

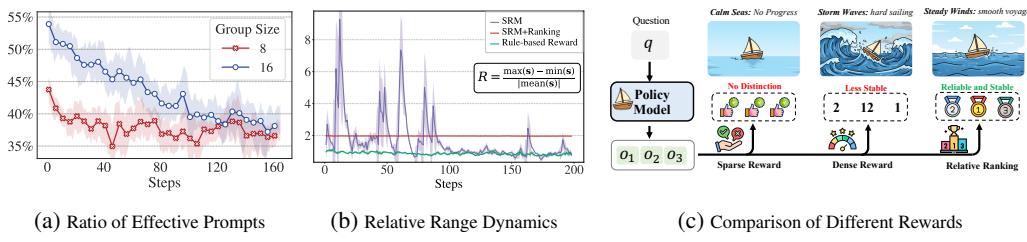
# 000 RANKING IS REWARD: INTRA-GROUP PREFERENCE 001 RANKING FOR GROUP RELATIVE POLICY OPTIMI- 002 ZATION

006 **Anonymous authors**

007 Paper under double-blind review

## 010 ABSTRACT

013 Recent breakthroughs in Large Language Model (LLM) reasoning have been  
014 driven by reinforcement learning techniques like PPO and GRPO. However, in  
015 Reinforcement Learning with Verifiable Rewards (RLVR), sparse rewards hinder  
016 learning when group samples receive identical scores. While existing methods  
017 attempt to address this with data filtering, they inadvertently limit progress on  
018 correctly answered prompts. Additionally, reward models based on absolute nu-  
019 matical scores often suffer from range instability, undermining training stability.  
020 To address these issues, we introduce intra-group response preference ranking  
021 as a reward signal. We propose the Ranking Reward Model (RRM), a [listwise](#)  
022 [preference model designed for GRPO](#), which outputs relative preference rank-  
023 ings for multiple responses to a single prompt. RankGRPO incorporates three  
024 strategies to leverage these rankings, mitigating vanishing gradients and instabil-  
025 ity from absolute scoring. Experiments show that RankGRPO improves perfor-  
026 mance across RLVR benchmarks, open-ended tasks, and reward model evalua-  
027 tions. RRM, trained with limited data, outperforms traditional numerical reward  
028 models trained on larger datasets, demonstrating the potential of RankGRPO and  
029 [the effectiveness of ranking-based reward signals](#). Our source code is available at  
030 <https://anonymous.4open.science/r/RankGRPO-0542>.



031  
032  
033  
034  
035  
036  
037  
038  
039  
040  
041  
042  
043  
044  
045  
046  
047  
048  
049  
050  
051  
052  
053  
Figure 1: Comparative analysis of reward formulations. (a) Sparse rewards cause zero intra-group  
variance, reducing data utilization efficiency during GRPO training. (b) Scalar reward models ex-  
hibit higher numerical dispersion, compromising stability in intra-group advantage estimation. (c)  
RankGRPO utilizes relative ranking to sustain stable advantages through consistent gradient signals.

## 1 INTRODUCTION

In recent years, reinforcement learning (RL) has driven significant advances in natural language processing (NLP), reshaping the reasoning paradigms of large language models (LLMs). Through large-scale RL training, models such as DeepSeek-R1 (Guo et al., 2025) and OpenAI O1 (Jaech et al., 2024) have demonstrated sophisticated reasoning abilities including self-verification and iterative refinement, which substantially improve their performance on challenging mathematical and programming tasks. Building on this progress, Group Relative Policy Optimization (GRPO) (Shao et al., 2024) has emerged as a key method for scaling LLMs during testing. By introducing an intra-group relative evaluation mechanism, GRPO reduces the bias of value function estimation and alleviates the heavy memory requirements associated with traditional Proximal Policy Optimization

(PPO) (Schulman et al., 2017), providing a more efficient and robust training paradigm for the next generation of LLMs.

Reward modeling has become a central component in RL, providing reliable signals that guide LLM responses (Gao et al., 2023). High-quality and robust rewards significantly enhance performance in specialized domains (Lightman et al., 2023b; Liu et al., 2025c). Yet modeling intermediate rewards within Chain-of-Thought (CoT) reasoning remains inherently difficult (Chen et al., 2025), which leaves most test-time scaling approaches dependent on rule-based functions that deliver sparse feedback only on final correctness (Yu et al., 2025). However, as GRPO training progresses, an increasing fraction of sample groups reach unanimous correctness, thereby reducing the proportion of effective updates. **In this work, we call a training prompt an *effective sample* if its group of  $G$  sampled responses contains both correct and incorrect outputs under the rule-based verifier.** Only such prompts induce non-zero within-group reward variance and thus contribute non-trivial policy gradients, whereas prompts whose  $G$  responses are all correct or all incorrect are treated as ineffective. As shown in Figure 1a, which plots the fraction of effective samples along the GRPO training trajectory, fewer than **40%** of samples provide meaningful gradients in later stages, leading to wasted computation and constraining the model’s ability to acquire stronger reasoning strategies. **This phenomenon is most salient when the problem difficulty is moderate, yet the absolute fraction of effective samples remains relatively low across different types of prompts.**

Reward models help reduce sparse rewards but still have structural limitations. Outcome reward models (ORMs) judge only the final answer and overlook reasoning quality, while process reward models (PRMs) guide intermediate steps but require costly annotation. Most of these models are scalar reward models (SRMs). **As illustrated in Figure 1b, the relative range of SRM scores exhibits a significantly higher magnitude compared to ranking-based methods.** This indicates a high degree of numerical dispersion which undermines the stability of intra-group advantage estimation. Since GRPO relies on within-group comparisons, the critical factor is the relative rank. Although absolute scoring is capable of distinguishing responses, it introduces unnecessary numerical variance. Consequently, this approach leads to unstable gradients due to its sensitivity to score magnitude and task difficulty.

In this work, we propose RankGRPO, a novel algorithm that enhances GRPO by integrating ranking information among intra-group samples during advantage computation. This approach is designed to overcome the dual challenges of sparse rewards failing to provide sustained, valuable gradients and the instability of traditional numerical reward models. Specifically, we devise three distinct mechanisms that incorporate relative ranking and rule-based rewards to varying degrees: Ranking as Weight, Ranking as Supplement, and Ranking as Reward. To facilitate this ranking-based approach, we introduce the Ranking Reward Model (RRM). The RRM is trained to rank the quality of multiple input samples, a design motivated by GRPO’s inherent mechanism of comparing responses within a group. We then employ the RRM within the RankGRPO framework to order the quality of these intra-group responses. This method enables RankGRPO to continue learning from data conventionally defined as invalid in standard GRPO, thereby significantly improving the model’s reasoning quality while maximizing the utilization of rollout data. Through extensive experiments across diverse settings, we rigorously validate the effectiveness of our proposed methodology, demonstrating significant improvements over existing approaches. Our contributions are summarized as follows:

- We propose RankGRPO and design three distinct mechanisms to integrate intra-group relative ranking into advantage computation, addressing the limitations of sparse rewards.
- We propose the RRM, which performs relative ranking over multiple samples. This approach mitigates the instability challenges of numerical SRMs and is better suited to GRPO’s framework for computing group-relative advantages.
- Extensive experiments on multiple tasks demonstrate the effectiveness of RankGRPO in enhancing data utilization efficiency and improving model performance.

## 2 RELATED WORK

**Inference-Time Scaling for LLMs.** Inference-time scaling complements training efforts, with research focusing on sampling and reward model aggregation (Brown et al., 2024; Snell et al., 2025; Wu et al., 2024). A key approach is Reinforcement Learning with Verifiable Reward (RLVR),

108 which improves reasoning by using external verifiers for reward signals instead of model-generated  
 109 scores (Zeng et al., 2025). Methods like PPO (Schulman et al., 2017) and GRPO (Shao et al.,  
 110 2024) are commonly used for policy optimization, driving further RL advancements in reasoning  
 111 tasks (Kazemnejad et al., 2024; Yuan et al., 2025). Notable innovations include DAPO, which filters  
 112 zero-variance prompts (Yu et al., 2025), and GRESO, which uses probabilistic pre-filtering (Zheng  
 113 et al., 2025). While both improve data efficiency, DAPO incurs computational overhead, and  
 114 GRESO may discard useful learning opportunities due to its simplistic reward structure.

115 **Reward Models.** Reward models (RMs) are pivotal in RL, especially for aligning large language  
 116 models (LLMs) and scaling inference. Designed to capture human preferences, RMs complement  
 117 rule-based rewards (Christiano et al., 2017; Ouyang et al., 2022). Mainstream RMs typically func-  
 118 tion as discriminative classifiers, providing scalar rewards to rank responses (Cai et al., 2024; Liu  
 119 et al., 2025a; Lou et al., 2024). Other methods harness LLMs as judges, offering preference scores  
 120 or critiques on generated content (Zheng et al., 2023). Approaches like Direct Preference Optimiza-  
 121 tion (DPO) eliminate the need for explicit RMs, instead directly optimizing policies from preference  
 122 pairs (Rafailov et al., 2023). Despite their advantages, RMs face challenges, such as the high cost  
 123 of preference data, biases, and the risk of reward hacking (Gao et al., 2023; Skalse et al., 2022).

124

### 125 3 PRELIMINARIES

126

127 To optimize the LLM policy, GRPO (Shao et al., 2024) introduces an alternative RL algorithm,  
 128 which is a memory-efficient variant of PPO (Schulman et al., 2017). A notable feature of GRPO  
 129 is that it typically operates without a learned value function. Instead, for a given prompt  $p$ , the  
 130 current policy generates a group of  $G$  responses  $\{\mathbf{o}_1, \dots, \mathbf{o}_G\}$ . The rewards  $\{s_1, \dots, s_G\}$  for these  
 131 responses are then used to compute the relative advantage for each response:

$$132 \hat{A}_k = \frac{s_k - \text{mean}(\{s_k | k = 1, 2, \dots, G\})}{F_{\text{norm}}}. \quad (1)$$

134

135 Here,  $F_{\text{norm}}$  serves as an optional normalization factor. In the standard GRPO implementation,  $F_{\text{norm}}$   
 136 is defined as  $\text{std}(\{s_k | k = 1, \dots, G\})$ . In contrast, alternative implementations in RLVR fix the  
 137 normalization factor to unity so that  $F_{\text{norm}} = 1$  (Liu et al., 2025b; Chu et al., 2025).

138

139 GRPO then maximizes a clipped surrogate objective function to ensure stable updates. Let  $\pi_{\theta_{\text{old}}}$   
 140 represent the policy before the update. For each token  $\mathbf{o}_{k,t}$  in a trajectory  $\mathbf{o}_k$  (from state  $s_t$ ), the  
 141 importance sampling ratio is defined as  $\rho_{k,t}(\theta) = \frac{\pi_{\theta}(\mathbf{o}_{k,t} | s_t)}{\pi_{\theta_{\text{old}}}(\mathbf{o}_{k,t} | s_t)}$ . The objective is then given by:

$$142 \mathcal{J}_{\text{GRPO}}(\theta) = \frac{1}{G} \sum_{k=1}^G \frac{1}{|\mathbf{o}_k|} \sum_{t=1}^{|\mathbf{o}_k|} \left( \min \left( \rho_{k,t}(\theta) \cdot \hat{A}_k, \text{clip}(\rho_{k,t}(\theta), 1 - \epsilon, 1 + \epsilon) \cdot \hat{A}_k \right) \right), \quad (2)$$

145

146 where  $\epsilon$  is a small hyperparameter defining the clipping range. This mechanism ensures that the  
 147 LLM policy is updated while maintaining stable gradient constraints.

148

149

### 4 METHODOLOGY

150

151

152 To resolve the mismatch between absolute reward scores, whether rule-based or model-based, and  
 153 the relative group-wise signal required by GRPO, we propose RankGRPO, a reinforcement learning  
 154 framework built on intra-group preference rankings. We further introduce the RRM, tailored to  
 155 GRPO, which mitigates the scale instability of SRMs by producing consistent relative orderings of  
 156 responses within each group.

157

158

#### 4.1 RANKGRPO: LEARNING WITH INTRA-GROUP PREFERENCE RANKINGS

159

160

161

162 We introduce RankGRPO, a framework that integrates intra-group relative quality rankings produced by a dedicated ranking model into GRPO to mitigate gradient vanishing when reward variance  
 163 collapses within the response set  $\{\mathbf{o}_i\}_{i=1}^G$ . Given the group of responses  $\{\mathbf{o}_i\}_{i=1}^G$ , this ranking model  
 164 assigns each response a rank  $r_i$  that reflects its relative quality. For each response  $\mathbf{o}_i$  with rank  $r_i$ ,  
 165 we map the binary rule-based reward  $s_i^{\text{rule}} \in \{0, 1\}$  to a rank-enhanced score  $s_i^{\text{rank}} = f(s_i^{\text{rule}}, r_i)$ . We

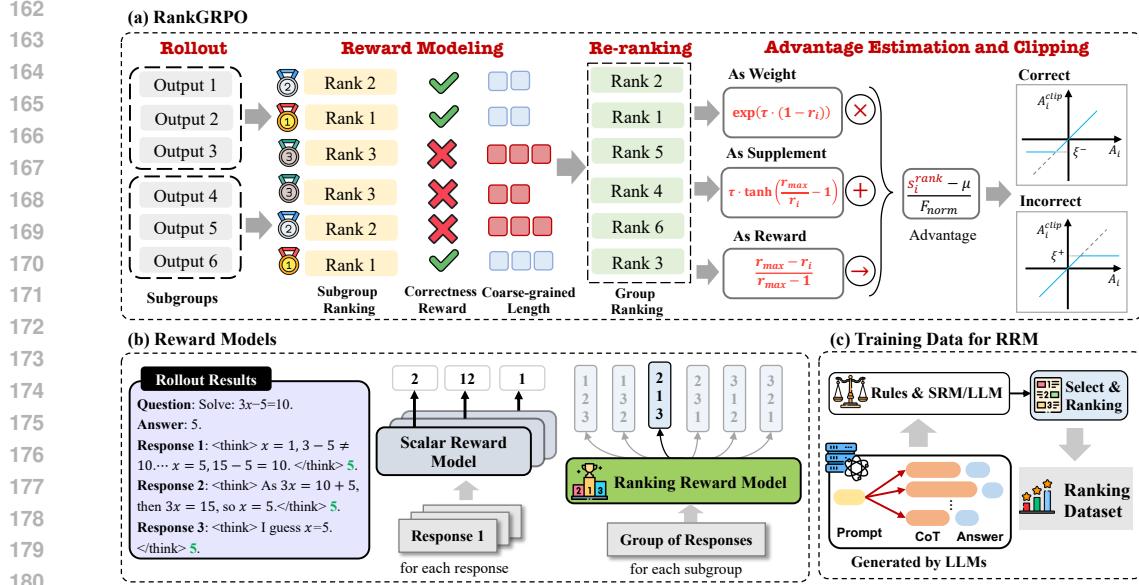


Figure 2: Overview of RankGRPO. (a) Workflow of RankGRPO, illustrating three strategies for integrating intra-group preference rankings with scalar reward scores during advantage estimation. (b) Reward-model comparison: the SRM assigns independent scores to each response, whereas the RRM produces a relative ordering of multiple responses within a group. (c) Training-data processing pipeline for the RRM.

instantiate  $f(\cdot)$  with three strategies that leverage relative orderings to different degrees. These rank-aware adjustments counteract the failure mode of zero within-group reward variance and preserve informative gradients for optimization.

**Ranking as Weight.** We rescale the original reward scores according to the relative quality of responses within each group:

$$s_i^{\text{rank}} = f(s_i^{\text{rule}}, r_i) = \exp(\tau \cdot (1 - r_i)) \cdot s_i^{\text{rule}}, \quad (3)$$

where the coefficient  $\tau$  controls the strength of rank-based weighting over ranks  $r_i$ , amplifying top-ranked samples and suppressing lower-ranked ones. This mechanism further differentiates correct samples, while incorrect samples are handled as in GRPO, enabling the model to continue learning from groups in which all responses are correct.

**Ranking as Supplement.** To leverage the signal from all samples, we add a bounded, rank-based correction to the rule reward. For item  $i$  with within-group rank  $r_i \in \{1, \dots, r_{\max}\}$ , we define

$$s_i^{\text{rank}} = f(s_i^{\text{rule}}, r_i) = s_i^{\text{rule}} + \tau \cdot \tanh\left(\frac{r_{\max}}{r_i} - 1\right), \quad (4)$$

where  $\tau > 0$  controls the magnitude of the adjustment. It keeps the rule reward as the primary signal and introduces fine-grained distinctions among responses with identical rule correctness, ensuring that every sample contributes information.

**Ranking as Reward.** We replace the rule-based score with a normalized, rank-only reward that maps within-group ranks directly to  $[0, 1]$ . For item  $i$  with rank  $r_i \in \{1, \dots, r_{\max}\}$ , define

$$s_i^{\text{rank}} = f(s_i^{\text{rule}}, r_i) = \frac{r_{\max} - r_i}{r_{\max} - 1}. \quad (5)$$

This monotone mapping assigns a fixed score to each rank and is invariant to any affine transformation of the rule-base scores. Consequently, rewards depend solely on the relative ordering: higher-ranked responses always receive higher rewards, and the fixed per-rank values yield stable advantages across groups.

**Advantage of RankGRPO.** Directly using the mean of  $s^{\text{rank}}$  as a baseline may lead to inconsistencies between the correctness of certain responses and the direction of their computed advantages.

To mitigate the potential negative impact of such misaligned advantages, we introduce a clipping strategy. Specifically, advantages that contradict correctness are truncated, thereby improving the stability of the training process. The clipping is defined as follows:

$$A_i^{\text{clip}} = \begin{cases} \max(A_i, \xi^-), & \text{if correct} \\ \min(A_i, \xi^+), & \text{if incorrect} \end{cases} \quad (6)$$

where  $A_i$  denotes the advantage of the  $i$ -th sample, and  $\xi^+/\xi^-$  are clipping thresholds that prevent excessively large positive or negative values. This design ensures that positive advantages are lower-bounded and negative ones are upper-bounded, aligning the reward signal with correctness and enhancing training robustness. For convenience, we denote the three mechanisms of RankGRPO as W, S, and R, representing *Ranking as Weight*, *Ranking as Supplement*, and *Ranking as Reward*, respectively, in the following experiments.

## 4.2 RANKING REWARD MODEL

In GRPO, advantage estimation depends on the relative relationships among responses within a group, computed through mean-normalized rewards. However, conventional reward models output scalar scores whose absolute values are difficult to control, even if they preserve the correct preference order. This mismatch makes the GRPO advantage unstable, since inconsistent score scales lead to unreliable within-group normalization. To address this issue, we introduce the Ranking Reward Model (RRM), which directly predicts the relative ordering of  $n$  responses rather than assigning unconstrained scalar scores. This ranking-based formulation aligns naturally with the group-wise normalization in GRPO and eliminates the need for stable score magnitudes.

RRM is a sequence classification model fine-tuned from an LLM. We replace the language-model head with a classification layer whose classes correspond to the  $n!$  possible permutations over the  $n$  input responses, and we train the model using a standard cross-entropy loss. As illustrated in Figure 2, RRM outputs a relative ranking for  $n$  responses. To construct training data, we first sample multiple CoT responses for each prompt. For tasks with verifiable correctness, a rule-based verifier assigns a binary correctness label to each response. We rigorously enforce that correct responses must be ranked higher than incorrect ones. Within each correctness category, we sort responses based on scores from an SRM to obtain a fine-grained order. The LLM judge is utilized only in rare instances where the SRM ranking contradicts the correctness label. In such cases, we discard the inconsistent SRM scores and query the LLM judge to provide a local ranking that respects the correctness constraint. For open-ended tasks without a reliable rule-based verifier, we directly sort responses by SRM scores without invoking an LLM judge. Training instances are then created by selecting  $n$  responses from the finalized total order, randomly shuffling their input sequence, and using the resulting permutation index as the supervision label to mitigate positional bias.

## 4.3 HIERARCHICAL RE-RANKING

Given that RMs are more susceptible to reward hacking than rule-based rewards, we introduce a re-ranking phase after obtaining relative sample ordering via the RRM. This phase first sorts samples based on verifiable reward scores, then mitigates model overthinking by prioritizing shorter responses through length-based adjustment, and finally integrates the quality ordering from the ranking reward model. Since minor length variations among responses with identical reward scores do not capture quality distinctions, we apply coarse-grained length discretization for calibration, as formalized in Equation 7:

$$\mathcal{B}_i = \begin{cases} \left\lfloor \frac{\ell_i}{\lambda} \right\rfloor, & \text{if } o_i \text{ is correct} \\ +\infty, & \text{if } o_i \text{ is incorrect} \end{cases} \quad (7)$$

where  $\ell_i$  is the length of response  $o_i$ , and hyperparameter  $\lambda$  controls discretization granularity. When reward scores are equal, correct responses are reordered by ascending  $\mathcal{B}_i$ . Incorrect responses are assigned  $\mathcal{B}_i = +\infty$ , removing length constraints from their ranking.

Since RRM is applied to  $n$  responses at a time, we choose the GRPO group size  $G$  to be a multiple of  $n$  and partition each group into  $G/n$  disjoint subgroups, each containing exactly  $n$  responses. As depicted in Figure 2, we apply RRM to every subgroup to obtain local relative ranks  $r_i^{\text{rrm}}$  and

270

**Algorithm 1** RankGRPO271  
272**Input** policy  $\pi_\theta$ , dataset  $\mathcal{D}$ , rule-based verifier  $R_\phi$ , ranking reward model  $R_\psi$ , group size  $G$ , subgroup size  $n$ , inner steps  $\mu$ .

273

```

1: for step = 1, ..., M do
2:   Sample a batch  $\mathcal{D}_b$  from  $\mathcal{D}$  and set  $\pi_{\theta_{\text{old}}} \leftarrow \pi_\theta$ 
3:   for each  $q \in \mathcal{D}_b$  do
4:     Sampling: Generate  $G$  responses  $o_i$  using  $\pi_{\theta_{\text{old}}}$ .
5:     Reward calculation: Compute rule-based rewards  $s_i^{\text{rule}}$  and ranking-based relative ranks  $r_i$  for each
6:       response  $o_i$  using  $R_\phi$  and  $R_\psi$ .
7:     Hierarchical Re-ranking: Sort responses lexicographically using the priority tuple  $(s_i^{\text{rule}}, \mathcal{B}_i, r_i^{\text{rrm}})$ 
8:       (Correctness  $\rightarrow$  Length  $\rightarrow$  RRM) to determine the global rank  $r_i$ , and compute final rewards
9:        $s_i^{\text{rank}}$  using the rank-mapping function  $f(s_i^{\text{rule}}, r_i)$ .
10:    Advantage computation and clipping: Compute group-relative advantages (Equation (1)) and clip
11:      the advantages based on a threshold  $\xi$  (Equation (6)).
12:    Policy update: Update the policy  $\pi_\theta$  by maximizing the GRPO objective (Equation (2)).
13:  end for
14: end for
15: Output: The final policy  $\pi_\theta$ 

```

286

287

then perform a hierarchical re-ranking stage to produce the final ranks  $r_i$  for all  $G$  responses. The complete RankGRPO workflow is formalized in Algorithm 1. This approach integrates intra-group relative ordering into GRPO, thereby mitigating gradient vanishing induced by sparse rewards while circumventing reliability limitations of conventional reward models and enabling priority aware multi objective optimization by merging correctness, reasoning efficiency, and chain of thought quality into a single unified ranking.

294

295

## 5 EXPERIMENTS

296

297  
298

To comprehensively evaluate the performance of RankGRPO and the effectiveness of our proposed RRM, we conduct experiments from three perspectives:

299

300

301

302

303

304

305

306

307

308

- **Tasks with Verifiable Rewards:** We select mathematical reasoning and logical reasoning tasks to assess the model’s capabilities in scenarios where rewards can be explicitly verified.
- **Open-ended Writing Tasks:** We utilize WritingBench (Wu et al., 2025) to evaluate the model’s performance on open-domain writing challenges, which covers 6 core domains and 100 subdomains, encompassing a diverse range of writing tasks and styles.
- **Evaluation of Reward Models:** We evaluate reward models with a Reward-guided Test-Time Scaling framework (Zou et al., 2025), where each model selects the most accurate solution from candidates, and accuracy of the chosen solutions serves as the metric.

309

310

### 5.1 TASKS WITH VERIFIABLE REWARDS

311

312

313

314

315

**Baselines.** We conduct our experiments on DeepSeek-R1-Distill-Qwen-1.5B and DeepSeek-R1-Distill-LlaMA-8B (Guo et al., 2025). Our primary comparison is against four recent state-of-the-art reinforcement learning methods: (1) GRPO (Shao et al., 2024), (2) Dr.GRPO (Liu et al., 2025b), (3) GPG (Chu et al., 2025), and (4) DAPO (Yu et al., 2025). Our RRM is trained on 25k data using Qwen2.5-7B-Instruct-1M (Team, 2025).

316

317

318

319

320

321

**Datasets.** For RL training, we use approximately 16,000 mathematics and logic samples filtered by difficulty from the GURU dataset (Cheng et al., 2025), and for the 8B model, we additionally include the Open-RS dataset (Dang & Ngo, 2025). For ablation and analysis experiments, we train the 1.5B model using the SimpleRL dataset (Zeng et al., 2025). For evaluation, we employ several challenging mathematical and logical reasoning benchmarks to assess our models’ performance. Detailed descriptions and references for all evaluation datasets are provided in Appendix B.3.

322

323

**Performance.** Table 1 shows that RankGRPO achieves competitive or superior results on mathematical reasoning. On logic reasoning tasks, it consistently outperforms all baselines, underscoring the benefit of ranking-based optimization. Across variants, *Ranking as Weight* performs slightly

324  
 325  
 326  
 327  
 328  
 329  
 Table 1: Overall performance on eight competition-level mathematical reasoning benchmarks and  
 330 two logic reasoning benchmarks. We report the mean score  $\pm$  confidence interval. The average  
 331 response length (tokens) is reported in the rightmost column. **Bold** and underlined indicate the best  
 332 and second-best performance, respectively.

| METHOD                         | MATHEMATICAL REASONING |                       |                       |                       |                       |                       |                       |                       | LOGIC REASONING       |                       |                       | Avg Len.<br>(Tokens)  |                       |
|--------------------------------|------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
|                                | AIME 24                |                       | AIME 25               |                       | MATH 500              |                       | GSM8K                 |                       | Olympiad              | GaoKao                | Minerva               | AMC                   |                       |
|                                | Avg@32                 | Avg@32                | Avg@4                 | Avg@4                 | Avg@4                 | Avg@4                 | Avg@4                 | Avg@4                 | Avg@16                | Avg                   | Zebra                 | Ordering              | Avg                   |
| Baseline                       | 28.5 $\pm$ 1.0         | 23.5 $\pm$ 2.2        | 82.7 $\pm$ 2.1        | 85.8 $\pm$ 1.1        | 43.3 $\pm$ 1.3        | 71.7 $\pm$ 1.4        | 26.5 $\pm$ 0.7        | 63.1 $\pm$ 0.5        | 53.1 $\pm$ 0.7        | 0.7 $\pm$ 0.2         | 14.0 $\pm$ 1.2        | 7.3 $\pm$ 0.7         | 11727 $\pm$ 205       |
| GRPO                           | 30.8 $\pm$ 1.1         | 23.7 $\pm$ 0.6        | 83.5 $\pm$ 0.9        | 86.3 $\pm$ 1.0        | 44.5 $\pm$ 0.3        | <b>74.5</b> $\pm$ 0.3 | 28.0 $\pm$ 3.3        | 65.9 $\pm$ 1.2        | 54.6 $\pm$ 0.4        | 2.5 $\pm$ 0.4         | 22.4 $\pm$ 1.6        | 12.4 $\pm$ 1.0        | 7253 $\pm$ 166        |
| Dr.GRPO                        | 29.7 $\pm$ 0.6         | 23.6 $\pm$ 1.9        | 83.7 $\pm$ 1.4        | <u>86.9</u> $\pm$ 2.8 | 45.4 $\pm$ 1.7        | 73.6 $\pm$ 0.7        | 27.4 $\pm$ 1.5        | 65.9 $\pm$ 2.0        | 54.5 $\pm$ 0.4        | 3.0 $\pm$ 0.9         | 20.4 $\pm$ 3.2        | 11.1 $\pm$ 4.2        | 7239 $\pm$ 149        |
| GPG                            | <u>32.0</u> $\pm$ 0.7  | <b>24.6</b> $\pm$ 0.3 | 84.7 $\pm$ 0.9        | <u>86.7</u> $\pm$ 0.3 | 45.5 $\pm$ 1.2        | 73.6 $\pm$ 1.1        | 28.1 $\pm$ 0.4        | 65.2 $\pm$ 1.7        | 55.1 $\pm$ 0.7        | 3.8 $\pm$ 1.3         | 22.2 $\pm$ 4.6        | 13.5 $\pm$ 3.9        | 9937 $\pm$ 173        |
| DAPO                           | 30.1 $\pm$ 3.5         | 22.8 $\pm$ 0.1        | <u>84.3</u> $\pm$ 0.5 | 86.4 $\pm$ 0.2        | 45.5 $\pm$ 1.6        | <u>74.2</u> $\pm$ 0.2 | <u>29.2</u> $\pm$ 1.5 | <u>67.7</u> $\pm$ 1.6 | 55.0 $\pm$ 0.2        | 6.8 $\pm$ 2.7         | 28.4 $\pm$ 3.4        | 17.6 $\pm$ 3.0        | 10006 $\pm$ 197       |
| RankGRPO(W)                    | 30.7 $\pm$ 0.7         | 23.7 $\pm$ 1.2        | 83.1 $\pm$ 1.7        | 85.8 $\pm$ 0.5        | 44.8 $\pm$ 1.0        | 73.8 $\pm$ 0.8        | <b>29.7</b> $\pm$ 0.2 | 67.4 $\pm$ 1.5        | 54.9 $\pm$ 1.0        | <u>9.8</u> $\pm$ 2.9  | <u>34.9</u> $\pm$ 2.2 | <u>22.3</u> $\pm$ 2.5 | <b>6226</b> $\pm$ 137 |
| RankGRPO(S)                    | 31.2 $\pm$ 0.3         | <u>24.1</u> $\pm$ 0.6 | <b>84.8</b> $\pm$ 0.4 | 86.3 $\pm$ 0.3        | <b>46.4</b> $\pm$ 0.8 | 74.1 $\pm$ 0.2        | 28.6 $\pm$ 0.3        | 66.6 $\pm$ 0.7        | <b>55.3</b> $\pm$ 0.4 | <b>10.1</b> $\pm$ 0.9 | <u>39.5</u> $\pm$ 6.9 | <b>24.6</b> $\pm$ 3.5 | <u>6601</u> $\pm$ 159 |
| RankGRPO(R)                    | <b>32.3</b> $\pm$ 0.7  | 22.7 $\pm$ 1.3        | 83.4 $\pm$ 0.8        | 86.6 $\pm$ 0.9        | <b>46.4</b> $\pm$ 2.7 | 74.1 $\pm$ 1.1        | 28.1 $\pm$ 0.3        | <b>68.1</b> $\pm$ 0.6 | <u>55.2</u> $\pm$ 0.7 | 6.1 $\pm$ 2.9         | 31.4 $\pm$ 2.6        | 18.8 $\pm$ 1.9        | 7121 $\pm$ 190        |
| <i>RI-Distill-LLaMa-3.1.5B</i> |                        |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |
| Baseline                       | 47.8 $\pm$ 1.6         | 32.3 $\pm$ 0.5        | 90.0 $\pm$ 0.9        | 90.0 $\pm$ 0.9        | 51.5 $\pm$ 2.2        | 77.0 $\pm$ 1.0        | 29.6 $\pm$ 2.7        | 78.5 $\pm$ 2.4        | 62.1 $\pm$ 1.2        | 9.0 $\pm$ 3.7         | 55.8 $\pm$ 1.5        | 32.4 $\pm$ 1.5        | 9209 $\pm$ 419        |
| GRPO                           | 50.1 $\pm$ 1.7         | 33.2 $\pm$ 1.2        | 90.2 $\pm$ 1.6        | 91.7 $\pm$ 0.7        | 56.6 $\pm$ 1.9        | 80.3 $\pm$ 0.8        | 30.4 $\pm$ 1.5        | 81.7 $\pm$ 1.5        | 64.3 $\pm$ 0.4        | 30.8 $\pm$ 1.2        | 77.7 $\pm$ 1.4        | 54.3 $\pm$ 1.3        | 6638 $\pm$ 157        |
| Dr.GRPO                        | 50.9 $\pm$ 1.3         | 32.7 $\pm$ 0.5        | 89.8 $\pm$ 2.6        | 90.3 $\pm$ 2.5        | 54.1 $\pm$ 1.3        | <u>79.4</u> $\pm$ 1.3 | 30.2 $\pm$ 1.3        | <u>83.1</u> $\pm$ 1.0 | 63.8 $\pm$ 1.2        | 23.5 $\pm$ 1.3        | 74.5 $\pm$ 1.5        | 49.0 $\pm$ 0.4        | 6667 $\pm$ 375        |
| GPG                            | 51.0 $\pm$ 1.3         | 32.4 $\pm$ 2.3        | 89.1 $\pm$ 1.2        | 91.3 $\pm$ 1.4        | 54.7 $\pm$ 1.7        | 80.1 $\pm$ 0.7        | 30.0 $\pm$ 1.7        | 82.1 $\pm$ 2.1        | 63.8 $\pm$ 0.7        | 24.6 $\pm$ 3.0        | 78.8 $\pm$ 1.0        | 51.7 $\pm$ 1.6        | 7228 $\pm$ 352        |
| DAPO                           | 47.8 $\pm$ 2.3         | 34.6 $\pm$ 1.6        | 90.0 $\pm$ 1.0        | <u>92.5</u> $\pm$ 1.3 | 58.1 $\pm$ 0.6        | <u>81.7</u> $\pm$ 0.9 | 32.9 $\pm$ 1.7        | 79.4 $\pm$ 1.9        | 64.6 $\pm$ 0.7        | 37.3 $\pm$ 1.5        | <u>89.3</u> $\pm$ 0.9 | 63.3 $\pm$ 1.2        | 6495 $\pm$ 309        |
| RankGRPO(W)                    | <u>51.1</u> $\pm$ 1.5  | <b>35.1</b> $\pm$ 1.0 | 89.4 $\pm$ 2.5        | 91.7 $\pm$ 2.2        | <u>59.1</u> $\pm$ 1.4 | 81.1 $\pm$ 0.9        | 31.2 $\pm$ 1.1        | 82.6 $\pm$ 1.8        | <u>65.2</u> $\pm$ 0.6 | <b>40.7</b> $\pm$ 2.9 | <u>88.9</u> $\pm$ 2.1 | <b>64.8</b> $\pm$ 0.5 | 5530 $\pm$ 167        |
| RankGRPO(S)                    | 50.9 $\pm$ 1.1         | <b>35.4</b> $\pm$ 1.7 | <b>91.5</b> $\pm$ 1.3 | <b>92.5</b> $\pm$ 1.2 | <b>59.5</b> $\pm$ 0.9 | <b>82.5</b> $\pm$ 1.2 | <b>33.1</b> $\pm$ 1.2 | <b>83.6</b> $\pm$ 0.5 | <b>66.0</b> $\pm$ 1.2 | <b>40.4</b> $\pm$ 3.4 | <b>89.2</b> $\pm$ 0.5 | <b>64.7</b> $\pm$ 1.4 | <b>5370</b> $\pm$ 201 |
| RankGRPO(R)                    | <b>51.9</b> $\pm$ 1.4  | 34.8 $\pm$ 1.1        | <u>90.5</u> $\pm$ 1.4 | 91.7 $\pm$ 0.7        | 55.3 $\pm$ 1.3        | 81.7 $\pm$ 1.1        | <u>32.9</u> $\pm$ 1.0 | 81.6 $\pm$ 1.5        | 65.1 $\pm$ 0.4        | 35.8 $\pm$ 1.0        | 88.0 $\pm$ 0.9        | 61.9 $\pm$ 0.9        | <u>5479</u> $\pm$ 315 |

346 worse as it ignores groups with all incorrect responses, whereas others leverage both all-correct  
 347 and all-incorrect groups for stronger training signals. In particular, *Ranking as Supplement*, which  
 348 emphasizes rule-based rewards in advantage estimation, yields more stable improvements on tasks  
 349 with verifiable correctness. Overall, these results demonstrate the effectiveness of RankGRPO in  
 350 enhancing both mathematical and logical reasoning performance across a range of tasks.

351 **In-depth Comparison on Mathematical Reasoning.** Figure 3a presents a comparison between  
 352 our models and several open-source reasoning baselines. Our approach demonstrates a superior bal-  
 353 ance between efficiency and performance. Notably, it surpasses resource-intensive baselines (e.g.,  
 354 **STILL-3-1.5B**) with significantly reduced data and compute costs, while also outperforming other  
 355 open-source models in accuracy. This demonstrates that incorporating *intra-group relative ranking*  
 356 effectively compensates for the limitations of rule-based rewards in GRPO, thereby improving the  
 357 achievable upper bound of the algorithm.

358 We further investigate different strategies when using only reward models. As shown in Figure 3d,  
 359 numerical reward models suffer from instability, occasionally degrading performance on certain  
 360 datasets. By contrast, converting numerical scores into relative rankings significantly stabilizes the  
 361 reward signal and leads to consistent performance gains. Figure 3b and 3c illustrate this effect from  
 362 the perspective of training dynamics, highlighting how relative rewards mitigate fluctuations. More-  
 363 over, when adopting our proposed *RRM*, the performance is further improved, providing additional  
 364 evidence that ranking-based rewards offer a more reliable and effective training signal than absolute  
 365 numerical values. This demonstrates that relative ranking-based rewards enhance both stability and  
 366 performance across various tasks.

## 367 5.2 OPEN-ENDED WRITING TASKS

368 **Datasets and Evaluation.** To train our RRM, we first construct a preference dataset. Following  
 369 the methodology described in Figure 2c, we select 10,000 samples from the Dolphin-R1 dataset<sup>1</sup>  
 370 and generate ranked responses using models of varying scales. For model fine-tuning, we utilize a  
 371 separate set of 22,000 samples to fine-tune the Qwen3-1.7B model (Yang et al., 2025).

372 **Baselines.** We adopt GRPO (Shao et al., 2024) as our primary algorithmic baseline for comparison.  
 373 In addition, we benchmark our RRM against several state-of-the-art reward models: (1) Skywork-  
 374 Reward-V2-Llama-3.1-8B (Liu et al., 2025a), (2) URM-LLaMa-3.1-8B (Lou et al., 2024).

375  
 376  
 377  
 1<sup>1</sup><https://huggingface.co/datasets/QuixiAI/dolphin-r1>

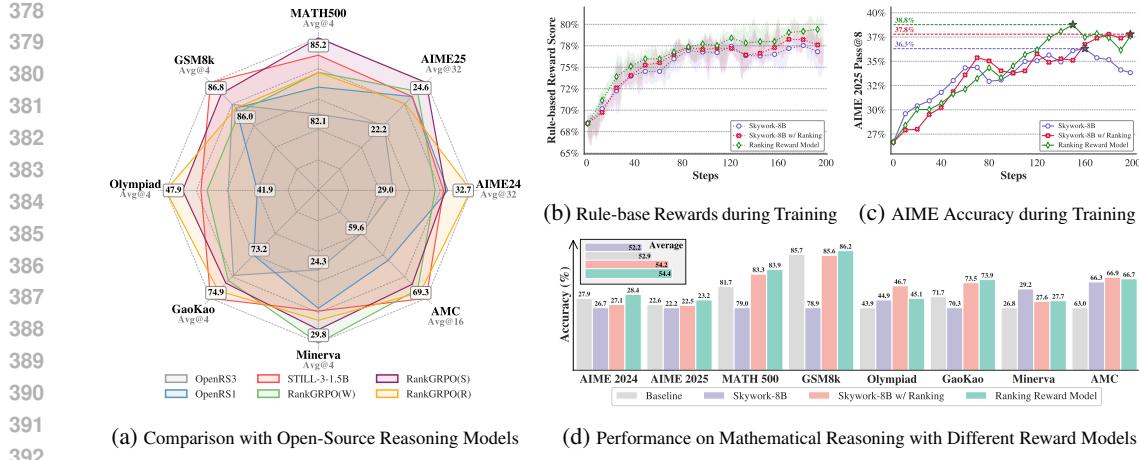


Figure 3: A deeper comparison of RankGRPO. **Left** (a): Results against existing models. **Right** (b-d): Training dynamics and reward analyses.

Table 2: Overall performance on Writing Bench. We report the mean score and confidence intervals ( $\pm$ ). The ‘ $\hookrightarrow$ ’ symbol denotes a variant of the method listed directly above. **Bold** and underline mark the best and second-best results, respectively.

| METHOD                     | OVERALL                            | ACADEMIC & ENGINEERING             | FINANCE & BUSINESS                 | POLITICS & LAW                     | LITERATURE & ARTS                  | EDUCATION                          | ADVERTISING & MARKETING            |
|----------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|
| Qwen3-1.7B                 | $70.06 \pm 0.35$                   | $72.60 \pm 0.19$                   | $71.17 \pm 0.02$                   | $70.99 \pm 0.21$                   | $63.22 \pm 0.72$                   | $73.52 \pm 0.05$                   | $70.27 \pm 1.19$                   |
| SFT                        | $70.90 \pm 0.12$                   | $73.17 \pm 0.21$                   | $70.89 \pm 0.28$                   | $71.47 \pm 0.25$                   | $65.75 \pm 0.53$                   | $74.68 \pm 0.23$                   | $71.09 \pm 0.02$                   |
| Skywork-8B                 | $72.88 \pm 0.19$                   | $74.56 \pm 0.16$                   | $72.81 \pm 0.89$                   | $72.40 \pm 0.05$                   | $69.68 \pm 0.56$                   | $76.00 \pm 1.12$                   | $73.42 \pm 0.09$                   |
| $\hookrightarrow$ RankGRPO | $73.64 \pm 0.30$                   | $75.25 \pm 0.68$                   | $73.71 \pm 0.46$                   | $73.77 \pm 0.04$                   | $69.81 \pm 0.40$                   | $77.22 \pm 0.25$                   | $73.57 \pm 0.07$                   |
| URM-8B                     | $73.12 \pm 0.28$                   | $75.14 \pm 0.21$                   | $73.65 \pm 0.84$                   | $73.47 \pm 0.54$                   | $69.06 \pm 0.68$                   | $76.16 \pm 0.25$                   | $72.25 \pm 1.05$                   |
| $\hookrightarrow$ RankGRPO | $74.71 \pm 0.32$                   | $76.46 \pm 0.35$                   | $75.47 \pm 0.33$                   | $75.30 \pm 0.51$                   | $70.86 \pm 0.47$                   | $77.08 \pm 0.23$                   | $73.72 \pm 0.11$                   |
| RRM(ours)                  | <b><math>81.33 \pm 0.12</math></b> | <b><math>83.27 \pm 0.35</math></b> | <b><math>82.92 \pm 0.18</math></b> | <b><math>81.68 \pm 0.23</math></b> | <b><math>75.90 \pm 0.60</math></b> | <b><math>84.16 \pm 0.09</math></b> | <b><math>80.96 \pm 0.63</math></b> |

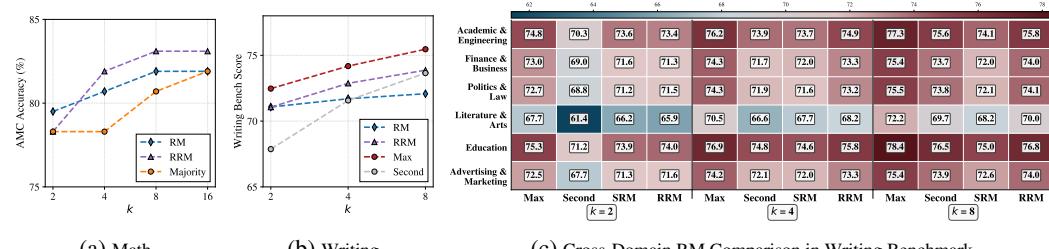


Figure 4: Reward-Guided Best-of-N Test-Time Scaling for Enhanced Inference Performance.

**Performance.** Table 2 presents the performance of RankGRPO on open-ended tasks. By converting absolute scalar scores from two distinct reward models into relative preferences through the *Ranking as Reward* approach, we achieve improvements across most domains. This highlights the effectiveness of relative ranking in enhancing both the stability and performance of GRPO. Moreover, when RankGRPO is paired with our fine-tuned RRM, it achieves the best results in the majority of domains, underscoring that evaluating the preference order of multiple responses provides a more robust learning signal than scoring individual responses. These findings reinforce the value of ranking-based approaches for improving performance in open-ended tasks.

### 5.3 EVALUATION OF RANKING REWARD MODEL

Figure 4 presents a comparative analysis between the SRM Skywork-Reward-V2-Llama-3.1-8B model (Liu et al., 2025a) and our proposed RRM framework under two experimental configurations.

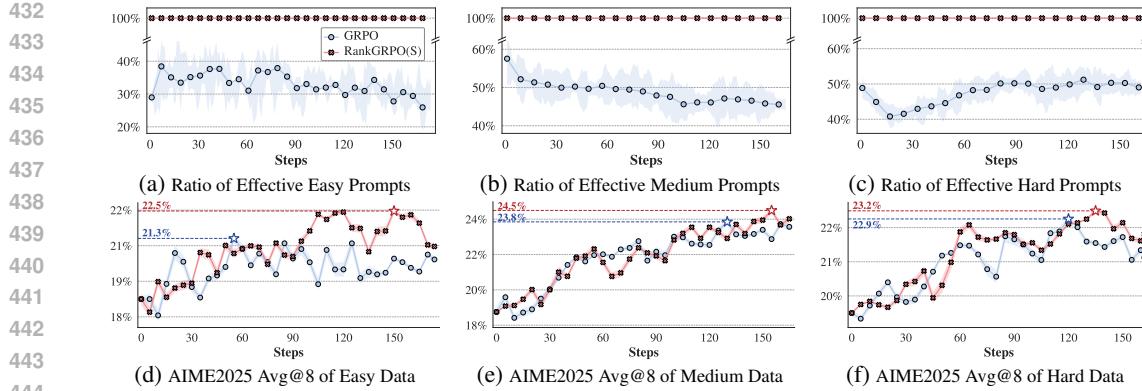


Figure 5: Comparison of GRPO and RankGRPO Across Different Data Difficulty Levels.

Table 3: Ablation study results on Responses Re-ranking. **Bold** marks the best result in each column.

| METHOD          | MATHEMATICAL REASONING |             |             |             |             |             |             |             | Avg         | Avg Len.    |
|-----------------|------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|                 | AIME24                 | AIME25      | MATH500     | GSM8k       | Olympiad    | GaoKao      | Minerva     | AMC         |             |             |
| RankGRPO (S)    | 30.8                   | 24.6        | 84.0        | 86.1        | 46.7        | <b>74.3</b> | 27.6        | <b>69.2</b> | 55.4        | <b>6365</b> |
| w/o Correctness | 28.4                   | 23.2        | 83.9        | 86.2        | 45.1        | 73.9        | 27.7        | 66.7        | 54.4        | <b>5637</b> |
| w/o Length      | <b>31.3</b>            | <b>24.8</b> | <b>85.1</b> | <b>86.9</b> | <b>47.7</b> | 73.8        | <b>28.0</b> | 66.9        | <b>55.6</b> | <b>8452</b> |

Figure 1 demonstrates their performance on mathematical reasoning tasks using the DeepSeek-R1-Distill-LlaMA-8B model (Guo et al., 2025), where we sample  $k$  responses per prompt and select via either SRM or RRM with Majority voting. The results show RRM achieves comparable or superior accuracy to SRM, with the performance gap widening as  $k$  increases. Figure 4a and 4b illustrate RRM’s superior performance in writing tasks evaluated on Qwen3-1.7B (Yang et al., 2025), where we sample eight responses per instance. The *Second* designation denotes the second-highest-scoring sample. RRM consistently selects higher-quality responses, explaining its significant improvement in compositional tasks. We attribute these improvements to RRM’s focus on relative intra-group quality assessment rather than absolute scoring. Notably, RRM demonstrates strong generalization across domains despite limited training data.

#### 5.4 METHOD ANALYSIS

We conduct a comprehensive analysis of our proposed method from several perspectives. More detailed results can be found in Appendix C.

##### 5.4.1 IMPACT OF DATASET DIFFICULTY

The dataset difficulty directly affects the proportion of effective prompts during training. To examine this, we fine-tune a 1.5B model on three levels: (1) Easy: GSM8k (Cobbe et al., 2021), (2) Medium: SimpleRL (Zeng et al., 2025), and (3) Hard: Open-RS (Dang & Ngo, 2025).

Figure 5 presents the performance of GRPO and RankGRPO(S) across datasets of varying difficulty. Our method makes full use of the available data: on the easy dataset, RankGRPO(S) further improves model performance, whereas GRPO shows limited gains. On medium and hard datasets, both methods benefit from more informative prompts, and RankGRPO(S) consistently outperforms GRPO. **The fraction of effective prompts under GRPO remains relatively low and exhibits difficulty dependent dynamics, while RankGRPO(S) maintains full utilization of groupwise information.** Further analysis of these effects is provided in Appendix C.2.

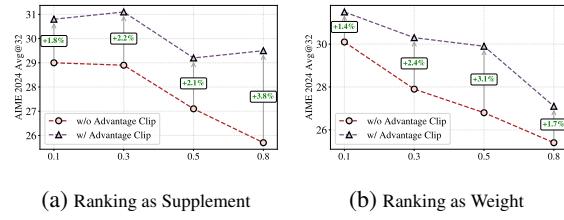
#### 5.5 ABLATION AND SENSITIVITY ANALYSIS

**Effect of Responses Re-ranking.** We analyze the contribution of different components in the re-ranking stage. Table 3 shows that removing correctness consistently degrades performance, confirming its necessity for reliable reasoning. Interestingly, relaxing the length constraint slightly im-

486 proves results on several datasets, suggesting that over-restricting output length may hinder problem-  
 487 solving flexibility. Overall, correctness serves as the primary factor for stability, while length control  
 488 requires a careful balance between conciseness and expressiveness.  
 489

#### 490 Effect of $\tau$ and Advantage Clipping.

491 We examine the sensitivity of model per-  
 492 formance to different values of  $\tau$ . As  
 493 shown in Figure 6, increasing  $\tau$  weak-  
 494 ens the influence of rule-based rewards,  
 495 which in turn increases the likelihood  
 496 of gradient directions misaligned with  
 497 correctness, ultimately leading to per-  
 498 formance degradation. Introducing clipping  
 499 effectively mitigates this issue, resulting  
 500 in more stable and robust performance improvements.



(a) Ranking as Supplement (b) Ranking as Weight

Figure 6: Analysis of  $\tau$  and Advantage Clipping.

## 501 6 CONCLUSION

502 We proposed RankGRPO, a reinforcement learning framework that utilizes intra-group preference  
 503 rankings to overcome the challenges of sparse and unstable reward signals in LLM training. By inte-  
 504 grating relative preferences through the RRM and three distinct strategies, RankGRPO mitigates the  
 505 issues of vanishing gradients caused by identical rewards and reduces instability inherent in absolute  
 506 numerical scoring. Experiments demonstrate that RankGRPO leads to improvements across mul-  
 507 tiple tasks, achieving consistent gains in RLVR and open-ended writing. These results emphasize  
 508 that preference-based reward signals are more effective than absolute scoring systems in enhancing  
 509 model performance. Additionally, the RRM, serving as a listwise ranking model explicitly aligned  
 510 with group-normalized optimization, is well-suited for GRPO, achieving results comparable to SRM  
 511 with fine-tuning on a small dataset. Future work will explore more efficient ways to leverage rel-  
 512 ative ranking rewards and investigate the potential of a more universal RRM to achieve broader  
 513 generalization across diverse domains.  
 514

## 515 ETHICS STATEMENT

516 Our method is based on fine-tuning open-source Large Language Models (LLMs) for tasks involving  
 517 mathematical reasoning, logical reasoning, and open-ended writing. These tasks do not involve  
 518 ethical concerns directly related to moral or societal norms. We have taken care to ensure that our  
 519 experiments and methodologies adhere to responsible research practices, and our work does not  
 520 involve harm to individuals or communities. The datasets and models used are publicly available,  
 521 and we emphasize the transparency and reproducibility of our research.  
 522

## 523 REPRODUCIBILITY STATEMENT

524 We have made our work fully reproducible by providing the source code, which is based on open-  
 525 source frameworks with minimal modifications. The code is designed to be easily understandable  
 526 and user-friendly. All experimental setups, model implementations, and training scripts are included,  
 527 and detailed instructions are provided to facilitate replication of the results.  
 528

## 529 REFERENCES

530 Art of Problem Solving. Aime problems and solutions. [https://artofproblemsolving.com/wiki/index.php/AIME\\_Problems\\_and\\_Solutions](https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions), 2024a. Accessed: 2025-04-20.  
 531  
 532 Art of Problem Solving. Amc problems and solutions. [https://artofproblemsolving.com/wiki/index.php?title=AMC\\_Problems\\_and\\_Solutions](https://artofproblemsolving.com/wiki/index.php?title=AMC_Problems_and_Solutions), 2024b. Accessed: 2025-04-20.  
 533

540 Art of Problem Solving. Aime problems and solutions. [https://artofproblemsolving.com/wiki/index.php/AIME\\_Problems\\_and\\_Solutions](https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions), 2025. Accessed: 2025-07-31.

541

542

543 Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christopher Ré, and Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling. *arXiv preprint arXiv:2407.21787*, 2024.

544

545

546

547 Zheng Cai, Maosong Cao, Haojong Chen, Kai Chen, Keyu Chen, Xin Chen, Xun Chen, Zehui Chen, Zhi Chen, Pei Chu, et al. Internlm2 technical report. *arXiv preprint arXiv:2403.17297*, 2024.

548

549

550

551 Qiguang Chen, Libo Qin, Jinhao Liu, Dengyun Peng, Jiannan Guan, Peng Wang, Mengkang Hu, Yuhang Zhou, Te Gao, and Wanxiang Che. Towards reasoning era: A survey of long chain-of-thought for reasoning large language models. *arXiv preprint arXiv:2503.09567*, 2025.

552

553

554 Zhoujun Cheng, Shibo Hao, Tianyang Liu, Fan Zhou, Yutao Xie, Feng Yao, Yuexin Bian, Yonghao Zhuang, Nilabjo Dey, Yuheng Zha, et al. Revisiting reinforcement learning for llm reasoning from a cross-domain perspective. *arXiv preprint arXiv:2506.14965*, 2025.

555

556

557 Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep reinforcement learning from human preferences. *Advances in neural information processing systems*, 30, 2017.

558

559

560

561 Xiangxiang Chu, Hailang Huang, Xiao Zhang, Fei Wei, and Yong Wang. Gpg: A simple and strong reinforcement learning baseline for model reasoning. *arXiv preprint arXiv:2504.02546*, 2025.

562

563

564 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John Schulman. Training verifiers to solve math word problems. *arXiv preprint arXiv:2110.14168*, 2021.

565

566

567

568 Quy-Anh Dang and Chris Ngo. Reinforcement learning for reasoning in small llms: What works and what doesn't, 2025. URL <https://arxiv.org/abs/2503.16219>.

569

570

571 Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization. In *International Conference on Machine Learning*, pp. 10835–10866. PMLR, 2023.

572

573 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

574

575

576

577 Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu, Xu Han, Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for promoting agi with olympiad-level bilingual multimodal scientific problems. *arXiv preprint arXiv:2402.14008*, 2024.

578

579

580

581 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *NeurIPS*, 2021.

582

583

584

585 Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. *arXiv preprint arXiv:2412.16720*, 2024.

586

587

588 Amirhossein Kazemnejad, Milad Aghajohari, Eva Portelance, Alessandro Sordoni, Siva Reddy, Aaron Courville, and Nicolas Le Roux. Vineppo: Unlocking rl potential for llm reasoning through refined credit assignment. 2024.

589

590

591 Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ramaesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative reasoning problems with language models. *Advances in Neural Information Processing Systems*, 35:3843–3857, 2022.

592

593

594 Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan  
 595 Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let's verify step by step. *arXiv preprint*  
 596 *arXiv:2305.20050*, 2023a.

597 Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan  
 598 Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let's verify step by step. In *The Twelfth*  
 599 *International Conference on Learning Representations*, 2023b.

600 Chris Yuhao Liu, Liang Zeng, Yuzhen Xiao, Jujie He, Jiacai Liu, Chaojie Wang, Rui Yan, Wei Shen,  
 601 Fuxiang Zhang, Jiacheng Xu, et al. Skywork-reward-v2: Scaling preference data curation via  
 602 human-ai synergy. *arXiv preprint arXiv:2507.01352*, 2025a.

603 Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee,  
 604 and Min Lin. Understanding r1-zero-like training: A critical perspective. *arXiv preprint*  
 605 *arXiv:2503.20783*, 2025b.

606 Zijun Liu, Peiyi Wang, Runxin Xu, Shirong Ma, Chong Ruan, Peng Li, Yang Liu, and Yu Wu.  
 607 Inference-time scaling for generalist reward modeling. *arXiv preprint arXiv:2504.02495*, 2025c.

608 Xingzhou Lou, Dong Yan, Wei Shen, Yuzi Yan, Jian Xie, and Junge Zhang. Uncertainty-  
 609 aware reward model: Teaching reward models to know what is unknown. *arXiv preprint*  
 610 *arXiv:2410.00847*, 2024.

611 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong  
 612 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-  
 613 low instructions with human feedback. *Advances in neural information processing systems*, 35:  
 614 27730–27744, 2022.

615 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea  
 616 Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances*  
 617 *in neural information processing systems*, 36:53728–53741, 2023.

618 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy  
 619 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

620 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,  
 621 Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical  
 622 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

623 Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,  
 624 Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. In *Proceedings*  
 625 *of the Twentieth European Conference on Computer Systems*, pp. 1279–1297, 2025.

626 Joar Skalse, Nikolaus Howe, Dmitrii Krasheninnikov, and David Krueger. Defining and character-  
 627 izing reward gaming. *Advances in Neural Information Processing Systems*, 35:9460–9471, 2022.

628 Charlie Victor Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute  
 629 optimally can be more effective than scaling parameters for reasoning. In *The Thirteenth Inter-  
 630 national Conference on Learning Representations*, 2025.

631 Qwen Team. Qwen2.5-1m: Deploy your own qwen with context length up to 1m tokens, January  
 632 2025. URL <https://qwenlm.github.io/blog/qwen2.5-1m/>.

633 Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. Inference scaling laws:  
 634 An empirical analysis of compute-optimal inference for problem-solving with language models.  
 635 *arXiv preprint arXiv:2408.00724*, 2024.

636 Yuning Wu, Jiahao Mei, Ming Yan, Chenliang Li, Shaopeng Lai, Yuran Ren, Zijia Wang, Ji Zhang,  
 637 Mengyue Wu, Qin Jin, et al. Writingbench: A comprehensive benchmark for generative writing.  
 638 *arXiv preprint arXiv:2503.05244*, 2025.

639 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,  
 640 Chang Gao, Chengan Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint*  
 641 *arXiv:2505.09388*, 2025.

648 Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian  
649 Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system  
650 at scale. *arXiv preprint arXiv:2503.14476*, 2025.

651  
652 Yufeng Yuan, Yu Yue, Ruofei Zhu, Tiantian Fan, and Lin Yan. What's behind ppo's collapse in  
653 long-cot? value optimization holds the secret. *arXiv preprint arXiv:2503.01491*, 2025.

654 Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerl-  
655 zoo: Investigating and taming zero reinforcement learning for open base models in the wild. *arXiv*  
656 *preprint arXiv:2503.18892*, 2025.

657  
658 Xiaotian Zhang, Chunyang Li, Yi Zong, Zhengyu Ying, Liang He, and Xipeng Qiu. Evaluating the  
659 performance of large language models on gaokao benchmark. *arXiv preprint arXiv:2305.12474*,  
660 2023.

661 Haizhong Zheng, Yang Zhou, Brian R Bartoldson, Bhavya Kailkhura, Fan Lai, Jiawei Zhao, and  
662 Beidi Chen. Act only when it pays: Efficient reinforcement learning for llm reasoning via selective  
663 rollouts. *arXiv preprint arXiv:2506.02177*, 2025.

664 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,  
665 Zi Lin, Zhuohan Li, Eric P Xing, Hao Zhang, Joseph E Gonzalez, and Ion Stoica. Judging llm-as-  
666 a-judge with mt-bench and chatbot arena. *Advances in Neural Information Processing Systems*,  
667 36, 2023.

668  
669 Jiaru Zou, Ling Yang, Jingwen Gu, Jiahao Qiu, Ke Shen, Jingrui He, and Mengdi Wang. Reasonflux-  
670 prm: Trajectory-aware prms for long chain-of-thought reasoning in llms. *arXiv preprint*  
671 *arXiv:2506.18896*, 2025.

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

## 702 A THE USE OF LARGE LANGUAGE MODELS 703

704 We employed Large Language Models (LLMs) and Multimodal Large Language Models (MLLMs)  
705 exclusively for linguistic refinement of the manuscript, minor stylistic adjustments, and visual as-  
706 sistance in figure composition. The LLM/MLLM systems were not utilized in any aspect of re-  
707 search conception, experimental design, implementation, data analysis, or results interpretation. All  
708 technical content, conceptual frameworks, and substantive contributions originate entirely from the  
709 authors.

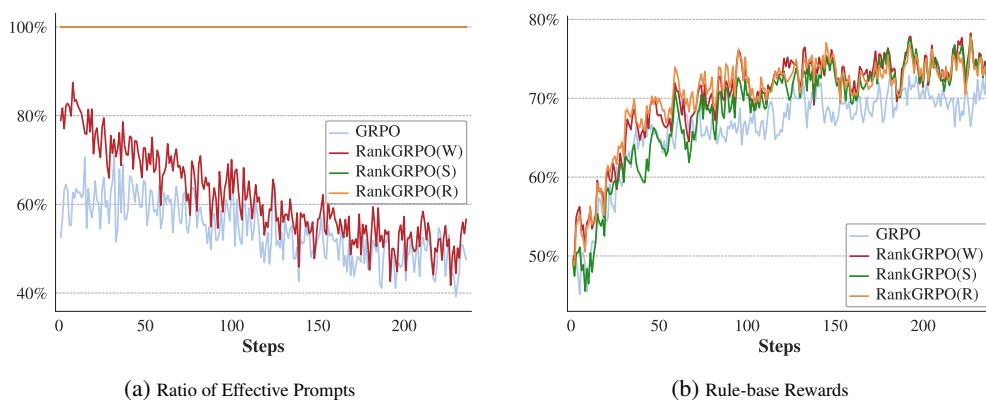
## 710 711 B TRAINING DETAILS 712

### 713 B.1 SETTINGS 714

715 We cap the generated output length at 8,192 tokens and form groups of size  $G = 8$  per prompt.  
716 For the RRM, we set the sortable subset size to  $n = 4$ . Unless otherwise noted, hyperparameters  
717 are fixed as follows:  $\lambda = 2048$ ,  $\xi^+/\xi^- = \pm 10^{-3}$  (advantage clipping threshold),  $\tau = 0.1$ , and  
718 sampling temperature  $T = 1.0$  during data collection. Our method and all baselines are implemented  
719 on top of the VeRL (Sheng et al., 2025) framework.

720 For the reward model evaluation, we set  $n = 4$ . When  $n = 2$ , we repeat the process once for each  
721 sample. For  $n = 8$  or  $n = 16$ , we first divide the samples into multiple groups of size 4, then select  
722 the best from each group. Afterward, we continue with the RRM for a second round of selection  
723 until the optimal answer is chosen.

### 724 725 B.2 TRAINING DYNAMIC 726



740 Figure 7: Dynamic in key metrics during the training process of 8B Model.  
741

742 We recorded the dynamic changes of two key metrics during the training process, as shown in Fig-  
743 ure 7. The methods *Ranking as Supplement* and *Ranking as Reward* utilized all available data, with  
744 the proportion of effective data consistently remaining at 100%. In contrast, the *Ranking as Weight*  
745 method only used correctly grouped data, and as training progressed, the proportion of effective data  
746 gradually increased. All three methods, benefiting from additional knowledge, exhibited a slight ad-  
747 vantage in reward scores compared to GRPO. This phenomenon highlights the effectiveness of the  
748 proposed relative ranking reward approach.

### 750 B.3 EVALUATION DATASETS 751

752 We evaluate our models on seven mathematical reasoning benchmarks: Math500 (Hendrycks et al.,  
753 2021; Lightman et al., 2023a), AIME24 (Art of Problem Solving, 2024a), AIME25 (Art of Problem  
754 Solving, 2025), AMC (Art of Problem Solving, 2024b), Minerva Math (Lewkowycz et al., 2022),  
755 Gaokao (Zhang et al., 2023), and Olympiad Bench (He et al., 2024), which cover a broad range  
of mathematical difficulty and problem types. For logical reasoning, we select two representative

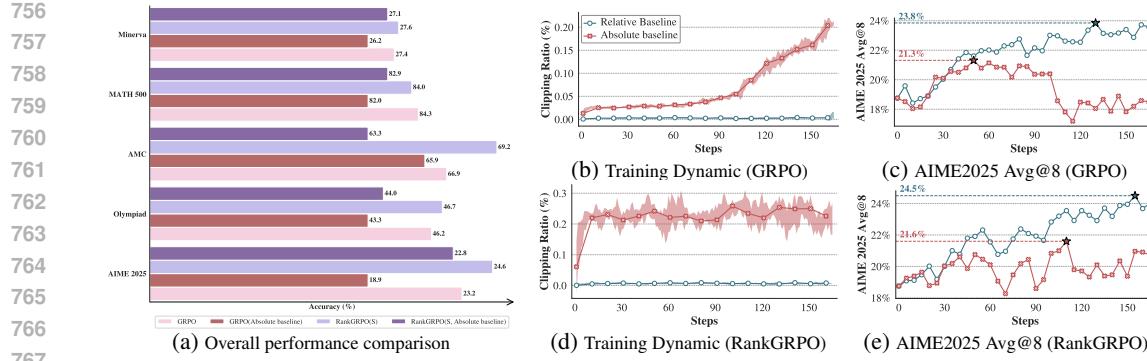


Figure 8: Effect of Absolute vs. Relative Baselines on GRPO and RankGRPO(S).

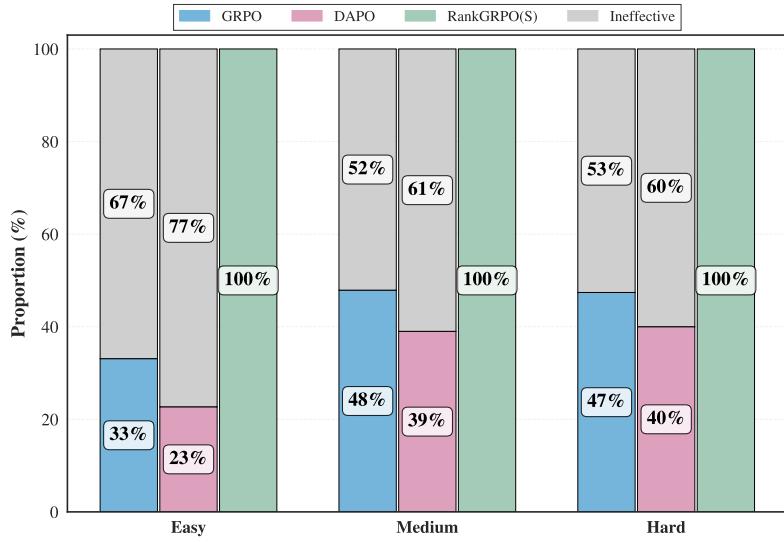


Figure 9: The proportion of effective data during the training phase for different methods.

benchmarks: Zebra Puzzle (Cheng et al., 2025), and Ordering Puzzle (Cheng et al., 2025). These datasets are widely recognized and present diverse challenges for evaluating both mathematical and general reasoning abilities.

## C SUPPLEMENTARY RESULTS

### C.1 ABSOLUTE BASELINE.

In our experiments, we compared the impact of using relative baselines (intra-group mean) versus absolute correctness baselines (for GRPO, a baseline of 0.5; for RankGRPO, a baseline of 1) on performance and stability. The results, shown in Figure 8a, indicate that using the absolute correctness baseline leads to a significant drop in performance. Figure 8b and 8d further reveal the instability introduced by the absolute baseline, particularly from the perspective of truncation rates. Additionally, Figure 8c and 8e demonstrate a decline in accuracy during the later stages of training, highlighting the unsuitability of the absolute baseline for long-term training.

### C.2 IMPACT OF DATASET DIFFICULTY

We analyze how dataset difficulty influences data efficiency and performance in Section 5.4.1. Table 4 reports a detailed comparison of three methods across difficulty levels. Moderate difficulty yields the best gains, whereas overly easy or overly hard data diminishes further improvement. In

810 Table 4: Performance comparison across datasets of varying difficulty; **bold** indicates the best result.  
811

|        | Method      | AIME24      | AIME25      | MATH500     | GSM8k       | Olympiad    | GaoKao      | Minerva     | AMC         | Avg         |
|--------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Easy   | GRPO        | 29.4        | 23.0        | 83.1        | <b>87.0</b> | <b>45.1</b> | 72.5        | <b>28.4</b> | 64.3        | 54.1        |
|        | DAPO        | <b>30.9</b> | 23.0        | 83.1        | 86.0        | 43.9        | 73.4        | 26.5        | 64.1        | 53.9        |
|        | RankGRPO(S) | 30.0        | <b>23.3</b> | <b>83.5</b> | 86.8        | 44.5        | <b>74.6</b> | 27.5        | <b>65.1</b> | <b>54.4</b> |
| Medium | GRPO        | 29.7        | 23.8        | <b>84.3</b> | 85.6        | 46.2        | 73.9        | 27.4        | 66.9        | 54.7        |
|        | DAPO        | 30.4        | 23.3        | 83.2        | <b>86.1</b> | 43.7        | 74.1        | 26.8        | 65.3        | 54.1        |
|        | RankGRPO(S) | <b>30.8</b> | <b>24.6</b> | 84.0        | <b>86.1</b> | <b>46.7</b> | <b>74.3</b> | <b>27.6</b> | <b>69.2</b> | <b>55.4</b> |
| Hard   | GRPO        | 27.9        | 23.6        | 82.9        | 86.0        | 43.4        | 74.2        | 26.3        | 65.4        | 53.7        |
|        | DAPO        | <b>29.0</b> | 22.5        | 83.5        | 85.8        | 44.2        | 72.9        | <b>27.4</b> | 63.8        | 53.6        |
|        | RankGRPO(S) | 28.8        | <b>23.8</b> | <b>83.6</b> | <b>86.2</b> | <b>45.1</b> | <b>74.9</b> | 26.7        | <b>66.4</b> | <b>54.4</b> |

821  
822 GRPO, extremes of difficulty tend to degenerate into *invalid prompts* that provide little learning signal  
823 and mainly act as a weak regularizer to prevent forgetting of trivial cases. In fact, on the easy  
824 subset many prompt groups are already close to unanimously correct at the beginning of training, so  
825 the GRPO effective prompt ratio starts at a relatively low level and quickly saturates. On the medium  
826 subset the GRPO effective prompt ratio decreases from about 60% at the beginning of training to  
827 about 40% near convergence, which is consistent with the global trend in Figure 1a. On the hard  
828 subset many prompt groups are initially unanimously incorrect and gradually become effective as  
829 the policy improves, which compensates for prompts that later turn unanimously correct and pro-  
830 duces an almost flat curve. Across all difficulty levels, the absolute fraction of effective prompts  
831 under GRPO remains relatively low, indicating limited utilization of the available data. DAPO  
832 removes such invalid prompts altogether, which avoids noise but forfeits potential information con-  
833 tained therein. By contrast, RankGRPO leverages *all* samples by converting groupwise orderings  
834 into usable signal, thereby extracting additional knowledge even from otherwise low-value prompts.  
835 Figure 9 visualizes the fraction of effective data throughout RL training: RankGRPO maintains  
836 100% effective utilization at all times, substantially exceeding the other methods and corroborating  
837 its advantages in both data efficiency and final performance.

838 C.3 EFFECT OF GROUP SIZE ON METHOD PERFORMANCE  
839840 Table 5: Performance Comparison Across Different Group Sizes  
841

| MATHEMATICAL REASONING |             |        |        |         |       |          |        |         |      |      |
|------------------------|-------------|--------|--------|---------|-------|----------|--------|---------|------|------|
| $G$                    | Method      | AIME24 | AIME25 | MATH500 | GSM8k | Olympiad | GaoKao | Minerva | AMC  | Avg  |
| 4                      | GRPO        | 28.8   | 22.5   | 83.2    | 84.7  | 46.1     | 73.0   | 27.8    | 66.7 | 54.1 |
|                        | RankGRPO(S) | 31.5   | 24.1   | 84.4    | 85.1  | 45.1     | 73.8   | 27.7    | 65.9 | 54.7 |
| 8                      | GRPO        | 29.7   | 23.8   | 84.3    | 85.6  | 46.2     | 73.9   | 27.4    | 66.9 | 54.7 |
|                        | RankGRPO(S) | 30.8   | 24.6   | 84.0    | 86.1  | 46.7     | 74.3   | 27.6    | 69.2 | 55.4 |
| 16                     | GRPO        | 29.1   | 23.0   | 85.7    | 87.3  | 47.6     | 76.2   | 28.1    | 68.0 | 55.6 |
|                        | RankGRPO(S) | 30.4   | 23.5   | 85.9    | 86.9  | 47.2     | 75.0   | 28.3    | 67.9 | 55.6 |

851 We conducted a comprehensive analysis of both methods’ performance across varying group sizes  
852  $G$ , as detailed in Table 5. The experimental results reveal that GRPO exhibits performance improve-  
853 ment with increasing  $G$ , primarily due to reduced occurrence of invalid groups at larger group sizes.  
854 In contrast, RankGRPO demonstrates consistent effectiveness even at smaller  $G$  values through full  
855 utilization of all available training data. The experimental findings demonstrate that GRPO attains  
856 performance levels comparable to RankGRPO when operating with sufficiently large group sizes,  
857 as the increased sampling capacity enables more comprehensive data utilization.

858 C.4 EFFECT OF  $\lambda$  ON METHOD PERFORMANCE  
859

860 We analyzed the impact of the parameter  $\lambda$  in Equation (7) on model performance, with the re-  
861 sults presented in Table 6. As the length constraint was relaxed, the model’s performance steadily  
862 improved. When  $\lambda$  was large, the length constraint became ineffective in most cases, and the per-  
863 formance closely resembled that of not using the length reordering. On the other hand, since the

