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ABSTRACT

Semantic communication is expected to be one of the cores of next-generation
AI-based communications. One of the possibilities offered by semantic commu-
nication is the capability to regenerate, at the destination side, images or videos
semantically equivalent to the transmitted ones, without necessarily recovering the
transmitted sequence of bits. The current solutions still lack the ability to build
complex scenes from the received partial information. Clearly, there is an unmet
need to balance the effectiveness of generation methods and the complexity of
the transmitted information, possibly taking into account the goal of communi-
cation. In this paper, we aim to bridge this gap by proposing a novel generative
diffusion-guided framework for semantic communication that leverages the strong
abilities of diffusion models in synthesizing multimedia content while preserving
semantic features. Concurrently, we propose a novel strategy to make diffusion
models resilient to corrupted conditioning data, avoiding that heavily noise-affected
conditioning may mislead the generation process. We reduce bandwidth usage by
sending highly-compressed semantic information only. Then, the diffusion model
learns to synthesize semantic-consistent scenes from such semantic information.
We prove, through an in-depth assessment of multiple scenarios, that our method
outperforms existing solutions in generating high-quality images with preserved
semantic information even in cases where the received conditioning content is
significantly degraded. More specifically, our results show that objects, locations,
and depths are still recognizable even in the presence of extremely noisy conditions
of the communication channel.

1 INTRODUCTION

The next sixth generation (6G) of wireless networks is expected to bring a radical change in thinking
and developing communication systems (Luo et al., 2022). One promising aspect of semantic
communication lies in its potential to reconstruct content that is semantically equivalent to the
transmitted one, without necessarily requiring the recovery of the bits used to encode that content.
This change of perspective may allow the receiver to quickly make the proper decisions directly
linked to its goal, even though the bits of the received message are corrupted by any channel adverse
condition(Dai et al., 2021). Recovering the right transmitted content can also be directly linked
to the goal of communication. Consider the explanatory scenario of a vehicle transmitting visual
information about the street. The crucial information is to correctly detect the presence of pedestrians,
their positions, and their distance, which is the semantic knowledge, rather than recovering bits and
carrying out a pixel-wise reconstruction of the colors or of the surrounding buildings.

Nevertheless, the existing solutions in the field continue to grapple with various challenges, thereby
hindering their ability to deliver optimal results. One prominent issue is the lack of capacity to build
complex scenes from the received information that may be corrupted or incomplete. Existing methods
often rely on small-scale networks with limited expressiveness and are therefore limited to a few
scenarios. As a consequence, the potential applications of these methods are curtailed, preventing
their widespread adoption in real-world situations where the complexity and variability of data are
considerable.

A novel communication paradigm capable of preserving semantic information can be developed by
exploiting the potential of deep generative models. Recently, denoising diffusion probabilistic models
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Figure 1: Synthesized images from the transmitted semantics with PSNR = 10 for the classical
method, SMIS, ControlNet, and our method. The detector can still recognize objects in our generated
sample, while other images are too noisy or without preserved semantics such as in ControlNet. The
depth estimation confirms the better quality of our generation by correctly estimating distances from
objects while producing blurred maps for comparisons.

(DDPMs) (Ho et al., 2020) have exhibited remarkable achievements in a plethora of real-world
generation tasks (Saharia et al., 2022; Rombach et al., 2021; Ghosal et al., 2023; Hong et al., 2023).
Among such significant results, diffusion models are able to produce photorealistic images preserving
the semantic layout (Wang et al., 2022; Xue et al., 2023) in the so-called semantic image synthesis
(SIS) task. The success of these models in countless domains, and especially in the SIS task, inspired
us to involve them in semantic communication. However, such models usually involve clean data
without corruption, and their extension to corrupted conditioning, as in the case of the communication
channel, has not been investigated yet. This issue may prevent the effective deployment of diffusion
models for communication purposes.

In this paper, we take a step towards bridging semantic communication and state-of-the-art generative
models by presenting a novel generative semantic communication framework that meets the need
for powerful models in semantic communication methods and for more robustness to corrupted
conditioning in generative modeling. The core of our framework is a robust semantic diffusion model
that generates photorealistic images preserving the transmitted layout. The sender transmits the
compressed semantic layout over the noisy channel. The receiver collects the corrupted information
and applies fast denoising to the maps before involving them in the generative process. We make
the whole framework robust to bad channel conditions, ensuring that even in the case of extremely
degraded received conditioning information, objects, their positions, and their depths are still recog-
nizable in synthesized images, differently from existing approaches or from large-scale pretrained
generative models. Indeed, we present a novel strategy to make the proposed semantic diffusion
model robust to any noise corruption in the conditioning data, opening the path to novel resilient
generative models. Moreover, our framework can significantly compress the transmitted content
without causing any information loss due to the transmission of binary maps. Through a detailed
assessment of seven different channel conditions and two datasets, we demonstrate the ability of our
framework to generate photorealistic images consistent with the transmitted semantic information
even in the case of extremely corrupted received layouts. Furthermore, we show how the proposed
method allows a substantial reduction of the transmitted data rate, as it requires the transmission of
binary maps only.

2 RELATED WORKS

Semantic communication is expected to play a key role in 6G networks (Calvanese Strinati &
Barbarossa, 2020; Luo et al., 2022; Huang et al., 2023a; Qin et al., 2021). The core idea of this field
is to focus on the meaning of the transmitted message, rather than on the full bit recovery. Indeed, bits
may be directly affected by bad channel conditions, while the semantics may be preserved even in the
case of errors at the symbolic level. This novel view of wireless communication is influencing several
applications ranging from image (Patwa et al., 2020; Wang et al., 2019), to video compression and
transmission (Jiang et al., 2022; AL-Shakarji et al., 2019), and it is expected to increase its impact in
much more fields in the next years (Dai et al., 2021).
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Figure 2: Proposed generative semantic communication framework. The sender transmits one-hot,
compressed, and normalized encoded maps over the noisy channel. The receiver takes the noisy
maps and directly involves them to train the semantic diffusion model. During inference, the receiver
applies a fast denoising to the semantic information in order to improve image quality.

Diffusion models have brought a real breakthrough in generative modeling, showing impressive
results in several generation tasks, ranging from image (Nichol et al., 2021; Saharia et al., 2022;
Rombach et al., 2021; You et al., 2023) to audio (Ghosal et al., 2023; Popov et al., 2023; Huang et al.,
2023b; Turetzky et al., 2022) or video generation (Hong et al., 2023; Singer et al., 2022; Gu et al.,
2023; Jiang et al., 2023). Diffusion models synthesize samples starting from a standard Gaussian
distribution and by performing an iterative denoising process up to the desired new content. This
process makes diffusion model generation far stabler than generative adversarial networks (Croitoru
et al., 2023). Among the tasks in which diffusion models stand out, there is semantic image synthesis
(SIS), which is the task of generating images consistent with a given semantic layout. Although
most SIS approaches are based on generative adversarial networks (Tan et al., 2021; Park et al.,
2019; Schönfeld et al., 2021; Zhu et al., 2020; Liu et al., 2019), in the last year, a novel SIS model
outperforms other approaches by involving a diffusion model for synthesizing semantically-consistent
high-quality scenes (Wang et al., 2022).

Very recently, generative semantic communication methods have been introduced (Barbarossa et al.,
2023). Among them, generative adversarial networks have been the first generative tool to be involved
in tasks such as image compression or denoising (Han et al., 2022a; Erdemir et al., 2022). Overall,
existing generative communication frameworks are often limited to quite-simple models such as
small VAEs (Malur Saidutta et al., 2020; Estiri et al., 2020) or pretrained GAN generators (Erdemir
et al., 2022). In addition, normalizing flows have started to be involved in semantic communications
to increase framework expressiveness (Han et al., 2022b). However, these networks have been often
involved in tasks that underestimate their capabilities, limiting their effectiveness.

3 PROPOSED METHOD

In this paper, we present a novel generative semantic communication framework based on denoising
diffusion probabilistic models (DDPMs) for synthesizing high-quality images that preserve the
transmitted semantic information.

3.1 PROBLEM SETTING

Each communication method has to face the physical challenges imposed by real-world systems. First
of all, the transmitter has to respect a power constraint on the transmitted signal z in order to account
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for the limited transmit power of the sender device. This implies 1/k Ez[∥z∥22] ≤ P (Erdemir et al.,
2022). Then, the signal flows over a noisy channel. To be consistent with the literature (Erdemir
et al., 2022; Shao et al., 2021), we consider the benchmark situation of additive white Gaussian
noise (AWGN), where the noise ϵ is sampled from ϵ ∼ N (0, σ2I), whereby σ2 is the noise variance,
and then added to the transmitted symbols as z̃ = z + ϵ. According to this formulation, the peak
signal-to-noise ratio (PSNR) can be defined as

PSNR = 10 log
P

σ2
(dB). (1)

In our simulations, we assume that the PSNR ranges from 0 to 100. For PSNR values close to 100 the
channel has perfect conditions and the information flows without corruption, while for very low PSNR
values (PSNR ≤ 20) the noise can heavily corrupt the transmitted information, severely distorting the
received content. Additionally, the communication channel bandwidth is usually limited and systems
try to save as much bandwidth as possible to avoid bit loss or channel overload. Consequently, the
transmitted information has to be significantly compressed, sometimes causing information loss.
In this paper, we present a solution to address both of these communication problems, building a
framework robust to any AWGN channel condition, and transmitting only extremely compressed
content with negligible loss of information. We also test different channel noise such as Poisson and
a mixture of noises, for which we report the analysis in Appendix D.

3.2 GENERATIVE SEMANTIC COMMUNICATION FRAMEWORK

We introduce a novel generative semantic communication framework, whose core is a semantic
diffusion model. Such a model generates high-quality images under the guidance of the semantic
information brought by semantic maps. Figure 2 presents the proposed architecture including both
the sender and receiver sides.

Sender. To process the original image and generate a semantic map, any existing segmentation model
can be used, as there is no need for communication between sender and receiver networks. Previous
studies have demonstrated that conditioning a model with a one-hot encoded map yields better
results compared to conditioning with a single segmentation map. For this reason, we adopt such an
approach. However, transmitting the one-hot encoded information over a noisy channel may cause
some issues. Indeed, empty contents corresponding to non-present classes become highly corrupted
data, introducing significant noise into the resulting generated image. Furthermore, transmitting such
content occupies valuable channel bandwidth with irrelevant information, further deteriorating the
channel conditions.

To address these problems, we propose a solution that transmits only the most informative content.
By doing so, we eliminate noisy-only information while maximizing the utilization of the available
bandwidth. Once this procedure is complete, we apply a very strong compression of the encoded
maps. This reduces the number of bits to be transmitted without sacrificing relevant information,
especially since, contrary to RGB images, the black-and-white regions of one-hot maps are minimally
affected by strong compression methods, as we show in the supplementary material.

Receiver. The core of the proposed method lies on the receiver side. The received one-hot maps are
significantly corrupted by the communication channel making them extremely noisy. Conditioning
the diffusion model with such noisy content may instead inject undesirable noise in generated images
or mislead the sampling process. To avoid this issue and to make the diffusion model robust to such
distorted content, we train it with noisy maps and let the network weights adapt to different channel
conditions. Once the model is trained, to improve the quality of generated images during inference,
we also insert a fast-denoising semantic (FDS) block, whose scope is to attenuate the random noisy
condition of received maps. It is important to note that, differently from previous methods (Shao
et al., 2021; Erdemir et al., 2022), our receiver does not need to be aware of the channel conditions
and it may work with any channel condition. Then, we sample x0 ∼ N (0, I) and we progressively
remove noise up to synthesizing a new sample whose semantics reflects the conditioning one.

Fast Denoising Semantic Block. The fast-denoising semantic (FDS) block takes in input the heavily-
corrupted one-hot encoded maps ŷ that have been transmitted over the noisy channel. FDS applies
a fast denoise taking into account the black-and-white nature of the information. In detail, FDS
produces the complete denoised semantic maps y by:

4



Under review as a conference paper at ICLR 2024

y = Pad (MaxPool (AvgPool (ŷ))) . (2)

First, the average pooling removes noise spikes in the maps. Then, since the maps comprise large 0/1
regions, where 1 corresponds to areas where the class is present and 0 to empty spaces, the MaxPool
performs a high-pass filter operation mainly keeping the 1s regions only and discarding other values.
Finally, FDS pads the clean missing classes that have been removed on the sender side.

3.3 SEMANTIC DIFFUSION MODEL

The core of our generative semantic communication framework is the semantic diffusion model that
generates images by preserving the transmitted semantic information.

Conditional diffusion model. Given a sample x0 and a conditioning y, the conditional data
distribution follows q(x0|y). In this setup, conditional diffusion models maximize the likelihood
pθ(x0|y). The reverse process is a Markov chain with learned Gaussian transitions that starts at
p(xT ) ∼ N (0, I) and is defined as

pθ(x0:T |y) = p(xT )

T∏
t=1

pθ(xt−1|xt,y), (3)

with pθ(xt−1|xt,y) = N (xt−1;µ(xt,y, t), σθ(xt,y, t)). The forward process q(x1:T |x0) injects
Gaussian noise into data following the defined variance schedule β1, ..., βT . Considering that
αt :=

∏t
s=1(1− βs), the forward process is defined by

q(xt|x0) = N (xt;
√
αtx0, (1− αt)I). (4)

Encoder. The U-Net (Ronneberger et al., 2015) encoder comprises an input convolution and a stack
of encoder blocks with downsampling. The encoder block interleaves a convolution layer, a SiLU
activation (Ramachandran et al., 2017), and a group normalization (Wu & He, 2018). The block also
implements a fully-connected layer with weights w and bias b to inject the time information t by
scaling and shifting the mid-activation a by ai+1 = w(t) · ai + b(t). Furthermore, at resolutions
32× 32, 16× 16, and 8× 8 the encoder involves attention modules with skip connection. Given x
input and y output of the attention block, and four 1× 1 convolutions with weights wf ,wg,wh, and
wv , we define f(x) = wfx, g(x) = wgx and h(x) = whx, arriving to

M(u, v) =
f(xu)

⊤g(xv)

∥f(xu)∥∥g(xv∥
, (5)

yu = xu +wv

∑
v

softmaxv(αM(u, v)) · h(xv), (6)

whereby the spatial dimension indexes are u ∈ [1, H], v ∈ [1,W ].

Decoder. The decoder blocks are crucial for the semantic conditioning of the whole model. Indeed,
to fully exploit the semantic information, decoder blocks implement spatially-adaptive normalization
(SPADE) (Park et al., 2019) that replaces group normalization in the encoder. The SPADE module
introduces semantic content in the data flow by adjusting the activations ai as follows

ai+1 = γi(x) · Norm(ai) + bi(x), (7)

in which Norm(·) is the group normalization, and γi,bi are the spatially-adaptive weights and
biases learned from the conditioning semantic map. It is worth noting that we train our semantic
diffusion model directly with noisy semantic maps to let the network be robust to different channel
noises. At each step, we simulate varying channel conditions by sampling the noise variance in
{0.9, 0.6, 0.36, 0.22, 0.13, 0.050.00} corresponding to PSNRs in {1, 5, 10, 15, 20, 30, 100}, weight-
ing perfect channel conditions (PSNR= 100) higher. We note that incorporating channel noise during
training heavily impacts the quality of generated images in inference.
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Figure 3: Our method results for different PSNR values of the communication channel. The
detector recognizes well cars and pedestrians in all the samples, proving that our method works
properly. Moreover, the depth estimation is consistent across all the scenarios, further validating the
effectiveness of the proposed method.

3.4 LOSS FUNCTIONS

We train the semantic diffusion model with a combination of two loss functions. Considering an input
image x and the sequence of time steps t ∈ {0, ..., T}, the corresponding noisy image x̃ at time t
is built by x̃ =

√
αtx+

√
1− αtϵ. The noise is sampled from ϵ ∼ N (0, I) and the αt is the noise

scheduler at t, where the maximum timestep is T = 1000. The model tries to predict the noise ϵ to
reconstruct the reference image x according to the guidance of the semantic map y. The denoising
loss function Ld takes the form of

Ld = Et,x,ϵ

[∥∥ϵ− ϵθ
(√

αtx+
√
1− αtϵ,y, t

)∥∥
2

]
. (8)

In order to improve the generated images log-likelihood, the model is trained to predict variances
too Nichol & Dhariwal (2021) by means of the KL divergence between the predicted distribution
pθ(xt−1|xt,y) and the diffusion process posterior q(xt−1|xt,x0):

LKL = KL(pθ(xt−1|xt,y)∥q(xt−1|xt,x0)). (9)

The resulting loss function is balanced by λ as:

L = Ld + λLKL. (10)

3.5 CLASSIFIER-FREE GUIDANCE

The image quality of conditional diffusion models can be improved through the gradient of the log-
probability distribution ∇xt

log p(y|xt) by perturbing the mean with a guidance-scale hyperparameter
s (Dhariwal & Nichol, 2021). While previous diffusion models involved a classifier for this procedure
(Dhariwal & Nichol, 2021), novel methods directly leverage the generative model power to provide
the gradient during the sampling step (Ho & Salimans, 2021). In our framework, we can disentangle
the conditional noise estimation from the unconditional one, by involving the semantic map for the
first estimate as ϵθ(xt|y) and the null label for the second one, that is ϵθ(xt|0) (Wang et al., 2022).
The gradient of the log-probability distribution is then proportional to the difference between the
estimates as

ϵθ(xt|y)− ϵθ(xt|0) ∝ ∇xt
log p(xt|y)−∇xt

log p(xt) (11)
∝ ∇xt log p(y|xt). (12)

Accordingly, the noise estimation is performed by means of the disentangled component as

ϵ̂θ(xt|y) = ϵθ(xt|y) + s · (ϵθ(xt|y)− ϵθ(xt|0)). (13)
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Figure 4: Comparisons among most performing models (CC-FPSE (Liu et al., 2019), OASIS
(Schönfeld et al., 2021), and SMIS (Zhu et al., 2020)) with PSNR = 15. Other methods produce
almost noise-only images. Our method produces the best quality samples in which it is easy to
recognize objects, cars, and pedestrians, while comparisons generate scenes heavily corrupted by
noise.

Table 1: Semantic evaluation of generated images under different channel conditions.
Method mIoU↑
PSNR 100 30 20 15 10 5 1

Full image - 0.955±.032 0.911±.155 0.906±.247 0.906±.339 0.240±.193 0.110±.298
SPADE (Park et al., 2019) 0.909±.127 0.914±.255 0.921±.315 0.812±.364 0.672±.321 0.253±.288 0.313±.144
CC-FPSE (Liu et al., 2019) 0.908±.045 0.908±.121 0.911±.315 0.928±.345 0.852±.245 0.653±.183 0.322±.284
SMIS (Zhu et al., 2020) 0.909±.064 0.919±.066 0.909±.214 0.931±.208 0.901±.244 0.899±.290 0.876±.211
OASIS (Schönfeld et al., 2021) 0.910±.111 0.908±.191 0.912±.232 0.697±.165 0.662±.356 0.345±.112 0.232±.191
SDM (Wang et al., 2022) 0.921±.051 0.340±.022 0.333±.061 0.351±.011 0.297±.021 0.256±.019 0.211±.043
Our method 0.940±.014 0.942±.212 0.944±.297 0.945±.141 0.905±.112 0.913±.214 0.925±.111

4 EXPERIMENTAL EVALUATION

In this Section, we report the experimental setup and the results of the tests we conduct.

4.1 SETUP

Datasets. We involve Cityscapes, which contains 35 classes, and COCO-Stuff, with 183 classes, as
our datasets for training and evaluation. Both these datasets comprise instance annotations that we
consider in our framework.

Evaluation. The purpose of a semantic communication framework is to properly transmit the meaning
of the image the sender wants to communicate to the receiver. Therefore, the crucial part of the
evaluation is measuring the preserved semantic meaning in the synthesized images from the receiver.
To this end, in addition to image quality evaluation with FID and LPIPS, we perform three different
types of assessment. First, we compute and objectively evaluate the semantic interpretability of the
generated images by building the semantic maps of the latter and comparing them with the original
ones. We compute the mIoU metric on segmentation maps of generated images obtained through a
pretrained model. For this evaluation, we employ DRN-D-105 (Yu et al., 2017) on Cityscapes, and
MaskFormer (Cheng et al., 2021) on COCO-Stuff. Note that the mIoU evaluation strongly depends
on the effectiveness of the pretrained model involved to compute the segmentation maps. Second, we
evaluate how much the synthesized images preserve objects meaning which is crucial for semantic
communication systems in autonomous driving. As an example, buildings or landscapes can be
badly generated as long as pedestrians or bicycles are well-recognized by the car. For this evaluation,
we employ DETR (Carion et al., 2020). Third, another key aspect of autonomous driving is depth
estimation, which helps estimate the distance between objects (Fonder et al., 2021), thus we evaluate
this aspect via DPT (Ranftl et al., 2021).
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Table 2: Perceptual similarity evaluation of generated images under different channel conditions.
Method LPIPS↓
PSNR 100 30 20 15 10 5 1

Full image - 0.623±.074 0.684±.165 0.713±.054 0.730±.156 0.747±.154 0.738±.186
SPADE (Park et al., 2019) 0.546±.045 0.565±.072 0.603±.022 0.726±.019 0.792±.115 0.824±.054 0.827±.011
CC-FPSE (Liu et al., 2019) 0.546±.025 0.559±.004 0.581±.009 0.620±.011 0.855±.024 0.753±.032 0.812±.055
SMIS (Zhu et al., 2020) 0.546±.002 0.548±.030 0.561±.010 0.574±.021 0.603±.027 0.649±.044 0.680±.124
OASIS (Schönfeld et al., 2021) 0.561±.032 0.564±.054 0.580±.012 0.613±.073 0.679±.020 0.783±.034 0.828±.122
SDM (Wang et al., 2022) 0.549±.061 0.543±.072 0.555±.066 0.599±.043 0.606±.071 0.655±.098 0.749±.119
Our method 0.606±.032 0.517±.004 0.523±.011 0.542±.003 0.549±.009 0.620±.023 0.609±.042

Table 3: Generation quality evaluation of generated images under different channel conditions.
Method FID×10 ↓

PSNR 100 30 20 15 10 5 1

Full image - 6.284±.053 13.684±.032 20.045±.865 28.005±.878 37.931±.639 42.004±.911
SPADE (Park et al., 2019) 10.324±.171 14.200±.179 22.971±.190 42.681±.201 55.420±1.056 noise noise
CC-FPSE (Liu et al., 2019) 24.590±.056 20.337±.060 26.253±.049 33.166±.210 40.374±.345 noise noise
SMIS (Zhu et al., 2020) 8.758±.162 9.147±.100 11.750±.095 14.775±.129 21.373±.167 34.586±.171 44.115±.412
OASIS (Schönfeld et al., 2021) 10.403±.053 10.339±.099 16.179±.122 24.892±.134 40.440±.349 noise noise
SDM (Wang et al., 2022) 9.899±.391 16.642±2.101 31.510±2.926 noise noise noise noise
Our method 11.848±.061 12.355±.090 14.030±.201 14.008±.251 14.851±.193 15.315±.349 15.989±.561

4.2 COMPARISONS AND RESULTS ANALYSIS

We compare our proposal with classical communication methods that directly transmit the image over
the channel. For more comparisons, we consider well-known semantic image synthesis models such
as SPADE (Park et al., 2019), CC-FPSE (Liu et al., 2019), SMIS (Zhu et al., 2020), OASIS (Schönfeld
et al., 2021), and SDM (Wang et al., 2022), and ControlNet (Zhang & Agrawala, 2023) as we show
in Fig. 1. Details on the comparison methods are available in Appendix B. We consider different
channel scenarios, ranging from extremely degraded conditions to perfect transmissions, by setting
PSNR values in {1, 5, 10, 15, 20, 30, 100}, and two datasets that are Cityscapes and COCO-Stuff.

Advantages. Based on the achieved results, we can see how the proposed method clearly outperforms
its competitors according to all the metrics used in our assessment. In particular, our approach is
far more robust to bad channel conditions, still preserving semantics meanings with PSNR ≤ 10
according to the mIoU metric, as Table 1 shows for the Cityscapes dataset. Moreover, it also generates
more perceptually similar samples with respect to all the other comparisons, as measured by the
LPIPS metric in Table 2. Indeed, in the context of communications, the lower the LPIPS between
the original image and the synthesized one, the better the generation is since the two images are
perceptually similar (Han et al., 2022a). Few methods manage to synthesize meaningful images
with very low PSNR values and the sample quality deteriorates as the channel conditions worsen.
On the contrary, as Table 3 reports, the FID of the proposed method samples is the lowest and
quite stable across all the different scenarios, proving that the generation of our model is robust
to every channel condition. Figure 1 reports generated samples with PSNR = 10 of the classical
method, SMIS, ControlNet, and our method. Our sample is of better quality and its depth is much
closer to the original one with respect to comparisons that produce noisy images and blurred depths.
Additionally, Figure 3 shows generated samples or different channel scenarios and the detected
objects by DETR. Even in the case of PSNR = 1, DETR still recognizes the largest part of the objects.
Furthermore, the DPT depth estimation also gives consistent results across different conditions, with
synthesized images at low PSNRs preserving the depths similar to the original image depth. As a
further comparison for image quality, we show diverse samples in Figure 4, where our method is
compared to the three best comparisons. Although CC-FPSE, OASIS, and SMIS produce better
samples with respect to other models, our method clearly generates the best quality samples. Indeed,
in our samples, objects, cars, and pedestrians are clearly recognizable, whereas in other images they
are blurred or noisy. On the COCO dataset, existing approaches produce noisy samples, while our
method still provides meaningful samples able to achieve good performance, as Table 4 shows.

Bit rate. A crucial aspect for communication frameworks is saving bandwidth and reducing the
number of transmitted bits. To this end, we transmit over the channel the compressed one-hot-encoded
maps that crucially reduce the number of encoded bits with respect to classical communications. We
conduct the evaluation on the Cityscapes dataset with images resized to 256× 512. Transmitting the
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Table 4: Semantic, perceptual similarity, and generation quality evaluation with fixed PSNR = 10 on
the COCO-Stuff dataset.

Method mIoU↑ LPIPS↓ FID×10 ↓

Full image 0.331±.145 0.687±.003 40.562±2.513
SPADE (Park et al., 2019) noise noise noise
CC-FPSE (Liu et al., 2019) noise noise noise
SDM (Wang et al., 2022) noise noise noise
Our method 0.365±.096 0.683±.011 36.664±1.527

Semantics Our methodFDS Noisy Training FDS Noisy Training FDS Noisy Training

Figure 5: Generated samples from ablation studies with PSNR = 10. Samples without FDS and
noisy training are clearly noisy. Then, both FDS and noisy training help improve sample quality.

full image requires 1464000 bits, while, on average, the proposed method just needs 119000 bits,
with a considerable reduction of 92%, proving a further advantage of the proposed method.

Limitations. Although our framework achieves excellent results in every scenario we test and
outperforms existing solutions, clearly there is still a lot to do to improve the proposed method
before directly applying it in production-ready systems. Surely, improvements should be made on
computational efficiency in terms of sampling time, energy consumption, and transmission latency.
However, this complicated aspect requires a detailed study that is out of the scope of this paper that
only aims at introducing an innovative robust generative semantic communication framework whose
core is a powerful semantic diffusion model.

4.3 ABLATION STUDIES

Table 5: Ablation results on the Cityscapes dataset.
FDS Noisy training LPIPS mIoU

✗ ✗ noise noise
✗ ✓ 0.665 0.613
✓ ✗ 0.663 0.713
✓ ✓ 0.549 0.905

We perform ablation tests to corrobo-
rate our method choices. We study the
inference performances with and with-
out the proposed FDS block and with-
out the noisy maps during training, fix-
ing the PSNR to 10. Table 5 shows
the effectiveness and the importance of
both the proposed noisy training and
the FDS module in inference. Figure
5 allows for a visual inspection of the generated results without the proposed methods. While the
semantic diffusion model alone (✗ FDS ✗ Noisy Training) produces only noise, both FDS and the
noisy training help to improve samples quality.

5 CONCLUSION

To the best of our knowledge, this paper presents the first generative semantic communication
framework whose core is a semantic diffusion model. In detail, we make the whole framework
robust to bad channel conditions by training the semantic diffusion model with noisy semantics,
and by inserting a fast denoising semantic block to improve inference image quality. Furthermore,
we crucially reduce the amount of information to transmit by sending over the channel the present-
classes binary maps only. Our performance assessment highlights that the proposed framework
generates semantically-consistent samples even in the case of extremely degraded channel conditions,
outperforming all other competitors.
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REPRODUCIBILITY STATEMENT

We strongly believe research and science are based on the reproducibility of existing works. There-
fore, in the Experimental Details Section of the Appendix we report all the details to reproduce
our experiments, including image sizes and preprocessing, all the hyperparameters and network
architecture, the hyperparameters of the diffusion process and of the sampling procedure, as well as
the details on the hardware we employ for the experiments. Although the code and the pretrained
checkpoints will be freely accessible at the end of the revision process, we include them in a zip
folder as supplementary material for the submission.
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Figure 6: Encoder and decoder blocks of our U-Net-based semantic diffusion model.

APPENDIX

This appendix includes additional details, experiments, and explanations of the proposed method.

A FROM TECHNICAL TO SEMANTIC COMMUNICATION CHALLENGES

Since the channel capacity formula by Shannon in 1948 (Shannon, 1948), communication systems
have grown from first-generation (1G) to Beyond-fifth generation (B5G), progressively approaching
the non-physical-layer capacity limit and designing new frontiers in line with users’ needs. In 1953,
Weaver theorized that communication challenges can be enclosed in three gradual levels (Weaver,
1953):

1. The technical challenge. It deals with the classical Shannon’s communication theory and
focuses on the proper way of transmitting bits from a sender to a receiver.

2. The semantic challenge. Rather than just transmitting bits, this level should account for
properly transmitting the meaning of the messages the sender wants to communicate to the
receiver.

3. The effectiveness challenge. This level deals with the efficiency of the transmission of
previous levels.

With the upcoming advent of the sixth generation (6G), a radical rethinking of communication
framework design has started, sliding from the first to the second level of Weaver’s theory (Cal-
vanese Strinati & Barbarossa, 2020; Luo et al., 2022). In this switch, generative learning methods
are making their way bringing considerable improvements in several communication tasks, such as
content compression or denoising (Han et al., 2022a; Erdemir et al., 2022). However, generative com-
munication frameworks are often limited to quite-simple models such as small VAEs (Malur Saidutta
et al., 2020; Estiri et al., 2020) or pretrained GAN generators (Erdemir et al., 2022). Moreover, these
networks have been involved in tasks that underestimate their capabilities, limiting their effectiveness.
On the contrary, the enormous power of recent generative models may lead to profoundly transform
semantic communications.

B EXPERIMENTAL DETAILS

We provide additional details to reproduce our experiments. Finally, we set the guidance scale s
equal to 2 for Cityscapes and 2.5 for COCO-Stuff. We resize Cityscapes images to 256× 512, and
COCO-Stuff images to 256× 256. We train the model with PyTorch on a single NVIDIA Tesla V100
GPU (32GB) for the Cityscapes and on a single NVIDIA Quadro RTX8000 (48GB) for COCO-Stuff.
We use a batch size of 4 in all the experiments, a learning rate of 0.0001 for the AdamW optimizer,
and attention blocks at resolutions 32, 16, and8 with a number of head channels equal to 64. The
features dimension in the encoder and in the decoder of the U-Net model is halved at each layer, while
comprising a number of channels equal to [256, 256, 512, 512, 1024, and 1024]. For sampling, we
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Figure 7: Generated samples under different channel conditions (PSNR in {30, 20, 10}) by ControlNet
and by the proposed method. While for good channel conditions (PSNR= 30) CnotrolNet generates
a meaningful sample, for lower values of the PSNR, therefore with more corrupted information
received, it completely loses the ability to preserve the semantics in generated samples, making it
unusable in communication systems.

set the number of diffusion steps to T = 1000 with a linear noise schedule. We use mixed precision
for training in order to reduce the computational complexity. The loss balance term λ is set to 0.001,
according to (Wang et al., 2022). Furthermore, we involve an exponential moving average of the
U-Net network weights with a decay equal to 0.9999. Figure 6 shows the structure of our encoder
and decoder blocks. The code and the checkpoints will be freely available at the end of the revision
process.

Comparison methods details. We compare the proposed methods with several comparison methods
that include bot GAN-based and diffusion-based generative models and we add here the details about
such models. For each model, we follow the hyperparameters setting of the original paper. SPADE
Park et al. (2019) is a GAN in which the author proposes to insert spatially-adaptive normalization
in the generator network. CC-FPSE Liu et al. (2019) is based on a GAN structure with a generator
conditioned through a weight prediction network and a semantics-embedding discriminator. SMIS
Zhu et al. (2020) is a GAN model, whose generator is based on a Group Decreasing Network and
an encoder-decoder structure. OASIS Schönfeld et al. (2021) is a GAN-based model in which the
generator is conditioned by the 3D noise and label map and the discriminator is segmentation-based.
SDM Wang et al. (2022) is a recently introduced diffusion model that utilizes SPADE modules in the
decoder of the U-Net structure. Finally, ControlNet Zhang & Agrawala (2023) is a recent technique
to condition diffusion models by locking the original network and creating a trainable copy with
conditioning that is then connected with the first one using zero convolution layers.

C COMPARISON WITH PRETRAINED GENERATIVE MODELS

Although several recent works directly involve pretrained generative models, in a communication
scenario it is hard to follow this procedure as these models have not been engineered and trained
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Figure 8: Example of how the JPEG compression affects the original image and a sample of the
one-hot encoded maps. The compressed image loses informative content, while the one-hot encoded
maps are minimally affected by the compression.
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Figure 9: Other comparisons for transmitted semantics and a fixed PSNR value of 10.

for such a real-world problem. Thus, they are not robust to the heavy corruption the channel may
implicate in transmitted information. This may result in noisy, unprecise, and corrupted generated
content that can not be considered reliable from a communication perspective. From a quantitative
point of view, we should consider that the signal-to-noise ratio of the transmitted maps with a channel
PSNR= 30 is 84.6211, while for a channel PSNR= 10 the signal-to-noise ratio of the transmitted
content is equal to 1.6324. This means that the content received by the diffusion model is extremely
degraded.

To experimentally validate our claims, we perform a further comparison with ControlNet (Zhang
& Agrawala, 2023), a recent powerful conditional method for diffusion models. We report sample
images in Fig.7. When passing the information corrupted by the channel to ControlNet, the model
is not able to extract a meaningful semantic map due to the noise added by the channel, especially
with low PSNRs, i.e. PSNR< 20. Therefore, despite the high quality of generated images, the
samples poorly preserve the semantic information that is the key to reliable communication systems.
In addition, we test with ControlNet with any noise added to text information, which is an optimal
condition for ControlNet and quite unrealistic since in a communication framework the textual caption
should be extracted by the sender and transmitted over the channel that may add distortions.

D ADDITIONAL EXPERIMENTAL RESULTS

Image vs Binary map transmission. In order to validate the claims of the main paper regarding
map compression, we show an example in Fig.8. The JPEG compression drastically reduces the
informative content of the image. On the contrary, when applied to one-hot encoded binary maps,
the content remains almost unchanged. For this reason, we can apply an aggressive compression
algorithm to the transmitted maps in order to reduce the number of transmitted bits.

Further comparisons. Figure 9 provides additional comparisons for a given semantics under fixed
channel conditions equal to PSNR = 10. While most of the samples generated from existing methods
are heavily corrupted by noise, our method provides clearer images, while better preserving semantic
features.

Tests with different channel noises. We run experiments simulating multiple channel noises other
than AWGN. In detail, once we trained the model with AWGN, we then test the generalization ability
of the proposed method with Poisson noise and a mixture of Poisson and Gaussian noises. We report
the results for these channel noises with fixed PSNR=10 in Tab. 6. As it is clear for Tab. 6, the
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Table 6: Results for different channel noises (Gaussian, Poisson, mixture) with fixed PSNR=10.
Noise Model LPIPS↓ mIoU↑

AWGN SMIS Zhu et al. (2020) 0.603 0.901
Ours 0.549 0.905

Poisson SMIS Zhu et al. (2020) 0.631 0.795
Ours 0.595 0.842

Mixture SMIS Zhu et al. (2020) 0.639 0.822
Ours 0.599 0.864

Table 7: Ablation study with fixed channel PSNR=10 for the proposed FDS block against a Swin-
UNet (SUNet) denoising network Fan et al. (2022).

Method Params FLOPS Storage Memory LPIPS↓ mIoU↑
FDS (ours) 0M 4G 0.0GB 0.549 0.905
SUNet Fan et al. (2022) 99M 60G (+1400%) 1.1GB 0.575 0.869

proposed method is robust to different types of channel corruptions, preserving good performance
across every experiment, as measured by both the LPIPS and mIoU metrics. Furthermore, these
results highlight the generalizability of the proposed method that is robust to different kinds of noise
even though it was trained in the AWGN scenario.

Alation study for FDS block. In order to evaluate the effectiveness of the proposed fast denoising
semantic (FDS) block, we compare it with a Swin UNet Transformer (SUNet) Fan et al. (2022) for
image denoising. Our proposed method has several advantages over a denoising network. First, it has
no trainable parameters so it does not require to be trained when the scenario changes. Second, it has
very light computations, therefore it does not affect the number of FLOPs of the model or the memory
for checkpoints storage, as instead required by a denoising network. Table 7 shows the results of the
proposed FDS module against the SUNet denoising network. The table confirms our intuition and the
denoising model adds a consistent number of FLOPs to the computations, as well as more storage
memory for saving the checkpoints to obtain similar results, actually worse than the FDS module.

Downstream tasks metrics. Although the downstream tasks are not the major scope of this paper,
we provide additional evaluation metrics for the object detection and depth estimation tasks. We run
DETR Carion et al. (2020) for object detection and DPT Ranftl et al. (2021) for depth estimation
after we regenerate the images at the receiver side. Visual comparisons among methods and across
different channel conditions are shown in Fig. 1 and Fig. 3. For metrics comparison, we select a
challenging scenario where the channel noise is fixed at PSNR=10, and we compare our method
with the best-performing comparison, that is SMIS Zhu et al. (2020). We report metrics results in
Tab. 8, where we compute mAP and mAP50 for object detection and the RMSE for depth estimation.
As Tab. 8 shows, the proposed method clearly outperforms the comparison method in terms of
quantitative evaluation in both object detection and depth estimation downstream tasks.

Generated samples from our model. We report additional examples of our method generation. We
randomly select three semantics and then report the generated samples from our method with seven
different PSNR values. Results are shown in Fig. 10. Our method is able to generate good quality

Table 8: Quantitative metrics for downstream tasks (object detection and depth estimation).
Task Obj det. Depth est.

Model mAP↑ mAP50↑ RMSE↓
SMIS Zhu et al. (2020) 0.230 0.451 44.102
Ours 0.390 0.666 14.530
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Figure 10: Generatd samples of our method from the transmitted semantics under different PSNR
values for simulating various channel conditions.

images even in the case of extremely degraded channel conditions corresponding to PSNR values
equal to 5 and 1. Indeed, objects and positions are still evident in these scenarios too.
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