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Abstract

We study the impact of a standard practice in compressing foundation vision-
language models–quantization–on the models’ ability to produce socially-fair out-
puts. In contrast to prior findings with unimodal models that compression con-
sistently amplifies social biases, our extensive evaluation of four quantization set-
tings across three datasets and three CLIP variants yields a surprising result: while
individual models demonstrate bias, we find no consistent change in bias magni-
tude or direction across a population of compressed models due to quantization.

1 Introduction

Quantization (Gholami et al., 2022) is a leading practice in compressing deep learning models: it
transforms a model’s parameter representation from 32-bit floating-point numbers to lower bit-width
(e.g., 8-bit or 4-bit integers), thereby reducing memory footprint and inference latency significantly.
However, these transformations in number representation can introduce small numerical perturba-
tions to a model’s parameter values, potentially leading to undesirable behaviors of a model after
quantization (Hong et al., 2024; Tian et al., 2022; Hooker et al., 2019). In this paper, we study the
effects of quantization on the fairness outcomes of foundation vision-language (ViL) models.

Related work. Most work studies compression-induced bias in the unimodal setting, such as vision
or language models. Hooker et al. (2019) first noted that the drop in accuracy induced by compress-
ing vision models is concentrated in a few classes which are “cannibalized” to preserve accuracy
in the others. Follow-up work (Hooker et al., 2020) notes that compression error disparately affects
data with low representation in the training distribution that often correlates with socially meaningful
features like gender and age. Silva et al. (2021) similarly find that distilled language models “almost
always exhibit statistically significant bias.” Subsequent works show that compressing language
models amplifies gender bias (Renduchintala et al., 2021; Ahn et al., 2022) and that vision model
compression has a disparate impact on face classification accuracy (Tran et al., 2022), expression
recognition (Stoychev and Gunes, 2022), and other traditional vision tasks (Paganini, 2023).

Recent studies extend these investigations to varied compression techniques across different do-
mains such as facial recognition (Lin et al., 2022), medical diagnosis (Wu et al., 2022), and multilin-
gual NLP (Ogueji et al., 2022; Lee and Lee, 2023). Fairness-aware compression methods analyzed
the trade-offs between model fairness, performance, and environmental impact (Hessenthaler et al.,
2022). Yi-Lin Sung (2024) have even developed a compression technique specifically for ViL mod-
els. However, no work to date has studied the fairness impacts of compression for multimodal ViL
models, leaving a critical gap on how these techniques affect integrated architectures.

Contributions. We address this knowledge gap by extensively evaluating quantization effects in
multimodal ViL models focusing on fairness outcomes across socially meaningful features like gen-
der, age, and race. Contrary to previous findings in fair compression, our analysis reveales a sur-
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Figure 1: Zero-shot image classification accuracy on ImageNet1K (Deng et al., 2009) and text-
image retrieval recall on COCO Captions Lin et al. (2014) across varied CLIP versions, training data
sources, and quantization methods. Higher (↑) is better in all cases. HuggingFace-based quantization
methods preserve performance while the PyTorch-based method shows a reduction across metrics.
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prising result: there is no significant evidence for consistent bias amplification across quantized ViL
models. While individual models do exhibit biases, the direction and magnitude of these biases were
not uniform, suggesting that the impact of compression on fairness may be more nuanced in mul-
timodal contexts. These findings raise questions about the generalizability of compression-induced
bias across different model architectures and modalities, indicating a potential need for a more re-
fined understanding of how quantization affects fairness. Additionally, this result may indirectly
support recent findings on arbitrariness in fair binary classification (Cooper et al., 2024).

2 Methodology and Experiments

We examine three common off-the-shelf quantization methods for model compression: 8-bit and
4-bit quantization from the bitsandbytes (Dettmers et al., 2022b) integration into Hugging Face
Transformers (Wolf et al., 2020), and PyTorch’s (Paszke et al., 2019) 8-bit dynamic quantization.

HuggingFace 8-bit Quantization. The 8-bit quantization method, initially introduced by Dettmers
et al. (2022a) in their work on LLM.int8(), represents a significant step towards efficient model com-
pression. This method employs a linear quantization scheme for weight representation, quantizing
weights to 8-bit integers while preserving activations in higher precision. It offers up to 50% reduc-
tion in model size compared to FP16 representations and generally yields better performance than
lower-bit alternatives, albeit with a smaller compression ratio. A key innovation in this approach is
the use of vector-wise quantization, which quantizes vectors (rows or columns) of the weight matrix
independently, allowing for better preservation of the weight distribution.

HuggingFace 4-bit Quantization. Building upon this work, Dettmers et al. (2023) introduced 4-
bit quantization with their QLoRA method, which utilizes the NormalFloat (NF4) data type. This
specialized format is optimized for the weight distribution typically observed in neural networks.
The 4-bit quantization approach achieves up to 75% reduction in model size compared to FP16
representations, enabling the loading and inference of larger models on consumer-grade GPUs with
limited memory. A crucial aspect of this method is the use of blockwise quantization. In this
scheme, the weight matrix is divided into small blocks (typically 64 or 128 elements), and each
block is quantized independently. This approach allows for more fine-grained quantization, better
preserving the local structure of the weight matrix.

Pytorch 8-bit Quantization. PyTorch’s dynamic quantization (Paszke et al., 2019) offers a com-
plementary approach that’s worth considering. This post-training technique focuses on reducing
inference time and memory usage, particularly on CPU architectures. It quantizes weights to 8-bit
integers and dynamically quantizes activations during the inference phase, utilizing a dynamic range
for activations by calculating scaling factors on-the-fly. This method is well-suited for models with
varying input sizes or dynamic computation graphs.
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Table 1: P-value and 95% confidence intervals for paired t-tests on FACET disparity pre- and post-
quantization difference in means. Cells in yellow/green are significant at 90%/95% confidence.

Quant Method Demographic Min Disp@1 Max Disp@1 Min Disp@5 Max Disp@5
p 95%CI p 95%CI p 95%CI p 95%CI

HuggingFace Gender (MF) .862 -.01, .01 .082 -.02, .00 .246 -.01, .00 .356 -.05, .11
4-Bit Skin Tone (LD) .307 -.02, .04 .035 .01, .10 .164 -.01, .03 .210 -.04, .12

Age (MY) .774 -.01, .01 .425 -.04, .08 .133 -.01, .00 .587 -.05, .09
Age (MO) .262 -.01, .00 .141 -.13, .03 .501 .00, .00 .388 -.04, .09

HuggingFace Gender (MF) .310 .00, .01 .945 -.01, .01 .999 .00, .00 .502 -.03, .05
8-Bit Skin Tone (LD) .700 -.01, .02 .843 -.05, .06 .817 -.01, .01 .447 -.05, .03

Age (MY) .765 .00, .00 .868 -.03, .03 .456 .00, .00 .245 -.01, .02
Age (MO) .396 -.01, .00 .269 -.03, .01 .340 .00, .01 .444 -.06, .12

PyTorch Gender (MF) .115 -.01, .03 .192 -.05, .16 .278 -.03, .01 .076 -.02, .20
8-Bit Skin Tone (LD) .205 -.01, .04 .247 -.07, .17 .399 -.04, .02 .158 -.08, .02

Age (MY) .117 -.01, .03 .850 -.17, .15 .095 -.02, .00 .940 -.23, .22
Age (MO) .045 .00, .04 .462 -.14, .24 .159 -.02, .01 .348 -.26, .13

We choose CLIP (Radford et al., 2021) as a representative foundation alignment model and apply
each quantization method above to a variety of model variants across different training data sources.
Specifically, we consider the base size vision transformer (ViT) (Dosovitskiy, 2020) variants with
sequence length 32 (B/32) and 16 (B/16), and the large size ViT variant with sequence length 14
(L/14). For each CLIP variant, we consider a model pretrained on OpenAI WIT (Radford et al.,
2021), LAION-2B (Schuhmann et al., 2022), and DataComp-XL (Gadre et al., 2024). We find the
weights available online for the B/32 varient trained on DataComp-XL to be corrupted, resulting in
an evaluation over eight distinct models with three quantization methods totalling 32 scenarios.

2.1 Evaluation Datasets and Metrics

We evaluate across three benchmarks to validate if quantized models are both accurate and fair.

Zero-Shot Classification and Retrieval. We evaluate the accuracy of each model and its quantized
variants across two common benchmark tasks for foundation vision-language alignment models:
zero-shot image classification on ImageNet (Deng et al., 2009) and text-based image retrieval on
COCO (Lin et al., 2014). Quantized variants should have similar accuracy to the original model.

Fair Zero-Shot Classification. The FACET (Gustafson et al., 2023) dataset contains expert image
annotations for 52 person related classes, age, skin tone, and gender presentation. We perform
zero-shot classification over the person-classes by constructing a text prompt for each class and
predicting the class used to construct the prompt with highest similarity to the image. Following
Gustafson et al. (2023), we measure the disparity between pairs of values within a sensitive group
(e.g. {light, dark} ∈ skintone) as the difference in recall between true-positive instances of a
person-class for each value. A large magnitude disparity indicates that a model better predicts
positive instances for one member of the group, while a disparity of zero indicates group equality
of opportunity. We study the the maximum and minimum disparity measured across person-classes.
We utilize the same sensitive groups as Slyman et al. (2024), evaluating perceived gender expression
by masculine vs. feminine presentation, lighter (1-4MST1) vs. darker (6-10MST) skin tone, and
middle vs. younger/older age for all person-classes which have at least 25 samples in both subgroups.

Fair Image Retrieval. FairFace (Kärkkäinen and Joo, 2021) annotates cropped faces with per-
ceived race, age, and gender. Following (Seth et al., 2023), we assess how much the top-k re-
sults of an image-text query differ across sensitive attribute values in the validation set using
MaxSkew@k (Geyik et al., 2019). For a given top-k image set τkr from query r, let Pτk

r ,ai
∈[0, 1] be

the actual proportion of images with a particular value ai∈A of sensitive attribute A, and Pr,ai
∈[0, 1]

1Monk Skin Tone scale Monk (2019)
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be the desired proportion estimated from true rates in the full dataset. Then the skew for ai is:

Skewai@k(τr) = ln

(
Pτk

r ,ai

Pr,ai

)
(1)

Skew@k is specific to a single value of a sensitive attribute. To provide a more comprehen-
sive view, we report the most (least) skewed attribute value as MaxSkew@k (MinSkew@k).
MaxSkew@k indicates the “largest unfair advantage” (Geyik et al., 2019) given to im-
ages with a particular attribute value in the top-k results while MinSkew@k captures the

Table 2: P-value and confidence interval for paired t-tests
on FairFace skew pre- and post-quantization means. Cells
in yellow/green are significant at 90%/95% confidence.
Quant Method Demographic MinSkew MaxSkew

p 95%CI p @95%CI

HuggingFace Gender .066 -.19, .01 .039 -.07, .01
4-Bit Race .225 -.04, .12 .073 -.01, .06

Age .557 -.10, .06 .800 -.04, .03

HuggingFace Gender .632 -.01, .02 .655 -.01, .01
8-Bit Race .717 -.01, .01 .060 .00, .01

Age .153 -.02, .01 .157 -.01, .01

PyTorch Gender .560 -.08, .13 .535 -.03, .05
8-Bit Race .938 -.13, .12 .555 -.03, .06

Age .077 -.02, .26 .124 -.01, .07

“worst disadvantage in representa-
tion” for a subgroup. With the con-
dition that the desired proportion of
images matches the true distribution
of those images in the dataset, an
optimal MaxSkew@k of 0 can be
shown to achieve the fairness crite-
ria of demographic parity. Follow-
ing Berg et al. (2022), we report
average MaxSkew@1000 across 240
(un)favorable captions orthogonal to
images in the dataset, matching test
attributes and prompts for race, age,
and gender. Similar to Slyman et al.
(2024), we reduce noise by binning
age into: younger (0-19), middle (20-
49), and older (50-70+) subgroups.

3 Empirical Evaluation

Accuracy. As shown in Fig. 1, the selected quantization methods generally preserve accuracy across
different models and tasks. This result indicates that the methods chosen for our study are effective
in terms of preserving baseline performance. A method which does not preserve performance (e.g.
resulting in random predictions) may otherwise trivially fulfil many common fairness criteria.

Fairness. We consider fairness evaluations as paired pre-post/quantization measurements and assess
the significance of difference between the two measures with a paired t-test. The results for fairness
are mixed. Table 1 presents the outcomes for FACET, where we observe inconsistent equality of
opportunity outcomes in zero-shot image classification. The disparities across different demographic
groups vary, with some quantization methods leading to minor but somewhat statistically significant
changes. As shown in Table 2, FairFace demonstrates similar inconsistent skew outcomes in image
retrieval. We note that these observations are without correcting for multiple testing, and that the
minor significant results observed here are likely to disappear under most correction methods.

Limitations. Our evaluations make several generalizability limiting assumptions. Specifically, we
study only CLIP models under quantization as the compression method. It would be a compelling
line of future work to understand fairness outcomes when applying more advanced compression
methods (e.g., pruning or distillation), alternative alignment model architectures, or more advanced
ViL models (e.g. BLIP (Li et al., 2023)) which can perform VQA and image captioning tasks.

4 Conclusion

Our study reveals that the impact of quantization on bias in multimodal ViL models is neither con-
sistent nor uniform across different models, methods, and datasets. The direction and magnitude
of bias introduced by quantization varied, indicating that its effects on fairness are complex and
context-dependent. These findings challenge the assumption that quantization consistently influ-
ences bias across settings, highlighting the need for a more nuanced understanding of how compres-
sion techniques impact fairness across diverse model architectures and applications.
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