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ABSTRACT

Approaches for large-language model compression using low-rank decomposition
have made strides, particularly with the introduction of activation and loss-aware
Singular Value Decomposition (SVD) that improve the trade-off between decom-
position rank and downstream task performance. Despite these advancements, a
persistent challenge remains—selecting the optimal ranks for each layer to jointly
optimize compression rate and downstream task accuracy. Current methods ei-
ther rely on heuristics that can yield sub-optimal results due to their limited dis-
crete search space or are gradient-based but are not as performant as heuristic
approaches without post-compression fine-tuning. To address these issues, we
propose Learning to Low-Rank Compress (LLRC), a gradient-based approach
which directly learns the weights of masks that select singular values in a fine-
tuning-free setting. Using a calibration dataset of just 3,000 documents, this
training architecture teaches the model to select fewer and fewer singular val-
ues while minimizing the divergence of intermediate activations from the original
model. Our approach outperforms competing fine-tuning-free rank selection ap-
proaches, such as Sensitivity-based Truncation Rank Searching (STRS), Adaptive
Rank Selection (ARS), and LLM-Pruner on Llama-2-7B, Llama-3-8B, Gemma-
7B, and Llama-2-13B across various compression rates on common-sense reason-
ing and open-domain question-answering tasks; For instance, with a compression
rate of 20%, our approach outperforms the competitive STRS on MMLU, BoolQ,
and OpenbookQA by 12%, 3.5%, and 4.4%, respectively, using Llama-2-13B.
More remarkably, our fine-tuning-free approach consistently outperforms LLM-
Pruner, even after fine-tuning, on NQ-Open, MMLU, BoolQ and OpenbookQA
with Llama-2-7B.

1 INTRODUCTION

Large language models (LLMs) such as GPT-3 (Brown et al., 2020) and LLaMA (Touvron et al.,
2023) are showing remarkable results in natural language understanding and generation tasks. These
models are not just pivotal in zero-shot language modelling but also extend their utility to applica-
tions such as code generation (Chen et al., 2021), conversational agents (Kumar et al., 2023), and
personalised education (Kasneci et al., 2023). Despite the success of these models in solving a wide
range of tasks, their use is limited by high computing and memory requirements. For example,
LLaMA-2 comes in 7 billion and 40 billion parameter variants (Touvron et al., 2023), requiring
25.79 GB and 153.87 GB of memory, respectively. Yet, these models are small compared to others,
such as GPT-3 (Brown et al., 2020) and PaLM (Chowdhery et al., 2022), which have 175 billion and
500 billion parameters, respectively.

As these models grow, various compression techniques have been developed to reduce their size.
Quantization, which reduces the number of bits required to represent each parameter, is widely used
for compressing language models (Dettmers et al., 2022; Frantar et al., 2023; Lin et al., 2024). For
instance, LLM.int8() is a procedure for using 8-bit precision in matrix multiplication in trans-
former layers that had cut inference memory requirements by half without significant performance
degradation (Dettmers et al., 2022).

As an alternative to quantisation, other works explored the structural pruning of LLMs (Ma et al.,
2023; Xia et al., 2024). These works follow two stages for compression: first, pruning for model
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compression and then a continued training step to recover performance. LLM Pruner (Ma et al.,
2023) utilizes parameter-efficient fine-tuning after compression to recover performance whereas
Sheared Llama (Xia et al., 2024) performs extensive training on 50 billion tokens after compression.
Other recent works show that applying low-rank matrix decomposition techniques can compress
and reduce memory requirements of language models (Hsu et al., 2022a; Li et al., 2023; Yuan et al.,
2024). Moreover, the application of these methods has seen improvements through weighted singu-
lar value decomposition, a variant that makes the decomposition loss aware or activation aware (Hsu
et al., 2022a; Yuan et al., 2024), thus improving the trade-off of compression and performance. Yet,
one key challenge that both approaches face is the selection of optimal ranks for each layer, which
determines the amount of compression. Given that research has shown that different layers of a lan-
guage model may have different optimal compression rates Yuan et al. (2024); Nawrot et al. (2024),
using a constant rank across layers may not be an effective solution. To address this problem, Yuan
et al. (2024) propose a heuristic named Sensitivity-based Truncation Rank Searching (STRS), which
iteratively searches for optimal ranks per layer by evaluating model perplexity on a small calibration
set. Despite proving better than a naive selection of constant compression ratios across layers, this
approach has two core problems that can lead to suboptimal solutions. First, the search space of
ranks is a discrete set of only 10 elements, significantly restricting the number of options available
for the ranks. Second, the optimal decomposition of each layer is identified independently, without
taking into account the decomposition of the other layers. On the other hand, Gao et al. (2024)

Figure 1: Outline of our proposed method to learn SVD ranks for low-rank compression.

proposed a rank selection approach to learn the optimal ranks through gradient descent. In Adaptive
Rank Selection (ARS), a binary masking mechanism is used for optimizing the number of ranks
through training Gao et al. (2024). Using GRUs (Dey & Salem, 2017) and linear projections, ARS
introduced a learnable singular value masking layer into the SVD reconstruction from which the
rank was extracted. However, a key shortcoming is that rank selection using ARS leads to heavy
performance degradation and requires an expensive post-compression training stage. Similar to
this approach, pruning techniques as Wang et al. (2020c) have also explored learning singular value
masking for compression; however, unlike ARS, it performs training of the entire model and focuses
on smaller models like BERT. To address these problems in rank selection in low-rank decomposed
models, we propose a method called Learning to Low-Rank Compress (LLRC).

LLRC can learn the optimal per-layer factorisation ranks by introducing a singular value selection
mask Σm into the matrix reconstruction, which is optimised via gradient-based optimisation; Fig. 1
provides a high-level outline of the method. The mask Σm is trained using a multi-objective loss
function that enables the balancing of compression costs and downstream task performance.

This training approach is lightweight, as it only requires gradient computation for the linear singular
value masking layers rather than for the entire model. Following training, after the overall desired
compression rate is achieved, the masks are directly utilised to select the most optimal number
of singular values for the given compression rate. To summarise, our key contributions are the
following:

• A fine-tuning free technique for LLMs called Learning to Low-Rank Compress (LLRC) to learn
optimal singular values for each layer through training on a small calibration dataset.

• A learnable singular value masking linear parameter which learns, in a fine-tuning free setting, to
select the most optimal any-k singular values for compression of LLMs.

2 RELATED WORK

Model compression is a crucial field in deep learning that focuses on reducing the computational
costs associated with deploying models while maintaining their performance. There are several
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approaches to neural network compression, including pruning (Han et al., 2015; Zhu & Gupta,
2017; Ma et al., 2023), quantisation (Bai et al., 2024; Xiao et al., 2023), and low-rank factorisation,
the focus of this work. Specifically in natural language processing (NLP), there have been various
efforts along these lines. Early work aimed to reduce the number of parameters in LSTMs. For
instance, Winata et al. (2019) applied low-rank decomposition techniques such as Semi-NMF and
SVD for LSTM compression and compared the results to pruning. In contrast to performing low-
rank factorisation on a trained model, other works applied tensor decomposition to re-parameterize
the model architecture for training (Yang et al., 2017; Pan et al., 2019; Zangrando et al., 2023).
For instance, TR-LSTM utilised the low-rank tensor ring decomposition (TRD) to reformulate the
input-to-hidden transformation (Pan et al., 2019). While Tensor Train (Yang et al., 2017) and Tensor
Ring (Pan et al., 2019) are effective model compression techniques, their application to compress an
already trained model is not straightforward.

More recent works focused on applying low-rank factorisation to compress language models with-
out full re-training. For example, Hsu et al. (2022a) develop a weighted singular value decomposi-
tion approach called Fisher-Weighted SVD (FWSVD) that tries to preserve the model performance
on a given downstream task. The authors compare approaches using SVD, SVD with fine-tuning,
FWSVD, and FWSVD with fine-tuning and show that FWSVD with fine-tuning yields more accu-
rate results than naive SVD with fine-tuning (Hsu et al., 2022a). Activation-Aware Singular Value
Decomposition (ASVD) uses the intermediate activations in the weighted singular value decomposi-
tion (Yuan et al., 2024), minimising the reconstruction error of the output of the linear transformation
rather than minimising the error of the weight itself (Yuan et al., 2024). This method yields more
accurate results than Fisher SVD and allows for increased compression at a better trade-off with
performance (Yuan et al., 2024).

In both these approaches, while performing low-rank decomposition for compression, the singular
value rank for each layer has to be determined. Besides a naive approach that selects an equal
rank across all layers, recent works explored approaches to find the optimal rank for each layer.
A relevant approach is Sensitivity-based Truncation Rank Searching (STRS; Yuan et al., 2024),
which iteratively searches for optimal ranks per layer by evaluating model perplexity on a small
calibration set. STRS performs a binary search by using a discrete set of pre-defined 10 compression
rates and iteratively applying low-rank decomposition to one layer, leaving the rest of the network
unchanged (Yuan et al., 2024). Whereas, ARS Gao et al. (2024) tackle rank selection using gradient-
based optimization, employing a recurrent neural network and linear layers to predict binary masks
over singular values.

3 BACKGROUND

We now describe how Singular Value Decomposition (SVD) can be used to compress linear layers.
Moreover, we also briefly cover details of ASVD (Yuan et al., 2024), a weighted SVD technique
which yields higher model compression rates at lower performance loss.

3.1 COMPRESSING TRANSFORMERS WITH SVD

SVD is a fundamental matrix factorization technique used in various fields, including image process-
ing and machine learning (Chen, 2018; Yang, 2021; Schotthöfer et al., 2022). The SVD decomposes
a matrix W into the product of three other matrices: Ur, Σr, and V T

r as shown in Eq. (1):

W = UrΣrV
T
r (1)

Here, W ∈ Rm×n is a rank-r matrix, Ur ∈ Rm×r and Vr ∈ Rn×r are orthogonal, Σr ∈ Rr×r is
the diagonal matrix of the singular values, and r is the rank of the decomposition. Decreasing r,
thus discarding some of the singular values, reduces the dimension of Ur and Vr but worsens the
approximation of W . In particular, for any k ≤ r, it holds:

UkΣkV
T
k = arg min

rank(Wk)=k
∥Wk −W∥2 .

If we approximate W using a low-rank SVD, then we only need to store the highest r singular values
and their corresponding singular vectors. This would result in the storage of three smaller matrices,
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U , Σ, and V , in place of a larger matrix W . Therefore, if W is of shape (m,n), the compression
can be quantified by the parameter ratio in Eq. (2), where r denotes the rank of decomposition:

Param Ratio =
m · r + n · r

m · n
. (2)

Such approximation can be applied to linear layers in a transformer, such as key, value, and query
projection matrices, and the linear layers in a feed-forward network.

3.2 ACTIVATION-AWARE SVD

Activation-Aware SVD is a form of weighted SVD that aims to minimise the reconstruction error
of the output of a linear transformation rather than minimising the error of the reconstructed weight
matrix (Yuan et al., 2024). This approach can be formulated as optimising the following quantity:

arg min
rank(Wk)=k

∥WkX −WX∥2 (3)

where Wk is the reconstructed weight using k singular values and X is an input into the linear
transformation. This is achieved by performing SVD on WS rather than W and then scaling the
reconstructed weight by S−1, where S is a matrix calculated from a set of inputs X designed to
capture the influence of the input channels on the weights (Yuan et al., 2024).

4 LEARNING TO LOW-RANK COMPRESS

In this work, we propose Learning to Low-Rank Compress (LLRC), an approach that learns optimal
Singular Value Decomposition (SVD) ranks for each layer from data to achieve a desired compres-
sion rate. The approach centres on applying SVD to each weight matrix targeted for compression,
followed by a learnable masking layer in the weight reconstruction that selectively masks singular
values, as shown in Fig. 1. The training process begins with an uncompressed model, and through
training, the model increases the compression until the desired overall compression rate is reached.
During training, these masking layers can adaptively learn highly different compression rates for
each layer.

The advantage of LLRC is that it jointly optimises compression and model performance, where the
model is trained by optimising a multi-task training objective composed of compression, distillation,
and mask smoothing loss. During training, the only learnable parameters are the weights that control
the masking while the rest of the model is frozen. The first part of the objective is a compression loss
that minimizes the average value of the weights responsible for masking, generating more sparsity in
the mask. The second part of the objective is a distillation objective, which minimizes the divergence
between two intermediate activations between the compressed model and the uncompressed model.
The third part of the objective is a Total Variation loss that is applied to the learnable masking layer
to guide the learning of smooth masks. The following sub-sections outline further provide details of
the training procedure.

4.1 APPLYING SVD

We perform SVD on all linear projection layers in the model except for the logits layer. Given
the ability of weighted SVD approaches to retain performance at higher compression rates (Hsu
et al., 2022b; Yuan et al., 2024), we utilize ASVD as a drop-in replacement for SVD in most of our
experiments. For consistency with Yuan et al. (2024), we use α = 0.5.

4.2 TRAINABLE SINGULAR VALUE SELECTION

Following decomposing a linear layer into its factors using SVD as in Eq. (1), we introduce a learn-
able mask inserted in its reconstruction, outlined in Fig. 1 and defined as follows:

W = UΣ(Σmask)V
T with Σmask = g(Wlearnable) . (4)

Here, the matrix Wlearnable ∈ R1×rank, used to generate Σmask, is a learnable parameter. The func-
tion g in Eq. (4) represents the Gumbel-Sigmoid function (Jang et al., 2017). The Gumbel-Sigmoid
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function is a continuous relaxation of discrete Bernoulli random variables, enabling gradient-based
optimization over the binary mask in Eq. (4) that leverages the Gumbel-Softmax trick to reparam-
eterise discrete sampling into a differentiable function of the logits (Jang et al., 2017). The learnt
mask is represented by Σmask ∈ {0, 1}1×rank and the reconstructed weight is W ∈ Rm×n.

At the start of training, Wlearnable is initialized such that the mask selects all singular values and
through training, its parameters learn sparser masks to achieve the target compression rate. During
training, the only learnable parameters in the model are the newly introduced masking layers and
the rest of the model is frozen, keeping the training process efficient.

4.3 TRAINING

4.3.1 DISTILLATION DATASET

On the training corpus, a set of 3000 documents, we create a distillation dataset which contains
the hidden state of each token from the middle layer and the hidden states from before the logits
layer (Wang et al., 2020a). The activations in this dataset will serve as labels used during training.

4.3.2 OPTIMISATION

The objective function focuses on minimising the number of singular values selected, minimising
the divergence between the activations of the original and compressed models, and enforcing the
smoothness of the learned masks. We aim to minimise the total loss L, which is a weighted sum of
the compression loss Lcompression, the distillation loss Ldistillation, and the Total Variation loss Ltv:

L = αLdistillation + βLcompression + γLtv, (5)

where α, β, γ ∈ R are user-defined hyperparameters, further discussed in Section 5.4.

Compression Loss For the compression loss, we directly minimise the mean of the learnable
weights, helping generate sparser masks and increasing the compression rate.

Lcompression =
1

Nlayers

Nlayers∑
i=1

Average(Wlearnable,i) (6)

Since we minimise only the overall compression rate rather than setting a target compression for
each layer, the model can learn different compression rates for each layer type and layer number.

Distillation Loss The distillation loss minimises the differences in activations between the orig-
inal model and the model being compressed using the mean-squared error loss in Eq. (7), follow-
ing recent model compression results achieved through deep self-attention distillation (Wang et al.,
2020b;a). We use the following distillation loss:

Ldistillation = ∥Acompressed −A∥2F , (7)

where Acompressed ∈ RL×D and A ∈ RL×D denote the activations of the compressed and original
models, respectively, where L is the sequence length and D is the dimension of the hidden state.
Following Wang et al. (2020a), we use the activations of the middle layer and the hidden states
before the logits layer as targets. As an alternative to distillation, we also conducted experiments
using a pre-training next token prediction loss, which can be found in Ablations Section 7.3.

Total Variation Loss As described in Eq. (8), we introduce a Total Variation (TV) loss on the
learnable mask from Eq. (4) to guide learning a smooth mask. Here, n refers to the index of the
mask vector of length N . A smooth mask refers to one that selects neighbouring singular values
together rather than skipping intermediate values.

Ltv =

N−1∑
n=0

|Σmask,n+1 − Σmask,n| (8)

Theoretically, reconstructing a weight matrix after SVD involves utilizing the top-k largest singular
values sorted by their magnitude. Following this intuition, if, for example, the 5th and 7th singular
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values are deemed relevant by the mask, this loss forces the 6th singular value also to be deemed
relevant by the mask. We experimentally analyse the contribution of the TV loss in our ablations in
Section 7.2.

4.4 MODEL POST-PROCESSING

After training, we use the learned singular value masks to select the required singular values for
compression. During the evaluation, we applied a 0.5 threshold to the sigmoid of the logits to
generate the binary mask without needing the differentiable masking operator.

If a layer is not compressed more than 1%, we reconstruct its entire weight matrix using its full
rank, and the layer remains uncompressed. The early stopping criteria while training accounts for
this and only terminates training when the precise compression rate is achieved. This design choice
of avoiding using the mask is crucial; even if the learned singular value mask retains 90% of the
singular values, compression might not be achieved as per Eq. (2), and the full rank can be used to
reconstruct the weight.

5 EXPERIMENTAL SETUP

5.1 DATASET AND EVALUATION

We used a calibration dataset of 3000 documents from WikiText-2 (Merity et al., 2016) for training.
We evaluate the compressed model on zero-shot PIQA (Bisk et al., 2020), BoolQ (Clark et al., 2019),
and OpenbookQA (Mihaylov et al., 2018), MMLU (Hendrycks et al., 2021) and 5-shot evaluations
on NQ-Open (Kwiatkowski et al., 2019). Datasets cover common-sense reasoning datasets and
open-domain QA.

5.2 TRAINING AND DATA CONFIGURATION

The training dataset for LLRC consisted of 3,000 unique documents from WikiText-2. To have a
greater number of token activations present per batch, all documents selected had more than 150
words. Experiments were conducted using a batch size of 4, a maximum token length of 256, and
optimized with the AdamW optimizer (Loshchilov & Hutter, 2019). We employed an initial learning
rate of 0.01, which was halved upon reaching the target parameter ratio, to improve training stability.
To avoid unnecessary training, we use early stopping, terminating the training 750 steps after the
target parameter ratio was achieved.

5.3 MASKING LAYER INITIALIZATION

At the start of the training, the learnable weight matrix Wlearnable is initialized such that the model
starts in an uncompressed state, selecting all singular values. Given that higher singular values are
theoretically more significant, we introduce an inductive bias into the weight initialization of the
mask. To this end, Wlearnable is initialized with linearly distributed values ranging in [3, 6], aligned
with the magnitude of the singular values. Following Nawrot et al. (2024), we use a temperature of
0.1 for the Gumbel function, which controls the hardness of the mask.

5.4 OBJECTIVE FUNCTION CONFIGURATION

The objective function in Eq. (5) represents a weighted sum of the compression, distillation, and
total variation loss. The weight on the compression loss, denoted by β, is set to a constant value of 1
until the target compression ratio is achieved, after which it is set to 0 to prevent further unnecessary
compression and focus on the model loss. Instead of using a constant value for α, which is more
susceptible to the initial choice, inspired by Fu et al. (2019), we oscillate α between two bounds
between 1 and 0 using the cosine function. This also enables the training to oscillate focus between
optimizing for compression and performance. More details on the scaling function of α can be found
in Appendix A.1.
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6 RESULTS

The following subsections cover the downstream evaluation performance of our approach. We
benchmark it against other models compressed using low-rank decomposition, as well as alterna-
tive compression methods such as structural pruning.

6.1 EVALUATION BENCHMARKS

To evaluate the efficacy of our gradient-based rank selection training procedure, Learning to Low-
Rank Compress (LLRC), we benchmark it against a baseline rank selection and advanced techniques
such as Sensitivity-based Truncation Rank Searching (STRS; Yuan et al., 2024) and Adaptive Rank
Selection (ARS; Gao et al., 2024). 1 We perform extensive compression performance comparisons
on four architectures of different sizes: Llama-2-7B, Llama-3-8B, Gemma-7B, and Llama-2-13B.

Given that weighted SVD approaches have shown better compression results compared to plain
SVD (Hsu et al., 2022a; Yuan et al., 2024), in our experiments, we use Activation Aware SVD (Yuan
et al., 2024) as a drop-in replacement for SVD to perform low-rank decomposition. As a baseline
algorithm for rank selection, we selected ranks equally across all layers that lead to the target param-
eter ratio of compression—we refer to this approach as “Fixed Rate”. If the target model parameter
ratio is 0.90, each layer was compressed equally by 10%. To compare fine-tuning free rank se-
lection approaches, for ARS, we only use the rank selection portion of the algorithm without the
post-training fine-tuning.

Method Param Ratio LLaMA-2-7b LLaMA-3-8b

NQOpen MMLU BoolQ PIQA OQA NQOpen MMLU BoolQ PIQA OQA

Baseline 1.00 26.0 41.3 77.8 78.1 31.4 29.0 62.1 81.3 79.7 34.8

Fixed Rate 0.90 3.41 26.3 56.3 67.7 23.2 3.10 37.6 74.6 70.1 23.2
STRS 0.90 21.2 37.6 75.8 77.5 31.8 17.7 49.7 73.2 77.7 31.4
ARS 0.90 8.01 29.0 51.9 72.2 25.4 9.09 34.8 66.6 73.9 27.6
Ours 0.90 22.1 37.8 77.3 78.1 33.4 19.6 44.8 71.9 77.7 32.4

Fixed Rate 0.85 1.94 23.7 49.9 65.2 21.2 1.69 29.0 64.6 65.2 19.6
STRS 0.85 16.3 32.4 75.1 76.0 31.4 4.76 33.0 68.6 70.2 22.8
ARS 0.85 4.40 23.1 51.6 69.9 23.0 0.17 22.9 39.3 60.8 16.5
Ours 0.85 18.5 33.2 74.8 77.2 32.4 14.0 29.4 61.4 75.5 29.6

Fixed Rate 0.80 0.53 23.7 60.0 62.9 20.8 0.33 24.9 63.0 60.9 17.4
STRS 0.80 9.25 28.1 71.6 71.2 28.2 0.25 24.9 49.1 63.3 16.6
ARS 0.80 0.89 23.0 59.1 65.3 19.8 0.17 24.0 60.0 62.9 18.2
Ours 0.80 13.5 29.3 71.4 75.1 32.8 8.59 24.8 53.5 74.1 25.4

Table 1: Comparison of evaluation performance using different rank selection methods on LLaMA-
2-7b and LLaMA-3-8b. We compare Fixed Rate (naive baseline), STRS Yuan et al. (2024), ARS
Gao et al. (2024), and our proposed approach.

Table 1 shows a comparison of the evaluation performance of these approaches on Llama-2-7B and
Llama-3-8B, while Figure 2 contains a visualization of the performance on all the models, evaluated
on zero-shot MMLU, BoolQ, PIQA, OpenbookQA and 5-shot NQ-Open. The results in Table 1
show that our proposed approach demonstrates superior performance on 3 out of 5 datasets, NQ-
Open, PIQA, and OpenbookQA, compared to all rank selection approaches and performs competi-
tively on MMLU and BoolQ. It consistently maintains higher accuracy across various compression
levels on a majority of the datasets.

In particular, our approach exhibits significant advantages at lower parameter ratios. For instance,
at a parameter ratio of 0.80 of Llama-2-7B, our approach outperforms STRS on NQopen by 4.3%,
on PIQA by 3.9% and on OpenbookQA by 4.6%. For the same parameter ratio, on Llama-2-13B,
as shown in Fig. 2, our approach strongly outperforms the competitive STRS on MMLU, BoolQ,
and OpenbookQA by 12%, 3.5%, and 4.4%, respectively. In the compression of Gemma-7B, on

1ARS Implementation: link to code; there is an implementation caveat with ARS, refer to Appendix F.
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Figure 2: Evaluation of compression performance on four architectures using different rank selection
methods

Openbook-QA, our approach leads to an improvement in performance as the parameter ratio de-
creased from 0.90 and 0.80. We notice that a similar phenomenon was observed by e.g. Sharma
et al. (2024), where they showed that selectively reducing the ranks of individual layers can lead to
improved 0-shot performance.

Detailed tables of performance metrics for Gemma-7B and Llama-2-13B can be found in Ap-
pendix D and Appendix E, respectively. Another pattern we observe is that the performance loss,
across all rank selection approaches, is greater in models such as Llama-3-8B and Gemma-7B com-
pared to Llama-2-7B. We hypothesize that this is due to the combination of the feedforward network
(FFN) being the least low-rank compressible and the FFN covering a greater percentage of parame-
ters in these models compared to Llama-2-7B. We further explore this in Appendix C.

6.2 IMPACT OF FINE-TUNING

To place our work in the larger context of model compression, we benchmark our approach against
LLM-Pruner (Ma et al., 2023), a structure pruning method with both fine-tuning and fine-tuning-
free variants. Since our approach does not update model weights, we compare it to LLM-Pruner’s
fine-tuning-free variant.

The comparative analysis presented in Table 2 highlights that our fine-tuning free approach out-
performs the fine-tuning free LLM-Pruner results on most datasets across all compression rates.
The hyperparameters used to generate the LLM Pruner results are present in Appendix B.3 This
demonstrates that our rank selection approach better preserves performance in a fine-tuning-free
manner. At a parameter ratio of 0.80, our approach on LLaMA-2-7B not only surpasses LLM-
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Method Param Ratio LLaMA-2-7b LLaMA-3-8b

NQ-Open MMLU BoolQ PIQA OQA NQ-Open MMLU BoolQ PIQA OQA

Baseline 1.00 26.0 41.3 77.8 78.1 31.4 29.0 62.1 81.3 79.7 34.8

Pruner 0.90 15.5 28.5 64.8 77.3 31.0 17.0 41.7 68.4 77.9 31.0
Ours 0.90 22.1 37.8 77.3 78.1 33.4 19.6 44.8 71.9 77.7 32.4

Pruner 0.85 13.1 24.8 67.9 77.5 31.0 11.8 35.3 56.6 77.4 28.8
Ours 0.85 18.5 33.2 74.8 77.2 32.4 14.0 29.4 61.4 75.5 29.6

Pruner 0.80 7.8 25.1 64.6 76.2 29.0 5.5 23.0 53.5 74.2 24.4
Ours 0.80 13.5 29.3 71.4 75.1 32.8 8.6 24.8 53.5 74.1 25.4

LLM Pruner performance with additional fine-tuning on Alpaca dataset

Pruner+Finetune 0.90 17.9 34.0 71.4 78.1 33.0 19.0 48.0 76.1 79.5 35.0
Pruner+Finetune 0.85 14.7 31.4 72.2 78.7 33.0 14.7 42.9 74.4 79.0 30.8
Pruner+Finetune 0.80 11.1 26.7 67.8 77.8 30.4 10.6 32.9 70.2 78.2 29.8

Table 2: Performance comparison between LLM-Pruner and Our approach on LLAMA-2-7B and
LLAMA-3-8B

Pruner without fine-tuning but also outperforms LLM-Pruner with fine-tuning on 4 out of 5 datasets.
This demonstrates competitive compression performance on LLaMA-2-7B, even when compared to
LLM-Pruner, which uses post-compression fine-tuning. However, for Llama-3-8B, as the compres-
sion rate increases, LLM-Pruner with fine-tuning performs stronger than our fine-tuning-free ap-
proach. While ARS explores fine-tuning after compression through rank selection, it utilizes much
more computation, requiring 576 GPU hours Gao et al. (2024). In our work, we address competi-
tive compression performance in a fine-tuning-free manner and leave approaches integrating further
fine-tuning of low-rank compressed models as future work.

7 ABLATIONS

This section contains ablations studies that guided modelling design choices.

7.1 SELECTING ANY-K SINGULAR VALUES VS TOP-K

Theoretically, when selecting k singular values for retention, the optimal choice to minimize recon-
struction loss would typically be the top k singular values by magnitude. However, our approach,
which allows the mask to learn to select any k singular values rather than strictly the top k, has
shown strong practical performance despite limited theoretical backing.
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Figure 3: Evaluation performance of Llama-2-7b with using any-k and top-k masking

To evaluate our rank selection method, we compressed the LLaMA-2-7b model to various target
parameter ratios and performed evaluation using both the top-k singular value selection and our
default any-k method. The results shown in Figure 3 demonstrate, that in the lowest parameter ratio
of 0.80, any-k mask outperforms the top-k mask on 5 out of 5 datasets. There are significant gains
in open-domain QA with any-k performing 4% better on NQ-Open at parameter ratio 0.80

7.2 INTRODUCTION OF TOTAL VARIATION LOSS

Motivated by the theoretical understanding that higher singular values are more relevant, we used
the Total Variation (TV) loss to guide our learnt masks to be smooth.
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Figure 4: Evaluation performance of Llama-2-7b with and without using total variational loss

To validate this hypothesis, we compressed the LLaMA-2-7b model to various target parameter
ratios using and without using the total variational loss. Experimental results shown in Figure 4
demonstrate the efficacy of introducing the total variational (tv) loss function. On NQ-Open, MMLU
and PIQA introducing this loss function consistently leads to higher performance. On OpenbookQA,
this loss function leads to higher performance on parameter ratios 0.85 and 0.80.

7.3 DISTILLATION OBJECTIVE OVER PRE-TRAINING OBJECTIVE

In our final results, we utilized a distillation objective that minimized the divergence between the
activations of the compressed model and the original model. While both methods lead to similar
results, as shown in Fig. 5, indicating the flexibility of our masking training procedure, learning the
optimal ranks through distillation leads to better generalization on the majority of datasets. At 20%
compression, distillation outperforms pre-training in all datasets.
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Figure 5: Comparison of performance of models trained using distillation objective and a pre-
training objective (next word prediction)

For the pre-training objective, the same dataset was used and documents were packed to a sequence
length of 256 tokens. More details of hyper-parameters are in Appendix G.

8 CONCLUSION

In summary, our study introduces Learning to Low-Rank Compress (LLRC), an approach that can
learn optimal Singular Value Decomposition ranks for each layer from data to perform low-rank
compression of language models. The rank selection layer is a learnable parameter vector, making
the training computationally more efficient than the related gradient-based rank selection approach
called ARS that uses RNNs and linear up-projection layers(Gao et al., 2024). Unique from other
rank selection approaches such as Yuan et al. (2024); Gao et al. (2024), which select optimal ranks
(top-k singular values), our method selects any-k singular values to achieve compression. Among
rank selection methods, we showed our method applied on Llama-2-7b, Llama-3-8b, Llama-2-13b,
and Gemma-7b significantly outperforms all other rank selection approaches on NQ-Open, PIQA,
and OpenbookQA. For instance, for Llama-3-8b our method achieved over 6% higher accuracy than
the second highest on NQ-Open, PIQA, and OpenBookQA at a parameter ratio of 0.80. On Llama-
2-13B, our approach outperforms the competitive STRS on MMLU, BoolQ, and OpenbookQA by
12%, 3.5%, and 4.4%, respectively. Compared to existing compression techniques, our fine-tuning
free method outperforms LLM Pruner (without fine-tuning) on various compression rates. More-
over, our fine-tuning-free approach also is competitive with LLM-Pruner (with fine-tuning), out-
performing it on NQ-Open, MMLU, BoolQ, and OpenbookQA at compression rate of 20% with
Llama-2-7B. However, on higher compression rates of 15% and 20% on Llama-3-8B, LLM Pruner
(with fine-tuning) performs stronger, indicating the necessity of exploring efficient fine-tuning on
low-rank compressed models.
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Kaplan, Harrison Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, and Raul
Puri. Evaluating large language models trained on code. CoRR, abs/2107.03374, 2021. URL
https://arxiv.org/abs/2107.03374.

Zihan Chen. Singular value decomposition and its applications in image processing. In Proceedings
of the 2018 1st International Conference on Mathematics and Statistics, ICoMS ’18, pp. 16–22,
New York, NY, USA, 2018. Association for Computing Machinery. ISBN 9781450365383. doi:
10.1145/3274250.3274261. URL https://doi.org/10.1145/3274250.3274261.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh,
Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam
Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James
Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Lev-
skaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra, Kevin
Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret
Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick,
Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Erica
Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Bren-
nan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas
Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. Palm: Scaling language modeling with pathways,
2022. URL https://arxiv.org/abs/2204.02311.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. In NAACL-HLT
(1), pp. 2924–2936. Association for Computational Linguistics, 2019.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Llm.int8(): 8-bit matrix multi-
plication for transformers at scale, 2022. URL https://arxiv.org/abs/2208.07339.

Rahul Dey and Fathi M Salem. Gate-variants of gated recurrent unit (gru) neural networks. In 2017
IEEE 60th international midwest symposium on circuits and systems (MWSCAS), pp. 1597–1600.
IEEE, 2017.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers, 2023. URL https://arxiv.org/
abs/2210.17323.

Hao Fu, Chunyuan Li, Xiaodong Liu, Jianfeng Gao, Asli Celikyilmaz, and Lawrence Carin. Cycli-
cal annealing schedule: A simple approach to mitigating kl vanishing, 2019. URL https:
//arxiv.org/abs/1903.10145.

Shangqian Gao, Ting Hua, Yen-Chang Hsu, Yilin Shen, and Hongxia Jin. Adaptive rank selec-
tions for low-rank approximation of language models. In Kevin Duh, Helena Gomez, and Steven
Bethard (eds.), Proceedings of the 2024 Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language Technologies (Volume 1: Long Pa-
pers), pp. 227–241, Mexico City, Mexico, June 2024. Association for Computational Linguis-
tics. doi: 10.18653/v1/2024.naacl-long.13. URL https://aclanthology.org/2024.
naacl-long.13.

11

https://arxiv.org/abs/2107.03374
https://doi.org/10.1145/3274250.3274261
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2208.07339
https://arxiv.org/abs/2210.17323
https://arxiv.org/abs/2210.17323
https://arxiv.org/abs/1903.10145
https://arxiv.org/abs/1903.10145
https://aclanthology.org/2024.naacl-long.13
https://aclanthology.org/2024.naacl-long.13


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. Proceedings of the Interna-
tional Conference on Learning Representations (ICLR), 2021.

Yen-Chang Hsu, Ting Hua, Sung-En Chang, Qiang Lou, Yilin Shen, and Hongxia Jin. Language
model compression with weighted low-rank factorization. ArXiv, abs/2207.00112, 2022a. URL
https://api.semanticscholar.org/CorpusID:250243971.

Yen-Chang Hsu, Ting Hua, Sungen Chang, Qian Lou, Yilin Shen, and Hongxia Jin. Language model
compression with weighted low-rank factorization, 2022b.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax, 2017.
URL https://arxiv.org/abs/1611.01144.
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A TRAINING DETAILS

A.1 DISTILLATION SCALE PARAMETER

The distillation scale parameter α in Equation 5 equations below:

z = cos

(
2π · 10 · current step

total steps

)
(9)

α = min (max(z, b), c) (10)

This scaling α follows a cosine distribution that completes 1 cycle at 10% of total training steps,
and the min value is capped at b and max c, which are decided based on the rate of compression
required. The lower the value of b and c, the faster the model learns the required compression rate.
For llama-2-7b, we use b=0.3 and c=1.0, for llama-3-8b we use b=0.25 and c=0.5, for Gemma-7b
we use b=0.5 and c=1.0. As a warmup, for the first 250 steps, we avoid any scaling and use α = 1.0.

B EVALUATION DETAILS

B.1 ASVD STRS HYPER-PARAMETERS

The hyperparameters for STRS ASVD are below:

• α: 0.5
• Number of Calibration Samples: 32
• Max Sequence Length: 2048

B.2 ADAPTIVE RANK SELECTION (ARS) HYPER-PARAMETERS

The benchmarks of our ARS algorithm is based on our implementation, which is open-sourced here:
GitHub. The dataset used is the same as one used in our work, Wikitext-2 (Merity et al., 2016)

• Llama-2-7b: λ:16, γ: 1, α: 1e-3, Optimizer: Adam
• Llama-3-8b: λ: 8, γ: 2, α: 1e-3, Optimizer: Adam
• Gemma-7b:, λ: 8, γ: 2, α: 1e-3, Optimizer: Adam
• Llama-2-13b: λ:16, γ: 1, α: 1e-3, Optimizer: Adam

For Llama-2-7b, we used λ=16 and γ=1, instead of λ=8 and γ=2, because the former lead to an
acceptable NQ-Open performance at Param Ratio 0.90.

B.3 LLM PRUNER HYPER-PARAMETERS

This section outlines the hyper-parameters used for benchmarking LLM-Pruner on downstream
datasets with various compression ratios.

• Pruning:
– Block-wise Pruning:

* Block MLP Layer Start: 4
* Block MLP Layer End: 30
* Block Attention Layer Start: 4
* Block Attention Layer End: 30

– Pruner Type: Taylor
– Taylor Strategy: param first

• Post-Training:
– Dataset: yahma/alpaca-cleaned
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– LoRA Rank: 8
– Number of Epochs: 2
– Learning Rate: 1e-4
– Batch Size: 64

C INSIGHTS FROM LEARNT COMPRESSION RATES

To gain insights from the learnt compression rates, we exported the learnt singular value masks
for all the layers and visualized them in Figure 6. Lower parameter ratios could indicate that the
reconstruction of the weight is allowed to be more lossy or has the presence of a strong low-rank
structure.

Figure 6 reveals a pattern across all layer types: the earliest layers exhibit a higher degree of com-
pressibility. For example, the up-projection layer in the first layer is compressed by approximately
50%, while later layers show negligible or no compression.
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Figure 6: Distribution of compression rates across layer types and layer numbers in the LLaMA-2-
7b model that was compressed by 20% (param ratio of 0.80) using our approach.

This finding highlights the distinct nature of the information processed by earlier layers, suggesting
a more pronounced low-rank structure in these layers. In addition to the layer-wise compression
pattern, the visualization indicates that among the different types of layers, key and query projection
layers are the most compressed. This is justifiable, the key and query projection layer only affect
the information flow through attention weight scalars rather than through projections. In contrast,
up-projection and down-projection layers remain largely uncompressed, suggesting that the model
suffers more by compressing these layers. This distinction further underscores the variability in the
representational capacity and functional roles of different layers within the model.
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Figure 7: Distribution of compression rates across layer types and layer numbers in the LLaMA-3-
8b model that was compressed by 20%
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The learn compression rates in Llama-3-8B, as shown in Figure 7, differ from Llama-2-7B’s, in
that the key and query project layers are compressed much more. One explanation for this is the
difference in architecture. The architecture of Llama-3-8B contrasts with Llama-2-7B in that there
is a greater number of parameters in the feedforward network. In llama-3-8B, the up projection layer
projects from a dimension of 4096 to 14,336, whereas llama-2-7B projects 4096 to 11,008. Figure 6
showed us that the up projection and down projection layers are the least compressible in Llama-2-
7B. Hence, with the increased size of the up projection and down projection layers in Llama-3-8B,
the training procedure is forced to compress keys and values even more.

D PERFORMANCE ON GEMMA-7B

This section contains the table of metrics of Gemma-7B.

Method Param Ratio NQ-Open MMLU BoolQ PIQA OpenbookQA
Original 1.00 25.7 62.0 83.4 80.1 32.4

Fixed Rate 0.90 2.88 33.8 71.3 67.8 26.6
STRS 0.90 14.3 45.4 81.5 78.2 31.4
ARS 0.90 15.3 29.4 67.2 76.7 30.2
Ours 0.90 13.2 49.6 77.2 76.1 32.2

Fixed Rate 0.85 0.39 27.4 62.6 59.4 19.4
STRS 0.85 2.30 29.3 70.0 64.4 27.6
ARS 0.85 7.40 24.3 60.7 73.7 27.4
Ours 0.85 11.3 37.0 78.3 75.1 34.4

Fixed Rate 0.80 0.14 23.0 56.8 57.0 18.8
STRS 0.80 0.11 23.4 51.2 60.0 21.6
ARS 0.80 2.80 23.1 54.0 71.3 27.2
Ours 0.80 8.39 33.6 75.8 74.7 34.6

Table 3: Evaluation performance of Gemma-8B using different rank selection methods

E PERFORMANCE ON LLAMA-2-13B

Method Param Ratio NQOpen MMLU BoolQ PIQA OpenbookQA

Original 1.00 30.7 52.1 80.1 79.1 35.2

Fixed 0.90 13.2 41.2 79.6 75.0 32.0
STRS 0.90 27.6 49.1 80.6 78.0 35.8
ARS 0.90 11.1 39.9 74.0 75.8 30.2
Ours 0.90 26.5 49.7 81.1 78.6 35.4

Fixed 0.85 10.1 36.1 77.9 73.6 29.6
STRS 0.85 23.7 44.9 78.8 78.3 35.2
ARS 0.85 7.22 38.3 71.3 72.0 23.8
Ours 0.85 22.7 48.1 80.5 77.4 36.0

Fixed 0.80 6.4 36.3 77.7 71.5 27.8
STRS 0.80 17.5 32.1 77.8 75.6 31.6
ARS 0.80 3.13 24.7 63.2 67.6 23.8
Ours 0.80 18.9 44.1 81.3 77.9 36.0

Table 4: Evaluation performance of Llama-2-13B using different rank selection methods
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F IMPLEMENTATION CAVEATS OF ARS

Our benchmarking process of ARS Gao et al. (2024) involved a slight variation from the original
method, where we included the entire hypernetwork, including the GRU network, for every layer
required to be compressed. Based on feedback, this approach was later adjusted to align with the
original paper, where only a single GRU hypernetwork was used for the entire model but separate
linear projection layers for every layer required to be compressed. Despite this adjustment, results
did not change significantly to affect the competitiveness of the approach.

G PRE-TRAINING OBJECTIVE HYPER-PARAMETERS

The hyperparameters used in the training process for the pre-training objective are summarized
in this section. We sampled 70,000 documents from the Wikitext dataset (Merity et al., 2016),
which was the same data source used for the model trained on the distillation objective. We utilized
document packing, ensuring that all documents contained 256 tokens. Besides this, all parameters,
such as optimizer, maximum number of tokens, learning rate, and early stopping criteria, were the
same as the experiment that used distillation, as mentioned in Section 5.2.
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