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Abstract

One of the major open problems in machine learning is to characterize general-
ization in the overparameterized regime, where most traditional generalization
bounds become inconsistent even for overparameterized linear regression [46]. In
many scenarios, this failure can be attributed to obscuring the crucial interplay
between the training algorithm and the underlying data distribution. This paper
demonstrate that the generalization behavior of overparameterized model should
be analyzed in a both data-relevant and algorithm-relevant manner. To make a
formal characterization, We introduce a notion called data-algorithm compatibility,
which considers the generalization behavior of the entire data-dependent training
trajectory, instead of traditional last-iterate analysis. We validate our claim by
studying the setting of solving overparameterized linear regression with gradient
descent. Specifically, we perform a data-dependent trajectory analysis and derive
a sufficient condition for compatibility in such a setting. Our theoretical results
demonstrate that if we take early stopping iterates into consideration, generalization
can hold with significantly weaker restrictions on the problem instance than the
previous last-iterate analysis.

1 Introduction

Although deep neural networks achieve great success in practice [13, 14, 63], their remarkable
generalization ability is still among the essential mysteries in the deep learning community. One
of the most intriguing features of deep neural networks is overparameterization, which confers a
level of tractability to the training problem, but leaves traditional generalization theories failing to
work. In generalization analysis, both the training algorithm and the data distribution play essential
roles [23, 28]. For instance, a line of work [46, 74] highlights the role of the algorithm by showing
that the algorithm-irrelevant uniform convergence bounds can become inconsistent in deep learning
regimes. Another line of work [8, 68] on benign overfitting emphasizes the role of data distribution
via profound analysis of specific overparameterized models.

Despite the significant role of data and algorithm in generalization analysis, existing theories usually
focus on either the data factor (e.g., uniform convergence [46] and last iterate analysis [8, 68]) or the
algorithm factor (e.g., stability-based bounds [24]). Combining both data and algorithm factor into
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(a) Linear Regression (b) Corrupted MNIST

Figure 1: (a) The training plot for linear regression with spectrum λi = 1/i2 using GD. Note
that the axes are in the log scale. (b) The training plot of CNN on corrupted MNIST with 20%
label noise using SGD. Both models successfully learn the useful features in the initial phase of
training, but it takes a long time for them to fit the noise in the dataset. The observations demonstrate
the power of data-dependent trajectory analysis, since the early stopping solutions on the trajectory
generalize well but the final iterate fails to generalize. See Appendix C for details.

generalization analysis can help derive tighter generalization bounds and explain the generalization
ability of overparameterized models observed in practice. In this sense, a natural question arises:

How to incorporate both data factor and algorithm factor into generalization analysis?

To gain insight into the interplay between data and algorithms, we provide motivating examples
of a synthetic overparameterized linear regression task and a classification task on the corrupted
MNIST dataset in figure 1. In both scenarios, the final iterate with less algorithmic information, which
may include the algorithm type (e.g., GD or SGD), hyperparameters (e.g., learning rate, number
of epochs), generalizes much worse than the early stopping solutions (see the Blue Line). In the
linear regression case, the generalization error of the final iterate can be more than ×100 larger
than that of the early stopping solution. In the MNIST case, the final iterate on the SGD trajectory
has 19.9% test error, much higher than the 2.88% test error of the best iterate on the GD trajectory.
Therefore, the almost ubiquitous strategy of early stopping is a key ingredient in generalization
analysis for overparameterized models, whose benefits have been demonstrated both theoretically and
empirically [1, 2, 27, 34, 41, 72]. By focusing on the entire optimization trajectory and performing
data-dependent trajectory analysis, both data information and the dynamics of the training algorithm
can be exploited to yield consistent generalization bounds.

When we take the algorithm into consideration and analyze the data-dependent training trajectory,
generalization occurs if the minimum excess risk of the iterates on the training trajectory converges
to zero, as the sample size tends to infinity. This accords with the real practice of training deep neural
networks, where one can pick up the best parameter on the training trajectory, by calculating its loss
on a validation dataset. We dub this notion of generalization as as data-algorithm-compatibility,
which is formally defined in Section 3.2.

The significance of compatibility comes in three folds. Firstly, it incorporates both data and algorithm
factors into generalization analysis, and is suitable for the overparameterization regime (see Defini-
tion 3.1). Secondly, it serves as a minimal condition for generalization, without which one cannot
expect to find a consistent solution via standard learning procedures. Consequently, compatibility
holds with only mild assumptions and applies to a wide range of problem instances (see Theorem 4.1).
Thirdly, it captures the algorithmic significance of early stopping in generalization. By exploiting the
algorithm information along the entire trajectory, we arrive at better generalization bounds than the
last-iterate analysis (see Table 1 and 2 for examples).

To theoretically validate compatibility, we study it under overparameterized linear regression setting.
Analysis of the overparameterized linear regression is a reasonable starting point to study more
complex models like deep neural networks [17, 57], since many phenomena of the high dimensional
non-linear model are also observed in the linear regime (e.g., Figure 1). Furthermore, the neural
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tangent kernel (NTK) framework [4, 26] demonstrates that very wide neural networks trained using
gradient descent with appropriate random initialization can be approximated by kernel regression
in a reproducing kernel Hilbert space, which rigorously establishes a close relationship between
overparameterized linear regression and deep neural network training.

Specifically, we investigate solving overparameterized linear regression using gradient descent
with constant step size, and prove that under some mild regularity conditions, gradient descent
is compatible with overparameterized linear regression if the effective dimensions of the feature
covariance matrix are asymptotically bounded by the sample size. Compared with the last-iterate
analysis [8], the main theorems in this paper require significantly weaker assumptions, which
demonstrates the benefits of data-relevant and algorithm-relevant generalization analysis.

We summarize our contributions as follows:

• We formalize the notion of data-algorithm-compatibility, which highlights the interaction
between data and algorithm and serves as a minimal condition for generalization.

• We derive a sufficient condition for compatibility in solving overparameterized linear
regression with gradient descent. Our theory shows that generalization of early-stopping
iterates requires much weaker restrictions in the considered setting.

• Technically, we derive time-variant generalization bounds for overparameterized linear
regression via data-dependent trajectory analysis. Empirically, we conduct the various
experiments to verify the the theoretical results and demonstrate the benefits of early
stopping.

2 Related Works

Data-Dependent Techniques mainly focus on the data distribution condition for generalization.
One of the most popular data-dependent methods is uniform convergence [7, 29, 74, 75]. However,
recent works [46, 47] point out that uniform convergence may not be powerful enough to explain
generalization, because it may only yield inconsistent bound in even linear regression cases. Another
line of works investigates benign overfitting, which mainly studies generalization of overfitting
solutions [8, 21, 35, 68, 70, 76, 77].

Algorithm-Dependent Techniques measure the role of the algorithmic information in generalization.
A line of works derives generalization bounds via algorithm stability [9, 12, 18, 19, 24, 31, 32, 45, 67].
A parallel line of works analyzes the implicit bias of algorithmic information [11, 25, 39, 40, 59, 64],
which are mainly based on analyzing a specific data distribution (e.g., linear separable).

Other Generalization Techniques. Besides the techniques above, there are many other approaches.
For example, PAC-Bayes theory performs well empirically and theoretically [16, 42, 43, 48, 49, 58,
61] and can yield non-vacuous bounds in deep learning regimes [50, 54]. Furthermore, there are other
promising techniques including information theory [6, 56, 71] and compression-based bounds [3].

Early Stopping has the potential to improve generalization for various machine learning problems [5,
30, 33, 38, 53, 62, 69, 74]. A line of works studies the rate of early stopping in linear regression
and kernel regression with different algorithms, e.g., gradient descent [72], stochastic gradient
descent [15, 37, 51, 55, 66], gradient flow [2], conjugate gradient [10] and spectral algorithms [22, 36].
Beyond linear models, early-stopping is also effective for training deep neural networks [27, 34].
Another line of research focuses on the signal for early stopping [20, 52].

3 Preliminaries

In this section, we formally define compatibility between the data distribution and the training
algorithm, starting from the basic notations.

3.1 Notations

Data Distribution. Let D denote the population distribution and z ∼ D denote a data point sampled
from distribution D. Usually, z contains a feature and its corresponding response. Besides, we denote
the dataset with n samples as Z ≜ {zi}i∈[n], where zi ∼ D are i.i.d. sampled from distribution D.
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Loss and Excess Risk. Let ℓ(θ; z) denote the loss on sample z with parameter θ ∈ Rp. The
corresponding population loss is defined as L(θ;D) ≜ Ez∼Dℓ(θ; z). When the context is clear, we
omit the dependency on D and denote the population loss by L(θ). Our goal is to find the optimal
parameter θ∗ which minimizes the population loss, i.e., L(θ∗) = minθ L(θ). Measuring how a
parameter θ approaches θ∗ relies on a term excess risk R(θ), defined as R(θ) ≜ L(θ)− L(θ∗).

Algorithm. Let A(·) denote a iterative algorithm that takes training data Z as input and outputs
a sequence of parameters {θ(t)

n }t≥0, where t is the iteration number. The algorithm can be either
deterministic or stochastic, e.g., variants of (S)GD.

3.2 Definitions of Compatibility

Based on the above notations, we introduce the notion of compatibility between data distribution
and algorithm in Definition 3.1. Informally, compatibility measures whether a consistent excess risk
can be reached along the training trajectory. Note that we omit the role of the loss function in the
definition, although the algorithm depends on the loss function.
Definition 3.1 (Compatibility). Given a loss function ℓ(·) with corresponding excess risk R(·),
a data distribution D is compatible with an algorithm A if there exists nonempty subsets Tn of
N, such that supt∈Tn

R(θ
(t)
n ) converges to zero in probability as sample size n tends to infinity,

where {θ(t)
n }t≥0 denotes the output of algorithm A, and the randomness comes from the sampling

of training data Z from distribution D and the execution of algorithm A. That is to say, (D,A) is
compatible if there exists nonempty sets Tn, such that

sup
t∈Tn

R(θ(t)
n )

P→ 0 as n → ∞. (1)

We call {Tn}n>0 the compatibility region of (D,A). The distribution D is allowed to change with
n. In this case, D should be understood as a sequence of distributions {Dn}n≥1. We also allow the
dimension of model parameter θ to be infinity or to grow with n. We omit this dependency on n when
the context is clear.

Compatibility serves as a minimal condition for generalization, since if a data distribution is incompat-
ible with the algorithm, one cannot expect to reach a small excess risk even if we allow for arbitrary
early stopping. However, we remark that considering only the minimal excess risk is insufficient for
a practical purpose, as one cannot exactly find the t that minimizes R(θ

(t)
n ) due to the noise in the

validation set. Therefore, it is meaningful to consider a region of time t on which the excess risk is
consistent as in Definition 3.1. The larger the region is, the more robust the algorithm will be to the
noise in its execution.

Comparisons with Other Notions. Compared to classic definitions of learnability, e.g., PAC learning,
the definition of compatibility is data-specific and algorithm-specific, and is thus a more fine-grained
notion. Compared to the concept of benign proposed in [8], which studies whether the excess risk at
t = ∞ converges to zero in probability as the sample size goes to infinity, compatibility only requires
that there exists a time to derive a consistent excess risk. We will show later in Section 4.2 that in
the overpamameterized linear regression setting, there exist cases such that the problem instance is
compatible but not benign.

4 Analysis of Overparameterized Linear Regression with Gradient Descent

To validate the meaningfulness of compatibility, we study it in the overparameterized linear regression
regime. We first introduce the data distribution, loss, and training algorithm, and then present the
main theorem, which provides a sufficient condition for compatibility in this setting.

4.1 Preliminaries for Overparameterized Linear Regression

Notations. Let O, o,Ω, ω denote asymptotic notations, with their usual meaning. For example, the
argument an = O(bn) means that there exists a large enough constant C, such that an ≤ Cbn. We
use ≲ with the same meaning as the asymptotic notation O. Besides, let ∥x∥ denote the ℓ2 norm
for vector x, and ∥A∥ denote the operator norm for matrix A. We allow the vector to belong to
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a countably infinite-dimensional Hilbert space H, and with a slight abuse of notation, we use R∞

interchangeably with H. In this case, x⊤z denotes inner product and xz⊤ denotes tensor product for
x, z ∈ H. A random variable X is called σ-subgaussian if E[eλX ] ≤ eλ

2σ2/2 for any λ.

Data Distribution. Let (x, y) ∈ Rp × R denote the feature vector and the response, following
a joint distribution D. Let Σ ≜ E[xx⊤] denote the feature covariance matrix, whose eigenvalue
decomposition is Σ = V ΛV ⊤ =

∑
i>0 λiviv

⊤
i with decreasing eigenvalues λ1 ≥ λ2 ≥ · · · . We

make the following assumptions on the distribution of the feature vector.

Assumption 1 (Assumptions on feature distribution). We assume that

1. E[x] = 0.

2. λ1 > 0,
∑

i>0 λi < C for some absolute constant C.

3. Let x̃ = Λ− 1
2V ⊤x. The random vector x̃ has independent σx-subgaussian entries.

Loss and Excess Risk. We choose square loss as the loss function ℓ, i.e. ℓ(θ, (x, y)) = 1/2(y −
x⊤θ)2. The corresponding population loss is denoted by L(θ) = Eℓ(θ, (x, y)) and the optimal
parameter is denoted by θ∗ ≜ argminθ∈Rp L(θ). We assume that ∥θ∗∥ < C for some absolute
constant C. If there are multiple such minimizers, we choose an arbitrary one and fix it thereafter.
We focus on the excess risk of parameter θ, defined as

R(θ) = L(θ)− L(θ∗) =
1

2
(θ − θ∗)⊤Σ(θ − θ∗). (2)

Let ε = y − x⊤θ∗ denote the noise in data point (x, y). The following assumptions involve the
conditional distribution of the noise.

Assumption 2 (Assumptions on noise distribution). We assume that

1. The conditional noise ε|x has zero mean.

2. The conditional noise ε|x is σy-subgaussian.

Note that both Assumption 1 and Assumption 2 are commonly considered in the related literatures [8,
68, 76].

Training Set. Given a training set {(xi, yi)}1≤i≤n with n pairs independently sampled from the
population distribution D, we define X ≜ (x1, · · · ,xn)

⊤ ∈ Rn×p as the feature matrix, Y ≜
(y1, · · · , yn)⊤ ∈ Rn as the corresponding noise vector, and ε ≜ Y −Xθ∗ as the residual vector. Let
the singular value decomposition (SVD) of X be X = UΛ̃

1
2W⊤, with Λ̃ = diag{µ1 · · · , µn} ∈

Rn×n, µ1 ≥ · · · ≥ µn.

We consider the overparameterized regime where the feature dimension is larger than the sample size,
namely, p > n. In this regime, we assume that rank(X) = n almost surely as in Bartlett et al. [8].
This assumption is equivalent to the invertibility of XX⊤.

Assumption 3 (Linear independent training set). For any n < p, we assume that the features in the
training set {x1,x2, · · · ,xn} is linearly independent almost surely.

Algorithm. Given the dataset (X,Y ), define the empirical loss function as L̂(θ) ≜ 1
2n∥Xθ−Y ∥2.

We choose full-batch gradient descent on the empirical risk with a constant learning rate λ as the
algorithm A in the previous template. In this case, the update rule for the optimization trajectory
{θt}t≥0 is formulated as

θt+1 = θt −
λ

n
X⊤(Xθt − Y ). (3)

Without loss of generality, we consider zero initialization θ0 = 0 in this paper. In this case, for a
sufficiently small learning rate λ, θt converges to the min-norm interpolator θ̂ = X⊤(XX⊤)−1Y
as t goes to infinity, which was well studied previously [8]. This paper takes one step further and
discuss the excess risk along the entire training trajectory {R(θt)}t≥0.
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Effective Rank and Effective Dimensions. We define the effective ranks of the feature matrix Σ as
r(Σ) ≜

∑
i>0 λi

λ1
and Rk(Σ) ≜

(
∑

i>k λi)
2∑

i>k λ2
i

. Our results depend on two notions of effective dimension
of the feature covariance Σ, defined as

k0 ≜ min

{
l ≥ 0 : λl+1 ≤

c0
∑

i>l λi

n

}
, (4)

k1 ≜ min

{
l ≥ 0 : λl+1 ≤

c1
∑

i>0 λi

n

}
, (5)

where c0, c1 are constants independent of the dimension p, sample size n, and time t1. We omit the
dependency of k0, k1 on c0, c1, n,Σ when the context is clear.

4.2 Main Theorem for Overparameterized Linear Regression with Gradient Descent

Next, we present the main result of this section, which provides a clean condition for compatibility
between gradient descent and overparameterized linear regression.

Theorem 4.1. Consider the overparameterized linear regression setting defined in section 4.1. Let
Assumption 1,2 and 3 hold. Assume the learning rate satisfies λ = O

(
1

Tr(Σ)

)
.

• If the covariance satisfies k0 = o(n), Rk0
(Σ) = ω(n), r(Σ) = o(n), it is compatible in

the region Tn =
(
ω
(
1
λ

)
,∞
)
.

• If the covariance satisfies k0 = O(n), k1 = o(n), r(Σ) = o(n), it is compatible in the
region Tn =

(
ω
(
1
λ

)
, o
(
n
λ

))
.

• If the covariance does not change with n, and satisfies k0 = O(n) and p = ∞, it is
compatible in the region Tn =

(
ω
(
1
λ

)
, o
(
n
λ

))
.

The proof of Theorem 4.1 is given in Appendix A and sketched in Section 5. The theorem shows that
gradient descent is compatible with overparameterized linear regression under some mild regularity
conditions on the learning rate, effective rank and effective dimensions. The condition on the learning
rate is natural for optimizing a smooth objective. We conjecture that the condition k0 = O(n) can
not be removed in general cases, since the effective dimension k0 characterizes the concentration of
the singular values of the data matrix X and plays a crucial role in the excess risk of the gradient
descent dynamics.

Comparison with Benign Overfitting. The paper [8] studies overparameterized linear regression and
gives the condition for min-norm interpolator to generalize. They prove that the feature covariance Σ
is benign if and only if

k0 = o(n), Rk0
(Σ) = ω(n), r(Σ) = o(n) (6)

As discussed in Section 3.2, benign problem instance also satisfies compatibility, since benign
overfitting requires a stronger condition on k0 and an additional assumption on Rk0

(Σ). The
following example shows that this inclusion relationship is strict.

Example 4.1. Under the same assumption as in Theorem 4.1, if the spectrum of Σ satisfies

λk =
1

kα
, (7)

for some α > 1, we derive that k0 = Θ(n). Therefore, this problem instance satisfies compatibility,
but does not satisfy benign overfitting.

Example 4.1 shows the existence of a case where the early stopping solution can generalize but
interpolating solution fails. Therefore, Theorem 4.1 can characterize generalization for a much wider
range of problem instances.

1Constants may depend on σx, and we omit this dependency thereafter for clarity.
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5 Proof Sketch and Techniques

5.1 A Time Variant Bound

We further introduce an additional type of effective dimension besides k0, k1, which is time variant
and is utilized to track the optimization dynamics.
Definition 5.1 (Effective Dimensions). Given a feature covariance matrix Σ, define the effective
dimension k2 as

k2 ≜ min

{
l ≥ 0 :

∑
i>l

λi + nλl+1 ≤ c2c(t, n)
∑
i>0

λi

}
, (8)

where c2 is a constant independent of the dimension p, sample size n, and time t. The term c(t, n) is a
function to be discussed later. When the context is clear, we omit its dependencies on c2, c(t, n), n,Σ
and only denote it by k2.

Based on the effective rank and effective dimensions defined above, we provide a time-variant bound
in Theorem 5.1 for overparameterized linear regression, which further leads to the argument in
Theorem 4.1. Compared to the existing bound [8], Theorem 5.1 focuses on investigating the role of
training epoch t in the excess risk, to give a refined bias-variance decomposition.
Theorem 5.1 (Time Variant Bound). Suppose Assumption 1, 2 and 3 hold. Fix a function c(t, n).
Given δ ∈ (0, 1), assume that k0 ≤ n

c , log 1
δ ≤ n

c , 0 < λ ≤ 1
c
∑

i>0 λi
for a large enough constant c.

Then with probability at least 1− δ, we have for any t ∈ N,

R(θt) ≲ B(θt) + V (θt), (9)

where

B(θt) = ∥θ∗∥2
 1

λt
+ ∥Σ∥max


√

r(Σ)

n
,
r(Σ)

n
,

√
log( 1

δ
)

n


 ,

V (θt) = σ2
y log

(
1

δ

)(
k1
n

+
k2

c(t, n)n
+ c(t, n)

(
λt

n

∑
i>0

λi

)2)
.

We provide a high-level intuition behind Theorem 5.1. We decompose R(θt) into the bias term and
the variance term. The variance term is then split into the leading part and tailing part based on the
sprctrum of the feature covariance Σ. The eigenvalues in the tailing part will cause the variance term
in the excess risk of the min-norm interpolating solution to be Ω(1) for fast decaying spectrum, as is
the case in [8]. However, since the convergence in the tailing eigenspace is slower compared with
the leading eigenspace, a proper early stopping strategy will prevent the overfitting in the tailing
eigenspace and meanwhile avoid underfitting in the leading eigenspace.

The c(t, n) Principle. It is worth emphasizing that our bound holds for arbitrary positive function
c(t, n). Therefore, one can fine-tune the generalization bound by choosing a proper c(t, n). In the
subsequent sections, we show how to derive consistent risk bounds for different time t, based on
different choices of c(t, n). We present the case of choosing a constant c(t, n) in the next section.
We leave the case of choosing a varying c(t, n) to Appendix 5.3.

5.2 Varying t, Constant c(t, n)

Theorem 5.1 provides an excess risk upper bound uniformly for t ∈ N. However, it is still non-trivial
to derive Theorem 4.1, where the remaining question is to decide the term c(t, n). The following
corollary shows the generalization bound when setting c(t, n) to a constant.
Corollary 5.1. Let Assumption 1, 2 and 3 hold. Fix a constant c(t, n). Suppose k0 = O(n),

k1 = o(n), r(Σ) = o(n), λ = O
(

1∑
i>0 λi

)
. Then there exists a sequence of positive constants

{δn}n≥0 which converge to 0, such that with probability at least 1− δn, the excess risk is consistent
for t ∈

(
ω
(
1
λ

)
, o
(
n
λ

))
, i.e.

R(θt) = o(1). (10)
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Table 1: Comparisons of excess risk bound with Bartlett et al. [8] and Zou et al. [76]. We
provide four types of feature covariance with eigenvalues λk, including Inverse Polynomial (λk = 1

kα ,
α > 1), Inverse Log Polynomial (λk = 1

k logβ(k+1)
, β > 1), Constant (λk = 1

n1+ε , 1 ≤ k ≤ n1+ε,

ε > 0), and Piecewise Constant (λk = 1
s if 1 ≤ k ≤ s and λk = 1

d−s if s + 1 ≤ k ≤ d, where
s = nr, d = nq, 0 < r ≤ 1, q > 1). In light of these bounds, ours outperforms Bartlett et al. [8] in
all the cases, and outperforms Zou et al. [76] in Constant / Piecewise Constant cases if ε < 1

2 and
q < min{2− r, 3

2}. We refer to Appendix B for more details.

DISTRIBUTIONS OURS BARTLETT ET AL. [8] ZOU ET AL. [76]

INVERSE POLYNOMIAL O
(
n−min{α−1

α
, 1
2}
)

O(1) O
(
n−α−1

α

)
INVERSE LOG POLYNOMIAL O

(
1

logβ n

)
o(1) O

(
1

logβ n

)
CONSTANT O

(
n− 1

2

)
O
(
n−min{ε, 12}

)
O
(
n−min{ε,1}

)
PIECEWISE CONSTANT O

(
n−min{1−r, 1

2}
)
O
(
n−min{1−r,q−1, 1

2}
)
O
(
n−min{1−r,q−1}

)

Furthermore, for any positive constant δ, with probability at least 1− δ, the minimal excess risk on
the training trajectory can be bounded as

min
t

R(θt) ≲
max{

√
r(Σ), 1}√
n

+
max{k1, 1}

n
. (11)

Lemma 5.1 below shows that k1 = o(n) always holds for fixed distribution. Therefore, combining
Corollary 5.1 and the following Lemma 5.1 completes the proof of Theorem 4.1.
Lemma 5.1. For any fixed (i.e. independent of sample size n) feature covariance Σ satisfying
assumption 1, we have k1(n) = o(n).

Next we apply the bound in Corollary 5.1 to several data distributions. These distributions are
widely discussed in [8, 76]. We also derive the existing excess risk bounds, which focus on the
min-norm interpolator [8] and one-pass SGD iterate [76], of these distributions and compare them
with our theorem. The results are summarized in Table 1, which shows that the bound in Corollary 5.1
outperforms previous results for a general class of distributions.
Example 5.1. Under the same conditions as Theorem 5.1, let Σ denote the feature covariance matrix.
We show the following examples:

1. (Inverse Polynominal). If the spectrum of Σ satisfies λk = 1
kα for some α > 1, we derive

that k0 = Θ(n), k1 = Θ
(
n

1
α

)
. Therefore, mint V (θt) = O

(
n

1−α
α

)
and mint R(θt) =

O
(
n−min{α−1

α , 12}
)

.

2. (Inverse Log-Polynominal). If the spectrum of Σ satisfies λk = 1
k logβ(k+1)

for some β > 1,

we derive that k0 = Θ
(

n
logn

)
, k1 = Θ

(
n

logβ n

)
. Therefore, mint V (θt) = O

(
1

logβ n

)
and mint R(θt) = O

(
1

logβ n

)
.

3. (Constant). If the spectrum of Σ satisfies λk = 1
n1+ε , 1 ≤ k ≤ n1+ε, for some ε > 0, we

derive that k0 = 0, k1 = 0. Therefore, mint V (θt) = O
(
1
n

)
and mint R(θt) = O

(
1√
n

)
.

4. (Piecewise Constant). If the spectrum of Σ satisfies λk =

{
1
s 1 ≤ k ≤ s,
1

d−s s+ 1 ≤ k ≤ d,
where

s = nr, d = nq, 0 < r ≤ 1, q ≥ 1. We derive that k0 = nr, k1 = nr. Therefore,
mint V (θt) = O(nr−1) and mint R(θt) = O

(
n−min{1−r, 12}

)
.
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Table 2: The effective dimension k1, the optimal early stopping excess risk, and the min-norm
excess risk for different feature distributions, with sample size n = 100 , p = 1000. The table
shows that early stopping solutions generalize significantly better than min-norm interpolators, and
reveals a positive correlation between the effective dimension k1 and excess risk of early stopping
solution. We calculate the 95% confidence interval for each excess risk.

DISTRIBUTIONS k1 OPTIMAL EXCESS RISK MIN-NORM EXCESS RISK

λi =
1
i

Θ(n) 2.399± 0.0061 24.071± 0.2447

λi =
1
i2

Θ
(
n

1
2

)
0.214± 0.0050 43.472± 0.6463

λi =
1
i3

Θ
(
n

1
3

)
0.077± 0.0005 10.401± 0.2973

λi =
1

i log(i+1)
Θ
(

n
logn

)
0.697± 0.0053 89.922± 0.9591

λi =
1

i log2(i+1)
Θ
(

n
log2 n

)
0.298± 0.0054 82.413± 0.9270

λi =
1

i log3(i+1)
Θ
(

n
log3 n

)
0.187± 0.0047 38.145± 0.5862

5.3 Varying t, Varying c(t, n)

Although setting c(t, n) to a constant as in Corollary 5.1 suffices to prove Theorem 4.1, in this section
we show that the choice of c(t, n) can be much more flexible. Specifically, we provide a concrete
example and demonstrate that by setting c(t, n) to a non-constant, Theorem 5.1 can indeed produce
larger compatibility regions.
Example 5.2. Under the same conditions as Theorem 5.1, let Σ denote the feature covariance matrix.
If the spectrum of Σ satisfies λk = 1

kα for some α > 1, we set c(t, n) = Θ
(
n

α+1−2ατ
2α+1

)
for a given

α+1
2α ≤ τ ≤ 3α+1

2α+2 . Then for t = Θ(nτ ), we derive that V (θt) = O
(
n

2ατ−3α+2τ−1
2α+1

)
.

Example 5.2 shows that by choosing c(t, n) as a non-constant, we exploit the full power of Theo-
rem 5.1, and extend the region to t = Θ

(
n

3α+1
2α+2

)
= ω(n). In this example, Theorem 5.1 outperforms

all O
(
t
n

)
-type bounds, which become vacuous when t = ω(n).

6 Experiments
In this section, we provide numerical studies of overparameterized linear regression problems. We
consider overparameterized linear regression instances with input dimension p = 1000, sample size
n = 100. The features are sampled from Gaussian distribution with different covariances. The
empirical results (a.) demonstrate the benefits of trajectory analysis underlying the definition of
compatibility, since the optimal excess risk along the algorithm trajectory is significantly lower than
that of the min-norm interpolator (b.) validate the statements in Corollary 5.1, since the optimal
excess risk is lower when the eigenvalues of feature covariance decay faster. We refer to Appendix C
for detailed setups, additional results and discussions.

Observation One: Early stopping solution along the training trajectory generalizes significantly
better than the min-norm interpolator. We calculate the excess risk of optimal early stopping
solutions and min-norm interpolators from 1000 independent trials and list the results in Table 2.
The results illustrate that the early stopping solution on the algorithm trajectory enjoys much better
generalization properties. This observation corroborates the importance of data-dependent training
trajectory in generalization analysis.

Observation Two: The faster covariance spectrum decays, the lower optimal excess risk is.
Table 2 also illustrates a positive correlation between the decaying rate of λi and the generalization
performance of the early stopping solution. This accords with Theorem 5.1, showing that the
excess risk is better for a smaller effective dimension k1, where small k1 indicates a faster-decaying
eigenvalue λi. We additionally note that such a phenomenon also illustrates the difference between
min-norm and early stopping solutions in linear regression, since Bartlett et al. [8] demonstrate that
the min-norm solution is not consistent when the eigenvalues decay too fast. By comparison, early
stopping solutions do not suffer from this restriction.
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7 Conclusion

In this paper, we investigate how to characterize and analyze generalization in a data-dependent and
algorithm-dependent manner. We formalize the notion of data-algorithm compatibility and study
it under the regime of overparameterized linear regression with gradient descent. Our theoretical
and empirical results demonstrate that one can ease the assumptions and broaden the scope of
generalization by fully exploiting the data information and the algorithm information. Despite linear
cases in this paper, compatibility can be a much more general concept. Therefore, we believe this
paper will motivate more work on data-dependent trajectory analysis.
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Supplementary Materials

A Proofs for the Main Results

We first sketch the proof in section A.1 and give some preliminary lemmas A.2. The following
sections A.3, A.4 and A.5 are devoted to the proof of Theorem 5.1. The proof of Theorem 4.1 is
given in A.6.

A.1 Proof Sketch

We start with a standard bias-variance decomposition following Bartlett et al. [8], which derives that
the time-variant excess risk R(θt) can be bounded by a bias term and a variance term. We refer to
Appendix A.3 for more details.

For the bias part, we first decompose it into an optimization error and an approximation error. For the
optimization error, we use the spectrum analysis to bound it with O (1/t) where t denotes the time.
For the approximation error, we bound it with O (1/

√
n)) where n denotes the sample size, inspired

by Bartlett et al. [8]. We refer to Appendix A.4 for more details.

For the variance part, a key step is to bound the term (I − λ
nXX⊤)t, where X is the feature

matrix. The difficulty arises from the different scales of the eigenvalues of XX⊤, where the largest
eigenvalue has order Θ(n) while the smallest eigenvalue has order O(1), according to Lemma 10
in Bartlett et al. [8]. To overcome this issue, we divide the matrix XX⊤ based on whether its
eigenvalues is larger than c(t, n), which is a flexible term dependent on time t and sample size n.
Therefore, we split the variance term based on eigenvalues of covariance matrix Σ (leading to the
k1-related term) and based on the eigenvalues of XX⊤ (leading to the k2-related term). We refer to
Appendix A.5 for more details.

A.2 Preliminaries

The following result comes from Bartlett et al. [8], which bounds the eigenvalues of XX⊤.

Lemma A.1. (Lemma 10 in Bartlett et al. [8]) For any σx, there exists a constant c, such that for
any 0 ≤ k < n, with probability at least 1− e−

n
c ,

µk+1 ≤ c

(∑
i>k

λi + λk+1n

)
. (12)

This implies that as long as the step size λ is small than a threshold independent of sample size n,
gradient descent is stable.

Corollary A.1. There exists a constant c, such that with probability at least 1 − e−
n
c , for any

0 ≤ λ ≤ 1
c
∑

i>0 λi
we have

O ⪯ I − λ

n
X⊤X ⪯ I. (13)

Proof. The right hand side of the inequality is obvious since λ > 0. For the left hand side, we have
to show that the eigenvalues of I − λ

nX
⊤X is non-negative. since X⊤X and XX⊤ have the same

non-zero eigenvalues, we know that with probability at least 1 − e−
n
c , the smallest eigenvalue of

I − λ
nX

⊤X can be lower bounded by

1− λ

n
µ1 ≥ 1− cλ

(∑
i>0 λi

n
+ λk+1

)
≥ 1− 2cλ

∑
i>0

λi ≥ 0. (14)

where the second inequality uses lemma A.1, and the last inequality holds if λ ≤ 1
2c

∑
i>0 λi

.
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A.3 Proof for the Bias-Variance Decomposition

Let X† denote the Moore–Penrose pseudoinverse of matrix X . The following lemma gives a closed
form expression for θt.

Lemma A.2. The dynamics of {θt}t≥0 satisfies

θt =

(
I − λ

n
X⊤X

)t

(θ0 −X†Y ) +X†Y . (15)

Proof. We prove the lemma using induction. The equality holds at t = 0 as both sides are θ0. Recall
that θt is updated as

θt+1 = θt +
λ

n
X⊤(Y −Xθt). (16)

Suppose that the dynamic holds up to the t-th step. Plug the expression for θt into the above recursion
and note that X⊤XX† = X⊤, we get

θt+1 =

(
I − λ

n
X⊤X

)
θt +

λ

n
X⊤Y

=

(
I − λ

n
X⊤X

)t+1

(θ0 −X†Y ) +

(
I − λ

n
X⊤X

)
X†Y +

λ

n
X⊤Y

=

(
I − λ

n
X⊤X

)t+1

(θ0 −X†Y ) +X†Y .

(17)

which finishes the proof.

Next we prove two identities which will be used in further proof.

Lemma A.3. The following two identities hold for any matrix X and non-negative integer t:

I −X†X +

(
I − λ

n
X⊤X

)t

X†X =

(
I − λ

n
X⊤X

)t

, (18)

[
I −

(
I − λ

n
X⊤X

)t
]
X†XX⊤ = X⊤

[
I −

(
I − λ

n
XX⊤

)t
]
. (19)

Proof. Note that X⊤XX† = X⊤, we can expand the left hand side of the first identity above using
binomial theorem and eliminate the pseudo-inverse X†:

I −X†X +

(
I − λ

n
X⊤X

)t

X†X

= I −X†X +

t∑
k=0

(
t

k

)(
−λ

n
X⊤X

)k

X†X

= I −X†X +X†X +

t∑
k=1

(
t

k

)(
−λ

n

)k

(X⊤X)k−1X⊤XX†X

= I +

t∑
k=1

(
t

k

)(
−λ

n

)k

(X⊤X)k

=

(
I − λ

n
X⊤X

)t

.

(20)
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The second identity can be proved in a similar way:[
I −

(
I − λ

n
X⊤X

)t
]
X†XX⊤

= −
t∑

k=1

(
t

k

)(
−λ

n
X⊤X

)k

X†XX⊤

= −
t∑

k=1

(
t

k

)(
−λ

n

)k

(X⊤X)k−1X⊤XX†XX⊤

= −
t∑

k=1

(
t

k

)(
−λ

n

)k

(X⊤X)k−1X⊤XX⊤

= −
t∑

k=1

(
t

k

)(
−λ

n

)k

X⊤(XX⊤)k

= X⊤

[
I −

(
I − λ

n
XX⊤

)t
]
.

(21)

We are now ready to prove the main result of this section.
Lemma A.4. The excess risk at the t-th epoch can be upper bounded as

R(θt) ≤ θ∗⊤Bθ∗ + ε⊤Cε, (22)

where

B =

(
I − λ

n
X⊤X

)t

Σ

(
I − λ

n
X⊤X

)t

, (23)

C =
(
XX⊤)−1

[
I −

(
I − λ

n
XX⊤

)t
]
XΣX⊤

[
I −

(
I − λ

n
XX⊤

)t
] (

XX⊤)−1
, (24)

which characterizes bias term and variance term in the excess risk. Furthermore, there exists constant
c such that with probability at least 1− δ over the randomness of ε, we have

ε⊤Cε ≤ cσ2
y log

1

δ
Tr[C]. (25)

Proof. First note that XX⊤ is invertible by Assumption 3. Express the excess risk as follows

R(θt) =
1

2
E[(y − x⊤θt)

2 − (y − x⊤θ∗)2]

=
1

2
E[(y − x⊤θ∗ + x⊤θ∗ − x⊤θt)

2 − (y − x⊤θ∗)2]

=
1

2
E[(x⊤(θt − θ∗))2 + 2(y − x⊤θ∗)(x⊤θ∗ − x⊤θt)]

=
1

2
E[x⊤(θt − θ∗)]2.

(26)

Recall that θ0 = 0 and Y = Xθ∗ + ε and we can further simplify the formula for θt in lemma A.2:

θt =

(
I − λ

n
X⊤X

)t

(θ0 −X†Y ) +X†Y

=

[
I −

(
I − λ

n
X⊤X

)t
]
X†(Xθ∗ + ε).

(27)
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Plug it into the above expression for R(θt), we have

R(θt) =
1

2
E

[
x⊤

[
I −

(
I − λ

n
X⊤X

)t
]
X†(Xθ∗ + ε)− x⊤θ∗

]2

=
1

2
E

[
x⊤

(
X†X −

(
I − λ

n
X⊤X

)t

X†X − I

)
θ∗

+x⊤

[
I −

(
I − λ

n
X⊤X

)t
]
X†ε

]2
.

(28)

Applying lemma A.3, we obtain

R(θt) =
1

2
E

[
−x⊤

(
I − λ

n
X⊤X

)t

θ∗ + x⊤X⊤

[
I −

(
I − λ

n
XX⊤

)t
]
(XX⊤)−1ε

]2

≤ E

[
x⊤
(
I − λ

n
X⊤X

)t

θ∗

]2
+ E

[
x⊤X⊤

[
I −

(
I − λ

n
XX⊤

)t
]
(XX⊤)−1ε

]2
:= θ∗⊤Bθ∗ + ε⊤Cε.

(29)

which proves the first claim in the lemma. The second part of the theorem directly follows from
lemma 18 in Bartlett et al. [8].

A.4 Proof for the Bias Upper Bound

The next lemma guarantees that the sample covariace matrix 1
nX

⊤X concentrates well around Σ.
Lemma A.5. (Lemma 35 in Bartlett et al. [8]) There exists constant c such that for any 0 < δ < 1
with probability as least 1− δ,∥∥∥∥Σ− 1

n
X⊤X

∥∥∥∥ ≤ c∥Σ∥max


√

r(Σ)

n
,
r(Σ)

n
,

√
log( 1δ )

n
,
log( 1δ )

n

 . (30)

The following inequality will be useful in our proof to characterize the decaying rate of the bias term
with t.
Lemma A.6. For any positive semidefinite matrix P which satisfies ∥P ∥ ≤ 1, we have

∥P (1− P )t∥ ≤ 1

t
. (31)

Proof. Assume without loss of generality that P is diagonal. Then it suffices to consider seperately
each eigenvalue σ of P , and show that σ(1− σ)t ≤ 1

t .

In fact, by AM-GM inequality we have

σ(1− σ)t ≤ 1

t

[
tσ + (1− σ)t

t+ 1

]t+1

≤ 1

t
, (32)

which completes the proof.

Next we prove the main result of this section.
Lemma A.7. There exists constant c such that if 0 ≤ λ ≤ 1

c
∑

i>0 λi
, then for any 0 < δ < 1, with

probability at least 1− δ the following bound on the bias term holds for any t

θ∗⊤Bθ∗ ≤ c ∥θ∗∥2
 1

λt
+ ∥Σ∥max


√

r(Σ)

n
,
r(Σ)

n
,

√
log( 1δ )

n
,
log( 1δ )

n


 . (33)
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Proof. The bias can be decomposed into the following two terms

θ∗⊤Bθ∗ = θ∗⊤
(
I − λ

n
X⊤X

)t(
Σ− 1

n
X⊤X

)(
I − λ

n
X⊤X

)t

θ∗

+ θ∗⊤
(
1

n
X⊤X

)(
I − λ

n
X⊤X

)2t

θ∗.

(34)

For sufficiently small learning rate λ as given by corollary A.1, we know that with high probability∥∥∥∥I − λ

n
X⊤X

∥∥∥∥ ≤ 1, (35)

which together with lemma A.5 gives a high probability bound on the first term:

θ∗⊤
(
I − λ

n
X⊤X

)t(
Σ− 1

n
X⊤X

)(
I − λ

n
X⊤X

)t

θ∗

≤ c∥Σ∥ ∥θ∗∥2 max


√

r(Σ)

n
,
r(Σ)

n
,

√
log( 1δ )

n
,
log( 1δ )

n

 .

(36)

For the second term, invoke lemma A.6 with P = λ
nX

⊤X and we get

θ∗⊤
(
1

n
X⊤X

)(
I − λ

n
X⊤X

)2t

θ∗ ≤ 1

λ
∥θ∗∥2

∥∥∥∥∥
(
λ

n
X⊤X

)(
I − λ

n
X⊤X

)2t
∥∥∥∥∥

≤ 1

2λt
∥θ∗∥2 .

(37)

Putting these two bounds together gives the proof for the main theorem.

A.5 Proof for the Variance Upper Bound

Recall that X = UΛ̃
1
2W⊤ is the singular value decomposition of data matrix X , where U =

(u1, · · · ,un), W = (w1, · · · ,wn), Λ̃ = diag{µ1, · · · , µn} with µ1 ≥ µ2 ≥ · · ·µn.

Recall that

k0 = min{l ≥ 0 : λl+1 ≤
c0
∑

i>l λi

n
},

k1 = min{l ≥ 0 : λl+1 ≤
c1
∑

i>0 λi

n
},

k2 = min{l ≥ 0 :
∑
i>l

λi + nλl+1 ≤ c2c(t, n)
∑
i>0

λi}},

(38)

for some constant c0, c1, c2 and function c(t, n).

We further define
k3 = min{l ≥ 0 : µl+1 ≤ c3c(t, n)

∑
i>0

λi}, (39)

for some constant c3.

The next lemma shows that we can appropriately choose constants to ensure that k3 ≤ k2 holds with
high probability, and in some specific cases we have k2 ≤ k1.

Lemma A.8. For any function c(t, n) and constant c2, there exists constants c, c3, such that k3 ≤ k2
with probability at least 1− e−

n
c . Furthermore, if c(t, n) is a positive constant function, for any c1,

there exists c2 such that k2 ≤ k1.
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Proof. According to lemma A.1, there exists a constant c, with probability at least 1− e−
n
c we have

µk2+1 ≤ c(
∑
i>k2

λi + nλk2+1) ≤ cc2c(t, n)
∑
i>0

λi. (40)

Therefore, we know that k3 ≤ k2 for c3 = cc2.

By the definition of k1, we have∑
i>k1

λi + nλk1+1 ≤ (c1 + 1)
∑
i>0

λi, (41)

which implies that k2 ≤ k1 for c2 = c1+1
c(t,n) , if c(t, n) is a positive constant.

Next we bound Tr[C], which implies an upper bound on the variance term.

Theorem A.1. There exist constants c, c0, c1, c2 such that if k0 ≤ n
c , then with probability at least

1− e−
n
c , the trace of the variance matrix C has the following upper bound for any t:

Tr[C] ≤ c

k1
n

+
k2

c(t, n)n
+ c(t, n)

(
λt

n

∑
i>0

λi

)2
 . (42)

Proof. We divide the eigenvalues of XX⊤ into two groups based on whether they are greater
than c3c(t, n)

∑
i>0 λi. The first group consists of µ1 · · ·µk3

, and the second group consists of
µk3+1 · · ·µn. For 1 ≤ j ≤ k3, we have

1−
(
1− λ

n
µj

)t

≤ 1. (43)

Therefore we have the following upper bound on
[
I −

(
I − λ

nXX⊤)t]2:

[
I −

(
I − λ

n
XX⊤

)t
]2

= Udiag


[
1−

(
1− λ

n
µ1

)t
]2

· · ·

[
1−

(
1− λ

n
µn

)t
]2U⊤

⪯ Udiag


k3 times︷ ︸︸ ︷
1, · · · 1,

n−k3 times︷ ︸︸ ︷[
1−

(
1− λ

n
µk3+1

)t
]2

, · · ·

[
1−

(
1− λ

n
µn

)t
]2U⊤

= Udiag


k3 times︷ ︸︸ ︷
1, · · · 1,

n−k3 times︷ ︸︸ ︷
0, · · · 0

U⊤

+Udiag


k3 times︷ ︸︸ ︷
0, · · · 0,

n−k3 times︷ ︸︸ ︷[
1−

(
1− λ

n
µk3+1

)t
]2

, · · ·

[
1−

(
1− λ

n
µn

)t
]2U⊤.

(44)

For positive semidefinite matrices P ,Q,R which satisfies Q ⪯ R, it holds that Tr[PQ] ≤ Tr[PR]
. It implies the following upperbound of Tr[C]:
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Tr[C]

= Tr

[I −
(
I − λ

n
XX⊤

)t
]2 (

XX⊤)−2
XΣX⊤


≤ Tr

Udiag


k3 times︷ ︸︸ ︷
1, · · · 1,

n−k3 times︷ ︸︸ ︷
0, · · · 0

U⊤ (XX⊤)−2
XΣX⊤


︸ ︷︷ ︸

1⃝

+Tr

Udiag


k3 times︷ ︸︸ ︷
0, · · · 0,

n−k3 times︷ ︸︸ ︷[
1−

(
1− λ

n
µk3+1

)t
]2

, · · ·

[
1−

(
1− λ

n
µn

)t
]2U⊤ (XX⊤)−2

XΣX⊤

 .

︸ ︷︷ ︸
2⃝

(45)

Bounding 1⃝

Noticing X = UΛ̃
1
2W⊤ and Σ =

∑
i≥1 λiviv

⊤
i , we express the first term as sums of eigenvector

products,

1⃝ = Tr

Udiag


k3 times︷ ︸︸ ︷
1, · · · 1,

n−k3 times︷ ︸︸ ︷
0, · · · 0

U⊤ (XX⊤)−2
XΣX⊤


= Tr

Udiag


k3 times︷ ︸︸ ︷
1, · · · 1,

n−k3 times︷ ︸︸ ︷
0, · · · 0

U⊤UΛ̃−2U⊤UΛ̃
1
2W⊤ΣW Λ̃

1
2U⊤


= Tr

diag


k3 times︷ ︸︸ ︷
1, · · · 1,

n−k3 times︷ ︸︸ ︷
0, · · · 0

 Λ̃−1W⊤ΣW


=
∑
i≥1

λi Tr

diag


k3 times︷ ︸︸ ︷
1, · · · 1,

n−k3 times︷ ︸︸ ︷
0, · · · 0

 Λ̃−1W⊤viv
⊤
i W


=
∑
i≥1

∑
1≤j≤k3

λi

µj

(
v⊤
i wj

)2
.

(46)

Next we divide the above summation into 1 ≤ i ≤ k1 and i > k1. For the first part, notice that∑
1≤j≤k3

λi

µj

(
v⊤
i wj

)2 ≤
∑

1≤j≤n

λi

µj

(
v⊤
i wj

)2
= λiv

⊤
i

 ∑
1≤j≤n

1

µj
wjw

⊤
j

vi

= λiv
⊤
i W Λ̃−1W⊤vi

= λiv
⊤
i W Λ̃

1
2U⊤UΛ̃−2U⊤UΛ̃

1
2W⊤vi

= λ2
i x̃

⊤
i (XX⊤)−2x̃i,

(47)

where x̃i is defined as x̃i =
Xvi√

λi
= UΛ̃

1
2 W⊤vi√
λi

.

From the proof of lemma 11 in Bartlett et al. [8], we know that for any σx, there exists a constant c0
and c such that if k0 ≤ n

c , with probability at least 1− e−
n
c the first part can be bounded as
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∑
1≤i≤k1

∑
1≤j≤k3

λi

µj

(
v⊤
i wj

)2 ≤
∑

1≤i≤k1

λ2
i x̃i(XX⊤)−2x̃i ≤ c

k1
n
, (48)

which gives a bound for the first part.

For the second part we interchange the order of summation and have∑
i≥k1

∑
1≤j≤k3

λi

µj

(
v⊤
i wj

)2
=

∑
1≤j≤k3

∑
i≥k1

λi

µj

(
v⊤
i wj

)2
≤ 1

c3c(t, n)
∑

i>0 λi

∑
1≤j≤k3

∑
i≥k1

λi

(
v⊤
i wj

)2
=

λk1+1

c3c(t, n)
∑

i>0 λi

∑
1≤j≤k3

∑
i≥k1

(
v⊤
i wj

)2
≤ λk1+1

c3c(t, n)
∑

i>0 λi

∑
1≤j≤k3

1

=
λk1+1k3

c3c(t, n)
∑

i>0 λi

≤ c
k3

c(t, n)n
.

(49)

for c large enough.

Putting 48 and 49 together, and noting that k3 ≤ k2 with high probability as given in lemma A.8, we
know there exists a constant c that with probability at least 1− e−

n
c ,

1⃝ ≤ c
k1
n

+ c
k2

c(t, n)n
. (50)

Bounding 2⃝
Similar to the first step in bounding 1⃝, we note that

2⃝ = Tr

Udiag


k3 times︷ ︸︸ ︷
0, · · · 0,

n−k3 times︷ ︸︸ ︷[
1−

(
1− λ

n
µk3+1

)t
]2

, · · · ,

[
1−

(
1− λ

n
µn

)t
]2

UΛ̃−2U⊤UΛ̃
1
2W⊤ΣW Λ̃

1
2U⊤

]

= Tr

diag


k3 times︷ ︸︸ ︷
0, · · · 0,

n−k3 times︷ ︸︸ ︷
1

µk3+1

[
1−

(
1− λ

n
µk3+1

)t
]2

, · · · , 1

µn

[
1−

(
1− λ

n
µn

)t
]2

W⊤ΣW
]
.

(51)

From Bernoulli’s inequality and the definition of k3, for any k3 + 1 ≤ j ≤ n, we have

1

µk

[
1−

(
1− λ

n
µk

)t
]2

≤ 1

µk

(
λ

n
µkt

)2

=

(
λt

n

)2

µk ≤ c3

(
λt

n

)2

c(t, n)
∑
i>0

λi, (52)

Hence,
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2⃝ ≤ c3c(t, n)

(
λt

n

)2∑
i>0

λi Tr[W
⊤ΣW ]

= c3c(t, n)

(
λt

n

∑
i>0

λi

)2

.

(53)

Putting things together

From the bounds for 1⃝ and 2⃝ given above, we know that there exists a constant c such that with
probability at least 1− e−

n
c , the trace of the variance matrix C has the following upper bound

Tr[C] ≤ c

k1
n

+
k2

c(t, n)n
+ c(t, n)

(
λt

n

∑
i>0

λi

)2
 . (54)

Proof of theorem 5.1. Lemma A.4, A.7 and Theorem A.1 gives the complete proof. Note that the
high probability events in the proof are independent of the epoch number t, and this implies that the
theorem holds uniformly for all t ∈ N.

A.6 Proof of Compatibility Results

Corollary A.2 (Corollary 5.1 restated). Let Assumption 1, 2 and 3 hold. Fix a constant c(t, n).

Suppose k0 = O(n), k1 = o(n), r(Σ) = o(n), λ = O
(

1∑
i>0 λi

)
. Then there exists a sequence of

positive constants {δn}n≥0 which converge to 0, such that with probability at least 1− δn, the excess
risk is consistent for t ∈

(
ω
(
1
λ

)
, o
(
n
λ

))
, i.e.

R(θt) = o(1).

Furthermore, for any positive constant δ, with probability at least 1− δ, the minimal excess risk on
the training trajectory can be bounded as

min
t

R(θt) ≲
max{

√
r(Σ), 1}√
n

+
max{k1, 1}

n
.

Proof. According to Lemma A.7, with probability at least 1− δn
2 , the following inequality holds for

all t:

B(θt) ≲

 1

λt
+max


√

r(Σ)

n
,
r(Σ)

n
,

√
log( 1

δn
)

n
,
log( 1

δn
)

n


 . (55)

If δn is chosen such that log 1
δn

= o(n), we have that with probability at least 1− δn
2 , we have for all

t = ω
(
1
λ

)
:

B(θt) = o(1), (56)
in the sample size n.

When c(t, n) is a constant, we have k2 ≤ k1 with high probability as given in lemma A.8. Therefore,
according to Lemma A.4 and Theorem A.1, we know that if log 1

δn
= O(n), with probability at least

1− δn
2 , the following bound holds for all t:

V (θt) ≲ log

(
1

δn

)(
k1
n

+
λ2t2

n2

)
. (57)

Since k1 = o(n), t = o
(
n
λ

)
, we have k1

n + λ2t2

n2 = o(1). Therefore, there exists a mildly decaying

sequence of δn with log
(

1
δn

)(
k1

n + λ2t2

n2

)
= o(1), i.e.,

V (θt) = o(1). (58)
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To conclude, δn can be chosen such that

log

(
1

δn

)
= ω(1), log

(
1

δn

)
= O(n), log

(
1

δn

)
= O

(
1

k1

n + λ2t2

n2

)
, (59)

and then with probability at least 1− δn, the excess risk is consistent for all t ∈
(
ω
(
1
λ

)
, o
(
n
λ

))
:

R(θt) = B(θt) + V (θt) = o(1). (60)

This completes the proof for the first claim. The second claim follows from Equation 55 and 57 by
setting t = Θ

(√
n
λ

)
.

Lemma A.9 (Lemma 5.1 restated). For any fixed (i.e. independent of sample size n) feature
covariance Σ satisfying assumption 1, we have k1(n) = o(n).

Proof. Suppose there exists constant c, such that k1(n) ≥ cn. By definition of k1, we know that
λl ≥

c1
∑

i>0 λi

n holds for 1 ≤ l ≤ k1(n). Hence we have

⌊cn2i+1⌋∑
l=⌊cn2i⌋+1

λl ≳
c1
∑

i>0 λi

n2i+1
cn2i ≳

∑
i>0

λi. (61)

summing up all l leads to a contradiction since
∑

i>0 λi < ∞, which finishes the proof.

Theorem A.2 (Theorem 4.1 restated). Consider the overparameterized linear regression setting
defined in section 4.1. Let Assumption 1,2 and 3 hold. Assume the learning rate satisfies λ =

O
(

1
Tr(Σ)

)
.

• If the covariance satisfies k0 = o(n), Rk0
(Σ) = ω(n), r(Σ) = o(n), it is compatible with

the region Tn =
(
ω
(
1
λ

)
,∞
)
.

• If the covariance satisfies k0 = O(n), k1 = o(n), r(Σ) = o(n), it is compatible with the
region Tn =

(
ω
(
1
λ

)
, o
(
n
λ

))
.

• If the covariance does not change with n, and satisfies k0 = O(n) and p = ∞, it is
compatible with the region Tn =

(
ω
(
1
λ

)
, o
(
n
λ

))
.

Proof. For the first argument, notice that (a) the bias term can still be bounded when t = ω(1) and
r(Σ) = o(n), according to Lemma A.4; (b) the variance term can be bounded with t → ∞ (that is,
the variance loss would increase with time t). Therefore, the first argument directly follows Theorem
4 in Bartlett et al. [8].

The second argument follows Corollary 5.1, and the third argument follows Corollary 5.1 and
Lemma 5.1. Specifically, for any ε > 0, there exists {δn}n>0 and N such that for any sample size
n > N , we have

Pr

[∣∣∣∣ sup
t∈Tn

R(θt)

∣∣∣∣ > ε

]
≤ δn. (62)

Let n → ∞ shows that supt∈Tn
R(θt) converges to 0 in probability, which completes the proof for

the second and the third claim.

B Comparisons and Discussions

In this section, we provide additional discussions and calculations for the main results, and compare it
with previous works, including benign overfitting (Section B.1), stability-based bounds (Section B.2),
uniform convergence (Section B.3), and early-stopping bounds (Section B.4).
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B.1 Comparisons with Benign Overfitting

We summarize the results in Bartlett et al. [8], Zou et al. [76] and our results in Table 1, and provide
a detailed comparison with them below.

Comparison to Bartlett et al. [8]. In this seminal work, the authors study the excess risk of the
min-norm interpolator. As discussed before, gradient descent converges to the min-norm interpolator
in the overparameterized linear regression setting. One of the main results in Bartlett et al. [8] is to
provide a tight bound for the variance part in excess risk as

V (θ̂) = O

(
k0
n

+
n

Rk0
(Σ)

)
, (63)

where θ̂ = X⊤(XX⊤)−1Y denotes the min-norm interpolator, and Rk(Σ) = (
∑

i>k λi)
2/

(
∑

i>k λ
2
i ) denote another type of effective rank.

By introducing the time factor, Theorem 5.1 improves over Equation (63) in at least two aspects.
Firstly, Theorem 5.1 guarantees the consistency of the gradient descent dynamics for a broad range
of step number t, while Bartlett et al. [8] study the limiting behavior of the dynamics of t → ∞.
Secondly, Theorem 5.1 implies that the excess risk of early stopping gradient descent solution can
be much better than the min-norm interpolator. Compared to the bound in Equation (63), the bound
in Corollary 5.1 (a.) replaces k0 with a much smaller quantity k1; and (b.) drops the second term
involving Rk0

(Σ). Therefore, we can derive a consistent bound for an early stopping solution, even
though the excess risk of limiting point (min-norm interpolator) can be Ω(1).

Comparison to Zou et al. [76]. Zou et al. [76] study a different setting, which focuses on the
one-pass stochastic gradient descent solution of linear regression. The authors prove a bound for the
excess risk as

R(θ̃t) = O

(
k1
n

+
n
∑

i>k1
λ2
i

(
∑

i>0 λi)2

)
, (64)

where θ̃t denotes the parameter obtained using stochastic gradient descent (SGD) with constant step
size at epoch t. Similar to our bound, Equation 64 also uses the effective dimension k1 to characterize
the variance term. However, we emphasize that Zou et al. [76] derive the bound in a pretty different
scenario from ours, which is one-pass SGD scenario. During the one-pass SGD training, one uses a
fresh data point to perform stochastic gradient descent in each epoch, and therefore they set t = Θ(n)
by default. As a comparison, we apply the standard full-batch gradient descent, and thus the time
can be more flexible. Besides, our results in Corollary 5.1 improve the bound in Equation (64) by
dropping the second term. We refer to the third and fourth example in Example 5.1 for a numerical
comparison of the bounds2.

B.2 Comparisons with Stability-Based Bounds

In this section, we show that Theorem 5.1 gives provably better upper bounds than the stability-
based method. We cite a result from Teng et al. [67], which uses stability arguments to tackle
overparameteried linear regression under similar assumptions.
Theorem B.1 (modified from Theorem 1 in Teng et al. [67]). Under the overparameterized linear
regression settings, assume that ∥x∥ ≤ 1, |ε| ≤ V , w = θ∗,⊤x√

θ∗,⊤Σθ∗ is σ2
w-subgaussian. Let

Bt = supτ∈[t] ∥θt∥. the following inequality holds with probability at least 1− δ:

R(θt) = Õ

(
max{1,θ∗,⊤Σθ∗σ2

w, (V +Bt)
2}
√

log(4/δ)

n
+

∥θ∗∥2

λt
+

λt(V +Bt)
2

n

)
. (65)

Theorem B.1 applies the general stability-based results [19, 24] in the overparameterized linear
regression setting, by replacing the bounded Lipschitz condition with the bounded domain condition.
A fine-grained analysis [31] may remove the bounded Lipschitz condition, but it additionally requires

2Due to the bias term in Theorem 5.1, the overall excess risk bound cannot surpass the order O(1/
√
n),

which leads to the cases that Zou et al. [76] outperforms our bound. However, we note that such differences
come from the intrinsic property of GD and SGD, which may be unable to avoid in the GD regimes.
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zero noise or decaying learning rate, which is different from our setting. We omit the excess risk
decomposition technique adopted in Teng et al. [67] for presentation clarity.

Theorem B.1 can not directly yield the stability argument in Theorem 4.1, since obtaining a high
probability bound of Bt requires a delicate trajectory analysis and is a non-trivial task. Therefore,
data-irrelevant methods such as stability-based bounds can not be directly applied to our setting. Even
if one can replace Bt in Equation 65 with its expectation that is easier to handle (this modification will
require adding concentration-related terms, and make the bound in Equation 65 looser), we can still
demonstrate that Theorem 5.1 is tighter than the corresponding stability-based analysis by providing
a lower bound on E[B2

t ], which will imply a lower bound on the righthand side of Equation 65.

Theorem B.2. Let Assumption 1, 2, 3 holds. Suppose λ = O
(

1∑
i>0 λi

)
. Suppose the conditional

variance of the noise ε|x is lower bounded by σ2
ε . There exists constant c, such that with probability

at least 1− ne−
n
c , we have for t = o(n),

E∥θt∥2 = Ω

(
λ2t2

n

(∑
i>k0

λi

))
(66)

First we prove the following lemma, bounding the number of large µi.

Lemma B.1. Suppose t = o(n). Let l denote the number of µi, such that µi = Ω
(
n
t

)
. Then with

probability at least 1− ne−
n
c , we have l = O(t).

Proof. According to Lemma A.1, we know that with probability at least 1 − ne−
n
c , Equation 12

holds for all 0 ≤ k ≤ n− 1. Conditioned on this, we have

n

t
l ≲

l∑
k=1

µi ≲
l∑

k=1

(
∑
i≥k

λi + λkn) ≲ (l + n)
∑
i>0

λi ≲ l + n. (67)

Since t = o(n), we have l = O(t) as claimed.

We also need the result from Bartlett et al. [8], which gives a lowerbound of µn.

Lemma B.2. (Lemma 10 in Bartlett et al. [8]) For any σx, there exists a constant c, such that with
probability at least 1− e−

n
c we have,

µn ≥ c

(∑
i>k0

λi

)
. (68)

We are now ready to prove Theorem B.2.
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Proof. We begin with the calculation of ∥θt∥2. By Lemma A.2, the conditional unbiasedness of
noise in Assumption 2 and the noise variance lower bound, we have

E∥θt∥2 =

∥∥∥∥∥
(
I − λ

n
X⊤X

)t

(θ0 −X†Y ) +X†Y

∥∥∥∥∥
2

= E

∥∥∥∥∥
(
I −

(
I − λ

n
X⊤X

)t
)
X† (Xθ∗ + ε)

∥∥∥∥∥
2

= E

∥∥∥∥∥
(
I −

(
I − λ

n
X⊤X

)t
)
X†Xθ∗

∥∥∥∥∥
2

+ E

∥∥∥∥∥
(
I −

(
I − λ

n
X⊤X

)t
)
X†ε

∥∥∥∥∥
2

≥ E

∥∥∥∥∥
(
I −

(
I − λ

n
X⊤X

)t
)
X†ε

∥∥∥∥∥
2

= ETr

[(
I −

(
I − λ

n
X⊤X

)t
)
X†εε⊤X†,⊤

(
I −

(
I − λ

n
X⊤X

)t
)]

≥ σ2
εETr

[(
I −

(
I − λ

n
X⊤X

)t
)
X†X†,⊤

(
I −

(
I − λ

n
X⊤X

)t
)]

= σ2
ε

n∑
i=1

[1− (1− λ
nµi)

t]2

µi
.

(69)

When µi = o
(
n
t

)
, we have

1− (1− λ

n
µi)

t = 1− 1 +
λ

n
µit+O

((
λ

n
µit

)2
)

= Θ

(
λ

n
µit

)
. (70)

Plugging it into Equation 69 and then use Lemma B.1, B.2, we know that under the high probability
event in Lemma B.1 and B.2,

E∥θt∥2 = Ω

(
(n− l)

λ2

n2
µnt

2

)
= Ω

(
λ2

n
µnt

2

)
= Ω

(
λ2t2

n

(∑
i>k0

λi

))
(71)

Therefore, the stability-based bound, i.e., the right hand side of Equation 65, can be lower bounded
in expectation as Ω

(
λ3t3

n2

∑
i>k0

λi

)
. This implies that the stability-based bound is vacuous when

t = Ω

(
n

2
3 (

∑
i>k0

λi)
− 1

3

λ

)
. Thus, stability-based methods will provably yield smaller compatibility

region than
(
ω
(
1
λ

)
, o
(
n
λ

))
in Theorem 4.1 when

∑
i>k0

λi is not very small, as demonstrated in the
examples below.
Example B.1. Let Assumption 1, 2, 3 holds. Assume without loss of generality that λ = Θ(1). We
have the following examples:

1. (Inverse Polynominal). If the spectrum of Σ satisfies

λk =
1

kα
,

for some α > 1, we derive that k0 = Θ(n),
∑

i>k0
λi = Θ( 1

nα−1 ). Therefore, the stability
bound in Theorem B.1 is vacuous when

t = Ω
(
n

α+1
3

)
,

which is outperformed by the region in Theorem 5.1 when α < 2.
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2. (Inverse Log-Polynominal). If the spectrum of Σ satisfies

λk =
1

k logβ(k + 1)
,

for some β > 1 , we derive that k0 = Θ
(

n
logn

)
,
∑

i>k0
λi = Θ̃(1). Therefore, the stability

bound in Theorem B.1 is vacuous when

t = Ω̃
(
n

2
3

)
,

which is outperformed by the region in Theorem 5.1.

3. (Constant). If the spectrum of Σ satisfies

λk =
1

n1+ε
, 1 ≤ k ≤ n1+ε,

for some ε > 0, we derive that k0 = 0,
∑

i>k0
λi = 1. Therefore, the stability bound in

Theorem B.1 is vacuous when

t = Ω
(
n

2
3

)
,

which is outperformed by the region in Theorem 5.1.

4. (Piecewise Constant). If the spectrum of Σ satisfies

λk =

{
1
s 1 ≤ k ≤ s,
1

d−s s+ 1 ≤ k ≤ d,

where s = nr, d = nq, 0 < r ≤ 1, q ≥ 1, we derive that k0 = nr,
∑

i>k0
λi = 1.

Therefore, the stability bound in Theorem B.1 is vacuous when

t = Ω
(
n

2
3

)
,

which is outperformed by the region in Theorem 5.1.

B.3 Comparisons with Uniform Convergence Bounds

We first state a standard bound on the Rademacher complexity of linear models.

Theorem B.3 (Theorem in Mohri et al. [44]). Let S ⊆ {x : ∥x∥2 ≤ r} be a sample of size n and let
H = {x 7→ ⟨w, x⟩ : ∥w∥2 ≤ Λ}. Then, the empirical Rademacher complexity of H can be bounded
as follows:

R̂S(H) ≤
√

r2Λ2

n
. (72)

Furthermore, Talagrand’s Lemma (See Lemma 5.7 in Mohri et al. [44]) indicates that

R̂S(l ◦ H) ≤ LR̂S(H) =
Θ(Λ2)√

n
, (73)

where L = Θ(Λ) is the Lipschitz coefficient of the square loss function l in our setting. Therefore,
the Rademacher generalization bound is vacuous when Λ = Ω(n

1
4 ). By Theorem B.2, we know

that E∥θt∥2 = Ω(n
1
2 ) when t = Ω

(
n

3
4

λ(
∑

i>k0
λi)

1
2

)
. A similar comparison as in Example B.1 can

demonstrate that uniform stability arguments will provably yield smaller compatibility region than
that in Theorem 5.1 for example distributions.

31



B.4 Comparison with Previous Works on Early Stopping

A line of works focuses on deriving the excess risk guarantee of linear regression or kernel regression
with early stopping (stochastic) gradient descent. We refer to Section 2 for details. Here we compare
our results with some most relevant works, including [37, 51, 72].

Comparison with Yao et al. [72]. Yao et al. [72] study kernel regression with early stopping gradient
descent. Their approaches are different from ours in the following aspects.

Firstly, the assumptions used in the two approaches are different, due to different goals and techniques.
Yao et al. [72] assume that the input feature and data noise have bounded norm (see Section 2.1 in
Yao et al. [72]), while we require that the input feature is subgaussian with independent entries.

Furthermore, although Yao et al. [72] obtain a minimax bound in terms of the convergence rate, it
is suboptimal in terms of compatibility region. Specifically, The results in our paper show a region
like (0, n) while the techniques Yao et al. [72] can only lead to a region like (0,

√
n). See Proof of

the Main Theorem in section 2 in Yao et al. [72] for details. Such differences come from different
goals of the two approaches, where Yao et al. [72] focus on providing the optimal early-stopping time
while we focus on providing a larger time region in which the loss is consistent.

Comparison with Lin and Rosasco [37]. Lin and Rosasco [37] study stochastic gradient descent
with arbitrary batchsize, which is reduced to full batch gradient descent when setting the batchsize to
sample size n. Their results are different from ours, since they require the boundness assumption,
and focus more on the optimal early stopping time rather than the largest compatibility region, in
the same spirit of Yao et al. [72]. Specifically, Lin and Rosasco [37] derive a region like (0, n

ζ+1
2ζ+γ ),

where ζ and γ are problem dependent constants (See Theorem 1 in Lin and Rosasco [37] for details).
The following examples demonstrate that this paper’s results yield larger regions for a wide range of
distribution classes.
Example B.2. (Inverse Polynominal). If the spectrum of Σ satisfies

λk =
1

kα
,

for some α > 1. For this distribution, we have ζ = 1
2 , γ = 1

α , and their region is (0, n
3α

2α+1 ), which

is smaller than (0, n
3α+1
2α+1 ) given in Example 5.2.

Example B.3. (Inverse Log-Polynominal). If the spectrum of Σ satisfies

λk =
1

k logβ(k + 1)
,

for some β > 1. For this distribution, we have ζ = 1
2 , γ = 1, and their region is (0, n

3
4 ), which is

smaller than (0, n) given Corollary 5.1.

B.5 Calculations in Example 5.1

We calculate the quantities r(Σ), k0, k1, k2 for the example distributions in 5.1. The results validate
that k1 is typically a much smaller quantity than k0.

1. Calculations for λk = 1
kα , α > 1.

Define rk(Σ) =
∑

i>k λi

λk+1
as in Bartlett et al. [8]. Since

∑
i>k

1
iα = Θ( 1

kα−1 ), we have

rk(Σ) = Θ

(
1

kα−1
1

kα

)
= Θ(k). Hence, k0 = Θ(n) 3, and the conditions of theorem 5.1 is

satisfied.
As
∑

i>0 λi < ∞, By its definition we know that k1 is the smallest l such that λl+1 = O( 1n ).
Therefore, k1 = Θ(n

1
α ).

2. Calculations for λk = 1
k logβ(k+1)

, β > 1.∑
i>k

1
i logβ(i+1)

= Θ(
∫∞
k

1
x logβ x

dx) = Θ( 1
logβ−1 k

), which implies rk(Σ) = k log k.
Solving k0 log k0 ≥ Θ(n), we have k0 = Θ( n

logn ).

3The calculations for k0, k1 and k2 in this section only apply when n is sufficiently large.
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By the definition of k1, we know that k1 is the smallest l such that l logβ(l + 1) ≥ Θ(n).
Therefore, k1 = Θ( n

logβ n
).

3. Calculations for λi =
1

n1+ε , 1 ≤ i ≤ n1+ε, ε > 0.
Since r0(Σ) = n1+ε, we have k0 = 0. By the definition of k1, we also have k1 = 0.

4. Calculations for λ =

{
1
s 1 ≤ k ≤ s
1

d−s s+ 1 ≤ k ≤ d
, s = nr, d = nq, 0 < r ≤ 1, q ≥ 1.

For 0 ≤ k < s, rk(Σ) = Θ( 1
1
s

) = Θ(nr) = o(n), while rs(Σ) = 1
1

d−s

= Θ(nq) = ω(n).

Therefore, k0 = s = nr.
Similarly, noting that λk = 1

nr = ω(n) for 0 ≤ k < s and λs = Θ( 1
nd ) = o(n), we know

that k1 = s = nr.

B.6 Calculations for λk = 1/kα, α > 1 in Section 5.3

Set c(t, n) = 1
nβ , where β > 0 will be chosen later. First we calculate k2 under this choice of c(t, n).

Note that
∑

i>k
1
iα = Θ

(
1

kα−1

)
. Therefore, k2 is the smallest k such that 1

kα−1 + n
kα = O( 1

nβ ). For
the bound on V (θt) to be consistent, we need k2 = o(n). Hence, 1

kα−1 = O( n
kα ), which implies

k2 = n
β+1
α .

Plugging the value of c(t, n) and k2 into our bound, we have

V (θt) = O
(
n( 1

α−1)+( 1
α+1)β + n2τ−β−2

)
which attains its minimum Θ(n

2ατ−3α+2τ−1
2α+1 ) at β = Θ

(
2ατ−α−1

2α+1

)
.

For V (θ) = O(1), we need τ ≤ 3α+1
2α+2 . For β ≥ 0, we need τ ≥ α+1

2α . Putting them together gives
the range of t in which the above calculation applies.

B.7 Discussions on Dn

In this paper, the distribution D is regarded as a sequence of distribution {Dn} which may dependent
on sample size n. The phenomenon comes from overparameterization and asymptotic requirements.
In the definition of compatibility, we require n → ∞. In this case, overparameterization requires that
the dimension p (if finite) cannot be independent of n since n → ∞ would break overparameterization.
Therefore, the covariance Σ also has n-dependency, since Σ is closely related to p.

Several points are worth mentioning: (1) Similar arguments generally appear in related works, for
example, in Bartlett et al. [8] when discussing the definition of benign covariance. (2) One can avoid
such issues by considering an infinite dimensional feature space. This is why we discuss the special
case p = ∞ in Theorem 4.1. (3) If p is a fixed finite constant that does not alter with n, the problem
becomes underparameterized and thus trivial to get a consistent generalization bound via standard
concentration inequalities.

C Additional Experiment Results

C.1 Details for Linear Regression Experiments

In this section, we provide the experiment details for linear regression experiments and present
additional empirical results.

The linear regression experiment in Figure 1 follows the setting described in section 6. Although the
final iterate does not interpolate the training data, the results suffice to demonstrate the gap between
the early-stopping and final-iterate excess risk. The training plot for different covariances are given in
Figure 2.

Next, we provide the experiment results of sample sizes n = 50, n = 200 and feature dimensions
p = 500, p = 2000. The settings are the same as described above, except for the sample size. The
optimal excess risk and min-norm excess risk are provided in Table 3, 4, 6 and 5. The tables indicate
that the two observations stated above hold for different sample size n.
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(a) λi =
1
i

(b) λi =
1
i2

(c) λi =
1
i3

(d) λi =
1

i log(i+1)
(e) λi =

1
i log2(i+1)

(f) λi =
1

i log3(i+1)

Figure 2: The training plot for overparameterized linear regression with different covariances
using GD.

Table 3: The effective dimension k1, the optimal early stopping excess risk and min-norm excess
risk for different feature distributions, with sample size n = 50, p = 1000. We calculate the 95%
confidence interval for the excess risk.

DISTRIBUTIONS k1 OPTIMAL EXCESS RISK MIN-NORM EXCESS RISK

λi =
1
i

Θ(n) 2.515± 0.0104 12.632± 0.1602

λi =
1
i2

Θ(n
1
2 ) 0.269± 0.0053 50.494± 0.9378

λi =
1
i3

Θ(n
1
3 ) 0.083± 0.0011 13.208± 0.4556

λi =
1

i log(i+1)
Θ( n

logn
) 0.808± 0.0090 46.706± 0.6983

λi =
1

i log2(i+1)
Θ( n

log2 n
) 0.381± 0.0076 74.423± 1.1472

λi =
1

i log3(i+1)
Θ( n

log3 n
) 0.233± 0.0052 43.045± 0.8347

C.2 Details for MNIST Experiments

In this section, we provide the experiment details and additional results in MNIST dataset.

The MNIST experiment details are described below. We create a noisy version of MNIST with label
noise rate 20%, i.e. randomly perturbing the label with probability 20% for each training data, to
simulate the label noise which is common in real datasets, e.g ImageNet [60, 65, 73]. We do not
inject noise into the test data.

We choose a standard four layer convolutional neural network as the classifier. We use a vanilla SGD
optimizer without momentum or weight decay. The initial learning rate is set to 0.5. Learning rate is
decayed by 0.98 every epoch. Each model is trained for 300 epochs. The training batch size is set to
1024, and the test batch size is set to 1000. We choose the standard cross entropy loss as the loss
function.

We provide the plot for different levels of label noise in Figure 3. We present the corresponding
test error of the best early stopping iterate and the final iterate in Table 7. Since the theoretical part
of this paper focuses on GD, we also provide a corresponding plot of GD training in Figure 4 for
completeness.
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Table 4: The effective dimension k1, the optimal early stopping excess risk and min-norm
excess risk for different feature distributions, with sample size n = 200 , p = 1000. We calculate
the 95% confidence interval for the excess risk.

DISTRIBUTIONS k1 OPTIMAL EXCESS RISK MIN-NORM EXCESS RISK

λi =
1
i

Θ(n) 2.173± 0.0065 52.364± 0.4009

λi =
1
i2

Θ(n
1
2 ) 0.161± 0.0039 36.855± 0.4833

λi =
1
i3

Θ(n
1
3 ) 0.068± 0.0012 8.1990± 0.2313

λi =
1

i log(i+1)
Θ( n

logn
) 0.628± 0.0034 152.70± 1.1073

λi =
1

i log2(i+1)
Θ( n

log2 n
) 0.241± 0.0036 83.550± 0.7596

λi =
1

i log3(i+1)
Θ( n

log3 n
) 0.146± 0.0108 33.469± 0.4540

Table 5: The effective dimension k1, the optimal early stopping excess risk and min-norm
excess risk for different feature distributions, with sample size n = 100 , p = 500. We calculate
the 95% confidence interval for the excess risk.

DISTRIBUTIONS k1 OPTIMAL EXCESS RISK MIN-NORM EXCESS RISK

λi =
1
i

Θ(n) 1.997± 0.0876 27.360± 0.3019

λi =
1
i2

Θ(n
1
2 ) 0.211± 0.0050 43.531± 0.7025

λi =
1
i3

Θ(n
1
3 ) 0.076± 0.0011 10.062± 0.3022

λi =
1

i log(i+1)
Θ( n

logn
) 0.645± 0.0056 96.465± 1.0594

λi =
1

i log2(i+1)
Θ( n

log2 n
) 0.289± 0.0055 83.694± 0.9827

λi =
1

i log3(i+1)
Θ( n

log3 n
) 0.181± 0.0045 38.090± 0.6378

Table 6: The effective dimension k1, the optimal early stopping excess risk and min-norm
excess risk for different feature distributions, with sample size n = 100 , p = 2000. We calculate
the 95% confidence interval for the excess risk.

DISTRIBUTIONS k1 OPTIMAL EXCESS RISK MIN-NORM EXCESS RISK

λi =
1
i

Θ(n) 2.662± 0.0066 23.111± 0.2278

λi =
1
i2

Θ(n
1
2 ) 0.219± 0.0050 43.130± 0.6421

λi =
1
i3

Θ(n
1
3 ) 0.077± 0.0010 10.031± 0.2942

λi =
1

i log(i+1)
Θ( n

logn
) 0.749± 0.0055 88.744± 0.9414

λi =
1

i log2(i+1)
Θ( n

log2 n
) 0.312± 0.0057 82.859± 0.9394

λi =
1

i log3(i+1)
Θ( n

log3 n
) 0.190± 0.0047 37.782± 0.5945

Table 7: The test error of optimal stopping iterate and final iterate on MNIST dataset with
different levels of label noise. The results demonstrate that stopping iterate can have significantly
better generalization performance than interpolating solutions for real datasets.

NOISE LEVEL OPTIMAL TEST ERROR FINAL TEST ERROR

0% 1.07% 1.13%
10% 1.75% 10.16%
20% 2.88% 19.90%
30% 2.18% 27.94%
40% 2.57% 35.15%
50% 2.71% 42.95%

35



(a) 0% label noise (b) 10% label noise (c) 20% label noise

(d) 30% label noise (e) 40% label noise (f) 50% label noise

Figure 3: The training plot for corrupted MNIST with different levels of label noise using SGD.
Figure (c) is copied from Figure 1.

Figure 4: The training plot for corrupted MNIST with 20% label noise using GD.
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