer:
previous_answer. Supplementary Answer: final_draft_raw. **IMPORTANT** Ensure the
revised answer maintains a structured format (multiple paragraphs with subtitles) for better
clarity. Separate the paragraphs with ‘\n\n’ characters. Output only the enhanced answer
directly, without any extra explanations or announcements unless specifically requested.If you
have got the final answer, in the form \boxed{answer}, at the end of your response.

▶ (Conclude_prompt (optional))
Final_draft:final_answers.Referencing the answers provided by each step, synthesize a more
detailed and comprehensive response by integrating all relevant details from these answers.
Ensure logical coherence and provide ONLY THE MERGED ANSWER AS THE OUTPUT,
omitting any discussion of the comparison process or analytical thoughts.If you have got the
final answer, in the form \boxed{answer}, at the end of your response.

Result Example on MATH. RATT’s result example on MATH dataset is as follows:

RATT’s result example on MATH dataset

▶question: What is the value of $(2x + 5)ˆ2$ when $x = 3$?"

draft_cot: To find the value of ((2x + 5)ˆ2) when (x = 3), follow these steps: First, substitute (x
= 3) into the expression: [(2(3) + 5)ˆ2] Next, simplify inside the parentheses: [(6 + 5)ˆ2 = (11)ˆ2]
Finally, calculate the square: [11ˆ2 = 121 The value of ((2x + 5)ˆ2) when (x = 3) is (boxed{121}).

final_answer: 121

correct_answer: 121

is_correct: True

G.9 CRITIC

Prompt Example. CRITIC’s prompt example is as follows:

8-Shot CoT Prompts with 2 Shots Shown Below

▶ Question: Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning and
bakes muffins for her friends every day with four. She sells the remainder at the farmers’ market
daily for $2 per fresh duck egg. How much in dollars does she make every day at the farmers’
market?
# Python code, return answer
total_eggs = 16
eaten_eggs = 3
baked_eggs = 4
sold_eggs = total_eggs - eaten_eggs - baked_eggs
dollars_per_egg = 2
answer = sold_eggs * dollars_per_egg
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▶ Question: A robe takes 2 bolts of blue fiber and half that much white fiber.How
many bolts in total does it take?
# Python code, return answer
bolts_of_blue_fiber = 2
bolts_of_white_fiber = num_of_blue_fiber / 2
answer = bolts_of_blue_fiber + bolts_of_white_fiber

4 Critique Prompts with 1 Shot Shown Below:

▶ Question: A farmer has twice as many pigs as cows, and 4 more cows than goats. If the
farmer has 56 animals total, how many pigs does he have?
“‘python
num_of_pigs = 2 * num_of_cows
num_of_cows = number_of_goats + 4
num_of_animals = 56
number_of_goats = (num_of_animals - 4) / 3
num_of_cows = (number_of_goats + 4) * 2
answer = num_of_cows
“‘
▶ Execution: NameError("name ’num_of_cows’ is not defined")
▶ Output: answer = None

▷ What’s the problem with the above code?
1. The above code causes the "NameError" because it use the variable ‘num_of_cows‘ before it
is defined.
2. The variable names in the code are a little bit confusing, becase both ‘num_of_pigs‘ and
"number_of_goats" are used.
Let’s analysis the problem, we know that the total number of animals are 56, but we don’t
konw the number of pigs, cows or goats, and we can’t get any of them directly, so we can build
equations to solve for the number of pigs.

▷ Here’s a better solution:

“‘python
# let’s define the number of goats is x
# then the number of cows is 4+x
# then the number of pigs is 2(4+x)
# so, total animals is x + (4+x) + 2(4+x) = 56
# Now we can solve for "x":
# x + 4 + x + 2x + 8 = 56
# 4x + 12 = 56
# 4x = 44
# x = 11
# So the farmer has 11 goats.
num_of_goats = 11
num_of_cows = num_of_goats + 4
# calculate the answer given the number of goats
num_of_pigs = 2 * num_of_cows
▶ answer = num_of_pigs
“‘
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6 Shot CoT Prompts with 2 Shots Shown Below (Question Answering):

▶ Q: What is the elevation range for the area that the eastern sector of the Colorado orogeny
extends into?
A: Let’s think step by step. The eastern sector of Colorado orogeny extends into the High Plains.
High Plains rise in elevation from around 1,800 to 7,000 ft. So the answer is: 1,800 to 7,000 ft.

▶Q: Musician and satirist Allie Goertz wrote a song about the "The Simpsons" character
Milhouse, who Matt Groening named after who?
A: Let’s think step by step. Milhouse was named after U.S. president Richard Nixon. So the
answer is: Richard Nixon.

6 Critique Prompts with 1 Shot Shown Below (Question Answering):

▶ Question: Are John H. Auer and Jerome Robbins both directors?
Proposed Answer: Let’s think step by step. John H. Auer is a director, producer, and
screenwriter. Jerome Robbins is a director, producer, choreographer, and dancer. So the answer
is: Jerome Robbins.

▷What’s the problem with the above answer?

▷1. Plausibility:
This is a yes/no question, the proposed answer is "Jerome Robbins", which does not clearly
answer whether they are both directors. The answer should be a clear "yes" or "no".
▷2. Truthfulness:
Let’s search the question in google:
▶Search Query: Are John H. Auer and Jerome Robbins both directors?

▶Evidence: [A history of Jerome Robbins at PNB - Pacific Northwest Ballet] Robbins retained
the title of associate artistic director until approximately 1963, ... Ballets: USA, from the late
1950s to the late 1960s.
The evidence suggests Jerome Robbins is a director.

We then need to verify if John H. Auer is a director.
▶Search Query: Is John H. Auer a director? site: wikipedia.org
▶Evidence: [John H. Auer - Wikipedia] Auer was a Hungarian-born child actor who, on
coming to the Americas in 1928, became a movie director and producer, initially in Mexico but,
from the early 1930s, in Hollywood.
The evidence suggests that John H. Auer is an actor, director and producer.
Therefore, both John H. Auer and Jerome Robbins are directors.

▶Question: Are John H. Auer and Jerome Robbins both directors?

Here’s the most possible answer: Let’s think step by step. John H. Auer is an actor, director and
producer. Jerome Robbins is a director. Therefore, Both John H. Auer and Jerome Robbins are
directors. So the answer is: Yes.

Result Example on MATH. CRITIC’s Mathematical Program Synthesis task result example on
MATH dataset is as follows:

CRITIC’s Mathematical Program Synthesis task result example on MATH dataset

▶Question: Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning and
bakes muffins for her friends every day with four. She sells the remainder at the farmers’ market
daily for $2 per fresh duck egg. How much in dollars does she make every day at the farmers’
market?
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Correct Answer: 18

Round 0: \n total_eggs = 16\n eaten_eggs = 3\n baked_eggs = 4\n sold_eggs = total_eggs -
eaten_eggs - baked_eggs\n dollars_per_egg = 2\n answer = sold_eggs * dollars_per_egg\n
print(answer)
Round 1 - Critique(Through python Interpreter): \n total_eggs = 16\n eaten_eggs = 3\n
baked_eggs = 4\n sold_eggs = total_eggs - eaten_eggs - baked_eggs\n dollars_per_egg = 2\n
answer = sold_eggs * dollars_per_egg\n print(answer)

Round 1 - Output: 18

Final Answer: 18

Correct: True

Result Example on HotPotQA. CRITIC’s Question Answering task result example on HotPotQA
dataset is as follows:

CRITIC’s Question Answering task result example on HotPotQA dataset

▶Question: Were Scott Derrickson and Ed Wood of the same nationality?

Correct Answer: yes
Round 0: Let’s think step by step. Scott Derrickson is an American film director, screenwriter,
and producer. Ed Wood was an American filmmaker, actor, and writer. So Scott Derrickson and
Ed Wood are of the same nationality.So the answer is: Yes.

Round 1 - Critique(Through Google search): supporting_facts: "title": ["Scott
Derrickson", "Ed Wood"]

Round 1 - Output: Yes.This answer is plausible and truthful, and the evidence supports the
claim that both Scott Derrickson and Ed Wood are American

Final Answer: Yes

Correct: True
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H All Performance Results

H.1 All Performance Results for Intrinsic Correction

Table 9: Performance of Intrinsic Correction Methods on Different LLMs
LLM Method HotpotQA(↑) CS-QA(↑) AQUA(↑) GSM8K(↑) MATH(↑) GPQA(↑) HumanEval(↑)

LLaMA3.1-8B

Base 75.8 76.16 53.88 81.55 74.37 9.74 73.44
CoT 72.14 (-3.66) 73.85 (-2.31) 53.88 (0) 78.28 (-3.27) 77.65 (+3.28) 13.11 (+3.37) 51.83 (-21.61)
RCI 60.15 (-15.65) 75.25 (-0.91) 56.92 (+3.04) 71.66 (-9.89) 85.81 (+11.44) 21.52 (+11.78) 66.91 (-6.53)
CoVe 67.42 (-8.38) 65.61 (-10.55) 50.66 (-3.22) 80.52 (-1.03) 83.85 (+9.48) 15.36 (+5.62) 63.22 (-10.22)
Self-Refine 61.59 (-14.21) 63.91 (-12.25) 52.39 (-1.49) 76.41 (-5.14) 82.11 (+7.74) 20.62 (+10.88) -
Reflexion-v1 71.04 (-4.76) 51.63 (-24.53) 42.98 (-10.90) 58.91 (-22.64) 69.99 (-4.38) 6.34 (-3.40) -

LLaMA3.1-70B

Base 81.28 81.88 62.65 90.63 78.21 15.62 62.18
CoT 86.13 (+4.85) 82.84 (+0.96) 62.93 (+0.28) 95.92 (+5.29) 60.11 (-18.10) 23.74 (+8.12) 46.39 (-15.79)
RCI 77.68 (-3.60) 67.83 (-14.05) 61.22 (-1.43) 87.11 (-3.52) 76.63 (-1.39) 25.89 (+10.27) 57.52 (-4.66)
CoVe 89.16 (+7.88) 76.67 (-5.21) 76.54 (+13.89) 86.5 (-4.13) 87.17 (+8.96) 39.08 (+23.46) 87.46 (+25.28)
Self-Refine 84.97 (+3.69) 83.31 (+1.43) 65.99 (+3.34) 91.76 (+1.13) 81.88 (+3.67) 41.08 (+25.46) -
Reflexion-v1 69.53 (-11.75) 66.99 (-14.89) 31.48 (-31.17) 63.94 (-26.69) 65.51 (-12.70) 16.94 (+1.32) -

Qwen2.5-7B

Base 74.05 74.75 47.5 90.23 74.28 7.53 79.11
CoT 72.07 (-1.98) 56.19 (-18.56) 50.75 (+3.25) 87.01 (-3.22) 68.61 (-5.67) 12.17 (+4.64) 63.24 (-15.87)
RCI 66.25 (-7.80) 66.61 (-8.14) 55.21 (+7.71) 94.36 (+4.13) 70.96 (-3.32) 14.58 (+7.05) 57.99 (-21.12)
CoVe 73.25 (-0.80) 58.36 (-16.39) 57.95 (+10.45) 91.36 (+1.13) 85.59 (+11.31) 36.22 (+28.69) 85.29 (+6.18)
Self-Refine 75.46 (+1.41) 73.79 (-0.96) 58.29 (+10.79) 88.19 (-2.04) 78.34 (+4.06) 32.77 (+25.24) -
Reflexion-v1 60.96 (-13.09) 55.14 (-19.61) 46.28 (-1.22) 61.17 (-29.06) 67.85 (-6.43) 7.51 (-0.02) -

Qwen2.5-72B

Base 83.63 81.92 57.58 91.11 66.91 9.85 86.13
CoT 89.87 (+6.24) 88.44 (+6.52) 57.34 (-0.24) 94.14 (+3.03) 63.71 (-3.20) 16.19 (+6.34) 62.45 (-23.68)
RCI 84.63 (+1.00) 80.42 (-1.50) 64.12 (+6.54) 94.92 (+3.81) 60.08 (-6.83) 13.72 (+3.87) 79.73 (-6.40)
CoVe 88.95 (+5.32) 80.79 (-1.13) 75.17 (+17.59) 94.42 (+3.31) 63.73 (-3.18) 32.41 (+22.56) 63.56 (-22.57)
Self-Refine 90.59 (+6.96) 84.91 (+2.99) 60.07 (+2.49) 93.12 (+2.01) 78.71 (+11.80) 31.19 (+21.34) -
Reflexion-v1 69.65 (-13.98) 66.54 (-15.38) 40.95 (-16.63) 71.84 (-19.27) 56.28 (-10.63) 11.23 (+1.38) -

Claude3.5

Base 88.29 80.25 81.26 95.81 83.51 32.34 84.69
CoT 92.3 (+4.01) 82.48 (+2.23) 64.51 (-16.75) 97.55 (+1.74) 85.48 (+1.97) 16.67 (-15.67) 80.53 (-4.16)
RCI 86.24 (-2.05) 86.22 (+5.97) 86.09 (+4.83) 93.53 (-2.28) 85.08 (+1.57) 21.98 (-10.36) 83.31 (-1.38)
CoVe 88.5 (+0.21) 90.58 (+10.33) 82.86 (+1.60) 98.01 (+2.20) 84.98 (+1.47) 43.22 (+10.88) 84.28 (-0.41)
Self-Refine 93.39 (+5.10) 86.64 (+6.39) 79.72 (-1.54) 98.39 (+2.58) 87.22 (+3.71) 58.95 (+26.61) -
Reflexion-v1 81.32 (-6.97) 68.08 (-12.17) 69.6 (-11.66) 77.71 (-18.10) 81.1 (-2.41) 42.68 (+10.34) -

GPT-3.5

Base 82.94 77.92 55.15 79.14 70.44 27.29 80.29
CoT 89.34 (+6.40) 81.47 (+3.55) 65.56 (+10.41) 97.41 (+18.27) 74.91 (+4.47) 17.84 (-9.45) 76.77 (-3.52)
RCI 87.17 (+4.23) 86.92 (+9.00) 79.52 (+24.37) 93.46 (+14.32) 69.78 (-0.66) 23.31 (-4.12) 78.14 (-2.15)
CoVe 85.17 (+2.23) 89.67 (+11.75) 81.49 (+26.34) 94.98 (+15.84) 83.75 (+13.31) 48.5 (+21.21) 83.95 (+3.66)
Self-Refine 91.47 (+8.53) 82.64 (+4.72) 69.8 (+14.64) 98.18 (+19.04) 85.34 (+14.9) 52.14 (+24.85) -
Reflexion-v1 71.88 (-11.06) 62.11 (-15.81) 44.76 (-10.39) 72.74 (-6.4) 59.12 (-11.32) 21.85 (-5.44) -

GPT-4o

Base 89.16 80.65 65.82 91.15 69.54 22.49 77.04
CoT 91.86 (+2.70) 81.68 (+1.03) 61.45 (-4.37) 97.81 (+6.66) 73.46 (+3.92) 13.75 (-8.74) 64.58 (-12.46)
RCI 91.82 (+2.66) 81.73 (+1.08) 71.23 (+5.41) 95.54 (+4.39) 77.83 (+8.29) 18.12 (-4.37) 81.31 (+4.27)
CoVe 90.09 (+0.93) 88.85 (+8.20) 75.43 (+9.61) 95.89 (+4.74) 85.83 (+16.29) 45.09 (+22.60) 85.61 (+8.57)
Self-Refine 95.66 (+6.50) 88.71 (+8.06) 83.33 (+17.49) 96.66 (+5.51) 76.03 (+6.49) 51.93 (+29.44) -
Reflexion-v1 71.51 (-17.65) 64.62 (-16.03) 48.32 (-17.50) 79.56 (-11.59) 56.58 (-12.96) 15.71 (-6.78) -

QWQ-32B

Base 62.43 82.78 52.42 63.41 73.78 10.85 19.86
CoT 65.86 (+3.43) 75.23 (-7.55) 62.43 (+10.01) 81.41 (+18.00) 75.62 (+1.84) 11.31 (+0.46) 14.19 (-5.67)
RCI 78.48 (+16.05) 67.89 (-14.89) 59.94 (+7.52) 57.03 (-6.38) 61.94 (-11.84) 13.43 (+2.58) 12.87 (-6.99)
CoVe 76.09 (+13.66) 72.96 (-9.82) 59.34 (+6.92) 93.59 (+30.18) 66.12 (-7.66) 24.61 (+13.76) 56.73 (+36.87)
Self-Refine 83.95 (+21.52) 82.87 (+0.09) 69.58 (+17.16) 83.77 (+20.36) 81.42 (+7.64) 26.38 (+15.53) -
Reflexion-v1 54.66 (-7.77) 62.86 (-19.92) 42.83 (-9.59) 52.97 (-10.44) 64.25 (-9.53) 21.54 (+10.69) -

DeepSeek-V3

Base 89.29 83.35 74.79 95.12 85.02 31.35 91.67
CoT 90.08 (+0.79) 80.08 (-3.27) 72.67 (-2.12) 98.13 (+3.01) 73.73 (-11.29) 23.91 (-7.44) 80.92 (-10.75)
RCI 84.62 (-4.67) 73.72 (-9.63) 69.85 (-4.94) 95.36 (+0.24) 86.13 (+1.11) 27.23 (-4.12) 89.34 (-2.33)
CoVe 88.72 (-0.57) 83.34 (-0.01) 80.64 (+5.85) 94.79 (-0.33) 72.71 (-12.31) 52.17 (+20.82) 82.57 (-9.10)
Self-Refine 92.34 (+3.05) 82.78 (-0.57) 85.97 (+11.18) 99.15 (+4.03) 84.87 (-0.15) 51.13 (+19.78) -
Reflexion-v1 75.17 (-14.12) 77.06 (-6.29) 67.77 (-7.02) 69.93 (-25.19) 64.45 (-20.57) 29.47 (-1.88) -
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H.2 All Performance Results for External Correction

Table 10: Performance of External Correction Methods on Different LLMs
LLM Method HotpotQA(↑) CS-QA(↑) AQUA(↑) GSM8K(↑) MATH(↑) GPQA(↑) HumanEval(↑)

LLaMA3.1-8B

Base 75.8 76.16 53.88 81.55 74.37 9.74 73.44
CoT 72.14 (-3.66) 73.85 (-2.31) 44.55 (-9.33) 78.28 (-3.27) 77.65 (+3.28) 13.11 (+3.37) 51.83 (-21.61)
Reflexion-v2 89.02 (+13.22) 78.66 (+2.5) 59.77 (+5.89) 83.9 (+2.35) 78.14 (+3.77) 22.14 (+12.4) -
RARR 81.31 (+5.51) 74.6 (-1.56) 56.54 (+2.66) 79.31 (-2.24) 84.43 (+10.06) 34.58 (+24.84) 67.58 (-5.86)
RATT 76.82 (+1.02) 76.72 (+0.56) 54.94 (+1.06) 72.34 (-9.21) 81.16 (+6.79) 13.83 (+4.09) 62.33 (-11.11)
CRITIC 69.33 (-6.47) - - 69.12 (-12.43) - - -

LLaMA3.1-70B

Base 81.28 81.88 62.65 90.63 78.21 15.62 62.18
CoT 86.13 (+4.85) 82.84 (+0.96) 62.93 (+0.28) 95.92 (+5.29) 60.11 (-18.1) 23.74 (+8.12) 46.39 (-15.79)
Reflexion-v2 88.78 (+7.5) 86.17 (+4.29) 62.45 (-0.2) 82.11 (-8.52) 84.82 (+6.61) 24.62 (+9) -
RARR 90.49 (+9.21) 79.93 (-1.95) 67.29 (+4.64) 88.5 (-2.13) 87.8 (+9.59) 35.79 (+20.17) 78.96 (+16.78)
RATT 82.37 (+1.09) 82.08 (+0.2) 68.22 (+5.57) 86.15 (-4.48) 85.79 (+7.58) 26.09 (+10.47) 66.05 (+3.87)
CRITIC 85.57 (+4.29) - - 95.24 (+4.61) - - -

Qwen2.5-7B

Base 74.05 74.75 47.5 90.23 74.28 7.53 79.11
CoT 72.07 (-1.98) 56.19 (-18.56) 50.75 (+3.25) 87.01 (-3.22) 68.61 (-5.67) 12.17 (+4.64) 63.24 (-15.87)
Reflexion-v2 87.21 (+13.16) 67.95 (-6.8) 54.35 (+6.85) 89.31 (-0.92) 85.63 (+11.35) 26.18 (+18.65) -
RARR 71.67 (-2.38) 75.52 (+0.77) 45.61 (-1.89) 85.22 (-5.01) 79.44 (+5.16) 34.44 (+26.91) 85.71 (+6.6)
RATT 72.4 (-1.65) 84.55 (+9.8) 65.17 (+17.67) 94.92 (+4.69) 84.61 (+10.33) 14.61 (+7.08) 80.69 (+1.58)
CRITIC 69.89 (-4.16) - - 74.42 (-15.81) - - -

Qwen2.5-72B

Base 83.63 81.92 57.58 91.11 66.91 9.85 86.13
CoT 89.87 (+6.24) 88.44 (+6.52) 57.34 (-0.24) 94.14 (+3.03) 63.71 (-3.2) 16.19 (+6.34) 62.45 (-23.68)
Reflection-v2 83.69 (+0.06) 82.33 (+0.41) 57.46 (-0.12) 92.64 (+1.53) 77.46 (+10.55) 14.72 (+4.87) -
RARR 87.77 (+4.14) 86.16 (+4.24) 57.23 (-0.35) 86.4 (-4.71) 73.66 (+6.75) 40.13 (+30.28) 87.63 (+1.5)
RATT 84.68 (+1.05) 84.12 (+2.2) 64.41 (+6.83) 90.64 (-0.47) 77.94 (+11.03) 25.74 (+15.89) 84.72 (-1.41)
CRITIC 84.78 (+1.15) - - 79.35 (-11.76) - - -

Claude3.5

Base 88.29 80.25 81.26 95.81 83.51 32.34 84.69
CoT 92.3 (+4.01) 82.48 (+2.23) 64.51 (-16.75) 97.55 (+1.74) 85.48 (+1.97) 16.67 (-15.67) 80.53 (-4.16)
Reflexion-v2 93.62 (+5.33) 91.77 (+11.52) 84.83 (+3.57) 94.1 (-1.71) 92.56 (+9.05) 53.21 (+20.87) -
RARR 87.44 (-0.85) 80.79 (+0.54) 83.52 (+2.26) 94.36 (-1.45) 94.18 (+10.67) 50.34 (+18.0) 86.27 (+1.58)
RATT 82.13 (-6.16) 77.62 (-2.63) 88.51 (+7.25) 96.39 (+0.58) 97.31 (+13.8) 38.28 (+5.94) 85.29 (+0.6)
CRITIC 95.16 (+6.87) - - 94.85 (-0.96) - - -

GPT-3.5

Base 82.94 77.92 55.15 79.14 70.44 27.29 80.29
CoT 89.34 (+6.4) 81.47 (+3.55) 65.56 (+10.41) 97.41 (+18.27) 74.91 (+4.47) 17.84 (-9.45) 76.77 (-3.52)
Reflexion-v2 90.31 (+7.37) 82.72 (+4.8) 76.22 (+21.07) 92.62 (+13.48) 79.84 (+9.4) 30.51 (+3.22) -
RARR 82.37 (-0.57) 74.04 (-3.88) 62.04 (+6.89) 89.93 (+10.79) 73.36 (+2.92) 28.42 (+1.13) 78.58 (-1.71)
RATT 75.92 (-7.02) 78.39 (+0.47) 64.99 (+9.84) 88.27 (+9.13) 73.66 (+3.22) 37.87 (+10.58) 80.56 (+0.27)
CRITIC 82.49 (-0.45) - - 82.72 (+3.58) - - -

GPT-4o

Base 89.16 80.65 65.82 91.15 69.54 22.49 77.04
CoT 91.86 (+2.7) 81.68 (+1.03) 61.45 (-4.37) 97.81 (+6.66) 73.46 (+3.92) 13.75 (-8.74) 64.58 (-12.46)
Reflexion-v2 91.17 (+2.01) 84.23 (+3.58) 77.01 (+11.19) 94.13 (+2.98) 77.65 (+8.11) 19.47 (-3.02) -
RARR 90.89 (+1.73) 84.87 (+4.22) 82.13 (+16.31) 95.34 (+4.19) 81.61 (+12.07) 35.69 (+13.2) 94.09 (+17.05)
RATT 90.84 (+1.68) 80.49 (-0.16) 77.23 (+11.41) 98.73 (+7.58) 73.48 (+3.94) 24.95 (+2.46) 86.04 (+9.0)
CRITIC 91.08 (+1.92) - - 97.44 (+6.29) - - -

QWQ-32B

Base 62.43 82.78 52.42 63.41 73.78 10.85 19.86
CoT 65.86 (+3.43) 75.23 (-7.55) 62.43 (+10.01) 81.41 (+18.0) 75.62 (+1.84) 11.31 (+0.46) 14.19 (-5.67)
Reflexion-v2 83.18 (+20.75) 81.71 (-1.07) 73.55 (+21.13) 83.75 (+20.34) 73.56 (-0.22) 23.12 (+12.27) -
RARR 88.28 (+25.85) 85.03 (+2.25) 72.67 (+20.25) 86.33 (+22.92) 82.97 (+9.19) 31.66 (+20.81) 34.92 (+15.06)
RATT 66.19 (+3.76) 76.78 (-6.0) 50.88 (-1.54) 72.85 (+9.44) 66.12 (-7.66) 15.62 (+4.77) 22.71 (+2.85)
CRITIC 79.22 (+16.79) - - 90.83 (+27.42) - - -

DeepSeek-V3

Base 89.29 83.35 74.79 95.12 85.02 31.35 91.67
CoT 90.08 (+0.79) 80.08 (-3.27) 72.67 (-2.12) 98.13 (+3.01) 73.73 (-11.29) 23.91 (-7.44) 80.92 (-10.75)
Reflexion-v2 84.84 (-4.45) 84.38 (+1.03) 68.47 (-6.32) 96.28 (+1.16) 82.62 (-2.4) 27.72 (-3.63) -
RARR 88.99 (-0.3) 84.15 (+0.8) 74.28 (-0.51) 94.93 (-0.19) 87.55 (+2.53) 40.31 (+8.96) 82.41 (-9.26)
RATT 84.93 (-4.36) 86.53 (+3.18) 78.19 (+3.4) 92.47 (-2.65) 86.57 (+1.55) 36.14 (+4.79) 92.55 (+0.88)
CRITIC 91.72 (+2.43) - - 94.37 (-0.75) - - -
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