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Abstract—Ground-based imaging of objects in Low Earth Orbit
(LEO) is complicated by atmospheric turbulence, which make
it difficult to identify key features or components on the object
of interest. Many automated image reconstruction techniques
are in use, but expert labor is needed to subjectively discern and
identify truth features on a partially reconstructed image. In
this paper, we present a deep learning approach for semantic
segmentation of ground-based images of LEO objects. We inves-
tigate the performance under various atmospheric turbulence
strengths in terms of the Fried parameter (r0) and show the
viability of this method.

TABLE OF CONTENTS

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2. RELATED WORKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
3. PROBLEM FORMULATION . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
4. EXPERIMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
5. CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
BIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1. INTRODUCTION
Ground-based imaging of Low Earth Orbit (LEO) satel-
lites is essential to comprehensive space domain awareness
(SDA). However, image quality can be severely reduced by
atmospheric turbulence. In such conditions, tasks such as
labeling the components of a satellite can be difficult, and is
susceptible to mistake when done by a human. One such task,
segmenting images into their individual components, has
seen revolutionary improvement through machine learning
techniques [1], [2], [3], [4], [5], [6].

In this paper, we explore the feasibility of applying convolu-
tional neural networks for semantic segmentation of ground-
based images of LEO satellites. We first create datasets of
multiple satellites consisting of renders of the satellites both

U.S. Government work not protected by U.S. copyright

with and without atmospheric turbulence. Then, we design
and build the inference models used for the experiments.
After the datasets and model are complete, we establish a
baseline of performance by training the model on a simple
dataset containing images of a single satellite absent of any
atmospheric turbulence. Then, we train the model on single
levels of turbulence, followed by training the model with mul-
tiple turbulence levels. Finally, we increase the complexity of
the task by training a single model to segment images of a
variety of satellites.

The key contributions of this paper are as follows. First,
we propose a neural network approach for semantic segmen-
tation of ground-based images of LEO satellites. Second,
to the best of our knowledge, our approach is the first to
show that this approach can be applied to these images
subject to different atmospheric turbulence conditions. These
contributions can advance practical SDA, remove the human-
in-the-loop required for segmentation of images of satellites,
and provides a method for image understanding that had not
previously been used.

We present past research in the field of semantic segmen-
tation, and formalize the problem and approach. Then, we
describe our experiments including data generation, metrics
and models, methods and results. Finally, we discuss some
future work and concluding remarks.

2. RELATED WORKS
Convolutional neural networks (CNNs) are one of the most
widely accepted methods in computer vision and are often
used for image classification, segmentation, and detection
tasks. With the recent success of these algorithms in image
understanding tasks, such as ImageNet in [7], [8], those
in [9] and [10], etc., coupled with the advancements in
deep learning libraries, GPU hardware acceleration, and data
availability, these methods have received heightened interest
in the SDA. These recent advancements in image processing
with CNNs inform our application of a neural network for
semantic segmentation of satellites.

Our work draws on several related works demonstrating
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significant success of using CNNs for semantic segmentation
[2], [3], [5], [6], [11]. There has also been significant
improvements in performance for interpreting noisy and de-
graded images using CNNs [12], [13], [14]. Specifically,
stacked denoising autoencoders were presented as early as
2010 by [15] which has been iterated on to develop new
architectures, such as U-Net, yielding state-of-the-art in many
image segmentation tasks [6]. We draw motivation from
this architecture and recent success and apply it to semantic
segmentation of pristine and noisy images of LEO satellites.

3. PROBLEM FORMULATION
Let X be a set of astronomical images corresponding to a
dataset of n images, where one input image is denoted as xi ∈
X . Let Y be the dataset’s truth segmentation set whereby
yi ∈ Y we denote the ith input image’s truth segmentation
map. The input image xi has size h × w × c where each
dimension represents the height in pixels, width in pixels, and
number of channels. The truth segmentation map yi has size
h× w × l where l represents the number of classes. In other
words, yi consists of a stack of l masks where each mask is
h× w and each mask represents a class.

Our primary design goal is to train a semantic segmentation
network f : X → Y , which takes as input xi and provides
a segmentation inference of yi. We approach this task using
U-Net which outputs for each input image xi an inference pi
which also has size h × w × l. However, here, each element
of pi represents an inferred probability that the pixel belongs
to a certain class.

4. EXPERIMENTS
This section presents the data used for this work, establishes
a metric for measuring performance, and our experimental
settings (training architecture and regimes), and our experi-
mental results.

Dataset

This study uses supervised learning and requires an extensive
set of (image, truth) pairs for model training. The dataset
used consists of multiple satellites, each rendered across a
complete range of discrete poses as if viewed from the 3.6 m
AEOS (Advanced Electro-Optical System) telescope at the
summit of Haleakala.

The satellites used were six real satellites: Cosmic Back-
ground Explorer (COBE), Hubble Space Telescope (HST),
MightySat, Technology for Autonomous Operational Sur-
vivability (TAOS), Television Infrared Observation Satellites
(TIROS), and Wide Field Infrared Explorer (WIRE). In ad-
dition to these six real satellites, we also used a simplified
representative satellite consisting of a cubic bus, two solar
panels, and an antenna. This simplified satellite will be
referred to as Boxsat.

Renders of these satellites as well as their truth class labels
were produced using COAST/FIST with image properties
reflecting that of diffraction limited images from the AEOS
telescope. The truth class labels consisted of six different
classes: bus, solar panels, thrusters, payloads, antenna, and
background.

Imaging at the AEOS telescope only occurs in conditions
without cloud cover, but in order to better represent real-

world conditions of atmospheric turbulence, we also gener-
ated datasets with realistic degradation applied to the images.
The images were degraded by SILO-G [16] to 5 different
turbulence levels as represented in Table 1. The turbulence
levels were characterized by the Freid parameter (r0) [17].
We chose r0 values that corresponded with poor, average,
good, exceptional, and typical adaptive optics seeing condi-
tions. Examples of renders in each of these turbulence levels
can be seen in Figure 1.

(a) Pristine (b) r0 = 80cm

(c) r0 = 40cm (d) r0 = 25cm

(e) r0 = 15cm (f) r0 = 10cm

Figure 1: Examples of renders of Hubble at the various
turbulence levels

Table 1: Representative seeing conditions from Haleakala
for AEOS Telescope.

Seeing Condition r0 (cm)
Poor 10

Average 15
Good 25

Exceptional 40
Typical AO 80

SILO-G realistically degrades the images by convolving the
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renders and pre-generated point spread functions (PSFs) and
adding in camera effects of transmission losses, shot noise,
quantum efficiency (QE), and read noise. The parameters
used to generate these degraded images are shown in Table 2.
The degraded datasets will be referred to by their r0 values,
and the dataset without any degradation will be referred to
as pristine. We are restricted from sharing these datasets
and their corresponding truth labels, so we will be sharing
inferences only.

Table 2: SILO-G parameters used to generate degraded
images

Parameter Value Unit
Image Size 256x256 pixels

IFOV 100 nrad
PSF Generation Rate 800 Hz

Frame Rate 40 Hz
Waveband Bessel I -

Turbulence Profile MK50P -
Transmission Noise 0.7 -
Quantum Efficiency 0.9 -

Read Noise 4 ADU
Fried Parameter r0 10, 15, 25, 40, 80 centimeters

The best performing inference for each satellite at each tur-
bulence level can be seen in Figure 3.

Metrics

For this study we measure performance using three metrics:
the F1 score, intersection over union (IoU), and pixel accu-
racy.

The F1 score, also known as the Sørensen–Dice coefficient,
is defined by Equation 1. The IoU, also referred to as the
Jaccard Index, is defined by Equation 2 where yi and pi
represent the true and predicted segmentation as described in
Section 3. Both F1 score and IoU is calculated for each class
for each batch of images and then averaged across the entire
test set. An ε is used to ensureF1 score and IoU are 1.00 when
measuring performance on classes that are not represented in
the batch.

F1 =
2(precision ∗ recall + ε)

precision+ recall + ε
(1)

IoU =
pi ∗ yi + ε

pi + yi − pi ∗ yi + ε
(2)

A visual representation of the three metrics is shown in Figure
2. The metrics reported in this paper are from the epoch with
the lowest loss unless otherwise stated.

Architecture

In this work, we use a U-Net network based on previous
success of U-Net for semantic segmentation [2]. We used
both a depth 3 U-Net depicted in Figure 4a and a depth 5
U-Net depicted in Figure 4b.

All convolutional layers of the depth 3 U-Net used a ReLU
activation function except the last. We initialized each kernel
to Glorot Uniform [18]. The depth 5 U-Net also used ReLU

(a) (b)

(c) (d)

(e) (f)

Figure 2: Examples of F1 scores, IoU, and pixel accuracy
for inferences of Hubble. Green represents satellite bus,
red represents solar panels, yellow represents antenna,
and black represents the background. (a) F1= 0.85,
IoU = 0.80, PA = 1.00, (b) F1 = 0.75, IoU = 0.68,
PA = 0.99, (c) F1 = 0.65, IoU = 0.58, PA = 0.99,
(d) F1 = 0.55, IoU = 0.48, PA = 0.98, (e) F1 = 0.45,
IoU = 0.37, PA = 0.95, (f) F1 = 0.35, IoU = 0.27,
PA = 0.86

for all activation layers except the last. The last layer used
softmax. Additionally, each kernel was initialized to He
Normal [19].

For input image augmentation to both U-Nets, we applied
random augmentation to each training image with the fol-
lowing specification: horizontal flips, crop to between 100%
to 1

3 the original width, crop to between 100% to 1
3 the

original height, and resized to the original image dimensions
using Bilinear interpolation. Additionally, from the albu-
mentations library [20], we applied randomly coarse dropout,
multiplicative noise, image color inversion, hue saturation,
additive Gaussian noise, or Gaussian Noise. Also from the
albumentations library, we either applied contrast limited
adaptive histogram equalization to the input image, sharpened

3
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Figure 3: The 7 different satellites used as well as their best inference at each turbulence level. Green represents satellite
bus, blue represents solar panels, cyan represents antenna, red represents payload, yellow represents thrusters, and
black represents the background.
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(a) Depth 3 U-Net used to segment pristine images

(b) Depth 5 U-Net used to segment turbulent images

Figure 4: U-Net Structures

the input image and overlaid the result with the original
image, embossed the input image and overlaid the result
with the original image, randomly changed brightness and
contrast, or equalized the image histogram. Each training
scenario used a 70% training, 20% validation, and 10% test
split. We used the Adam optimizer with learning rate set
to 1e−3 [21]. Categorical crossentropy was used as the loss
function. The CNN was trained for 200 epochs, and the best
validation loss was saved for inference and prediction. Image
augmentation was not used during inference.

Reproducibility

For reproduction, all neural networks were trained using
Python 3 and TensorFlow 2.1. Operating system and hard-
ware specifications include Ubuntu 18.04.5 LTS on an NVidia
DGX Server with eight Tesla V100 GPUs with 32 GB of
memory on each card. Because the goal of this work was a
feasibility investigation, we did not tune or search for optimal
hyperparameters.

5
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Training Method

To test the feasibility of semantic segmentation of these
images, we ran a series of experiments by training models
to complete tasks starting from the simplest Scenario A, and
most complex Scenario E described below.

Training Scenario A: Single Satellite, No Turbulence—We
first established a baseline of performance of the model by
training the network to segment images of a single satellite
in the absence of turbulence. The training set consisted
of images of Boxsat, chosen for its simplicity (i.e. clearly
defined edges and features) using the depth 3 U-Net depicted
in Figure 4a. We then measured the performance of the model
when presented with images at the different turbulence levels.

Scenario B: Single Satellite, Single Turbulence Level—For
the next level of complexity, we introduced single levels of
turbulence during training and validation. Even with the ad-
vances in denoising of images, post-processing of telescope
images are rarely if ever pristine. For semantic segmentation
to be applied to real images, it is necessary to evaluate the
performance of such models through turbulence. As such, we
trained a model on Boxsat for each turbulence level for a total
of 6 models. The U-Net with depth 3 would not converge
when presented with turbulence, so we increased depth of the
U-Net to the U-Net with depth 5 shown in Figure 4b.

Scenario C: Single Satellite, Multi Turbulence Level—Then,
to eliminate this need of training a model for each turbulence
level, we trained a model at the next level of complexity: one
model trained on all turbulence levels of Boxsat. Addition-
ally, we tested the ability of the model to segment images
with turbulence levels it had not previously encountered by
training models on all but one turbulence level and testing
with every turbulence level.

Scenario D: Reproducibility with Hubble— To ensure that
the results from Scenarios A-C could be replicated for any
satellite, we trained models for these three Scenarios using
Hubble.

Scenario E: Generalizing Poses—To make sure the model
was learning to semantically segment the images rather than
mapping to the most similar image from the training set, we
trained a variation of the models for Scenarios A-C with the
following change to the datasets for Hubble. For each model,
we chose a target test image and identified the 200 most
similar input images (i.e. the images with the 200 highest
F1 scores when comparing their truth labels with the target
image’s truth labels). These images were then held out while
the remainder of the dataset was split for training, validation,
and test.

Scenario F: Multiple Satellites— Finally we attempted to
create a model which can generalize across satellites. We
first trained the depth 5 U-Net with renders in the absence
of turbulence for all satellites except Hubble which was
excluded as a test set. We held out all Hubble renders to use as
part of the test set to measure the model’s ability to learn the
features rather than the satellite - in other words, to measure
its ability to segment satellites the model had not encountered
before in training. We then trained models for each of the
turbulence levels using the same method as in Scenario B,
but combining the datasets of all satellites excluding Hubble.

Figure 5: Comparison of U-Net performance at different
turbulence levels when trained and tested on a single
turbulence level of Boxsat

6
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Results and Analysis

We report the results and analysis from the scenarios de-
scribed in Section 4:

Scenario A: Single Satellite, No Turbulence— When mea-
suring the baseline, the U-Net with depth 3 semantically
segments pristine images of the test set at an F1 score of 0.77,
IoU of 0.73, and pixel accuracy of 1.00. When this baseline
model which is only trained on pristine images is used to
semantically segment images with turbulence, it consistently
performed poorly with a mean F1 score of 0.30, IoU of 0.26,
and pixel accuracy of 0.71. These results summarized in the
first column of Table 3 give us a point of comparison for the
remaining scenarios.

Scenario B: Single Satellite, Single Turbulence Level—When
attempting to train the model at the individual turbulence
levels for Boxsat, the U-Net with depth 3 would not converge
when presented with turbulence, so we increased depth of the
U-Net to the U-Net with depth 5 shown in Figure 4b. The
depth 5 U-Net converged and segmented through the noise.
The performance of the resulting models when tested on
images with the same turbulence level as that used in training
can be seen in Figure 5. As expected, the performances of the
models decrease with turbulence. However, the difference
between the performance for segmenting turbulent images
with the models trained in Scenario B when compared to
Scenario A is improved by mean F1 score of 0.31, IoU of
0.28, and pixel accuracy of 0.28.

To further test the generalization of the models trained on
each r0 value, we measured the performance of each model at
the 6 different turbulence levels of Boxsat. The performance
of the models as shown in Table 3 generally decreases as the
difference in r0 value for the train and test sets increases.
For models trained and tested on the same turbulence level,
performance clearly worsened as turbulence levels increased;
as evidenced in the results for the pristine (F1 = 0.77, IoU
= 0.73, PA = 1.00) and 10cm (F1 = 0.53, IoU = 0.46, PA
= 0.98) cases. However, this performance was better than
that of models trained and tested on different turbulence
levels, where the model trained to infer using pristine images
received an F1 score of 0.30, IoU of 0.27, and pixel accuracy
of 0.71 when tested on 10cm images. There is one anomaly
to this generalization: of the models that were tested on r0 =
40cm, the model that was trained on r0 = 25cm marginally
outperforms the one trained on r0 = 40cm. We posit that this
anomaly is caused because the r0 = 40cm test set renders
do not share any poses with the r0 = 40cm training set
renders whereas they do share poses with the r0 = 25cm
training set. Additionally, these are adjacent degradation
levels, meaning that the difference between them is relatively
small. However, based on the overall performance of all the
models trained on single turbulence levels, the models overfit
to its training turbulence level, and thus in order to have
optimal performance at a specific r0 when only training on
one r0, a model trained for that specific r0 is needed.

Scenario C: Single Satellite, Multi Turbulence Level—The
performance of the Scenario C model trained with all turbu-
lence levels when tested at each turbulence level can be seen
Figure 6. Additionally, as shown in Table 4, the model trained
on all turbulence levels consistently performs better than the
model trained at single turbulence levels when segmenting
images from every turbulence level. This suggests that when
testing on a turbulent image, the model leverages features
from images of other turbulence levels to learn the features
of the test image’s turbulence level. Furthermore, when

Figure 6: Comparison of U-Net performance at different
turbulence levels of Boxsat when trained on multiple
turbulence levels of Boxsat.
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Figure 7: Comparison of model trained on single turbulence levels of Boxsat and model trained on all turbulence levels
of Boxsat
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Table 3: Performance of U-Net trained on Boxsat at single turbulence levels. Values are given as F1 score, IoU, pixel
accuracy. Bolded values are best performance for each training r0. Italicized value is the anomaly discussed in section
4 for Scenario B.

Training r0 (cm)
Pristine 80 40 25 15 10

Te
st
r 0

(c
m

)

Pristine 0.77, 0.73, 1.00 0.38, 0.31, 0.96 0.32, 0.26, 0.95 0.33, 0.28, 0.94 0.23, 0.20, 0.93 0.29, 0.26, 0.93
80 0.28, 0.23, 0.70 0.69, 0.62, 0.99 0.59, 0.51, 0.98 0.58, 0.50, 0.98 0.35, 0.28, 0.95 0.30, 0.24, 0.94
40 0.31, 0.26, 0.70 0.59, 0.51, 0.99 0.62, 0.55, 0.99 0.64, 0.56, 0.98 0.43, 0.35, 0.96 0.33, 0.26, 0.94
25 0.31, 0.28, 0.71 0.47, 0.40, 0.97 0.54, 0.47, 0.98 0.66, 0.60, 0.99 0.51, 0.43, 0.97 0.38, 0.30, 0.95
15 0.31, 0.28, 0.72 0.36, 0.30, 0.95 0.39, 0.33, 0.96 0.53, 0.44, 0.97 0.57, 0.50, 0.99 0.48, 0.40, 0.97
10 0.30, 0.27, 0.71 0.30, 0.24, 0.93 0.31, 0.25, 0.92 0.39, 0.31, 0.94 0.44, 0.37, 0.96 0.53, 0.46, 0.98

Table 4: Performance of models trained on single turbulence levels of Boxsat compared to that of models trained on all
turbulence levels of Boxsat. Values are given in the order of F1 score, IoU, pixel accuracy.

Test r0 Trained on Same Turbulence as Test Trained on All Turbulence Levels ∆

Pristine 0.77, 0.73, 1.00 0.84, 0.81, 1.00 0.07, 0.08, 0.00
80cm 0.69, 0.62, 0.99 0.74, 0.70, 0.99 0.05, 0.07, 0.00
40cm 0.62, 0.55, 0.99 0.72, 0.67, 0.99 0.10, 0.13, 0.00
25cm 0.66, 0.60, 0.99 0.70, 0.64, 0.99 0.04, 0.05, 0.00
15cm 0.57, 0.50, 0.99 0.65, 0.60, 0.99 0.08, 0.10, 0.00
10cm 0.53, 0.46, 0.99 0.60, 0.54, 0.99 0.07, 0.09, 0.00

Table 5: Performance of models trained on all turbulence levels of Boxsat and that of models trained on all but one
turbulence level of Boxsat. Values are given in the order of F1 score, IoU, pixel accuracy.

Test r0 Trained on All Turbulence Levels Trained on All Turbulence Levels Excluding r0 = 25cm ∆

Pristine 0.83, 0.81, 1.00 0.84, 0.81, 1.00 0.01, 0.01, 0.00
80cm 0.74, 0.70, 0.99 0.74, 0.70, 0.99 0.00, 0.00, 0.00
40cm 0.72, 0.67, 0.99 0.72, 0.67, 0.99 0.00, 0.00, 0.00
25cm 0.68, 0.63, 0.99 0.70, 0.64, 0.99 0.01, 0.01, 0.00
15cm 0.65, 0.60, 0.99 0.65, 0.60, 0.99 0.01, 0.00, 0.00
10cm 0.61, 0.56, 0.98 0.60, 0.54, 0.98 -0.01, -0.01, 0.00

measuring the performance of the models epoch by epoch
as in Figure 7, the models trained on multiple turbulence
levels continued to learn even at the later epochs while the
models trained on single turbulence levels leveled off towards
the latter half of training. This indicates that the model
trained on all turbulence levels could have seen even better
performance if it had been trained with more epochs or a
higher learning rate. On the other hand, the model trained
on single turbulence levels could have also benefited from
further regularization.

For the second part of Scenario C, training a model on all
but one turbulence level, the resulting model was able to
segment across the full range of turbulence levels, even at
the levels not included in training. As shown in Table 5,
the performance on the excluded level was nearly identical
to the model trained on all the turbulence levels. This further
reinforces that the model can glean features of any turbulence
level from features at other turbulence levels. As a result,
the models trained in Scenario C, though only trained on a
small set of discrete turbulence levels, can be used to segment
images on a continuous spectrum of turbulence levels.

Scenario D: Reproducibility with Hubble— The results of
Scenarios A-C were also replicated with the Hubble dataset.
When training with Hubble renders for Scenario A, F1 was

measured at 0.66, IoU at 0.59, and pixel accuracy at 0.99.
Table 6 shows the F1 with relation to turbulence for Scenario
B, and Table 7 shows the turbulence for Scenario C.

Scenario E: Generalizing Poses— The models trained for
Scenario E as described in section 4 were then tested using the
200 most similar images previously identified and the regular
test set. The results for both are shown in Figure 8 for each
turbulence level. As shown, the performance between the two
sets is very similar. This suggests that the U-Net is capable of
learning to semantically segment the images of Hubble rather
than mapping the images to the most similar input from the
training set.

Scenario F: Multiple Satellites—When we expanded training
to multiple satellites at pristine levels, the resulting model
was able to segment the images for the satellites within the
training set. However, F1 score, IoU and pixel accuracy
for segmenting the satellites within the training set is 0.67,
0.64, and 1.00 respectively compared to 0.45, 0.39, and 0.97
respectively for Hubble which was excluded from the training
set. The difference in performance indicates that the model is
overfitting to our limited training dataset of 6 satellites. This
trend also continues as we introduce turbulence as shown by
the performance in Table 8.

9
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Figure 8: Comparison of performance of model trained for Scenario E when tested on images removed from the dataset
and images within the test dataset.
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Table 6: Performance of U-Net trained on Hubble at single turbulence levels. Values are given in the order of F1 score,
IoU, pixel accuracy. Bolded values are best performance for each training r0.

Training r0 Pristine 80 40 25 15 10

Te
st
r 0

(c
m

)

Pristine 0.66, 0.59, 0.99 0.46, 0.39, 0.97 0.30, 0.24, 0.93 0.33, 0.26, 0.92 0.21, 0.18, 0.90 0.24, 0.20, 0.90
80 0.28, 0.22, 0.87 0.66, 0.57, 0.99 0.60, 0.50, 0.98 0.53, 0.44, 0.97 0.29, 0.24, 0.92 0.25, 0.21, 0.90
40 0.25, 0.20, 0.86 0.60, 0.51, 0.98 0.63, 0.55, 0.99 0.61, 0.52, 0.98 0.35, 0.29, 0.94 0.25, 0.21, 0.90
25 0.23, 0.19, 0.86 0.48, 0.40, 0.96 0.59, 0.50, 0.98 0.63, 0.55, 0.98 0.44, 0.36, 0.96 0.30, 0.24, 0.92
15 0.20, 0.17, 0.86 0.34, 0.27, 0.90 0.41, 0.33, 0.93 0.53, 0.44, 0.96 0.52, 0.44, 0.98 0.44, 0.35, 0.95
10 0.18, 0.15, 0.85 0.27, 0.21, 0.85 0.31, 0.25, 0.87 0.39, 0.31, 0.90 0.42, 0.34, 0.95 0.50, 0.42, 0.97

Table 7: Performance of models trained on single turbulence levels of Hubble compared to that of models trained on all
turbulence levels of Hubble. Values are given in the order of F1 score, IoU, pixel accuracy.

Test r0 (cm) Trained on Same Turbulence as Test Trained on All Turbulence Levels ∆
Pristine 0.66, 0.59, 0.99 0.67, 0.60, 0.98 0.02, 0.00, -0.01
80cm 0.66, 0.57, 0.99 0.73, 0.67, 0.99 0.08, 0.10, 0.00
40cm 0.63, 0.55, 0.99 0.72, 0.66, 0.99 0.09, 0.11, 0.00
25cm 0.63, 0.55, 0.98 0.70, 0.63, 0.98 0.06, 0.09, 0.00
15cm 0.52, 0.44, 0.98 0.66, 0.59, 0.98 0.13, 0.15, 0.00
10cm 0.50, 0.42, 0.97 0.60, 0.53, 0.97 0.10, 0.11, 0.00

Table 8: Performance of U-Net trained on all satellites except Hubble at single turbulence levels. Values are given in the
order of F1 score, IoU, pixel accuracy. Test set either included Boxsat, COBE, MightySat, TAOS, TIROS, and WIRE as
indicated by ”All”, or just Hubble as indicated by ”Hub.”

Test r0 (cm)
Pristine 80 40

All Hub. All Hub. All Hub.

Tr
ai

ni
ng
r 0

Pristine 0.67, 0.64, 1.00 0.45, 0.39, 0.97 0.11, 0.08, 0.36 0.10, 0.07, 0.40 0.10, 0.07, 0.34 0.09, 0.07, 0.37
80cm 0.36, 0.30, 0.93 0.27, 0.23, 0.93 0.60, 0.55, 0.99 0.41, 0.36, 0.96 0.54, 0.48, 0.97 0.39, 0.33, 0.95
40cm 0.28, 0.22, 0.85 0.22, 0.18, 0.87 0.55, 0.50, 0.98 0.37, 0.32, 0.96 0.58, 0.53, 0.99 0.39, 0.33, 0.96
25cm 0.27, 0.22, 0.89 0.18, 0.16, 0.90 0.45, 0.39, 0.95 0.31, 0.26, 0.94 0.52, 0.46, 0.97 0.35, 0.30, 0.95
15cm 0.20, 0.16, 0.84 0.17, 0.15, 0.89 0.26, 0.21, 0.89 0.19, 0.17, 0.90 0.37, 0.30, 0.93 0.24, 0.21, 0.92
10cm 0.21, 0.18, 0.87 0.18, 0.16, 0.90 0.19, 0.16, 0.87 0.16, 0.15, 0.90 0.22, 0.18, 0.88 0.17, 0.16, 0.90

25 15 10
All Hub. All Hub. All Hub.

Tr
ai

ni
ng
r 0

Pristine 0.10, 0.06, 0.31 0.09, 0.06, 0.33 0.08, 0.05, 0.25 0.07, 0.04, 0.22 0.07, 0.04, 0.16 0.05, 0.03, 0.11
80cm 0.44, 0.38, 0.94 0.32, 0.27, 0.91 0.29, 0.23, 0.83 0.25, 0.21, 0.85 0.21, 0.17, 0.77 0.21, 0.18, 0.83
40cm 0.52, 0.46, 0.97 0.36, 0.30, 0.94 0.36, 0.30, 0.89 0.29, 0.24, 0.89 0.27, 0.21, 0.81 0.25, 0.20, 0.84
25cm 0.55, 0.50, 0.98 0.37, 0.31, 0.95 0.45, 0.39, 0.94 0.32, 0.27, 0.92 0.31, 0.25, 0.84 0.27, 0.22, 0.86
15cm 0.45, 0.39, 0.95 0.30, 0.25, 0.93 0.52, 0.47, 0.98 0.32, 0.27, 0.94 0.41, 0.34, 0.92 0.29, 0.24, 0.90
10cm 0.28, 0.23, 0.90 0.19, 0.17, 0.90 0.41, 0.34, 0.94 0.25, 0.21, 0.92 0.49, 0.44, 0.97 0.29, 0.24, 0.92

Despite overfitting to the satellites within the training set,
the overall performance of these experiments has shown
that semantic segmentation of ground-based images of LEO
satellites through turbulence is viable.

5. CONCLUSION
In this work, we have provided a convolutional neural net-
work approach for segmenting ground-based images of LEO
satellites. We have shown that a U-Net approach for this se-
mantic segmentation task can segment images through a wide
range of atmospheric turbulence levels. We have also shown
that the network can segment multiple different satellites.
For future work, we plan to incorporate procedural satellite
generation for better regularization and avoid overfitting to

just the satellites within the training dataset. Additionally,
we plan to explore performance with satellite images with
unique conditions such as glints, smear, and jitter. We wish to
also explore the network’s ability to segment satellites when
taking into account the class imbalance present.
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