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ABSTRACT

Recent breakthroughs in Large Language Model (LLM) reasoning have been
driven by reinforcement learning techniques like PPO and GRPO. However, in
Reinforcement Learning with Verifiable Rewards (RLVR), sparse rewards hinder
learning when group samples receive identical scores. While existing methods
attempt to address this with data filtering, they inadvertently limit progress on
correctly answered prompts. Additionally, reward models based on absolute nu-
merical scores often suffer from range instability, undermining training stability.
To address these issues, we introduce intra-group response preference ranking
as a reward signal. We propose the Ranking Reward Model (RRM), a listwise
preference model designed for GRPO, which outputs relative preference rank-
ings for multiple responses to a single prompt. RankGRPO incorporates three
strategies to leverage these rankings, mitigating vanishing gradients and instabil-
ity from absolute scoring. Experiments show that RankGRPO improves perfor-
mance across RLVR benchmarks, open-ended tasks, and reward model evalua-
tions. RRM, trained with limited data, outperforms traditional numerical reward
models trained on larger datasets, demonstrating the potential of RankGRPO and
the effectiveness of ranking-based reward signals. Our source code is available at
https://anonymous.4open.science/r/RankGRPO-0542.
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Figure 1: Comparative analysis of reward formulations. (a) Sparse rewards cause zero intra-group
variance, reducing data utilization efficiency during GRPO training. (b) Scalar reward models ex-
hibit higher numerical dispersion, compromising stability in intra-group advantage estimation. (c)
RankGRPO utilizes relative ranking to sustain stable advantages through consistent gradient signals.

1 INTRODUCTION

In recent years, reinforcement learning (RL) has driven significant advances in natural language
processing (NLP), reshaping the reasoning paradigms of large language models (LLMs). Through
large-scale RL training, models such as DeepSeek-R1 (Guo et al., 2025) and OpenAI O1 (Jaech
et al., 2024) have demonstrated sophisticated reasoning abilities including self-verification and iter-
ative refinement, which substantially improve their performance on challenging mathematical and
programming tasks. Building on this progress, Group Relative Policy Optimization (GRPO) (Shao
et al., 2024) has emerged as a key method for scaling LLMs during testing. By introducing an
intra-group relative evaluation mechanism, GRPO reduces the bias of value function estimation and
alleviates the heavy memory requirements associated with traditional Proximal Policy Optimization
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(PPO) (Schulman et al., 2017), providing a more efficient and robust training paradigm for the next
generation of LLMs.

Reward modeling has become a central component in RL, providing reliable signals that guide LLM
responses (Gao et al., 2023). High-quality and robust rewards significantly enhance performance in
specialized domains (Lightman et al., 2023b; Liu et al., 2025c). Yet modeling intermediate rewards
within Chain-of-Thought (CoT) reasoning remains inherently difficult (Chen et al., 2025), which
leaves most test-time scaling approaches dependent on rule-based functions that deliver sparse feed-
back only on final correctness (Yu et al., 2025). However, as GRPO training progresses, an in-
creasing fraction of sample groups reach unanimous correctness, thereby reducing the proportion
of effective updates. In this work, we call a training prompt an effective sample if its group of G
sampled responses contains both correct and incorrect outputs under the rule-based verifier. Only
such prompts induce non-zero within-group reward variance and thus contribute non-trivial policy
gradients, whereas prompts whose G responses are all correct or all incorrect are treated as in-
effective. As shown in Figure 1a, which plots the fraction of effective samples along the GRPO
training trajectory, fewer than 40% of samples provide meaningful gradients in later stages, leading
to wasted computation and constraining the model’s ability to acquire stronger reasoning strategies.
This phenomenon is most salient when the problem difficulty is moderate, yet the absolute fraction
of effective samples remains relatively low across different types of prompts.

Reward models help reduce sparse rewards but still have structural limitations. Outcome reward
models (ORMs) judge only the final answer and overlook reasoning quality, while process reward
models (PRMs) guide intermediate steps but require costly annotation. Most of these models are
scalar reward models (SRMs). As illustrated in Figure 1b, the relative range of SRM scores exhibits
a significantly higher magnitude compared to ranking-based methods. This indicates a high degree
of numerical dispersion which undermines the stability of intra-group advantage estimation. Since
GRPO relies on within-group comparisons, the critical factor is the relative rank. Although absolute
scoring is capable of distinguishing responses, it introduces unnecessary numerical variance. Con-
sequently, this approach leads to unstable gradients due to its sensitivity to score magnitude and task
difficulty.

In this work, we propose RankGRPO, a novel algorithm that enhances GRPO by integrating ranking
information among intra-group samples during advantage computation. This approach is designed
to overcome the dual challenges of sparse rewards failing to provide sustained, valuable gradients
and the instability of traditional numerical reward models. Specifically, we devise three distinct
mechanisms that incorporate relative ranking and rule-based rewards to varying degrees: Ranking as
Weight, Ranking as Supplement, and Ranking as Reward. To facilitate this ranking-based approach,
we introduce the Ranking Reward Model (RRM). The RRM is trained to rank the quality of multiple
input samples, a design motivated by GRPO’s inherent mechanism of comparing responses within
a group. We then employ the RRM within the RankGRPO framework to order the quality of these
intra-group responses. This method enables RankGRPO to continue learning from data convention-
ally defined as invalid in standard GRPO, thereby significantly improving the model’s reasoning
quality while maximizing the utilization of rollout data. Through extensive experiments across di-
verse settings, we rigorously validate the effectiveness of our proposed methodology, demonstrating
significant improvements over existing approaches. Our contributions are summarized as follows:

• We propose RankGRPO and design three distinct mechanisms to integrate intra-group rel-
ative ranking into advantage computation, addressing the limitations of sparse rewards.

• We propose the RRM, which performs relative ranking over multiple samples. This ap-
proach mitigates the instability challenges of numerical SRMs and is better suited to
GRPO’s framework for computing group-relative advantages.

• Extensive experiments on multiple tasks demonstrate the effectiveness of RankGRPO in
enhancing data utilization efficiency and improving model performance.

2 RELATED WORK

Inference-Time Scaling for LLMs. Inference-time scaling complements training efforts, with re-
search focusing on sampling and reward model aggregation (Brown et al., 2024; Snell et al., 2025;
Wu et al., 2024). A key approach is Reinforcement Learning with Verifiable Reward (RLVR),

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

which improves reasoning by using external verifiers for reward signals instead of model-generated
scores (Zeng et al., 2025). Methods like PPO (Schulman et al., 2017) and GRPO (Shao et al.,
2024) are commonly used for policy optimization, driving further RL advancements in reasoning
tasks (Kazemnejad et al., 2024; Yuan et al., 2025). Notable innovations include DAPO, which filters
zero-variance prompts (Yu et al., 2025), and GRESO, which uses probabilistic pre-filtering (Zheng
et al., 2025). While both improve data efficiency, DAPO incurs computational overhead, and
GRESO may discard useful learning opportunities due to its simplistic reward structure.

Reward Models. Reward models (RMs) are pivotal in RL, especially for aligning large language
models (LLMs) and scaling inference. Designed to capture human preferences, RMs complement
rule-based rewards (Christiano et al., 2017; Ouyang et al., 2022). Mainstream RMs typically func-
tion as discriminative classifiers, providing scalar rewards to rank responses (Cai et al., 2024; Liu
et al., 2025a; Lou et al., 2024). Other methods harness LLMs as judges, offering preference scores
or critiques on generated content (Zheng et al., 2023). Approaches like Direct Preference Optimiza-
tion (DPO) eliminate the need for explicit RMs, instead directly optimizing policies from preference
pairs (Rafailov et al., 2023). Despite their advantages, RMs face challenges, such as the high cost
of preference data, biases, and the risk of reward hacking (Gao et al., 2023; Skalse et al., 2022).

3 PRELIMINARIES

To optimize the LLM policy, GRPO (Shao et al., 2024) introduces an alternative RL algorithm,
which is a memory-efficient variant of PPO (Schulman et al., 2017). A notable feature of GRPO
is that it typically operates without a learned value function. Instead, for a given prompt p, the
current policy generates a group of G responses {o1, . . . ,oG}. The rewards {s1, . . . , sG} for these
responses are then used to compute the relative advantage for each response:

Âk =
sk − mean({sk|k = 1, 2, . . . , G})

Fnorm
. (1)

Here, Fnorm serves as an optional normalization factor. In the standard GRPO implementation, Fnorm
is defined as std({sk|k = 1, . . . , G}). In contrast, alternative implementations in RLVR fix the
normalization factor to unity so that Fnorm = 1 (Liu et al., 2025b; Chu et al., 2025).

GRPO then maximizes a clipped surrogate objective function to ensure stable updates. Let πθold

represent the policy before the update. For each token ok,t in a trajectory ok (from state st), the
importance sampling ratio is defined as ρk,t(θ) =

πθ(ok,t|st)
πθold (ok,t|st) . The objective is then given by:

JGRPO(θ) =
1

G

G∑
k=1

1

|ok|

|ok|∑
t=1

(
min

(
ρk,t(θ) · Âk, clip

(
ρk,t(θ), 1− ϵ, 1 + ϵ

)
· Âk

))
, (2)

where ϵ is a small hyperparameter defining the clipping range. This mechanism ensures that the
LLM policy is updated while maintaining stable gradient constraints.

4 METHODOLOGY

To resolve the mismatch between absolute reward scores, whether rule-based or model-based, and
the relative group-wise signal required by GRPO, we propose RankGRPO, a reinforcement learning
framework built on intra-group preference rankings. We further introduce the RRM, tailored to
GRPO, which mitigates the scale instability of SRMs by producing consistent relative orderings of
responses within each group.

4.1 RANKGRPO: LEARNING WITH INTRA-GROUP PREFERENCE RANKINGS

We introduce RankGRPO, a framework that integrates intra-group relative quality rankings pro-
duced by a dedicated ranking model into GRPO to mitigate gradient vanishing when reward variance
collapses within the response set {oi}Gi=1. Given the group of responses {oi}Gi=1, this ranking model
assigns each response a rank ri that reflects its relative quality. For each response oi with rank ri,
we map the binary rule-based reward srule

i ∈ {0, 1} to a rank-enhanced score srank
i = f

(
srule
i , ri

)
. We

3
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Question: Solve: 3x−5=10. 
Answer: 5.
Response 1: <think> $ = 1, 3 − 5 ≠
10.⋯ $ = 5, 15 − 5 = 10. </think> 5.
Response 2: <think> As 3$ = 10 + 5, 
then 3$ = 15, so $ = 5.</think> 5.
Response 3: <think> I guess $=5. 
</think> 5.

for each subgroupfor each response Generated by LLMs

./0 1 ⋅ (#− !$) ×

+

→

Correct

"!"#$% − $
%$&"'

Advantage

Figure 2: Overview of RankGRPO. (a) Workflow of RankGRPO, illustrating three strategies for
integrating intra-group preference rankings with scalar reward scores during advantage estimation.
(b) Reward-model comparison: the SRM assigns independent scores to each response, whereas the
RRM produces a relative ordering of multiple responses within a group. (c) Training-data processing
pipeline for the RRM.

instantiate f(·) with three strategies that leverage relative orderings to different degrees. These rank-
aware adjustments counteract the failure mode of zero within-group reward variance and preserve
informative gradients for optimization.

Ranking as Weight. We rescale the original reward scores according to the relative quality of
responses within each group:

srank
i = f(srule

i , ri) = exp (τ · (1− ri)) · srule
i , (3)

where the coefficient τ controls the strength of rank-based weighting over ranks ri, amplifying top-
ranked samples and suppressing lower-ranked ones. This mechanism further differentiates correct
samples, while incorrect samples are handled as in GRPO, enabling the model to continue learning
from groups in which all responses are correct.

Ranking as Supplement. To leverage the signal from all samples, we add a bounded, rank-based
correction to the rule reward. For item i with within-group rank ri ∈ {1, . . . , rmax}, we define

srank
i = f

(
srule
i , ri

)
= srule

i + τ · tanh
(rmax

ri
− 1

)
, (4)

where τ > 0 controls the magnitude of the adjustment. It keeps the rule reward as the primary signal
and introduces fine-grained distinctions among responses with identical rule correctness, ensuring
that every sample contributes information.

Ranking as Reward. We replace the rule-based score with a normalized, rank-only reward that
maps within-group ranks directly to [0, 1]. For item i with rank ri ∈ {1, . . . , rmax}, define

srank
i = f

(
srule
i , ri

)
=

rmax − ri
rmax − 1

. (5)

This monotone mapping assigns a fixed score to each rank and is invariant to any affine trans-
formation of the rule-base scores. Consequently, rewards depend solely on the relative ordering:
higher-ranked responses always receive higher rewards, and the fixed per-rank values yield stable
advantages across groups.

Advantage of RankGRPO. Directly using the mean of srank as a baseline may lead to inconsisten-
cies between the correctness of certain responses and the direction of their computed advantages.

4
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To mitigate the potential negative impact of such misaligned advantages, we introduce a clipping
strategy. Specifically, advantages that contradict correctness are truncated, thereby improving the
stability of the training process. The clipping is defined as follows:

Aclip
i =

{
max

(
Ai, ξ

−), if correct
min

(
Ai, ξ

+
)
, if incorrect

(6)

where Ai denotes the advantage of the i-th sample, and ξ+/ξ− are clipping thresholds that prevent
excessively large positive or negative values. This design ensures that positive advantages are lower-
bounded and negative ones are upper-bounded, aligning the reward signal with correctness and en-
hancing training robustness. For convenience, we denote the three mechanisms of RankGRPO as
W, S, and R, representing Ranking as Weight, Ranking as Supplement, and Ranking as Reward,
respectively, in the following experiments.

4.2 RANKING REWARD MODEL

In GRPO, advantage estimation depends on the relative relationships among responses within a
group, computed through mean-normalized rewards. However, conventional reward models output
scalar scores whose absolute values are difficult to control, even if they preserve the correct prefer-
ence order. This mismatch makes the GRPO advantage unstable, since inconsistent score scales lead
to unreliable within-group normalization. To address this issue, we introduce the Ranking Reward
Model (RRM), which directly predicts the relative ordering of n responses rather than assigning
unconstrained scalar scores. This ranking-based formulation aligns naturally with the group-wise
normalization in GRPO and eliminates the need for stable score magnitudes.

RRM is a sequence classification model fine-tuned from an LLM. We replace the language-model
head with a classification layer whose classes correspond to the n! possible permutations over the
n input responses, and we train the model using a standard cross-entropy loss. As illustrated in
Figure 2, RRM outputs a relative ranking for n responses. To construct training data, we first sample
multiple CoT responses for each prompt. For tasks with verifiable correctness, a rule-based verifier
assigns a binary correctness label to each response. We rigorously enforce that correct responses
must be ranked higher than incorrect ones. Within each correctness category, we sort responses
based on scores from an SRM to obtain a fine-grained order. The LLM judge is utilized only in
rare instances where the SRM ranking contradicts the correctness label. In such cases, we discard
the inconsistent SRM scores and query the LLM judge to provide a local ranking that respects the
correctness constraint. For open-ended tasks without a reliable rule-based verifier, we directly sort
responses by SRM scores without invoking an LLM judge. Training instances are then created by
selecting n responses from the finalized total order, randomly shuffling their input sequence, and
using the resulting permutation index as the supervision label to mitigate positional bias.

4.3 HIERARCHICAL RE-RANKING

Given that RMs are more susceptible to reward hacking than rule-based rewards, we introduce a
re-ranking phase after obtaining relative sample ordering via the RRM. This phase first sorts sam-
ples based on verifiable reward scores, then mitigates model overthinking by prioritizing shorter
responses through length-based adjustment, and finally integrates the quality ordering from the rank-
ing reward model. Since minor length variations among responses with identical reward scores do
not capture quality distinctions, we apply coarse-grained length discretization for calibration, as
formalized in Equation 7:

Bi =


⌊
ℓi
λ

⌋
, if oi is correct

+∞, if oi is incorrect
(7)

where ℓi is the length of response oi, and hyperparameter λ controls discretization granularity. When
reward scores are equal, correct responses are reordered by ascending Bi. Incorrect responses are
assigned Bi = +∞, removing length constraints from their ranking.

Since RRM is applied to n responses at a time, we choose the GRPO group size G to be a multiple
of n and partition each group into G/n disjoint subgroups, each containing exactly n responses.
As depicted in Figure 2, we apply RRM to every subgroup to obtain local relative ranks rrrm

i and

5
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Algorithm 1 RankGRPO
Input policy πθ , dataset D, rule-based verifier Rϕ, ranking reward model Rψ , group size G, subgroup size n,
inner steps µ.
1: for step = 1, . . . , M do
2: Sample a batch Db from D and set πθold ← πθ
3: for each q ∈ Db do
4: Sampling: Generate G responses oi using πθold .
5: Reward calculation: Compute rule-based rewards srule

i and ranking-based relative ranks ri for each
response oi using Rϕ and Rψ .

6: Hierarchical Re-ranking: Sort responses lexicographically using the priority tuple (srule
i ,Bi, rrrm

i )
(Correctness → Length → RRM) to determine the global rank ri, and compute final rewards
srank
i using the rank-mapping function f

(
srule
i , ri

)
.

7: Advantage computation and clipping: Compute group-relative advantages (Equation (1)) and clip
the advantages based on a threshold ξ (Equation (6)).

8: Policy update: Update the policy πθ by maximizing the GRPO objective (Equation (2)).
9: end for

10: end for
11: Output: The final policy πθ

then perform a hierarchical re-ranking stage to produce the final ranks ri for all G responses. The
complete RankGRPO workflow is formalized in Algorithm 1. This approach integrates intra-group
relative ordering into GRPO, thereby mitigating gradient vanishing induced by sparse rewards while
circumventing reliability limitations of conventional reward models and enabling priority aware
multi objective optimization by merging correctness, reasoning efficiency, and chain of thought
quality into a single unified ranking.

5 EXPERIMENTS

To comprehensively evaluate the performance of RankGRPO and the effectiveness of our proposed
RRM, we conduct experiments from three perspectives:

• Tasks with Verifiable Rewards: We select mathematical reasoning and logical reasoning
tasks to assess the model’s capabilities in scenarios where rewards can be explicitly verified.

• Open-ended Writing Tasks: We utilize WritingBench (Wu et al., 2025) to evaluate the
model’s performance on open-domain writing challenges, which covers 6 core domains
and 100 subdomains, encompassing a diverse range of writing tasks and styles.

• Evaluation of Reward Models: We evaluate reward models with a Reward-guided Test-
Time Scaling framework (Zou et al., 2025), where each model selects the most accurate
solution from candidates, and accuracy of the chosen solutions serves as the metric.

5.1 TASKS WITH VERIFIABLE REWARDS

Baselines. We conduct our experiments on DeepSeek-R1-Distill-Qwen-1.5B and DeepSeek-R1-
Distill-LlaMA-8B (Guo et al., 2025). Our primary comparison is against four recent state-of-the-art
reinforcement learning methods: (1) GRPO (Shao et al., 2024), (2) Dr.GRPO (Liu et al., 2025b),
(3) GPG (Chu et al., 2025), and (4) DAPO (Yu et al., 2025). Our RRM is trained on 25k data using
Qwen2.5-7B-Instruct-1M (Team, 2025).

Datasets. For RL training, we use approximately 16,000 mathematics and logic samples filtered
by difficulty from the GURU dataset (Cheng et al., 2025), and for the 8B model, we additionally
include the Open-RS dataset (Dang & Ngo, 2025). For ablation and analysis experiments, we train
the 1.5B model using the SimpleRL dataset (Zeng et al., 2025). For evaluation, we employ several
challenging mathematical and logical reasoning benchmarks to assess our models’ performance.
Detailed descriptions and references for all evaluation datasets are provided in Appendix B.3.

Performance. Table 1 shows that RankGRPO achieves competitive or superior results on mathe-
matical reasoning. On logic reasoning tasks, it consistently outperforms all baselines, underscoring
the benefit of ranking-based optimization. Across variants, Ranking as Weight performs slightly

6
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Table 1: Overall performance on eight competition-level mathematical reasoning benchmarks and
two logic reasoning benchmarks. We report the mean score ± confidence interval. The average
response length (tokens) is reported in the rightmost column. Bold and underlined indicate the best
and second-best performance, respectively.

METHOD

MATHEMATICAL REASONING LOGIC REASONING
Avg
Len.AIME 24 AIME 25 MATH 500 GSM8K Olympiad GaoKao Minerva AMC Avg Zebra Ordering Avg

Avg@32 Avg@32 Avg@4 Avg@4 Avg@4 Avg@4 Avg@4 Avg@16 Avg@4 Avg@4 (Tokens)

R
1-

D
is

til
l-Q

w
en

-1
.5

B Baseline 28.5±1.0 23.5±2.2 82.7±2.1 85.8±1.1 43.3±1.3 71.7±1.4 26.5±0.7 63.1±0.5 53.1±0.7 0.7±0.2 14.0±1.2 7.3±0.7 11727±205

GRPO 30.8±1.1 23.7±0.6 83.5±0.9 86.3±1.0 44.5±0.3 74.5±0.3 28.0±3.3 65.9±1.2 54.6±0.4 2.5±0.4 22.4±1.6 12.4±1.0 7253±166

Dr.GRPO 29.7±0.6 23.6±1.9 83.7±1.4 86.9±2.8 45.4±1.7 73.6±0.7 27.4±1.5 65.9±2.0 54.5±0.4 3.0±0.9 20.4±3.2 11.1±4.2 7239±149

GPG 32.0±0.7 24.6±0.3 84.7±0.9 86.7±0.3 45.5±1.2 73.6±1.1 28.1±0.4 65.2±1.7 55.1±0.7 3.8±1.3 22.2±4.6 13.5±3.9 9937±173

DAPO 30.1±3.5 22.8±0.1 84.3±0.5 86.4±0.2 45.5±1.6 74.2±0.2 29.2±1.5 67.7±1.6 55.0±0.2 6.8±2.7 28.4±3.4 17.6±3.0 10006±197

RankGRPO(W) 30.7±0.7 23.7±1.2 83.1±1.7 85.8±0.5 44.8±1.0 73.8±0.8 29.7±0.2 67.4±1.5 54.9±1.0 9.8±2.9 34.9±2.2 22.3±2.5 6226±137

RankGRPO(S) 31.2±0.3 24.1±0.6 84.8±0.4 86.3±0.3 46.4±0.8 74.1±0.2 28.6±0.3 66.6±0.7 55.3±0.4 10.1±0.9 39.5±6.9 24.6±3.5 6601±159

RankGRPO(R) 32.3±0.7 22.7±1.3 83.4±0.8 86.6±0.9 46.4±2.7 74.1±1.1 28.1±0.3 68.1±0.6 55.2±0.7 6.1±2.9 31.4±2.6 18.8±1.9 7121±190

R
1-

D
is

til
l-L

La
M

A
-8

B Baseline 47.8±1.6 32.3±0.5 90.0±0.9 90.0±0.9 51.5±2.2 77.0±1.0 29.6±2.7 78.5±2.4 62.1±1.2 9.0±3.7 55.8±1.5 32.4±1.5 9209±419

GRPO 50.1±1.7 33.2±1.2 90.2±1.6 91.7±0.7 56.6±1.9 80.3±0.8 30.4±1.5 81.7±1.5 64.3±0.4 30.8±1.2 77.7±1.4 54.3±1.3 6638±157

Dr.GRPO 50.9±1.3 32.7±0.5 89.8±2.6 90.3±2.5 54.1±1.3 79.4±1.3 30.2±1.3 83.1±1.0 63.8±1.2 23.5±1.3 74.5±1.5 49.0±0.4 6667±375

GPG 51.0±1.3 32.4±2.3 89.1±1.2 91.3±1.4 54.7±1.7 80.1±0.7 30.0±1.7 82.1±2.1 63.8±0.7 24.6±3.0 78.8±1.0 51.7±1.6 7228±352

DAPO 47.8±2.3 34.6±1.6 90.0±1.0 92.5±1.3 58.1±0.6 81.7±0.9 32.9±1.7 79.4±1.9 64.6±0.9 37.3±1.5 89.3±0.9 63.3±1.2 6495±309

RankGRPO(W) 51.1±1.5 35.1±1.0 89.4±2.5 91.7±2.2 59.1±1.4 81.1±0.9 31.2±1.1 82.6±1.8 65.2±0.6 40.7±2.9 88.9±2.1 64.8±0.5 5530±167

RankGRPO(S) 50.9±1.1 35.4±1.7 91.5±1.3 92.5±1.2 59.5±0.9 82.5±1.2 33.1±1.2 83.6±0.5 66.0±1.2 40.4±3.4 89.2±0.5 64.7±1.4 5370±201

RankGRPO(R) 51.9±1.4 34.8±1.1 90.5±1.4 91.7±0.7 55.3±1.3 81.7±1.1 32.9±1.0 81.6±1.5 65.1±0.4 35.8±1.0 88.0±0.9 61.9±0.9 5479±315

worse as it ignores groups with all incorrect responses, whereas others leverage both all-correct
and all-incorrect groups for stronger training signals. In particular, Ranking as Supplement, which
emphasizes rule-based rewards in advantage estimation, yields more stable improvements on tasks
with verifiable correctness. Overall, these results demonstrate the effectiveness of RankGRPO in
enhancing both mathematical and logical reasoning performance across a range of tasks.

In-depth Comparison on Mathematical Reasoning. Figure 3a presents a comparison between
our models and several open-source reasoning baselines. Our approach demonstrates a superior bal-
ance between efficiency and performance. Notably, it surpasses resource-intensive baselines (e.g.,
STILL-3-1.5B) with significantly reduced data and compute costs, while also outperforming other
open-source models in accuracy. This demonstrates that incorporating intra-group relative ranking
effectively compensates for the limitations of rule-based rewards in GRPO, thereby improving the
achievable upper bound of the algorithm.

We further investigate different strategies when using only reward models. As shown in Figure 3d,
numerical reward models suffer from instability, occasionally degrading performance on certain
datasets. By contrast, converting numerical scores into relative rankings significantly stabilizes the
reward signal and leads to consistent performance gains. Figure 3b and 3c illustrate this effect from
the perspective of training dynamics, highlighting how relative rewards mitigate fluctuations. More-
over, when adopting our proposed RRM, the performance is further improved, providing additional
evidence that ranking-based rewards offer a more reliable and effective training signal than absolute
numerical values. This demonstrates that relative ranking-based rewards enhance both stability and
performance across various tasks.

5.2 OPEN-ENDED WRITING TASKS

Datasets and Evaluation. To train our RRM, we first construct a preference dataset. Following
the methodology described in Figure 2c, we select 10,000 samples from the Dolphin-R1 dataset1
and generate ranked responses using models of varying scales. For model fine-tuning, we utilize a
separate set of 22,000 samples to fine-tune the Qwen3-1.7B model (Yang et al., 2025).

Baselines. We adopt GRPO (Shao et al., 2024) as our primary algorithmic baseline for comparison.
In addition, we benchmark our RRM against several state-of-the-art reward models: (1) Skywork-
Reward-V2-Llama-3.1-8B (Liu et al., 2025a), (2) URM-LLaMa-3.1-8B (Lou et al., 2024).

1https://huggingface.co/datasets/QuixiAI/dolphin-r1
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Figure 3: A deeper comparison of RankGRPO. Left (a): Results against existing models. Right
(b-d): Training dynamics and reward analyses.

Table 2: Overall performance on Writing Bench. We report the mean score and confidence intervals
(±). The ‘↪→‘ symbol denotes a variant of the method listed directly above. Bold and underline
mark the best and second-best results, respectively.

METHOD OVERALL
ACADEMIC FINANCE POLITICS LITERATURE EDUCATION

ADVERTISING

& ENGINEERING & BUSINESS & LAW & ARTS & MARKETING

Qwen3-1.7B 70.06±0.35 72.60±0.19 71.17±0.02 70.99±0.21 63.22±0.72 73.52±0.05 70.27±1.19

SFT 70.90±0.12 73.17±0.21 70.89±0.28 71.47±0.25 65.75±0.53 74.68±0.23 71.09±0.02

Skywork-8B 72.88±0.19 74.56±0.16 72.81±0.89 72.40±0.05 69.68±0.56 76.00±1.12 73.42±0.09

↪→RankGRPO 73.64±0.30 75.25±0.68 73.71±0.46 73.77±0.04 69.81±0.40 77.22±0.25 73.57±0.07

URM-8B 73.12±0.28 75.14±0.21 73.65±0.84 73.47±0.54 69.06±0.68 76.16±0.25 72.25±1.05

↪→RankGRPO 74.71±0.32 76.46±0.35 75.47±0.33 75.30±0.51 70.86±0.47 77.08±0.23 73.72±0.11

RRM(ours) 81.33±0.12 83.27±0.35 82.92±0.18 81.68±0.23 75.90±0.60 84.16±0.09 80.96±0.63
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(c) Cross-Domain RM Comparison in Writing Benchmark

Figure 4: Reward-Guided Best-of-N Test-Time Scaling for Enhanced Inference Performance.

Performance. Table 2 presents the performance of RankGRPO on open-ended tasks. By convert-
ing absolute scalar scores from two distinct reward models into relative preferences through the
Ranking as Reward approach, we achieve improvements across most domains. This highlights the
effectiveness of relative ranking in enhancing both the stability and performance of GRPO. More-
over, when RankGRPO is paired with our fine-tuned RRM, it achieves the best results in the major-
ity of domains, underscoring that evaluating the preference order of multiple responses provides a
more robust learning signal than scoring individual responses. These findings reinforce the value of
ranking-based approaches for improving performance in open-ended tasks.

5.3 EVALUATION OF RANKING REWARD MODEL

Figure 4 presents a comparative analysis between the SRM Skywork-Reward-V2-Llama-3.1-8B
model (Liu et al., 2025a) and our proposed RRM framework under two experimental configurations.
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Figure 5: Comparison of GRPO and RankGRPO Across Different Data Difficulty Levels.

Table 3: Ablation study results on Responses Re-ranking. Bold marks the best result in each column.

METHOD
MATHEMATICAL REASONING Avg Avg

Len.AIME24 AIME25 MATH500 GSM8k Olympiad GaoKao Minerva AMC

RankGRPO (S) 30.8 24.6 84.0 86.1 46.7 74.3 27.6 69.2 55.4 6365
w/o Correctness 28.4 23.2 83.9 86.2 45.1 73.9 27.7 66.7 54.4 5637
w/o Length 31.3 24.8 85.1 86.9 47.7 73.8 28.0 66.9 55.6 8452

Figure 1 demonstrates their performance on mathematical reasoning tasks using the DeepSeek-R1-
Distill-LlaMA-8B model (Guo et al., 2025), where we sample k responses per prompt and select via
either SRM or RRM with Majority voting. The results show RRM achieves comparable or superior
accuracy to SRM, with the performance gap widening as k increases. Figure 4a and 4b illustrate
RRM’s superior performance in writing tasks evaluated on Qwen3-1.7B (Yang et al., 2025), where
we sample eight responses per instance. The Second designation denotes the second-highest-scoring
sample. RRM consistently selects higher-quality responses, explaining its significant improvement
in compositional tasks. We attribute these improvements to RRM’s focus on relative intra-group
quality assessment rather than absolute scoring. Notably, RRM demonstrates strong generalization
across domains despite limited training data.

5.4 METHOD ANALYSIS

We conduct a comprehensive analysis of our proposed method from several perspectives. More
detailed results can be found in Appendix C.

5.4.1 IMPACT OF DATASET DIFFICULTY

The dataset difficulty directly affects the proportion of effective prompts during training. To examine
this, we fine-tune a 1.5B model on three levels: (1) Easy: GSM8k (Cobbe et al., 2021), (2) Medium:
SimpleRL (Zeng et al., 2025), and (3) Hard: Open-RS (Dang & Ngo, 2025).

Figure 5 presents the performance of GRPO and RankGRPO(S) across datasets of varying diffi-
culty. Our method makes full use of the available data: on the easy dataset, RankGRPO(S) further
improves model performance, whereas GRPO shows limited gains. On medium and hard datasets,
both methods benefit from more informative prompts, and RankGRPO(S) consistently outperforms
GRPO. The fraction of effective prompts under GRPO remains relatively low and exhibits difficulty
dependent dynamics, while RankGRPO(S) maintains full utilization of groupwise information. Fur-
ther analysis of these effects is provided in Appendix C.2.

5.5 ABLATION AND SENSITIVITY ANALYSIS

Effect of Responses Re-ranking. We analyze the contribution of different components in the re-
ranking stage. Table 3 shows that removing correctness consistently degrades performance, con-
firming its necessity for reliable reasoning. Interestingly, relaxing the length constraint slightly im-
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proves results on several datasets, suggesting that over-restricting output length may hinder problem-
solving flexibility. Overall, correctness serves as the primary factor for stability, while length control
requires a careful balance between conciseness and expressiveness.
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Figure 6: Analysis of τ and Advantage Clipping.

Effect of τ and Advantage Clipping.
We examine the sensitivity of model per-
formance to different values of τ . As
shown in Figure 6, increasing τ weak-
ens the influence of rule-based rewards,
which in turn increases the likelihood
of gradient directions misaligned with
correctness, ultimately leading to perfor-
mance degradation. Introducing clipping
effectively mitigates this issue, resulting
in more stable and robust performance improvements.

6 CONCLUSION

We proposed RankGRPO, a reinforcement learning framework that utilizes intra-group preference
rankings to overcome the challenges of sparse and unstable reward signals in LLM training. By inte-
grating relative preferences through the RRM and three distinct strategies, RankGRPO mitigates the
issues of vanishing gradients caused by identical rewards and reduces instability inherent in absolute
numerical scoring. Experiments demonstrate that RankGRPO leads to improvements across mul-
tiple tasks, achieving consistent gains in RLVR and open-ended writing. These results emphasize
that preference-based reward signals are more effective than absolute scoring systems in enhancing
model performance. Additionally, the RRM, serving as a listwise ranking model explicitly aligned
with group-normalized optimization, is well-suited for GRPO, achieving results comparable to SRM
with fine-tuning on a small dataset. Future work will explore more efficient ways to leverage rel-
ative ranking rewards and investigate the potential of a more universal RRM to achieve broader
generalization across diverse domains.

ETHICS STATEMENT

Our method is based on fine-tuning open-source Large Language Models (LLMs) for tasks involving
mathematical reasoning, logical reasoning, and open-ended writing. These tasks do not involve
ethical concerns directly related to moral or societal norms. We have taken care to ensure that our
experiments and methodologies adhere to responsible research practices, and our work does not
involve harm to individuals or communities. The datasets and models used are publicly available,
and we emphasize the transparency and reproducibility of our research.

REPRODUCIBILITY STATEMENT

We have made our work fully reproducible by providing the source code, which is based on open-
source frameworks with minimal modifications. The code is designed to be easily understandable
and user-friendly. All experimental setups, model implementations, and training scripts are included,
and detailed instructions are provided to facilitate replication of the results.
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A THE USE OF LARGE LANGUAGE MODELS

We employed Large Language Models (LLMs) and Multimodal Large Language Models (MLLMs)
exclusively for linguistic refinement of the manuscript, minor stylistic adjustments, and visual as-
sistance in figure composition. The LLM/MLLM systems were not utilized in any aspect of re-
search conception, experimental design, implementation, data analysis, or results interpretation. All
technical content, conceptual frameworks, and substantive contributions originate entirely from the
authors.

B TRAINING DETAILS

B.1 SETTINGS

We cap the generated output length at 8,192 tokens and form groups of size G = 8 per prompt.
For the RRM, we set the sortable subset size to n = 4. Unless otherwise noted, hyperparameters
are fixed as follows: λ = 2048, ξ+/ξ− = ±10−3 (advantage clipping threshold), τ = 0.1 , and
sampling temperature T = 1.0 during data collection. Our method and all baselines are implemented
on top of the VeRL (Sheng et al., 2025) framework.

For the reward model evaluation, we set n = 4. When n = 2, we repeat the process once for each
sample. For n = 8 or n = 16, we first divide the samples into multiple groups of size 4, then select
the best from each group. Afterward, we continue with the RRM for a second round of selection
until the optimal answer is chosen.

B.2 TRAINING DYNAMIC

0 50 100 150 200
Steps

40%

60%

80%

100%

GRPO
RankGRPO(W)
RankGRPO(S)
RankGRPO(R)

(a) Ratio of Effective Prompts
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80%
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RankGRPO(S)
RankGRPO(R)

(b) Rule-base Rewards

Figure 7: Dynamic in key metrics during the training process of 8B Model.

We recorded the dynamic changes of two key metrics during the training process, as shown in Fig-
ure 7. The methods Ranking as Supplement and Ranking as Reward utilized all available data, with
the proportion of effective data consistently remaining at 100%. In contrast, the Ranking as Weight
method only used correctly grouped data, and as training progressed, the proportion of effective data
gradually increased. All three methods, benefiting from additional knowledge, exhibited a slight ad-
vantage in reward scores compared to GRPO. This phenomenon highlights the effectiveness of the
proposed relative ranking reward approach.

B.3 EVALUATION DATASETS

We evaluate our models on seven mathematical reasoning benchmarks: Math500 (Hendrycks et al.,
2021; Lightman et al., 2023a), AIME24 (Art of Problem Solving, 2024a), AIME25 (Art of Problem
Solving, 2025), AMC (Art of Problem Solving, 2024b), Minerva Math (Lewkowycz et al., 2022),
Gaokao (Zhang et al., 2023), and Olympiad Bench (He et al., 2024), which cover a broad range
of mathematical difficulty and problem types. For logical reasoning, we select two representative
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Figure 8: Effect of Absolute vs. Relative Baselines on GRPO and RankGRPO(S).
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Figure 9: The proportion of effective data during the training phase for different methods.

benchmarks: Zebra Puzzle (Cheng et al., 2025), and Ordering Puzzle (Cheng et al., 2025). These
datasets are widely recognized and present diverse challenges for evaluating both mathematical and
general reasoning abilities.

C SUPPLEMENTARY RESULTS

C.1 ABSOLUTE BASELINE.

In our experiments, we compared the impact of using relative baselines (intra-group mean) versus
absolute correctness baselines (for GRPO, a baseline of 0.5; for RankGRPO, a baseline of 1) on
performance and stability. The results, shown in Figure 8a, indicate that using the absolute cor-
rectness baseline leads to a significant drop in performance. Figure 8b and 8d further reveal the
instability introduced by the absolute baseline, particularly from the perspective of truncation rates.
Additionally, Figure 8c and 8e demonstrate a decline in accuracy during the later stages of training,
highlighting the unsuitability of the absolute baseline for long-term training.

C.2 IMPACT OF DATASET DIFFICULTY

We analyze how dataset difficulty influences data efficiency and performance in Section 5.4.1. Ta-
ble 4 reports a detailed comparison of three methods across difficulty levels. Moderate difficulty
yields the best gains, whereas overly easy or overly hard data diminishes further improvement. In
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Table 4: Performance comparison across datasets of varying difficulty; bold indicates the best result.

Method AIME24 AIME25 MATH500 GSM8k Olympiad GaoKao Minerva AMC Avg

Easy
GRPO 29.4 23.0 83.1 87.0 45.1 72.5 28.4 64.3 54.1
DAPO 30.9 23.0 83.1 86.0 43.9 73.4 26.5 64.1 53.9
RankGRPO(S) 30.0 23.3 83.5 86.8 44.5 74.6 27.5 65.1 54.4

Medium
GRPO 29.7 23.8 84.3 85.6 46.2 73.9 27.4 66.9 54.7
DAPO 30.4 23.3 83.2 86.1 43.7 74.1 26.8 65.3 54.1
RankGRPO(S) 30.8 24.6 84.0 86.1 46.7 74.3 27.6 69.2 55.4

Hard
GRPO 27.9 23.6 82.9 86.0 43.4 74.2 26.3 65.4 53.7
DAPO 29.0 22.5 83.5 85.8 44.2 72.9 27.4 63.8 53.6
RankGRPO(S) 28.8 23.8 83.6 86.2 45.1 74.9 26.7 66.4 54.4

GRPO, extremes of difficulty tend to degenerate into invalid prompts that provide little learning sig-
nal and mainly act as a weak regularizer to prevent forgetting of trivial cases. In fact, on the easy
subset many prompt groups are already close to unanimously correct at the beginning of training, so
the GRPO effective prompt ratio starts at a relatively low level and quickly saturates. On the medium
subset the GRPO effective prompt ratio decreases from about 60% at the beginning of training to
about 40% near convergence, which is consistent with the global trend in Figure 1a. On the hard
subset many prompt groups are initially unanimously incorrect and gradually become effective as
the policy improves, which compensates for prompts that later turn unanimously correct and pro-
duces an almost flat curve. Across all difficulty levels, the absolute fraction of effective prompts
under GRPO remains relatively low, indicating limited utilization of the available data. DAPO
removes such invalid prompts altogether, which avoids noise but forfeits potential information con-
tained therein. By contrast, RankGRPO leverages all samples by converting groupwise orderings
into usable signal, thereby extracting additional knowledge even from otherwise low-value prompts.
Figure 9 visualizes the fraction of effective data throughout RL training: RankGRPO maintains
100% effective utilization at all times, substantially exceeding the other methods and corroborating
its advantages in both data efficiency and final performance.

C.3 EFFECT OF GROUP SIZE ON METHOD PERFORMANCE

Table 5: Performance Comparison Across Different Group Sizes

MATHEMATICAL REASONING

G Method AIME24 AIME25 MATH500 GSM8k Olympiad GaoKao Minerva AMC Avg

4 GRPO 28.8 22.5 83.2 84.7 46.1 73.0 27.8 66.7 54.1
RankGRPO(S) 31.5 24.1 84.4 85.1 45.1 73.8 27.7 65.9 54.7

8 GRPO 29.7 23.8 84.3 85.6 46.2 73.9 27.4 66.9 54.7
RankGRPO(S) 30.8 24.6 84.0 86.1 46.7 74.3 27.6 69.2 55.4

16 GRPO 29.1 23.0 85.7 87.3 47.6 76.2 28.1 68.0 55.6
RankGRPO(S) 30.4 23.5 85.9 86.9 47.2 75.0 28.3 67.9 55.6

We conducted a comprehensive analysis of both methods’ performance across varying group sizes
G, as detailed in Table 5. The experimental results reveal that GRPO exhibits performance improve-
ment with increasing G, primarily due to reduced occurrence of invalid groups at larger group sizes.
In contrast, RankGRPO demonstrates consistent effectiveness even at smaller G values through full
utilization of all available training data. The experimental findings demonstrate that GRPO attains
performance levels comparable to RankGRPO when operating with sufficiently large group sizes,
as the increased sampling capacity enables more comprehensive data utilization.

C.4 EFFECT OF λ ON METHOD PERFORMANCE

We analyzed the impact of the parameter λ in Equation (7) on model performance, with the re-
sults presented in Table 6. As the length constraint was relaxed, the model’s performance steadily
improved. When λ was large, the length constraint became ineffective in most cases, and the per-
formance closely resembled that of not using the length reordering. On the other hand, since the
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Let △ %&' be a right triangle with ∠% = 90∘ and &' = 38. There exist points . and / inside the
triangle such that %. = %/ = &. = '/ = ./ = 14. The area of the quadrilateral &./' can be
expressed as 3 3 for some positive integer 3. Find 3.

Given a right triangle △ 4?@ with ∠4 = 90∘ and hypotenuse ?@ = 38. Points D and E inside the triangle satisfy 4D = 4E = ?D = @E = DE = 14. We need to find
the area of quadrilateral ?DE@ expressed as G 3 and determine G.
1. Identify the coordinates of points D and E:
- Using the given conditions, we find the coordinates of D and E by solving the equations derived from the distances and the geometry of the triangle.
- Points D and E are determined to be D 2 8 3 and E 13 3 3 .
2. Use the shoelace formula to find the area of quadrilateral ?DE@:\n - The coordinates of points ? 0 16 3 ,D 2 8 3 ,E 13 3 3 ,and @ 26 0 are used.
- Apply the shoelace formula to calculate the area:\n - Compute the sums Sum1 and Sum2 for the coordinates.
- Calculate the absolute difference and divide by 2 to find the area.
3. Calculate the area using the shoelace formula:
- Compute the sums for the shoelace formula:
- Sum1 = 422 3
- Sum2 = 214 3
The area is ∣455 6/574 6∣

5 = 104 3
Thus, the value of G is 104 .

Given a right triangle △ 4?@ with ∠4 = 90∘ and hypotenuse ?@ = 38. Points D and E inside the triangle satisfy 4D = 4E = ?D = @E = DE = 14. We need to find
the area of quadrilateral ?DE@.
1. Coordinates and Equations:
- Assign coordinates: 4 0 0 ,? J 0 ,@ 0 K with J5 + K5 = 385 = 1444.
- Points D and E have coordinates )7 L7 and )5 L5 respectively.
- Using the given distances, we derive equations for )7, L7, )5, L5 and solve for J and K.\n\n
2. Solving for J and K:
- Through geometric reasoning and solving the equations, we find J = 26 and K = 16 3.
3. Coordinates of D and E:
- D is at 13 3 3 and E is at 2 8 3 .
4. Area Calculation using Shoelace Formula:
- Vertices of quadrilateral ?DE@ are ? 26 0 ,D 13 3 3 ,E 2 8 3 ,and @ 0 16 3 .
- Applying the shoelace formula, the area is calculated as 104 3.
Thus, the area of quadrilateral ?DE@ is 104 3 ,so G = 104 .

RankGRPO[CoT Length: 6136 tokens]

Question

GRPO[CoT Length: 7082 tokens]

Figure 10: Performance on mathematical reasoning tasks, highlighting fewer reasoning tokens and
clearer solution paths.

length constraint was applied only to correct responses, even with a small λ, there was no significant
impact on the model’s performance.

Table 6: Sensitivity Analysis of λ. +∞ means RankGRPO(S) w/o Length Re-ranking

λ
Benchmark Scores Avg

AIME24 AIME25 MATH500 GSM8k Olympiad GaoKao Minerva AMC

512 29.2 25.2 84.1 86.7 45.6 75.5 26.0 65.7 54.7
1024 30.5 23.9 84.5 86.3 47.6 74.2 28.4 66.5 55.2
2048 30.8 23.6 84.0 86.1 46.7 74.3 27.6 69.2 55.3
+∞ 31.3 24.8 85.1 86.9 47.7 73.8 28.0 66.9 55.6

C.5 CASE STUDY

We present the performance on mathematical data in Figure 10. Since our method encourages
exploring the optimal reasoning path while ensuring correctness, the number of reasoning tokens is
relatively low, and the solution approach is clearer.
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