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ABSTRACT

Cardiovascular disease (CVD) is a leading cause of mortality worldwide. Elec-
trocardiograms (ECGs) are the most widely used non-invasive tool for cardiac
assessment, yet large, well-annotated ECG corpora are scarce due to cost, privacy,
and workflow constraints. Generating ECGs can be beneficial for the mechanistic
understanding of cardiac electrical activity, enable the construction of large, het-
erogeneous, and unbiased datasets, and facilitate privacy-preserving data sharing.
Generating realistic ECG signals from clinical context is important yet underex-
plored. Recent work has leveraged diffusion models for text-to-ECG generation,
but two challenges remain: (i) existing methods often overlook the physiological
simulator knowledge of cardiac activity; and (ii) they ignore broader, experience-
based clinical knowledge grounded in real-world practice. To address these gaps,
we propose SE-DIiff, a novel physiological simulator and experience enhanced dif-
fusion model for comprehensive ECG generation. SE-Diff integrates a lightweight
ordinary differential equation (ODE)-based ECG simulator into the diffusion pro-
cess via a beat decoder and simulator-consistent constraints, injecting mechanistic
priors that promote physiologically plausible waveforms. In parallel, we design an
LLM-powered experience retrieval-augmented strategy to inject clinical knowl-
edge, providing more guidance for ECG generation. Extensive experiments on
real-world ECG datasets demonstrate that SE-Diff improves both signal fidelity
and text—-ECG semantic alignment over baselines, proving its superiority for text-
to-ECG generation. We further show that the simulator-based and experience-
based knowledge also benefit downstream ECG classification.

1 INTRODUCTION

Cardiovascular disease (CVD) remains a leading cause of global mortality and morbidity (Roth et al.,
2020). In clinical workflows, the 12-lead electrocardiogram (ECG)—the standard setup using 10
electrodes to derive 12 voltage traces-is ubiquitous, non-invasive, and low-cost for screening, triage,
and longitudinal monitoring (Kligfield et al., 2007). While machine learning (ML) has advanced
ECG interpretation, progress is constrained by limited access to large, well-annotated corpora, strin-
gent privacy considerations around sharing protected health information, and the expense of expert
labeling (Johnson et al., 2023; Goldberger et al., 2000). ECG generation provides a principled way
to mitigate these barriers by expanding training data, enabling controlled curation, and decoupling
model development from directly identifiable records (Zanchi et al., 2025). Concurrently, denoising
diffusion probabilistic models (DDPMs) and score-based methods have established strong fidelity
and coverage across modalities (Ho et al., 2020; Song et al., 2021), motivating their adaptation to
medical time series and, specifically, text-conditioned ECG generation (Lai et al., 2025a).

Despite these advances, there are still two gaps limit the practical adoption of text-to-ECG gener-
ation. (i) Missing physiological simulator knowledge. Most diffusion models for ECG learn mor-
phology and timing purely from data, with minimal incorporation of known cardiac physiological
dynamics. Decades of physiological modeling have produced compact ordinary differential equation
(ODE) simulators that yield realistic P-QRS-T morphologies and heartrate variability under con-
trollable parameters (McSharry et al., 2003; Malik, 1996). Yet these simulators are rarely integrated
as priors or constraints during diffusion training, leaving a disconnect between statistical generation
and mechanistic plausibility. (ii) Under-use of experience-based knowledge at scale. Prior text-
to-ECG works often condition on narrow patient metadata, but do not leverage broader experience
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knowledge—case-based regularities distributed across large electronic health record (EHR) corpora.
Retrieval-augmented generation (RAG) offers a principled means to inject such non-parametric
knowledge to generators(Lewis et al., 2020), including via lexical retrieval schemes, yet its potential
for conditioning medical time-series generation remains underexplored.

To address these challenges, we introduce SE-Diff, a conditional latent-diffusion framework that
synthesizes comprehensive ECG waveforms from natural-language clinical descriptions. SE-Diff
couples a lightweight ODE-based ECG simulator to the denoising dynamics through a beat de-
coder—reconstructing a QRS-aligned single cycle from the latent code—and simulator-consistent
spectral and rate constraints, thereby injecting mechanistic priors that steer generation toward phys-
iologically plausible signals. In parallel, an LLM-powered retrieval pipeline identifies clinically
similar patients from EHRs, retrieves their ECG diagnoses and measurements, and distills them into
a concise, physiologically grounded description that is fused with available metadata for condition-
ing. In summary, our main contributions are as follows:

O Problem Identification. We identify the problem of generating realistic 10,s, 12-lead ECG wave-
forms directly from natural-language clinical descriptions. We propose SE-Diff, which can incorpo-
rate various patient metadata (age, sex, heart rate, rhythm/conduction) as soft clinical constraints to
steer morphology toward clinically meaningful generation.

0 Simulator-Informed Diffusion. SE-Diff is the first to integrate a lightweight ODE-based ECG
simulator with latent diffusion. We introduce a beat decoder that reconstructs a single-cycle beat
from the latent representation, injecting simulator-consistent mechanistic priors that guide the de-
noising process toward physiologically plausible waveforms.

® Experience Retrieval-Augmented Conditioning. We design an LLM-powered retrieval
pipeline that identifies clinically similar patients based on EHR data and retrieves ECG diagnoses
and measurements. The LLM generates a concise, physiologically grounded description, which is
fused with available metadata to form the conditioning context.

® Experimental Validation. Across real-world ECG datasets, SE-Diff surpasses baselines in both
signal fidelity and text-ECG semantic alignment. Ablations quantify the contribution of simulator-
based and experience-based knowledge conditioning. We further show that SE-Diff improves down-
stream ECG classification when used for augmentation.

2 PRELIMINARIES

2.1 DENOISING DIFFUSION PROBABILISTIC MODELS

Denoising Diffusion Probabilistic Models (DDPMs) (Sohl-Dickstein et al., 2015; Ho et al., 2020)
define a fixed forward Markov noising process that maps a clean sample xo ~ g(xo) to Gaussian
noise over 7" steps, and a parametric reverse process that approximately inverts it. With variance

schedule {$3;}7_; € (0,1),set oy = 1 — B; and &; = []._, a,. The forward chain is

T
q(zrr | z0) = [l | zio0), (1)

t=1
where q(x¢ | T4—1) := N(@ Ti_1, P I). This implies the closed form z; = \/&; xo++v/1 — & €4,
with ¢, ~ N(0,T). The exact reverse-time posterior ¢(x;_1 | @) is intractable, so DDPMs approx-
imate it with a Gaussian transition pg(z4—1 | ) = MN{ug(w,t), So(x¢,t)), where a neural
network predicts either the forward noise ¢, the clean signal z, or the velocity v. Under the com-

mon noise-prediction parameterization with eg(zy, t), the mean is

po(xe,t) = \/10775<$t - \/lﬂ_tiatee(mmt)) ) )

and we set Yg(w¢,t) € {BI, 021}. Training maximizes a variational lower bound on
log pg () (Sohl-Dickstein et al., 2015), which in practice reduces to the simple loss (Ho et al.,
2020) with optional step-dependent weights w;:

Esimple(e) = ]Etwu{l...T},wUNq,ewN |:wt ||€ - 69(\/0_775‘7:0 tv 1- Qg €, t) ||;:| : (3)
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2.2 THE ECG PHYSIOLOGICAL SIMULATOR

In a resting heart, the ECG follows the P-QRS-T sequence. To reproduce this morphology, Mc-
Sharry et al. (2003) proposed a three-ODE “ECG simulator” that generates realistic P-QRS-T
waves while allowing control of heart-rate statistics and HRV spectrum (Malik & Camm, 1990).
The model evolves a 3D state (z(t), y(t), 2(t)): (z,y) traverse a unit-radius limit cycle whose angle
encodes cardiac phase (one revolution per beat), and z(t) is the ECG voltage given by excursions
about this cycle. The governing ODEs are:

dxr @

ar _ _ = . 4
s =omys —wy,  — =alny)y + wr S
dz Abs(z,y)?
D D T e L B ) B
BE(P.Q.R.S.T) ?

where o(z,y) = 1 — /22 + y? drives (z,y) toward the unit limit cycle, §(z,y) = atan2(y,z) €
[—m, 7] is the phase, and Afg(z,y) = (6(z,y) —63) mod 2 is the phase offset to landmark 5 € B
with B = {P,Q, R, S, T}. The parameter w controls angular velocity (thus average heart rate), and
Zp(t) is a slow baseline (e.g., respiratory wander modeled as zo(t) = Asin(27 fiespt) with small
amplitude A (S6rnmo & Laguna, 2005)). All morphology parameters are collected as

n = {0p,00,0r,0s,07, ap,aq,ar,as,ar, bp,bg,br,bs,br}, (6)

where these parameters—phase landmarks 63, amplitude coefficients ag, and width coefficients bg
foreach 8 € {P,Q, R, S, T }—govern the ECG morphology. When the (z, y) state passes the phase
0, the Gaussian-shaped term ag Afg exp( — A63/(203)) in 5 transiently perturbs z away from
baseline, producing the corresponding P/QRS/T deflection. The sign of ag sets polarity (upward
for ag > 0, downward for ag < 0); |ag| controls peak amplitude; and bg sets the temporal spread
(wave duration). The restoring term —[z — 2((¢)] then pulls the signal back toward baseline. Unless
otherwise specified, we adopt the parameter values recommended by McSharry et al. (2003).

The Euler Method. To simulate the synthetic ECG z(t), we numerically solve the ODE system
with a fixed-step explicit Euler method (the first-order Runge—Kutta scheme) (Butcher & Butcher,
1987; Siili & Mayers, 2003). We choose the step size At = 1/f; to match the desired sampling
frequency (e.g., fs = 500 Hz). Using the finite-difference approximation(Milne-Thomson, 2000):

du (1) ~ u(t + At) — u(t)

e’ At ’
which leads to the update rule u(t + At) = wu(t)+ v(t) At, for an ODE of the form du/dt = v(t).
Starting from initial conditions (zo, yo, z0), We iterate this update for each time step. At the (-th

)

step (time t; = (A, letvp = (fo(ze,ysn),  fy(@e,yein),  fo(xe,ye, 22, te;n)) denote the
right-hand side of Equation 4 and 5. The state is then advanced as:
Tep1 = Te + [o(e,yesn) At ®)
Yerr = Yo + fy(@e, yesn) At ©
zev1 = zo + f2(Te, Yo, 2oty m) At (10
and this process is repeated for £ = 0,1,2,... up to the desired number of samples L. In other

words, each iteration uses the derivatives f;, fy, f. at the current state to step the solution forward
by At. This simple explicit scheme is computationally efficient and sufficient for our purposes,
though higher-order integration methods could be used for greater accuracy if needed.

3 METHOD: SE-DIFF

We present SE-Diff, a conditional latent-diffusion framework that synthesizes 10s, 12-lead ECGs
from clinical text. Diffusion operates in the VAE latent space (Sec. 2.1). To make physiology-
aware supervision tractable, we attach a lightweight Beat Decoder that predicts a single QRS-aligned
cardiac cycle from the latent; its output drives simulator-informed regularizers derived from the ECG
physiology model in Sec. 2.2. To strengthen conditioning, SE-Diff also incorporates experience
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knowledge retrieved based on EHRs (Sec. 3.4). In inference, we sample in latent space and decode
with the full VAE.

Problem Formulation. Each ECG record is a multivariate sequence x € R'2*” representing a
10, 12-lead waveform sampled at f,. Our goal is to learn a conditional generator p(x | ¢; ¢, 1, 0)
that uses c throughout denoising to produce physiologically plausible ECGs. The conditioning is
¢ = (t,m,r), comprising original diagnoses ¢, basic metadata m (age, sex, optionally heart rate),
and retrieve-augmented report r. Concretely, we first train a VAE (Ey4, Dy) together with a Bear
Decoder D}Zeat; the encoder maps a full recording to a latent sequence zg = Eg(x) € RT,

where T'= L/S and S is the VAE temporal stride, and Df/’ﬁat maps 2o to a single-cycle prediction
h € R¥2*Le We then freeze Ey, Dy, and D}Leat and train a DDPM in latent space using a U-Net
denoiser €y(2¢, t, ¢) with cross-attention to ¢. During diffusion training, simulator-guided penalties
(Sec. 3.3) are applied to the Beat Decoder output D}Zeat(zo), while experience—knowledge features

augment the text pathway (Sec. 3.4). At test time, we run the reverse process to obtain Zy and decode
x = Dgy(%p) (Sec. 3.5).

(d)
5 t=0 t=T o
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— 2 - = .
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Figure 1: Overview Framework of SE-Diff. (a) Variational Autoencoder: encoder—decoder with a
lightweight beat decoder for a single QRS-aligned cycle. (b) Conditional latent diffusion: U-Net de-
noiser with cross-attention to text, metadata, and retrieved report. (c) Simulator-informed diffusion:
Euler and inter-lead constraints on the beat decoder output. (d) Experience retrieval-augmented
Conditioning: tri-view EHR similarity with LLM distillation into a concise report. (e) Inference:
reverse diffusion and decoding to a 10,s, 12-lead ECG.

3.1 VARIATIONAL AUTOENCODER

We learn a latent representation for 12-lead ECGs with a variational autoencoder (VAE). Given a
full recording x € R'?* % the encoder E parameterizes a diagonal Gaussian posterior

qs(z | x) = /\/(z; Ho (%), diag(oi(x))), 20 = pp(x) + 04(x) @€, e ~N(0,I), (11)

where zg € R¥>*T with T = L /S and S the VAE temporal stride. The decoder Dy reconstructs the
signal X = Dy(z0) € R'2*~. To expose morphology at the beat scale, we attach a lightweight Beat
Decoder: Dpeat : R¥T — R12%Le to get the single cycle signal: h = Dy (zp).

Training. Let ry denote the first R-peak index at sampling rate fs (Golany et al., 2020b); define
C(x)=x[:, 70— 0.2 fs: 10 +04 fs] and L. = 0.2 f, + 0.4 f,. We train the encoder, decoder and
Beat Decoder with length-normalized mean-squared errors (MSE) and a single KL term:

1
Lo = 757 X — Do(Ey(x))|I3 . Ly = KL(gg(z | x) [ N(0,1)), (12)
1 ca 2
Ebeat = TLC HC(X) - Dg t(E‘i)(X))HF ' (13)

The Beat Decoder’s single beat should also reflect the statistics of all beats in the 10s window.
Rather than tiling A to length L, we detect all R-peaks within the window, {r;}7_, (with .J de-
termined by the number of detected beats), and extract per-beat crops of identical length L.:
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Ci(x) = x[t,r; —0.2f5 : 7; + 0.4 f;] € RI2¥Le/ j = 1,...,J. Let the Beat Decoder output
be h = D}f"“ (20) € R2*Le_ For each lead ¢ and each cycle j, we remove the mean and compute
the one-sided log-magnitude spectrum (real FFT of length L.) up to fiax:

S (k] =1og (e + [rFFT(C;(x)e —C;(X)e)|[k]),  Selk] = log(e+ [rFFT(hy — he)|[K]], (14)

with € > 0 small and frequencies f; = Li fs. The spectral loss averages the (optionally
band-weighted) squared discrepancy between the Beat Decoder’s spectrum and the spectrum of
each observed cycle:

12 J
Lspec == ﬁ ZZ Z W(fk) (gg[k?] — Sé”[k]){ (15)

£=1j=1k: fr <fmax

where K = [{k : fr < fmax}| and w(f) can emphasize physiologically salient bands (e.g., higher
weights on 0.5—-3 Hz for heart rate). We jointly optimize the encoder, the full decoder, and the beat
decoder with:

Lyae = Lun + BrL Lrr + Loea + (lspec £spec , (16)

where agpee > 0. Length normalization makes Ly and Lypey commensurate; Lgpee incorporates
full-window frequency statistics into the single-cycle prediction.

3.2 CONDITIONAL LATENT DIFFUSION

We train the diffusion in the VAE latent space. Given a latent sequence zy = E,(x) € R¥*T, the
forward process follows Sec. 2.1 with x; — 21 2, = /&y 20 + V1 — €, and € ~ N(0,I). We
train a conditional denoiser €y(z¢, t, ¢) with the standard objective

Lovm = Ex, [ le — ezt ) 12]. a7

The denoiser is a 1D U-Net (Ronneberger et al., 2015) that treats the latent as a sequence z; € RaxT
(channels d, length T"). Conditioning enters via cross-attention to a context representation C' built
from ¢ = (t,m,r) (Rombach et al., 2022; Vaswani et al., 2017); a final 1x 1 convolution maps fea-
tures to €y. Timestep and context embeddings modulate intermediate features through FiLM-style
affine transformations (Perez et al., 2018). At sampling, we use standard DDPM transitions with
classifier-free guidance (Ho & Salimans, 2022) and common improvements such as cosine sched-
ules and optional learned variances (Nichol & Dhariwal, 2021); further architectural and training
details are provided in the appendix.

3.3 SIMULATOR-INFORMED DIFFUSION

We estimate class-specific parameters 7).1,ss Offline by fitting the simulator to representative real
beats using an explicit Euler integrator, together with lightweight stabilizers and morphology pri-
ors that improve convergence and preserve physiological plausibility (details in Appendix C). For
each training sample, we obtain a single-cycle waveform h = Dieat (20) € R¥2*Le from the Beat
Decoder (Sec. 3.1). This beat is used to enforce mechanistic plausibility via an ODE-based ECG
simulator (Sec. 2.2). The simulator’s morphology parameters 1 = {0, as,bs}sc(p,Q,r,5,1} enter
the right-hand side f.(-;n) of Eq. 5, which defines f,. During diffusion training, the simulator
provides two complementary regularizers:

Simulator-guided Euler Loss. Given the single-cycle waveform h € R'2*%< we integrate the
simulator with parameters 1 and fixed initials (x0,yo) to obtain a reference trajectory (x¢,y:) at
t = {At. We penalize per-lead deviations from the ODE and the simulator-guided Euler loss is:

h 2
ACEuler: Z Z ( £+1 _fz(l'éayf7h27t€7 )) . (18)

lead /=1

Inter-lead dependency constraint. Realistic 12-lead synthesis requires not only accurate per-lead
morphology but also correct physiological interdependencies among leads. We therefore enforce the
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classical frontal-plane identities implied by the standard ECG configuration (Einthoven’s triangle
and Goldberger’s central terminal), constraining the generated limb and augmented leads to remain
mutually consistent:

I=II-1III, aVR=—-1(I+1I), aVL=1(I-1III),
II=1+III, aVF=3(II+III), III=1II-1.

Let Lontal = {I,I1,11I,aVR,aV L,aV F'} be the frontal-plane leads (a subset of the 12 leads).
For any identity of the form y = Bp + v ¢ with ¥, p, ¢ € Lontal, We treat y as the child lead and
P, q as its parent leads. Denote by th the sample at index ¢ of lead L from the predicted 12-lead

beat h € R1?*Ec. We obtain parent simulator states (z4,y}) and (z,y]) by integrating the sim-
ulator with class-specific parameters 7, nq. Defining C = {(I,II,I111,1,-1), (I1,I,111,1,1),
(I11,11,1,1,-1), (aVR,I,11,~%,~%), (aVL, 1,111, 5, ~%), (aVF, 11,111}, 1)} and the
loss aggregates the six constraints over time:

19)

Lo—1 2
£inter—lead = Z Z ( €+1 7ﬂfz(x£aye7he;t2a77p) 7fz($23y37hgvtl;nq)> .
(y,p,q,8,7)€C £=1

(20)

Here y, p, q are specific leads (elements of the 12-lead set), and C enumerates each frontal-plane
identity as a tuple (y, p, ¢, 3,). This construction directly matches the child’s discrete derivative to
the corresponding linear combination of the parents’ simulator derivatives, enforcing physiologically
grounded inter-lead consistency.

3.4 EXPERIENCE RETRIEVAL-AUGMENTED CONDITIONING

We augment text conditioning with clinical experience retrieved from electronic health records
(EHR). Specifically, we link MIMIC-IV-ECG (Gow et al., 2023) to MIMIC-IV-CLINICAL (John-
son et al., 2023), build a compact tri-view profile (diagnoses, medications, procedures) (Ou et al.,
2025), and retrieve the top-k clinically similar admissions. For an index admission u, let E,?iag,
EMed and EProc denote the sets of diagnosis, medication, and procedure codes, respectively.
Given another admission v/, we compute set similarities using the Jaccard index J(A, B) for
X € {Diag, Med, Proc}:

mx(u,u') = J(EY, EY). @)}
These similarities are aggregated with nonnegative weights A1, A2, A3 to yield a single similarity:
7(u, ') = M TDiag (U, u") + AoTved (6, u') + A3TProc (u, u). (22)

3.5 TRAINING AND INFERENCE

Training objective. We combine the latent-space diffusion loss with simulator-based regularizers:
£t0ta1 = EDDPM + A ‘CEuler +7 £inter—lead7 /\a v > 0. (23)

We first train the VAE using Eq. 16 and then freeze Ey, Dy, and D}Zﬁat. During diffusion training,
we optimize only the denoiser €y; the Beat Decoder appears only through these regularizers—we
use Db’ﬁat to produce h = D?ﬁ“(zo) for Leuler and Linter-lead- All simulator-driven terms are
training-only and do not modify the reverse process.

Inference. Given conditioning ¢, we draw zp ~ N(0,I) and apply the learned reverse diffusion
from ¢t = T to 1 with the standard DDPM parameterization (variance schedule {3;}, oy = 1 — f3;,

O_[t = szl OLS):
2zt — V1 —ageg(ze,t,¢)
Nen

2O(Ztat7c) = 9 (24)
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1
po(2e,t,c) = \/77 (Z’t - lﬁi_t@t o (2, t&)) . (25)

We set Bt = 1;5“(;‘1 B¢ and sample z;_1 = py(z, t,¢) + \/Bt & with & ~N(0,1). After the final

step, we decode to the signal domain, X = Dy (2y), optionally using classifier-free guidance during

sampling.

4 EXPERIMENTS

Dataset and Preprocessing. We train on MIMIC-IV-ECG (Gow et al., 2023; Johnson et al.,
2023), which contains 800,035 de-identified 12-lead, 10s ECGs sampled at 500 Hz. Heart rate
(HR) is taken from metadata when available; otherwise it is re-estimated via QRS detection (WFDB
XQRS). Waveforms are encoded by a VAE into 4 x 128 latents that serve as inputs to the diffusion
model. We use the MIMIC-IV-Clinical (Johnson et al., 2023) to obtain each patient’s EHR for
experience knowledge conditioning.

Baselines.

To
quantify the contribution of each component of SE-Diff, we report ablations trained under identical
schedules and seeds: (i) SE-Diff w/o Sim (removing the Euler consistency term Lgyer); (i) SE-
Diff w/o InterLead (dropping Linter-1ead); (iii) SE-Diff w/o Exp (disabling EHR retrieval and LLM
distillation so conditioning uses only text+metadata).

4.1 ECG GENERATION RESULTS

We evaluate SE-Diff along four clinically aligned levels: signal-level stability, feature-level physiol-
0gy, diagnostic/semantic alignment, and . At each level,
we define the metrics and report aggregate results on both MIMIC-IV-ECG and

Signal-level Stability. Given matched real and generated ECGs (x, %) under the same condition c,
we compute per-lead mean absolute error (MAE), normalized root mean squared error (NRMSE),
and Pearson correlation r to assess waveform fidelity and temporal consistency.

Feature-level Physiology. To evaluate preservation of basic physiology, we compare heart rate (HR)
estimated from x and x via the absolute error MAEgR.

Diagnostic Alignment. We adopt a CLIP-style evaluation for ECG—text pairs: an ECG encoder
fecg(-) and a text encoder fiex(-) produce ¢o-normalized embeddings; cosine similarity quantifies
alignment, s(x, text) = (fece(X), fiext(text)). To control encoder bias, we report the relative CLIP
score and the relative Fréchet distance:

s(text) Lo FID(X, X,)

rCLIP = _ _
s(x, text) FID(XV, 1)

(26)

Distributional coverage/quality is measured with the Fréchet distance in the ECG embedding space,
FID = [|ptr — pg |3+ TS, + 2 —2(2,5,)/?), where (1, £,-) and (114, ¥,) denote the mean and

covariance of real and generated ECG embeddings, X denotes generated samples, and XT(1)7 X,@)
are disjoint splits of the real set.
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Table 1: ECG generation performance on MIMIC-IV-ECG and PTB-X1 datasets.

Model MAE | NRMSE | MAEgr | rCLIP Score 1 rFID Score 1
MIMIC-IV-ECG (internal)
SSDM 0.4337+0.0300 0.2027+0.0441  27.37+14.84  0.7213£0.0402 0.9096+0.0398
WGAN 0.1896+0.0605 0.1301+0.0316 31.54+2.15 0.5688+0.0347 0.5497+0.0192
BeatDiff 0.7464+0.0070 0.4756+0.0117 27.74+1.49 0.5167+0.0180 0.8612+0.0039
DiffuSETS 0.1092--0.0022 0.0851-+-0.0012 13.29+1.13 0.9309-+-0.0036 0.9209-+0.0038
SE-Diff (ours) 0.0923+-0.0021 0.0714+-0.0010 8.43+0.42 0.9470+:0.0029 0.9509--0.0035
w/o Exp 0.0926--0.0022 0.0730--0.0008 15.06-+0.34 0.9099-+0.0026 0.9032-+0.0062
w/o InterLead 0.0934--0.0023 0.0733--0.0006 19.21-+1.27 0.9216--0.0029 0.9128--0.0052
w/o Sim 0.0965--0.0024 0.0768--0.0014 14.284+1.35 0.9303-+-0.0041 0.9138-+0.0056
PTB-XL (external)

SSDM 0.6103+0.0204 0.3818+0.0670  15.224+11.51  0.8618+0.0599 0.7168+0.0355
WGAN 0.2458+0.0653 0.1197+0.0313  13.82+18.69  0.5880+0.0000 0.5377+0.0232
BeatDiff 0.9888+0.0059 0.4731+0.0104 13.86+0.78 0.8799+0.0022 0.8503£0.0035
DiffuSETS 0.1281+0.0030 0.0797+0.0011 17.88+0.72 0.8690+0.0011 0.8456+0.0035
SE-Diff (ours) 0.1076+0.0033 0.0630+£0.0006 8.24+0.43 0.8901+0.0060 0.8583-+0.0056
w/o Sim 0.1138+0.0032 0.0680+0.0007 14.724+0.90 0.8896+0.0010 0.8004+0.0061
w/o InterLead 0.1084+0.0034 0.0640+0.0007 12.0240.78 0.7484+0.0076 0.8568+0.0051

QT (QTcF), ST-segment deviation at J+60 ms (ST@J+60), and P- and T-wave durations (P dur, T
dur), and compute record-level median absolute errors between generated and real ECGs.

Tables 1 report MAE, NRMSE, MAEyg, rCLIP, rFID on MIMIC-IV-ECG and PTB-XL dataset.
Across both datasets, SE-Diff consistently outperforms SSDM, WGAN, BeatDiff, and DiffuSETS
on all metrics, indicating improved waveform reconstruction, more accurate heart rate estimation,
and stronger ECG—text alignment. The ablations (SE-Diff w/o Sim, w/o InterLead, w/o Exp) each
degrade one or more metrics, highlighting the importance of simulator guidance, inter-lead con-
straints, and experience-based conditioning.

Table 2: Beat-level morphology & interval fidelity (MAE) on MIMIC-IV-ECG and PTB-XL
datasets. All values are record-level medians; lower is better ({).

Model PR | QRSd | QT | QTcF | ST@J+60 | Pdur | Tdur |
MIMIC-IV-ECG (internal)
SSDM 7.70£8 3200+1 25.114+11 23.25+11 0.16 £0 5.30+3 23.71+9
WGAN 18.01+9 29.64+9 21.02+5 23.83 + 2 0.13+0 6.01+0 24.01 +4
BeatDiff 10.34 +£5 182346 14.23 £6 943 £5 0.17+0 7.00+1 30.02+3
DiffuSETS 1481+6 11.71+7 8.20+3 9.71+4 0.04+0 5.60 £ 1 8.71+7
SE-Diff 730+3 10.71+4 450+2 7.88+2 0.03+0 250+0 6.80+3
w/o InterLead 11.11+3 15.01+£5 11.91+£5 15.84 £7 0.034+0 4.00+1 8.10+4
w/o Exp 981+9 14.114+13 8.20+3 12.61 + 3 0.04+0 4.00+1 6.90 +£ 3
w/o Sim 1211+£7 13.21£6 8.40 £ 4 889+7 0.04£0 510+£1 13.11+£1
PTB-XL (external)
SSDM 13.71+£8 13.61+£8 30.22+9 27.69+ 14 0.33+£0 12.71+£5 19.11+10
WGAN 14.01+£7 17.45+13 12.014+10 12.97+10 0.18+0 7.33+3 25.68+13
BeatDiff 1341+4 174046 9.81+3 8.94+2 0.73+1 410+ 1 18.81+6
DiffuSETS 770 £2 12.61+£7 11.51+4 13.75£5 0.10+0 9.11+6 13.20£5
SE-Diff 390+1 1001+2 520+1 8.68 +2 0.07+0 3.00+1 9.31+8
w/o InterLead  7.00 + 1 10.31+£5 8.40+4 1091 +3 0.07+0 440+ 1 13.61 £8
w/o Sim 9.21 +4 1291 +5 12.51 +4 14.20 £2 0.07+0 4.50+1 12.31 £3

Tables 2 summarize the beat-level morphology and interval metrics on MIMIC-IV-ECG and PTB-
XL. SE-Diff achieves the lowest median errors across all intervals (PR, QRSd, QT/QTcF, ST@J+60,
P dur, T dur), demonstrating that it not only matches global signal statistics but also preserves
beat-level timing and morphology more faithfully than competing models. Consistent performance
gaps between SE-Diff and its ablations further support that the simulator- and experience-enhanced
design improves clinically relevant morphology and interval fidelity.
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4.2 DOWNSTREAM ECG CLASSIFICATION

We evaluate whether SE-Diff mitigates severe class imbalance in downstream ECG classification by
augmenting minority classes with model-generated ECGs. Training distributions are intentionally
skewed; evaluation uses a fixed, class-balanced test set. We compare four regimes: (i) Unbalanced
(real-only, skewed), (ii) Balanced (real-only, fully balanced; reference upper bound), and

Imbalanced Gender Classification. We train a binary classifier to predict sex (Female vs. Male).

Rare-disease Classification. We train a classifier to distinguish Sinus rhythm from supraventricular
tachycardia (SVT), treating SVT as the minority class. Table 3 shows larger relative gains on SVT,
indicating that synthetic augmentation is particularly effective when physiological heterogeneity is
high and labeled minority examples are scarce. SE-Diff recovers a substantial fraction of this gap,
especially on the minority SVT class.

Table 3: Downstream ECG classification under severe class imbalance.

Model Male = 10% Female \ SVT =10% Sinus
F1(%,1) Acc. (%,1) AUC(%,1) F1(%,17) Acc. (%, AUC(%,1)

DiffuSETS 44 54 54 70 68 84
SE-Diff (ours) 58 58 58 72 71 85
Unbalanced 42 54 46 56 62 80
Balanced 62 62 62 79 80 93

4.3 MECHANISTIC ANALYSIS OF SE-DIFF

Noise Scheduling Analysis. Figure 2 summarizes the forward process under our linear noise sched-
ule. Panel (a) shows the per-step noise increment increasing steadily, while (b) displays the corre-
sponding signal retention factor decreasing slightly each step. The cumulative signal fraction in (c)
drops smoothly from near one to near zero, and the accumulated noise in (d) rises monotonically
and saturates in late timesteps. This profile yields a gradual, well-conditioned reverse trajectory:
early steps recover global rhythm and cross-lead coherence, and later steps refine P/QRS/T mor-
phology and suppress residual artifacts. We therefore adopt this schedule for SE-Diff as it offers an
interpretable progression and stable behavior across sampling budgets.
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Figure 2: Noise scheduling analysis showing the progression of noise and signal factors throughout
the diffusion process.

Case Study for ECG Simulator. To visualize the simulator’s morphology, Fig. 3 presents four
random single-cycle templates (one lead per label): (A) Sinus rhythm, Lead I. Upright P wave, nar-
row QRS complex, and concordant T wave provide a clean normal reference for comparison. (B)
Ventricular pacing, Lead V1. A wide, predominantly negative QRS complex (QS/deep S), reflect-
ing pacing/LBBB-like activation, clearly departs from normal conduction. (C) Sinus rhythm with
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first-degree AV block, Lead II. A P wave followed by an elongated isoelectric segment before the
QRS complex qualitatively indicates PR-interval prolongation. (D) Consider acute ST-elevation M1,
Lead V3. Convex ST-segment elevation after the J point is characteristic of anteroseptal involve-
ment. The simulator serves as a morphology prior and qualitative oracle within SE-Diff, enabling
clear visual audits and morphology-aware ablations without confounding rhythm variability, and
providing guidance to the diffusion model.
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Figure 3: Representative single-cycle ECG waveforms generated from our simulator. Panel A: sinus
rhythm (Lead I). Panel B: ventricular pacing (Lead V1). Panel C: sinus rhythm with first-degree AV
block (Lead II). Panel D: consider acute ST-elevation MI (Lead V3).

Case Study for ECG Generation. Figure 4 compares a 10s, 12-lead ECG generated by SE-Diff
with its paired reference for a case conditioned on “Sinus rhythm” (male, 65y, HR 94 bpm). The
generation preserves canonical sinus morphology—each P wave preceding a narrow QRS com-
plex with an appropriate PR interval—and shows coherent R-wave progression across the precordial
leads, with R-R intervals consistent with the target rate. Clinically, the SE-Diff tracing appears
cleaner than the reference: baseline wander and high-frequency artifacts are attenuated, yielding
crisper ST segments and T-wave contours without distorting morphology. This qualitative finding
aligns with the model’s design: simulator-informed constraints and experience-augmented condi-
tioning steer the diffusion process toward physiologically plausible, low-noise signals.

o immsoes e

(a) SE-Diff generated ECG. (b) Real ECG.

Figure 4: Case Study for ECG Generation.

5 CONCLUSION

We introduced SE-Diff, a conditional latent-diffusion framework for 10,s, 12-lead ECG synthe-
sis that couples a VAE latent space with a Beat Decoder and simulator-informed regularizers, and
strengthens conditioning via experience retrieval from EHRs. Across benchmarks, SE-Diff improves
signal fidelity, preserves inter-lead physiology, and achieves tighter diagnostic/semantic alignment,
while also enhancing downstream classification when used for data augmentation. Ablations con-
firm that both the ODE-based guidance (Euler and inter-lead constraints) and retrieval-augmented
conditioning contribute materially to performance. Future work will extend SE-Diff to more clin-
ically meaningful applications (e.g., arrhythmia risk stratification, therapy response modeling, and
long-term ambulatory ECG) and evaluate robustness across institutions and rare presentations. We
believe SE-Diff offers a principled step toward physiologically grounded, clinically aligned genera-
tive modeling of ECGs.

10
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6 ETHICS STATEMENT

We adhere to the ICLR Code of Ethics. This study uses only de-identified data from MIMIC-IV-
ECG (Gow et al., 2023; Johnson et al., 2023) and associated de-identified records from MIMIC-
IV-CLINICAL (Johnson et al., 2023) under the applicable Data Use Agreements and credentialed-
access requirements. No direct interaction with human subjects occurred; no personally identifiable
information (PII/PHI) was accessed or released, and we made no attempt at re-identification. Heart-
rate estimation (WFDB XQRS), resampling, and VAE-based encoding were performed on the de-
identified waveforms; EHR linkage relied only on the dataset’s de-identified subject and admission
keys within documented admission windows. This work is for research purposes only and is not a
medical device. No conflicts of interest or sensitive sponsorships are present.

7 REPRODUCIBILITY STATEMENT

All information necessary to reproduce our results is documented in Appendix D, including dataset
curation and preprocessing, model architectures, training and inference hyperparameters and sched-
ules, and so on.
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B RELATED WORK

B.1 GENERATIVE MODELS FOR ECG

Simulation has repeatedly improved data efficiency in sequential decision making—both in imita-
tion learning and in reinforcement learning—by narrowing the gap between training and deployment
(Zadok et al., 2019; Mnih et al., 2013). In parallel, generative models have been used to expand train-
ing corpora: in vision, SimGAN refines synthetic images with unlabeled real data (Shrivastava et al.,
2017); in cardiology, augmenting classifiers with GAN-generated heartbeats improves performance
(Golany et al., 2020a). Beyond beat-level augmentation, adversarial models have produced realistic
multi-lead “DeepFake” ECGs for privacy and data scarcity mitigation (Thambawita et al., 2021),
and mechanism-aware variants embed ordinary differential equations to better capture depolariza-
tion—repolarization dynamics (Golany et al., 2021). However, GANs can be unstable and prone
to mode collapse in multi-lead, multi-label regimes. Denoising diffusion and score-based models
offer a likelihood-grounded alternative with strong mode coverage and stable training (Ho et al.,
2020; Song et al., 2021). Recent ECG adaptations include conditional diffusion with structured
state-space backbones (SSSD-ECG) (Lopez Alcaraz & Strodthoff, 2023), generalized diffusion for
generation/imputation/forecasting (Neifar et al., 2023), state-space/transformer hybrids (Zama &
Schwenker, 2023), and text/metadata-conditioned synthesis (DiffuSETS) (Lai et al., 2025a). The
field is also trending toward personalization and physiological consistency: conditional models in-
corporate patient metadata or anatomy to produce more plausible 12-lead signals (Sang et al., 2025),
and diffusion frameworks create patient “digital twins” (Lai et al., 2025b). Hybrid uses couple gen-
erative modeling with signal-quality assessment and anomaly detection (Han et al., 2025), while
semi-supervised GANs aim to better capture temporal dynamics (Li et al., 2025). Very recent work
explores flow-matching as a faster alternative to iterative diffusion for ECG synthesis, reducing
sampling cost while targeting comparable fidelity (Bondar et al., 2025).

B.2 PHYSIOLOGICAL ECG SIMULATORS

Compact physiological simulators capture stereotyped P-QRS-T morphology with low-dimensional
differential equations. The canonical ECGSYN model uses a three-dimensional limit-cycle oscil-
lator whose phase-locked Gaussian components generate P, QRS, and T deflections, while stochas-
tic control of instantaneous heart rate reproduces realistic RR patterns and HRV statistics (e.g.,
mean/SD of RR, low- and high-frequency spectral peaks) (McSharry et al., 2003; Task Force of the
European Society of Cardiology and the North American Society of Pacing and Electrophysiology,
1996). Open implementations (e.g., PhysioNet ECGSYN) enable reproducible waveform synthe-
sis and stress-testing (Goldberger et al., 2000). However, globally fixed morphology templates and
linear lead projections limit expressivity under rhythm changes, conduction abnormalities, and non-
stationary repolarization. Hybrid approaches mitigate these issues by coupling mechanistic priors
with learnable components—yvia neural ODEs or universal differential equations—to preserve phys-
ical structure while fitting data; conditioning on anatomy further improves inter-lead realism (Chen
et al., 2018; Rackauckas et al., 2021; Sang et al., 2025).

B.3 ECG CLASSIFICATION

Classical ECG pipelines segment signals into beats with robust QRS detectors (e.g., Pan—Tompkins;
Afonso et al.) and derive interval/morphology descriptors before applying shallow classifiers such
as linear discriminants or SVMs (Afonso et al., 1999; De Chazal et al., 2004; Nasrabadi, 2007).
With deep learning, end-to-end models on raw waveforms supplanted hand-crafted features and
reached cardiologist-level performance in single- and ambulatory-lead arrhythmia detection (Ra-
jpurkar et al., 2017; Hannun et al., 2019); at the beat level, residual CNNs are particularly effective,
and large multi-lead corpora such as PTB-XL have enabled high-capacity models and rigorous multi-
label benchmarking (Kachuee et al., 2018; Wagner et al., 2020). Recent work refines architectures
and training regimes—dual-channel networks that fuse ResNet-ICBAM with 2D-CNN features em-
phasize region-of-interest cues (Wang et al., 2025), ECG-specific scaling laws suggest shallower but
wider networks outperform vision-oriented designs (Lee et al., 2023), and transfer learning on trans-
formed signals improves performance under class imbalance (Mavaddati, 2025). Synthetic data from
GANSs and diffusion models is now routinely used for augmentation, with semi-supervised variants
further boosting diagnostic accuracy (Li et al., 2025). In our experiments, we adopt a strong ResNet
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heartbeat classifier and evaluate whether simulator-enhanced diffusion synthesis (SE-Diff) improves
generalization under class imbalance and limited labels by augmenting training with physiologically
plausible, label-consistent synthetic beats.

C ECG SIMULATOR CALIBRATION WITH STABILIZERS AND MORPHOLOGY
PRIORS

Motivation. Naive least-squares calibration of the ODE-based simulator (Sec. 2.2) often fits the
sharp QRS complex yet drifts later in the window and may flip polarity. The main causes are
small baseline trends and scale mismatches between simulated and observed signals, and an under-
constrained morphology (especially T-wave width). We introduce lightweight, differentiable sta-
bilizers that improve convergence and yield physiologically plausible parameters without altering
simulator dynamics.

Trend-aware alignment and fidelity. Let z,(¢) denote the simulated voltage with parameters 7.
Rather than compare z,, directly to the observation y(t), align via a three-parameter affine—trend
model with scale s, offset ¢, and linear trend b:

gt) =c+szy(t) +b(t—1), ET=F> t (27)

t=1

At each iteration (c, s, b) are obtained by least squares and are differentiable in z,. The fidelity term
is

S5 - y(®), (28)

t=1

Lunse(n) =

Sl

augmented by a small scale regularizer to prevent rare runaway gains:

L(n) = s 7, As €107°,1077]. (29)

Morphology priors (widths and amplitudes). Using the McSharry parameterization, each deflec-
tion 8 € {P,Q, R, S, T} has amplitude ag, width bg > 0, and phase 63. Enforce positivity with
bs = softplus(bs) + € (¢ = 10~%) and shrink widths toward physiological targets b

Lian(1) :Abzwﬂ(bﬁ—bg)2, (b5, b, b, b, b3) = (0.20,0.08,0.10,0.08,0.32),  (30)
3

with wr = 2 and wg = 1 otherwise to prevent absorbing baseline drift via an overly broad T wave.
A mild amplitude penalty

Lamp(n) = Xa Y _ a} (1)
B

discourages attributing variability solely to the global scale s in Eq. 27.

Phase ordering. To preserve the physiological ordering of {P, @, R, S, T} on the unit circle, in-

troduce a global phase shift Af and wrap phases as g Wrap(ég + A6). A hinge penalty with
margin m enforces monotonicity:

4
Loa(n) = Ao Y_max{0, 0; — 0;41 +m},  m =~ 0.05rad. (32)
=1

This term typically decays after a few epochs and can be disabled once ordering stabilizes.
Objective and optimization. The calibration loss is
L(n) = Limse + Ls + Lyian + Lamp + Lord- (33)

Optimize with AdamW (cosine decay with warmup), followed by a brief L-BFGS refinement. The
same Euler sub-stepping and burn-in used at inference are applied during training to maintain inte-
grator consistency.
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Polarity canonicalization (post hoc). Because lead inversions are common, canonicalize polar-
ity after fitting: re-simulate z,, re-estimate 3(t) = ¢ + s 2,(t) (no slope), and, if s < 0, flip all
amplitudes {ag} once. This step is outside the loss and standardizes reported parameters.

Default hyperparameters. Unless specified otherwise, use A\, = 5x1073 (with wp=2), A\, =
4x107%, Aorg = 1074, X\, = 1075, m = 0.05, and ¢ = 1073, These values are deliberately
weak—sufficient to avoid the systematic drifts above without overriding the data.

Trend-aware alignment absorbs baseline wander, width priors (especially for 7) prevent compen-
satory morphology stretching, the small scale penalty stabilizes gain, and the optional ordering term
removes rare phase crossings. Together, these stabilizers reduce late-window drift and polarity mis-
matches while preserving interpretable parameters {ag, bg, 03 }.

D IMPLEMENTATION DETAILS.

All models are trained in PyTorch with AMP on a single NVIDIA H200 using AdamW (Ir 1 x 10~*
with cosine decay to 1 x 107°), gradient clipping/accumulation (global batch 4096), for 200
epochs with early stopping. Diffusion uses 7=1000 steps, linear 3; € [8.5x 1074, 1.2 x 1072]
(DDPMScheduler), and classifier-free guidance. The VAE has 4 latent channels; the en-
coder/decoder are multi-resolution with residual blocks, attention, and skip connections; training
uses Lyvse + Lk (AkL=1). A lightweight beat decoder predicts the first beat (L.=300 at 500 Hz;
R-peaks via NeuroKit2). The denoiser is a 7-stage 1D U-Net (kernel 7) with self/cross-attention
(8 heads, width 16-64) consuming text embeddings (1536-d) plus metadata (age, sex, heart rate).
Physiology-aware training adds the Euler simulator loss (A=3 x 10~3) and the inter-lead constraint
(y=5x 10~2); class-wise simulator parameters 7 are prefit from 200 beats/label.

We use MIMIC-IV-ECG with simplified rhythm labels.  Free-text diagnostic reports are
cleaned and normalized, then mapped to a compact multi-label taxonomy (e.g., sinus
rhythm/brady/tachy, atrial fibrillation/flutter, PAC/PVC, bundle-branch block, LVH/RVH, prolonged
QT, ST/T abnormalities, ischemia/infarct). Texts are embedded with a pretrained text encoder
(text-embedding-ada-002). For simulator-informed diffusion, we pre-compute class-wise
simulator parameters for the top-20 ECG categories and use them during training. For ECG gen-
eration, we sample 100 waveforms per setting and compute metrics. For downstream ECG clas-
sification, we form balanced subsets with 200 samples per class and train a lightweight MLP that
flattens latents (512-d) and applies two fully connected layers (128—64) with BatchNorm, ReLU,
and Dropout (0.5), followed by a linear output; optimization uses cross-entropy with AdamW and
early stopping.

E PROMPT EXAMPLE

The prompt example in our SE-Diff can be shown in Figure 5.

F CONDITIONAL LATENT DIFFUSION—IMPLEMENTATION DETAILS

Context construction. The context ¢ concatenates (i) token embeddings from the clinical report
Eiexi € R™*4e (from a frozen clinical text encoder) and (ii) a single metadata token epe;, € RMX%
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You are a cardiology-focused language model. Your job is to convert structured inputs into a
concise, clinically accurate narrative suitable for a cardiology note. You must not invent findings
and you must not provide treatment recommendations. You should prioritize the current
patient's measurements and observations over any retrieved examples from similar patients.

The report you generate will serve as the conditioning text for a downstream text-to-ECG
synthesis model. Therefore, the narrative must be internally consistent, and physiologically
grounded so that it can guide waveform generation.

You will receive (1) current patient context, (2) the original machine generated diagnosis, and (3)
retrieval diagnosis from clinically similar patients. Based on these inputs, you will produce exactly
one paragraph of 60-120 words. Your language should be precise and use standard ECG
terminology and units so the downstream generator can align text with waveform features.

Original machine-generated diagnosis (most important first): Sinus tachycardia | Normal ECG except for rate
Heart rate (bpm): 100

Age (years): 52

Gender: F

Retrieved similar patients' diagnoses: Sinus rhythm | Normal ECG | Possible ectopic atrial tachycardia

Figure 5: Prompt examples.

formed by projecting age/sex/etc. to d.. We set C' = [Fiex; €meta) € RMTD*de and feed C to
cross-attention at the bottleneck and (optionally) the two highest-resolution decoder blocks.

U-Net blocks. Each block consists of Conv(k=3) — GroupNorm — SiLU — Conv(k=3) with a
residual connection. Self-attention (multi-head) follows normalization at lower resolutions. Down-
sampling uses stride-2 convolutions; upsampling uses nearest-neighbor followed by Conv(k=3).
We use K resolution levels (e.g., K'=4) and N blocks per level (e.g., N=2); channel width doubles
on downsampling and halves on upsampling.

Attention. Cross-/self-attention are multi-head with head dimension d,, (e.g., 8 heads). Queries at
the bottleneck attend to keys/values derived from C'; text tokens use sinusoidal positional encodings.
Metadata is represented as a single learned token.

Time embedding and FiLM. The timestep embedding uses exponentially spaced sinusoids and a two-
layer MLP (SiLU) to produce (7, 3¢) per block. A small MLP on Pool(C) (token average) yields
(Ye, B¢). FILM is applied after normalization to every residual block.

Training setup. We use a cosine noise schedule and optional learned variance (Nichol & Dhari-
wal, 2021), AdamW with EMA, and classifier-free guidance with unconditional dropout pyncond €
[0.1,0.2] and tuned guidance scale. Min-SNR-v weighting (Hang et al., 2023) is optional for stabi-
lizing early and late timesteps. Simulator losses are computed on h = D}Z‘*“(zo) and removed at
inference.
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Table 4 reports ECG generation performance on MIMIC-IV-ECG when using both losses (full SE-
Diff), removing Ly (“w/0 Beat Loss”), and removing Ly, (“w/0 Spec Loss”). Using both losses
yields the best performance across all metrics. In particular, dropping Lpes leads to a drastic degra-
dation in heart-rate accuracy (MAEpr increases from 8.43 to 23.48) and noticeably worse rCLIP
and rFID scores, indicating that the canonical beat is no longer well aligned with the temporal struc-
ture of the underlying rhythm. Removing Ly instead mainly harms signal-level fidelity (higher
NRMSE and weaker rCLIP/rFID), showing that spectral regularization is important for capturing
realistic morphology and fine-scale waveform details.

These results empirically support that Lyey and Lgpe. are complementary rather than conflicting:
the best-performing model is obtained when the canonical beat h is simultaneously constrained to
resemble an actual beat in the time domain and to share spectral statistics with the set of beats present
in the 10 s record.

Table 4: ECG generation performance on MIMIC-IV-ECG dataset.

Model MAE | NRMSE | MAEgwR | rCLIP Score 1 rFID Score 1
SE-Diff (ours) 0.0923 +0.0021 0.0714 +0.0010 8.43 +0.42 0.9470+0.0029 0.9509 + 0.0035

w/o Beat Loss 0.0951 £ 0.0020 0.0743 £0.0016  23.48 £1.07  0.9393 + 0.0026 0.9140 £ 0.0055
w/o Spec Loss ~ 0.0942 £ 0.0023 0.0797 £0.0014  16.47+1.23  0.9257 4 0.0030 0.9073 £ 0.0055

H INFERENCE EFFICIENCY OF SE-DIFF FOR 10 S, 12-LEAD ECG
GENERATION

To show the inference efficiency, we report the wall-clock latency of SE-Diff for generating 105,
12-lead ECGs in Table 5. For each batch size, we measure the time required to run 1000 diffusion
sampling steps and average the runtime over three batches.

The results show that the total time per batch remains nearly constant for batch sizes between 32 and
256, so the per-sample latency decreases from 0.425 s at batch size 32 to 0.050 s at batch size 256.
Even for very large batches (up to 4096), the wall-clock time grows sublinearly with the batch size,
and the per-sample latency can be reduced to 0.0205s. This indicates that SE-Diff can efficiently
exploit batching during inference, making large-scale ECG synthesis practical under our current
implementation.

Table 5: Inference latency of the model for generating one 10 s, 12-lead ECG under different batch
sizes. Times are averaged over 3 batches per configuration, with 1000 diffusion sampling steps.

Batch size Time /batch (s) Time / sample (s)

32 13.55 0.425
128 13.65 0.105
256 13.40 0.050
512 15.05 0.0295

1024 24.90 0.0245
2048 45.00 0.0220
4096 84.75 0.0205

I EFFECTS OF NOISE SCHEDULE AND SAMPLING STEPS

We first study how the number of diffusion sampling steps affects ECG generation quality when
keeping the sampler (DDPM) and noise schedule (linear) fixed. As shown in Table 6, performance
generally improves as we increase the number of steps: reducing the steps from 1000 to 800 and
500 leads to progressively higher NRMSE, larger heart-rate error (MAEyg ), and lower rCLIP scores.
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The default setting of 1000 steps achieves the best trade-off among these metrics, and is therefore
used in our main experiments; smaller step counts can still be used in latency-constrained scenarios
at the cost of degraded fidelity and semantic alignment.

Table 6: ECG generation performance under different sampling steps.

Sampling Steps NRMSE | MAEgRr |} rCLIP Score 1
1000 0.0714 £ 0.0010 8.43+0.42 0.9470 + 0.0029
800 0.0877 £0.0011  13.59+1.05  0.8671 £ 0.0040
500 0.1097 £0.0010  15.60+1.19  0.7888 £ 0.0084

Next, we compare different sampler types while fixing the number of sampling steps (1000) and
using a linear noise schedule. Table 7 shows that our default DDPM sampler in SE-Diff achieves
the best overall balance across MAEyg, and rCLIP. While the SDE-based sampler attains slightly
lower NRMSE, it substantially worsens heart-rate accuracy and semantic alignment (higher MA Egg
and lower rCLIP). DDIM and the second-order solver also underperform DDPM in at least one key
metric. These results support our choice of DDPM as the default sampler for ECG generation in
SE-Diff.

Table 7: ECG generation performance under different samplers.

Sampler NRMSE | MAEqr | rCLIP Score 1
SE-Diff (ours) 0.0714 +0.0010 8.43 +0.42 0.9470 + 0.0029
DDIM 0.1219 £0.0010  9.05+0.44  0.7783 4+ 0.0072
Second Order 0.0877+0.0011  13.59 £1.05  0.8671 4+ 0.0040
SDE 0.0693 +0.0106 19.21 +1.27  0.9213 4+ 0.0028

Finally, we investigate the impact of the noise schedule under the same DDPM sampler and 1000
sampling steps. As reported in Table 8, both the linear and cosine schedules yield comparable
performance, but the linear schedule achieves slightly better NRMSE, MAEyg, and rCLIP. This
confirms that our default linear schedule is a strong and stable choice for ECG generation in SE-
Diff, while alternative schedules can be used if desired without dramatically changing performance.

Table 8: ECG generation performance under different noise schedules.

Sampler NRMSE | MAEur | rCLIP Score 1
Linear (ours) 0.0714 +0.0010 8.43 +£0.42 0.9470 + 0.0029
Cosine 0.0728 + 0.0032 8.90 £0.78 0.9446 £ 0.0131

J ROBUSTNESS OF RCLIP AND RFID TO ENCODER CHOICES

To assess the potential dependence of rCLIP and rFID on the particular ECG/text encoder pair, we
compare SE-Diff and DiffuSETS under three encoder configurations. Config A uses our baseline
ECG and text encoders. Config B replaces the ECG encoder with an alternative ECG representation
while keeping the text encoder fixed. Config C instead replaces the text encoder while keeping the
ECG encoder fixed. For each configuration, we jointly report rCLIP, rFID, signal-level reconstruc-
tion error (MAE), and heart-rate error (MAEnR).

As shown in Table 9, SE-Diff consistently outperforms DiffuSETS across all encoder configurations
and metrics: MAE and MAEyg are always lower for SE-Diff, and both rCLIP and rFID are always
higher. Moreover, the relative ranking between SE-Diff and DiffuSETS is stable when switching
ECG or text encoders, indicating that our conclusions are not tied to a specific encoder choice. We
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also observe that improvements in rCLIP/tFID co-occur with gains in heart-rate and signal-level
fidelity, suggesting that these representation-based metrics are aligned with clinically meaningful
waveform quality rather than being purely encoder-specific artifacts.

Table 9: ECG generation performance comparison between SE-Diff and DiffuSETS under different
calibration configurations.

Config Model MAE | MAEgr | rCLIP Score 1 rFID Score T

A DiffuSETS 0.1092 +0.0022  13.29+1.13  0.9309 £ 0.0036 0.9209 + 0.0038

A SE-Diff (ours) 0.0923 +£0.0021 8.43+0.42 0.9470+0.0029 0.9509 £+ 0.0035
B DiffuSETS 0.1092 +0.0022  13.29+1.13  0.9347 £ 0.0032 0.9197 + 0.0037

B SE-Diff (ours) 0.0923 +£0.0021 8.43+0.42 0.9472+0.0032 0.9505+ 0.0035
C DiffuSETS 0.1092 +0.0022  13.29 +1.13  0.9242 + 0.0039 0.9209 + 0.0038

C SE-Diff (ours) 0.0923 +£0.0021 8.43+0.42 0.9393+0.0031 0.9509 £+ 0.0035

K SENSITIVITY ANALYSIS OF EXPERIENCE RETRIEVAL-AUGMENTED
CONDITIONING

Table 10 summarizes the sensitivity of the retrieval performance to the tri-view weights (A1, A2, \3)
(diagnoses / prescriptions / procedures) and the number of retrieved admissions k. With equal
weights (A1, A2, A3) = (1,1,1), varying k& € 2,3, 4 yields very similar mean scores (94.4-94.8),
with a slight peak at k£ = 3 (94.9 = 2.3), indicating limited sensitivity to & in this range. For k& = 3,
varying one weight at a time while keeping the others at 1 shows that upweighting any single view
changes performance by at most ~ 1.5 points, suggesting that the tri-view retrieval is reasonably
robust and that the symmetric setting (A1, A2, A3) = (1, 1,1) with k& = 3 is a simple and competitive
default used in all main experiments. Retrieval performance is quantified by asking an LLM (GPT-
5) to score each retrieved experience report on a 1-100 scale and reporting the mean =+ standard
deviation of these scores.

Table 10: Sensitivity of tri-view weights (A1, A2, A\3) and top-k on retrieval performance (Mean =+
Std).

)\1 )\2 )\3 k  Mean + Std
1 1 1 3 949+23
1 1 1 2 944+ 2.1
1 1 1 4 94.8+2.9
2 1 1 3 94.7£2.6
1 2 1 3 93.6 +1.5
1 1 2 3 93.5+3.3
3 1 1 3 94.3£2.0
1 3 1 3 946 +1.6
1 1 3 3 942+ 14

L ILLUSTRATIVE EXAMPLE OF EXPERIENCE RETRIEVAL-AUGMENTED
CONDITIONING

To make the experience retrieval-augmented conditioning pipeline more concrete, we provide a
representative example below.

* Original machine-generated diagnosis and metadata.
Original machine-generated diagnosis: Sinus rhythm.
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e Heart rate (bpm): 83.
1135 Age (years): 91.
1136 Gender: F.

1137

1138
1139
1140
1141
1142
1143 The ECG demonstrates a sinus rhythm at a rate of 83 beats per minute in a 91-
1144 year-old female. The rhythm is regular with normal P wave morphology preced-
1145 ing ez}ch QRS complex, cqnsistent with sinus node? origin. 'The're js no evidepce
1146 pf atrioventricular conduction delgy or b.lock; PR 1nterval. 18 within normal lim-

its. QRS complexes are narrow, indicating normal ventricular conduction. No
ar arrhythmias or ectopic beats are noted. Overall, the tracing reflects a stable si-
1148 nus rhythm appropriate for the patient’s age without signs of sinus tachycardia or

1149 conduction abnormalities.
1150

1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

e Top-k retrieved similar admissions (diagnosis view, k& = 3).
Sinus rhythm
Sinus rhythm
Sinus rhythm with borderline 1st degree A—V block

* LLM-generated experience report.
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